1
|
Shintomi K, Masahara-Negishi Y, Shima M, Tane S, Hirano T. Recombinant cyclin B-Cdk1-Suc1 capable of multi-site mitotic phosphorylation in vitro. PLoS One 2024; 19:e0299003. [PMID: 38527022 PMCID: PMC10962838 DOI: 10.1371/journal.pone.0299003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/04/2024] [Indexed: 03/27/2024] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) complexed with cyclin B phosphorylates multiple sites on hundreds of proteins during mitosis. However, it is not fully understood how multi-site mitotic phosphorylation by cyclin B-Cdk1 controls the structures and functions of individual substrates. Here we develop an easy-to-use protocol to express recombinant vertebrate cyclin B and Cdk1 in insect cells from a single baculovirus vector and to purify their complexes with excellent homogeneity. A series of in-vitro assays demonstrate that the recombinant cyclin B-Cdk1 can efficiently and specifically phosphorylate the SP and TP motifs in substrates. The addition of Suc1 (a Cks1 homolog in fission yeast) accelerates multi-site phosphorylation of an artificial substrate containing TP motifs. Importantly, we show that mitosis-specific multi-subunit and multi-site phosphorylation of the condensin I complex can be recapitulated in vitro using recombinant cyclin B-Cdk1-Suc1. The materials and protocols described here will pave the way for dissecting the biochemical basis of critical mitotic processes that accompany Cdk1-mediated large-scale phosphorylation.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yuki Masahara-Negishi
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Masami Shima
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Shoji Tane
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
2
|
Zabihi M, Lotfi R, Yousefi AM, Bashash D. Cyclins and cyclin-dependent kinases: from biology to tumorigenesis and therapeutic opportunities. J Cancer Res Clin Oncol 2023; 149:1585-1606. [PMID: 35781526 DOI: 10.1007/s00432-022-04135-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
The discussion on cell proliferation cannot be continued without taking a look at the cell cycle regulatory machinery. Cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) are valuable members of this system and their equilibrium guarantees the proper progression of the cell cycle. As expected, any dysregulation in the expression or function of these components can provide a platform for excessive cell proliferation leading to tumorigenesis. The high frequency of CDK abnormalities in human cancers, together with their druggable structure has raised the possibility that perhaps designing a series of inhibitors targeting CDKs might be advantageous for restricting the survival of tumor cells; however, their application has faced a serious concern, since these groups of serine-threonine kinases possess non-canonical functions as well. In the present review, we aimed to take a look at the biology of CDKs and then magnify their contribution to tumorigenesis. Then, by arguing the bright and dark aspects of CDK inhibition in the treatment of human cancers, we intend to reach a consensus on the application of these inhibitors in clinical settings.
Collapse
Affiliation(s)
- Mitra Zabihi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Unnikrishnan V, Kastelic J, Thundathil J. Intracytoplasmic Sperm Injection in Cattle. Genes (Basel) 2021; 12:198. [PMID: 33572865 PMCID: PMC7911995 DOI: 10.3390/genes12020198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 10/30/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) involves the microinjection of sperm into a matured oocyte. Although this reproductive technology is successfully used in humans and many animal species, the efficiency of this procedure is low in the bovine species mainly due to failed oocyte activation following sperm microinjection. This review discusses various reasons for the low efficiency of ICSI in cattle, potential solutions, and future directions for research in this area, emphasizing the contributions of testis-specific isoforms of Na/K-ATPase (ATP1A4) and phospholipase C zeta (PLC ζ). Improving the efficiency of bovine ICSI would benefit the cattle breeding industries by effectively utilizing semen from elite sires at their earliest possible age.
Collapse
Affiliation(s)
| | | | - Jacob Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (V.U.); (J.K.)
| |
Collapse
|
4
|
Jiao Y, Zhu S, Li J, Jam Zaheer A, Li M, Huang B. PS48 promotes in vitro maturation and developmental competence of porcine oocytes through activating PI3K/Akt signalling pathway. Reprod Domest Anim 2020; 55:1678-1687. [PMID: 32946622 DOI: 10.1111/rda.13818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
Oocyte maturation plays a vitally important role in porcine reproduction. Regrettably, the quality of oocytes matured in vitro is weaker than that of in vivo matured oocytes. We collected and cultivated porcine cumulus oocyte complexes (COCs) in vitro with phosphoinositide-dependent kinase 1 (PDK1) activator 5-(4-chloro-phenyl)-3-phenyl-pent-2-enoic acid (PS48), whose concentrations were 0, 2, 5, 10 and 20 µM to investigate whether the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signalling pathway would impact the oocyte quality. The results showed that 10 µM PS48 increased the oocyte proportion of metaphase II (MII) stage and improved the expansion of cumulus cells (CCs). What's more, the activation of PI3K/Akt signalling pathway could regulate the expression of maturation-related genes and proteins. The results of quantitative real-time PCR showed that 10 µM PS48 increased the mRNA and protein levels of Akt and regulated maturation-related genes, including cyclin B1, MOS, BMP15, GDF9, CDC2, mTOR, BAX, BCL2 and caspase-3. The results of Western blot indicated that 10µM PS48 increased the protein abundance of Akt, phosphorylation of Akt Thr308 (p-AktThr308 ) and cyclin B1, but decreased the protein abundance of pro-apoptotic BAX. These results suggested that adding 10 µM PS48 to mature culture medium could promote the maturation of porcine oocytes, potentially through activating the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Yafei Jiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shaoqian Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiaojiao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ahmed Jam Zaheer
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengmei Li
- School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ben Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
5
|
PI3K inhibitor reduces in vitro maturation and developmental competence of porcine oocytes. Theriogenology 2020; 157:432-439. [PMID: 32877843 DOI: 10.1016/j.theriogenology.2020.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023]
Abstract
The phosphatidylinositol -3- kinase (PI3K) signaling pathway is critical for the cell proliferation, apoptosis, metabolism, DNA repair and protein synthesis. Significant effort has focused on elucidating the relationship between PI3K signaling pathway and other nuclear signal transducers; However, little is known about the connection between PI3K signaling pathway and porcine oocyte meiotic maturation. In this study, we investigated the function of PI3K signaling pathway in porcine oocytes. PI3K signaling pathway was important during oocyte maturation. Furthermore, the PI3K signaling pathway inhibitor LY-294002 blocked porcine oocyte maturation, reducing the percentage of oocytes that first polar body (PBI) extrusion. LY-294002 also decreased the expression of oocyte proliferation-related gene PCNA and reduced the mRNA and protein levels of PI3K. What's more, LY-294002 also decreased other maturation-related genes that are predominantly expressed duringporcine oocyte maturation, including bone morphogenetic protein 15 (BPM15), growth differentiation factor 9 (GDF9), cell division cycle protein 2 (CDC2), phosphatase and tensin homolog (PTEN), CyclinB1, MOS and Akt. LY-294002 treatment decreased the developmental potential of blastocysts following parthenogenetic activation, increased the level of cell apoptosis and reduced the level of cell-cycle. This study revealed that inhibiting the PI3K signaling pathway could reduce in vitro maturation and developmental competence of porcine oocytes, probably by reducing cell cycle arrest and proliferation, promoting the oocyte apoptosis, and altering the expression of other maternal genes.
Collapse
|
6
|
Hou S, Sun Y, Wu Y, Cheng T, Liu C. Bmsage is involved in the determination of cell number in the silk gland of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103205. [PMID: 31421207 DOI: 10.1016/j.ibmb.2019.103205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The number of cells in tissues is under strict genetic control, and research on the determination of cell number is of great importance to understand the growth and development of organs. Bmsage, a bHLH transcription factor, is involved in the development of the silk gland during the embryonic stage in Bombyx mori. However, the mechanism by which it influences silk gland development is unclear. In the present study, we determined via immunofluorescence staining during the embryonic stage of Bombyx mori that Bmsage is expressed in silk gland cells from the beginning of development of the silk gland until its complete formation. By comparing different silkworm strains, we found that Bmsage expression is positively correlated with the number of silk gland cells. Bmsage knockdown by RNAi resulted in shorter silk glands and lower cell numbers, especially in the posterior silk gland. The silk gland lumen also shriveled, and the silk protein content was significantly lower than that in the control. Further investigation revealed that all cyclins decreased after knock down of Bmsage, and cyclin B and cyclin 3 were significantly down-regulated. Bmsage may be involved in the regulation of the cyclin pathway to control silk gland development. Taken together, it can be concluded from our results that Bmsage is involved in the determination of cell number in silk glands. Our results help clarify the process of cell number determination in silk gland and identify a potential target for silkworm breeding.
Collapse
Affiliation(s)
- Sihan Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Yan Sun
- Biotechnology College, Southwest University, Chongqing, 400716, China
| | - Yangchun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, 212018, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
7
|
Jones MC, Askari JA, Humphries JD, Humphries MJ. Cell adhesion is regulated by CDK1 during the cell cycle. J Cell Biol 2018; 217:3203-3218. [PMID: 29930204 PMCID: PMC6122981 DOI: 10.1083/jcb.201802088] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
In most tissues, anchorage-dependent growth and cell cycle progression are dependent on cells engaging extracellular matrices (ECMs) via integrin-receptor adhesion complexes. In a highly conserved manner, cells disassemble adhesion complexes, round up, and retract from their surroundings before division, suggestive of a primordial link between the cell cycle machinery and the regulation of cell adhesion to the ECM. In this study, we demonstrate that cyclin-dependent kinase 1 (CDK1) mediates this link. CDK1, in complex with cyclin A2, promotes adhesion complex and actin cytoskeleton organization during interphase and mediates a large increase in adhesion complex area as cells transition from G1 into S. Adhesion complex area decreases in G2, and disassembly occurs several hours before mitosis. This loss requires elevated cyclin B1 levels and is caused by inhibitory phosphorylation of CDK1-cyclin complexes. The inactivation of CDK1 is therefore the trigger that initiates remodeling of adhesion complexes and the actin cytoskeleton in preparation for rapid entry into mitosis.
Collapse
Affiliation(s)
- Matthew C Jones
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| | - Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| |
Collapse
|
8
|
Requirement for CCNB1 in mouse spermatogenesis. Cell Death Dis 2017; 8:e3142. [PMID: 29072697 PMCID: PMC5680922 DOI: 10.1038/cddis.2017.555] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023]
Abstract
Spermatogenesis, which involves mitosis and meiosis of male germ cells, is a highly complicated and coordinately ordered process. Cyclin B1 (CCNB1), an important regulator in cell cycle machinery, is proved essential for mouse embryonic development. However, the role of CCNB1 in mammalian spermatogenesis remains unclear. Here we tested the requirement for CCNB1 using conditional knockout mice lacking CCNB1 in male germ cells. We found that ablation of CCNB1 in gonocytes and spermatogonia led to mouse sterile caused by the male germ cells’ depletion. Gonocyte and spermatogonia without CCNB1 is unable to proliferate normally and apoptosis increased. Moreover, CCNB1 ablation in spermatogonia may promote their differentiation by downregulating Lin28a and upregulating let-7 miRNA. However, ablation of CCNB1 in premeiotic male germ cells did not have an effect on meiosis of spermatocytes and male fertility, suggesting that CCNB1 may be dispensable for meiosis of spermatocytes. Collectively, these results indicate that CCNB1 is critically required for the proliferation of gonocytes and spermatogonia but may be redundant in meiosis of spermatocytes in mouse spermatogenesis.
Collapse
|
9
|
Hégarat N, Rata S, Hochegger H. Bistability of mitotic entry and exit switches during open mitosis in mammalian cells. Bioessays 2016; 38:627-43. [PMID: 27231150 DOI: 10.1002/bies.201600057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitotic entry and exit are switch-like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Scott Rata
- Department of Biochemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
10
|
Bury L, Coelho PA, Glover DM. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development. Curr Top Dev Biol 2016; 120:125-71. [PMID: 27475851 DOI: 10.1016/bs.ctdb.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression.
Collapse
Affiliation(s)
- L Bury
- University of Cambridge, Cambridge, United Kingdom.
| | - P A Coelho
- University of Cambridge, Cambridge, United Kingdom
| | - D M Glover
- University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Abstract
Vertebrate reproduction requires a myriad of precisely orchestrated events-in particular, the maternal production of oocytes, the paternal production of sperm, successful fertilization, and initiation of early embryonic cell divisions. These processes are governed by a host of signaling pathways. Protein kinase and phosphatase signaling pathways involving Mos, CDK1, RSK, and PP2A regulate meiosis during maturation of the oocyte. Steroid signals-specifically testosterone-regulate spermatogenesis, as does signaling by G-protein-coupled hormone receptors. Finally, calcium signaling is essential for both sperm motility and fertilization. Altogether, this signaling symphony ensures the production of viable offspring, offering a chance of genetic immortality.
Collapse
Affiliation(s)
- Sally Kornbluth
- Duke University School of Medicine, Durham, North Carolina 27710
| | - Rafael Fissore
- University of Massachusetts, Amherst, Veterinary and Animal Sciences, Amherst, Massachusetts 01003
| |
Collapse
|
12
|
Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel) 2015; 7:179-237. [PMID: 25625291 PMCID: PMC4381256 DOI: 10.3390/cancers7010179] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.
Collapse
Affiliation(s)
- Marion Peyressatre
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Camille Prével
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Morgan Pellerano
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - May C Morris
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|
13
|
SATO E. Intraovarian control of selective follicular growth and induction of oocyte maturation in mammals. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:76-91. [PMID: 25765010 PMCID: PMC4410087 DOI: 10.2183/pjab.91.76] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
In newborn mammals, most of the germ cell population rests in a pool of quiescent small follicles in the ovaries. Regularly throughout adulthood, a small percentage of these oocytes and follicles grows to a certain stage of development and then either degenerates or matures and ovulates. This entire process is under both exogenous and endogenous control. Recent work, including my laboratory's, has clarified that cytokines and glycosaminoglycans are involved as exogenous and endogenous factors in ovarian follicular development, atresia, and maturation in mammals. The present article describes our contribution regarding the cytokines and ovarian glycosaminoglycans that act as intraovarian regulators of follicular development and oogenesis, including oocyte maturation, in mammals.
Collapse
Affiliation(s)
- Eimei SATO
- National Livestock Breeding Center, Incorporated Administrative Agency, Fukushima, Japan
| |
Collapse
|
14
|
Ferrell JE. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle. Curr Opin Cell Biol 2013; 25:676-86. [PMID: 23927869 DOI: 10.1016/j.ceb.2013.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022]
Abstract
The study of eukaryotic cell cycle regulation over the last several decades has led to a remarkably detailed understanding of the complex regulatory system that drives this fundamental process. This allows us to now look for recurring motifs in the regulatory system. Among these are negative feedback loops, which underpin checkpoints and generate cell cycle oscillations; positive feedback loops, which promote oscillations and make cell cycle transitions switch-like and unidirectional; and reciprocal regulation, which can increase the control a key regulator exerts. These simple motifs are found at multiple points in the cell cycle (e.g. S-phase and M-phase control) and are conserved in diverse organisms. These findings argue for an underlying unity in the principles of cell cycle control.
Collapse
Affiliation(s)
- James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA.
| |
Collapse
|
15
|
Kubiak JZ. Protein kinase assays for measuring MPF and MAPK activities in mouse and rat oocytes and early embryos. Methods Mol Biol 2013; 957:77-89. [PMID: 23138945 DOI: 10.1007/978-1-62703-191-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein phosphorylation plays a pivotal role in cell cycle regulation. MPF (M-phase Promoting Factor) and MAPK (Mitogen-activated protein kinase) are two major kinases driving oocyte maturation and early embryonic divisions. Their activities can be measured experimentally with kinase assays that use specific exogenous substrates. The activities of MPF and MAPK are measured using histone H1 kinase and MBP (Myelin Basic Protein) kinase assays, respectively. Here, we describe detailed procedures for measuring these two activities in mouse and rat oocytes and in early mouse embryos. The assays we describe can be performed using very small amounts of biological material and produce clearly discernible measurements of histone H1 and MBP kinase activities.
Collapse
Affiliation(s)
- Jacek Z Kubiak
- Cell Cycle Group, CNRS, UMR 6290, Institute of Genetics and Development of Rennes (IGDR), Rennes, France.
| |
Collapse
|
16
|
Adhikari D, Zheng W, Shen Y, Gorre N, Ning Y, Halet G, Kaldis P, Liu K. Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum Mol Genet 2012; 21:2476-84. [PMID: 22367880 DOI: 10.1093/hmg/dds061] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mammalian oocytes are arrested at the prophase of meiosis I during fetal or postnatal development, and the meiosis is resumed by the preovulatory surge of luteinizing hormone. The in vivo functional roles of cyclin-dependent kinases (Cdks) during the resumption of meiosis in mammalian oocytes are largely unknown. Previous studies have shown that deletions of Cdk3, Cdk4 or Cdk6 in mice result in viable animals with normal oocyte maturation, indicating that these Cdks are not essential for the meiotic maturation of oocytes. In addition, conventional knockout of Cdk1 and Cdk2 leads to embryonic lethality and postnatal follicular depletion, respectively, making it impossible to study the functions of Cdk1 and Cdk2 in oocyte meiosis. In this study, we generated conditional knockout mice with oocyte-specific deletions of Cdk1 and Cdk2. We showed that the lack of Cdk1, but not of Cdk2, leads to female infertility due to a failure of the resumption of meiosis in the oocyte. Re-introduction of Cdk1 mRNA into Cdk1-null oocytes largely resumed meiosis. Thus, Cdk1 is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. We also found that Cdk1 maintains the phosphorylation status of protein phosphatase 1 and lamin A/C in oocytes in order for meiosis resumption to occur.
Collapse
Affiliation(s)
- Deepak Adhikari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kloc M, Ghobrial RM, Borsuk E, Kubiak JZ. Polarity and asymmetry during mouse oogenesis and oocyte maturation. Results Probl Cell Differ 2012; 55:23-44. [PMID: 22918799 DOI: 10.1007/978-3-642-30406-4_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell polarity and asymmetry play a fundamental role in embryo development. The unequal segregation of determinants, cues, and activities is the major event in the differentiation of cell fate and function in all multicellular organisms. In oocytes, polarity and asymmetry in the distribution of different molecules are prerequisites for the progression and proper outcome of embryonic development. The mouse oocyte, like the oocytes of other mammals, seems to apply a less stringent strategy of polarization than other vertebrates. The mouse embryo undergoes a regulative type of development, which permits the full rectification of development even if the embryo loses up to half of its cells or its size is experimentally doubled during the early stages of embryogenesis. Such pliability is strongly related to the proper oocyte polarization before fertilization. Thus, the molecular mechanisms leading to the development and maintenance of oocyte polarity must be included in any fundamental understanding of the principles of embryo development. In this chapter, we provide an overview of current knowledge regarding the development and maintenance of polarity and asymmetry in the distribution of organelles and molecules in the mouse oocyte. Curiously, the mouse oocyte becomes polarized at least twice during ontogenesis; the question of how this phenomenon is achieved and what role it might play is addressed in this chapter.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Methodist Hospital, Department of Surgery, Houston, TX, USA.
| | | | | | | |
Collapse
|
18
|
Physiological function of hyaluronan in mammalian oocyte maturation. Reprod Med Biol 2011; 10:221-229. [PMID: 29699096 DOI: 10.1007/s12522-011-0093-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022] Open
Abstract
Despite its structural simplicity, hyaluronan exhibits a broad spectrum of biological activities. Cumulus expansion observed during oocyte maturation in mammals is also induced by hyaluronan accumulation in cumulus-oocyte complexes. It has been demonstrated that this volumetric change in cumulus-oocyte complexes correlates with the progression of oocyte maturation. We have investigated the molecular mechanism of oocyte maturation in mammals, focusing on hyaluronan accumulation in cumulus-oocyte complexes during cumulus expansion. In this review, we describe the physiological function of hyaluronan, emphasizing the progression of oocyte maturation in mammals based on our previous findings.
Collapse
|
19
|
Deng X, Feng C, Wang EH, Zhu YQ, Cui C, Zong ZH, Li GS, Liu C, Meng J, Yu BZ. Influence of proline-rich inositol polyphosphate 5-phosphatase, on early development of fertilized mouse eggs, via inhibition of phosphorylation of Akt. Cell Prolif 2011; 44:156-65. [PMID: 21401757 DOI: 10.1111/j.1365-2184.2011.00743.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Proline-rich inositol polyphosphate 5-phosphatase (PIPP) is one of the signal-modifying enzymes that play pivotal regulatory roles in PI3K signalling pathway. The aim of this study was to determine the role of PIPP in early development of fertilized mouse eggs, via inhibition of Akt activity and subsequent downstream signalling events. MATERIALS AND METHODS The mRNA transcript levels of endogenous PIPP and Akt1, Akt2, Akt3 were detected in G(1) , S, G(2) and M phases of fertilized mouse eggs by RT-PCR. Levels of exogenous PIPP, phosphorylated Akt at Ser473, dephosphorylated cdc2 at Tyr15 and levels of CCNB1, were detected respectively by immunoblotting. Changes in Akt localization were observed by fluoroimmunoassay; meanwhile, changes in activity of Akt and its downstream MPF were detected. Percentages of cells undergoing division were determined by counting, using a dissecting microscope. RESULTS PIPP and Akt1 transcripts were detectable in G(1), S, G(2) and M phases of fertilized mouse eggs, but Akt2 and Akt3 were not. We also observed that overexpression of PIPP in fertilized eggs decreased expression of phosphorylated Akt at Ser473 and altered membrane localization of phosphorylated Akt at Ser473 specifically. Furthermore, overexpression of PIPP resulted in decreases in mitosis-phase promoting factor activity, level of dephosphorylated cdc2 at Tyr15 and cleavage rate of fertilized mouse eggs. CONCLUSIONS Our data suggest, for the first time, that PIPP may affect development of fertilized mouse eggs by inhibition of level of phosphorylated Akt at Ser473 and subsequent inhibition of downstream signal cascades.
Collapse
Affiliation(s)
- X Deng
- Experimental Center of the Functional Subjects, Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schindler K. Protein kinases and protein phosphatases that regulate meiotic maturation in mouse oocytes. Results Probl Cell Differ 2011; 53:309-341. [PMID: 21630151 DOI: 10.1007/978-3-642-19065-0_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oocytes arrest at prophase of meiosis I (MI) and in vivo do not resume meiosis until they receive ovulatory cues. Meiotic resumption entails two rounds of chromosome segregation without an intervening round of DNA replication and an arrest at metaphase of meiosis II (MII); fertilization triggers exit from MII and entry into interphase. During meiotic resumption, there is a burst of protein phosphorylation and dephosphorylation that dramatically changes during the course of oocyte meiotic maturation. Many of these phosphorylation and dephosphorylation events are key to regulating meiotic cell cycle arrest and/or progression, chromosome dynamics, and meiotic spindle assembly and disassembly. This review, which is subdivided into sections based upon meiotic cell cycle stages, focuses on the major protein kinases and phosphatases that have defined requirements during meiosis in mouse oocytes and, when possible, connects these regulatory pathways.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Abstract
Since the first schematic illustrations of dividing cells, we have come a long way in characterising eukaryotic cells and defining their cell-cycle status thanks to a number of complementary approaches. Although most of these approaches rely on cell-fixation procedures to identify molecular components in cell lysates, cultured cells or tissues, the development of GFP technology has enabled visualisation of virtually any fusion protein in cellulo and in vivo, and the exploitation of functional elements with well-defined spatiotemporal characteristics has enabled the development of genetically encoded fluorescent markers of cell-cycle phases, thus providing novel means of characterising the status of living cells in real time with high resolution. Together with technological advances in fluorescence chemistry and imaging approaches, the more recent development of fluorescent biosensors has provided direct means of probing cell-cycle regulators and of studying their dynamics with high spatial and temporal resolution. Here we review classical approaches that rely on cell fixation to characterise the cell-cycle status and its regulatory enzymes, and we describe the more recent development of cell-cycle markers based on genetically encoded fusions of fluorescent proteins with characteristic cell-cycle features, and of fluorescent biosensor technology to probe cell-cycle regulators in living cells. Biosensors not only provide a means of characterising the behaviour of cell-cycle regulators in their natural environment, they are also very useful for comparative studies of biological processes in healthy and pathological conditions, and can be further applied to diagnostic approaches to assess the status of a specific target, and to monitor response to therapeutic intervention.
Collapse
|
22
|
Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 2010; 18:533-43. [PMID: 20412769 DOI: 10.1016/j.devcel.2010.02.013] [Citation(s) in RCA: 628] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/29/2010] [Accepted: 02/25/2010] [Indexed: 12/21/2022]
Abstract
The CyclinB1-Cdk1 kinase is the catalytic activity at the heart of mitosis-promoting factor (MPF), yet fundamental questions concerning its role in mitosis remained unresolved. It is not known when and how rapidly CyclinB1-Cdk1 is activated in mammalian cells, nor how its activation coordinates the substantial changes in the cell at mitosis. Here, we have developed a FRET biosensor specific for CyclinB1-Cdk1 that enables us to assay its activity with very high temporal precision in living human cells. We show that CyclinB1-Cdk1 is inactive in G2 phase and activated at a set time before nuclear envelope breakdown, thereby initiating the events of prophase. CyclinB1-Cdk1 levels rise to their maximum extent over the course of approximately 30 min, and we demonstrate that different levels of CyclinB1-Cdk1 kinase activity trigger different mitotic events, thus revealing how the remarkable reorganization of the cell is coordinated at mitotic entry.
Collapse
|
23
|
Qiu GF, Liu P. On the role of Cdc2 kinase during meiotic maturation of oocyte in the Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2008; 152:243-8. [PMID: 19118638 DOI: 10.1016/j.cbpb.2008.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 11/29/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
Cdc2 kinase is a catalytic subunit of maturation-promoting factor (MPF), a central factor for inducing the meiotic maturation of oocyte. To understand the role of Cdc2 kinase on the oocyte maturation in crustacean, a complete cDNA sequence of Cdc2 kinase was cloned from Chinese mitten crab Eriocheir sinensis and its spatial-temporal expression profiles were analyzed during oogenesis at RNA and protein levels. The crab Cdc2 cDNA (1364 bp) encodes for a 299 amino acids protein with calculated molecular weight of 34.7 kDa. The Cdc2 mRNAs level showed no significant change in the ovary during oogenesis, whereas higher protein level was found at previtellogenesis, late vitellogenesis and germinal vesicle breakdown (GVBD) stages. Two forms (35 kDa and 34 kDa) of Cdc2 proteins were simultaneously identified in ovary at all stages. Immunocytochemistry analysis revealed that Cdc2 proteins locate exclusively in ooplasm of previtellogenic oocyte, and then relocate into germinal vesicle at vitellogenesis stage and accumulate on meiotic spindle at oocyte maturation. These findings suggest that Cdc2 kinase has essential roles in inducing GVBD and generating meiotic apparatus during the crab oocyte maturation.
Collapse
Affiliation(s)
- Gao-Feng Qiu
- E-Institute of Shanghai Universities (EISU) Aquaculture Division, and Key Laboratory of Aquatic Genetic Resources and Aquacultural Ecology, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai, PR China.
| | | |
Collapse
|
24
|
Rahal R, Amon A. Mitotic CDKs control the metaphase-anaphase transition and trigger spindle elongation. Genes Dev 2008; 22:1534-48. [PMID: 18519644 DOI: 10.1101/gad.1638308] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitotic cyclin-dependent kinases (CDKs) control entry into mitosis, but their role during mitotic progression is less well understood. Here we characterize the functions of CDK activity associated with the mitotic cyclins Clb1, Clb2, and Clb3. We show that Clb-CDKs are important for the activation of the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C)-Cdc20 that triggers the metaphase-anaphase transition. Furthermore, we define an essential role for Clb-CDK activity in anaphase spindle elongation. Thus, mitotic CDKs serve not only to initiate M phase, but are also needed continuously throughout mitosis to trigger key mitotic events such as APC/C activation and anaphase spindle elongation.
Collapse
Affiliation(s)
- Rami Rahal
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA
| | | |
Collapse
|
25
|
Kyozuka K, Chun JT, Puppo A, Gragnaniello G, Garante E, Santella L. Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes. Dev Biol 2008; 320:426-35. [DOI: 10.1016/j.ydbio.2008.05.549] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
|
26
|
SLXM-2, a derivative of cyclophosphamide: mechanism of growth inhibition on hepatocarcinoma 22 cells. Anticancer Drugs 2008; 19:167-74. [PMID: 18176113 DOI: 10.1097/cad.0b013e3282f2885f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Restructuring of cyclophosphamide (CPA) is a promising method for the development of antineoplastic therapy. This study investigated the inhibitory effects of a derivative of CPA, SLXM-2, on hepatocarcinoma 22 (H22) transplanted into ICR mice as well as its effects on the survival time of mice transplanted with the ascitic fluid-type H22. We found that SLXM-2 inhibited tumor growth and prolonged survival time. Moreover, the compound had little effect in vivo on leukocytes and body weight and a higher lethal dose 50 than CPA. The cell cycle analysis by flow cytometry revealed that SLXM-2 arrested tumor cells in both the S and G2 phases, and the arrest in the G2 phase increased in a dose-dependent manner. Western blotting and reverse transcription-PCR experiments indicated that the observed G2 arrest was associated with an increase of cyclin B1, whereas cell division cycle protein 2 (Cdc2) remained constant. The results, however, showed an accumulation of tyrosine 15 phosphorylated Cdc2 and a reduction of threonine 161 phosphorylated Cdc2. In addition, SLXM-2 led to a decrease in cyclin-dependent kinase 7 and Cdc25c kinase, which participated in inhibiting the G2/M transition. Our data identified two upstream targets leading to the inactivity of the cyclin B1/Cdc2 complex, which explained the arrest in the G2/M phase following SLXM-2 treatment. These results demonstrated the antitumor activity of SLXM-2 and its potential use as an antineoplastic drug.
Collapse
|
27
|
Anguita B, Paramio MT, Jiménez-Macedo AR, Morató R, Mogas T, Izquierdo D. Total RNA and protein content, Cyclin B1 expression and developmental competence of prepubertal goat oocytes. Anim Reprod Sci 2008; 103:290-303. [PMID: 17250980 DOI: 10.1016/j.anireprosci.2006.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 12/12/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
The aim of this study was to examine the relationship between the developmental competence of oocytes and their total RNA and protein contents, and the level of Cyclin B1 transcription. Ovaries from prepubertal goats were collected from a slaughterhouse. Oocytes were recovered by slicing and those with two or more layers of cumulus cells and homogenous cytoplasm were matured in vitro (20-25 oocytes per drop) for 27 h. Both before and after IVM, samples of oocytes were denuded and categorised into four group treatments by diameter (<110 microm, 110-125 microm, 125-135 microm; >135 microm), separated into sub-groups of 10 oocytes per treatment-replicate and stored in liquid nitrogen until total RNA content analysis by spectophotometry, total protein content analysis by a colorimetric assay and Cyclin B1 transcription analysis by RT-PCR. For the study of developmental competence, the rest of the matured oocytes were fertilised in vitro in groups of 20-25 for 24 h. Presumptive zygotes were denuded, sorted into the four categories of diameter noted above, and placed into culture drops in groups of 18-25 for in vitro culture. Cleavage rate was evaluated at 48 hpi and embryo development at 8 d post-insemination. There were four replicates of each treatment for each assay or evaluation point of the experiment. There were no significant differences between the size categories of oocytes at collection in total RNA content, total protein content and Cyclin B1 mRNA. There were significant differences (P<0.05) in the expression of Cyclin B1 before IVM with oocytes in the >135 mm diameter category having the highest value for this variant. There were no significant differences in these characteristics between the categories of oocyte diameter after IVM except in respect of total RNA content, which was lower for the largest size of oocytes (>135 microm; mean+/-S.D.=12.3+/-1.84 ng/oocyte) than the other three size groups (19.2+/-1.38-22.1+/-4.44 ng/oocyte; P<0.05). Significant differences (P<0.05) in cleavage rate were observed between the different oocyte size categories (<110 microm, 3.0%; 110-125 microm, 32%; 125-135 microm, 50%; >135 microm, 73%). Only oocytes >125 microm diameter developed to the blastocyst stage (125-135 microm, 7%; >135 microm, 10%). This study showed that the RNA content and the Cyclin B1 RNA expression of prepubertal goat oocytes, and their development to embryos varied between the different size categories of the oocytes.
Collapse
Affiliation(s)
- Begoña Anguita
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Dasso M, Smythe C, Milarski K, Kornbluth S, Newport JW. DNA replication and progression through the cell cycle. CIBA FOUNDATION SYMPOSIUM 2007; 170:161-80; discussion 180-6. [PMID: 1483344 DOI: 10.1002/9780470514320.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Somatic cells possess control mechanisms which monitor DNA replication and assure that it is complete before mitosis is initiated. We have been investigating these mechanisms in Xenopus egg extracts. Using in vitro cycling extracts, which spontaneously alternate between interphase and mitosis, we found that the onset of mitosis is inhibited by the presence of unreplicated DNA, demonstrating that the completion of DNA replication and the initiation of mitosis are coupled in these extracts. As in somatic cells, this coupling is sensitive to caffeine and to okadaic acid. In Xenopus extracts unreplicated DNA increases the tyrosine phosphorylation of p34cdc2, thereby maintaining MPF (mitosis-promoting factor) in an inactive state and preventing the onset of mitosis. The block to mitosis in the presence of unreplicated DNA can be reversed by the addition of bacterially expressed cdc25 protein. The extent of MPF activation by cdc25 protein under these conditions depends on the number of nuclei present. We have developed an assay to examine the rate of tyrosine phosphorylation on p34cdc2. It is increased by unreplicated DNA, in a manner consistent with unreplicated DNA up-regulating the kinase that phosphorylates p34cdc2. We have begun to examine how unreplicated DNA generates the signal that inhibits MPF activation by testing the ability of naked single- and double-stranded DNA templates to inhibit mitosis, and by investigating the role of RCC1, a chromatin-associated protein required for the coupling of DNA replication and mitosis.
Collapse
Affiliation(s)
- M Dasso
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|
29
|
Norbury C, Nurse P. Controls of cell proliferation in yeast and animals. CIBA FOUNDATION SYMPOSIUM 2007; 150:168-77; discussion 177-83. [PMID: 2197066 DOI: 10.1002/9780470513927.ch11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genetic studies using fission yeast (Schizosaccharomyces pombe) have identified a gene, cdc2, whose product (p34cdc2) is a protein kinase required for traversal of both the G1 and G2 cell cycle control points. Genetic complementation has been used to demonstrate that p34cdc2 homologues are functionally and structurally conserved in distantly related eukaryotes, and p34cdc2-related proteins are components of both maturation-promoting factor (MPF) and the M phase (growth-associated) histone H1 kinase. The p34cdc2 homologues of multicellular eukaryotes undergo potentially regulatory phosphorylation changes through the cell cycle. Phosphorylation on serine during late G1 is accompanied by a significant increase in p34cdc2 kinase activity which, by analogy with fission yeast, may betray a function related to control over entry into S phase. Phosphorylation on threonine and tyrosine in G2 precedes dephosphorylation of these residues during kinase hyperactivation and entry into mitosis. In addition, long-term control of expression of mammalian p34cdc2 homologues is likely to be exerted at the transcriptional level. These observations provide the framework of a universal model for the control of eukaryotic cell proliferation, in which the p34cdc2 protein kinase integrates multiple cues to signal the initiation of S phase and, subsequently, mitosis.
Collapse
Affiliation(s)
- C Norbury
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
30
|
Feng C, Yu A, Liu Y, Zhang J, Zong Z, Su W, Zhang Z, Yu D, Sun QY, Yu B. Involvement of Protein Kinase B/AKT in Early Development of Mouse Fertilized Eggs1. Biol Reprod 2007; 77:560-8. [PMID: 17554083 DOI: 10.1095/biolreprod.107.060269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The activation of AKT (also called protein kinase B) is thought to be a critical step in the phosphoinositide 3-kinase pathway that regulates cell growth and differentiation. In this report, we investigated the role of AKT in the regulation of mouse early embryo development. Injection of mRNA coding for a constitutively active myristoylated AKT (myr-Akt1) into one-cell stage fertilized eggs induced cell division more effectively than injection of wild-type AKT (Akt1-WT) mRNA, whereas microinjection of mRNA of kinase-deficient AKT (Akt1-KD) delayed the first mitotic division. Meanwhile, microinjection of different kinds of mRNA of AKT affected the phosphorylation status of CDC2A-Tyr15 and the activation of M-phase promoting factor (MPF). To investigate the intermediate factor between AKT and MPF, we then injected one-cell stage eggs first with Akt1-WT mRNA or myr-Akt1 mRNA and then with mRNA encoding either wild-type CDC25B (Cdc25b-WT) or a AKT-nonphosphorylatable Ser351 to Ala CDC25B mutant (Cdc25b-S351A). Cdc25b-S351A strongly inhibited the effect of AKT. Therefore, AKT causes the activation of MPF and strongly promotes the development of one-cell stage mouse fertilized eggs by inducing AKT-dependent phosphorylation of CDC25B, a member of the CDC25 phosphatase family. Our finding that CDC25B acts as a potential target of AKT provides new insight into the effect of AKT in the regulation of early development of mouse embryos.
Collapse
Affiliation(s)
- Chen Feng
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang 110001, Liaoning, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Furuya M, Tanaka M, Teranishi T, Matsumoto K, Hosoi Y, Saeki K, Ishimoto H, Minegishi K, Iritani A, Yoshimura Y. H1foo is indispensable for meiotic maturation of the mouse oocyte. J Reprod Dev 2007; 53:895-902. [PMID: 17519519 DOI: 10.1262/jrd.19008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oocyte-specific linker histone H1foo is localized in the oocyte nucleus, either diffusely or bound to chromatin, during the processes of meiotic maturation and fertilization. This expression pattern suggests that H1foo plays a key role in the control of gene expression and chromatin modification during oogenesis and early embryogenesis. To reveal the function of H1foo, we microinjected antisense morpholino oligonucleotides (MO) against H1foo into mouse germinal-vesicle stage oocytes. The rate of in vitro maturation of the antisense MO group was significantly lower than that of the control group. Eggs that failed to extrude a first polar body following injection of antisense MO arrested at metaphase I. Additionally, co-injection of in vitro synthesized H1foo mRNA along with antisense MO successfully rescued expression of H1foo and improved the in vitro maturation rate. There was no difference in the rate of parthenogenesis between the antisense MO and control groups. These results indicate that H1foo is essential for maturation of germinal vesicle-stage oocytes.
Collapse
Affiliation(s)
- Masataka Furuya
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chesnel F, Vignaux F, Richard-Parpaillon L, Huguet A, Kubiak JZ. Differences in regulation of the first two M-phases in Xenopus laevis embryo cell-free extracts. Dev Biol 2006; 285:358-75. [PMID: 16087172 DOI: 10.1016/j.ydbio.2005.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 11/28/2022]
Abstract
The first embryonic M-phase is special, being the time when paternal and maternal chromosomes mix together for the first time. Reports from a variety of species suggest that the regulation of first M-phase has many particularities; however, no systematic comparative study of the biochemical aspects of first and the following M-phases has been previously undertaken. Here, we ask whether the regulation of the first embryonic M-phase is modified, using Xenopus cell-free extracts. We developed new types of extract specific for the first and the second M-phase obtained either from parthenogenetic or from in vitro fertilized embryos. Analyses of these extracts confirmed that the amplitude of histone H1 kinase activity reflecting CDK1/cyclin B (or MPF for M-phase Promoting Factor) activity is higher and persists longer than during the second M-phase, and that levels of cyclins B1 and B2 are correspondingly higher during the first than the second embryonic M-phase. Inhibition of protein synthesis shortly before M-phase entry reduced mitotic histone H1 kinase amplitude, shortened the period of mitotic phosphorylation of chosen marker proteins, and reduced cyclin B1 and B2 levels, suggesting a role of B-type cyclins in regulating the duration of mitotic events. Moreover, addition of exogenous cyclin B to the extract prior the second mitosis brought forward the activation of mitotic histone H1 kinase but prolonged the duration of this activity. We also confirmed that the inhibitory phosphorylation of CDK1 on tyrosine 15 oscillates between the first two embryonic M-phases, but is clearly more pronounced before the first than the second mitosis, while the MAP kinase ERK2 tended to show greater activation during the first embryonic M-phase but with a similar duration of activation. We conclude that discrete differences exist between the first two M-phases in Xenopus embryo and that higher CDK1/cyclin B activity and B-type cyclin levels could account for the different characteristics of these M-phases.
Collapse
Affiliation(s)
- Franck Chesnel
- UMR 6061 CNRS, Biology and Genetics of Development, Mitosis and Meiosis Group, IFR140 GFAS, University of Rennes 1, Faculty of Medicine, 2 Ave. Prof. Léon Bernard, CS 34317, 35043 Rennes cedex, France
| | | | | | | | | |
Collapse
|
33
|
Yu B, Wang Y, Liu Y, Liu Y, Li X, Wu D, Zong Z, Zhang J, Yu D. Protein kinase A regulates cell cycle progression of mouse fertilized eggs by means of MPF. Dev Dyn 2005; 232:98-105. [PMID: 15580572 DOI: 10.1002/dvdy.20205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cell cycle of one-cell stage mouse fertilized eggs was accompanied by fluctuation in the concentration of adenosine 3'5'-monophosphate (cAMP) and in the activity of free catalytic subunit of cAMP-dependent protein kinase (PKA). The concentration of cAMP and the activity of free catalytic subunit of PKA decreased at the onset of mitosis and increased at the transition between mitosis and G1 phase. Stimulation of PKA by microinjection of cAMP into one-cell stage mouse embryos at G2 phase induced interphase arrest and prevented the activation of M-phase promoting factor (MPF). Upon blockage of the activation of PKA by microinjecting a thermostable PKA inhibitor (PKI) into one-cell stage mouse embryos at G2 phase, the increase in the MPF activity occurred 30 min earlier than in control group. When a high dose of PKI was microinjected, a transition into interphase was prevented, and the activity of MPF remained high. Western blot analysis showed that Cdc2 remained phosphorylated in cAMP microinjected embryos by the time when control embryos were at metaphase and showed dephosphorylated Cdc2; conversely, Cdc2 dephosphorylation was accelerated in PKI-microinjected embryos. At the same time, Cdc2 was phosphorylated at Tyr15 at G2 phase and even at M phase when cAMP was microinjected but was dephosphorylated when PKI was microinjected. PKI microinjection also prevented cyclin B degradation and sustained MPF activity, thus delaying the transition from metaphase to anaphase. Our results show that PKA, by inhibiting MPF, regulates cell cycle progression of fertilized eggs.
Collapse
Affiliation(s)
- Bingzhi Yu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Marangos P, Carroll J. The dynamics of cyclin B1 distribution during meiosis I in mouse oocytes. Reproduction 2004; 128:153-62. [PMID: 15280554 DOI: 10.1530/rep.1.00192] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cdk1-cyclin B1 kinase activity drives oocytes through meiotic maturation. It is regulated by the phosphorylation status of cdk1 and by its spatial organisation. Here we used a cyclin B1-green fluorescent protein (GFP) fusion protein to examine the dynamics of cdk1-cyclin B1 distribution during meiosis I (MI) in living mouse oocytes. Microinjection of cyclin B1-GFP accelerated germinal vesicle breakdown (GVBD) and, as previously described, overrides cAMP-mediated meiotic arrest. GVBD was pre-empted by a translocation of cyclin B1-GFP from the cytoplasm to the germinal vesicle (GV). After nuclear accumulation, cyclin B1-GFP localised to the chromatin. The localisation of cyclin B1-GFP is governed by nuclear import and export. In GV intact oocytes, cyclin export was demonstrated by showing that cyclin B1-GFP injected into the GV is exported to the cytoplasm while a similar size dextran is retained. Import was revealed by the finding that cyclin B1-GFP accumulated in the GV when export was inhibited using leptomycin B. These studies show that GVBD in mouse oocytes is sensitive to cyclin B1 abundance and that the changes in distribution of cyclin B1 contribute to progression through MI.
Collapse
Affiliation(s)
- Petros Marangos
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
35
|
Kajiura-Kobayashi H, Kobayashi T, Nagahama Y. The cloning of cyclin B3 and its gene expression during hormonally induced spermatogenesis in the teleost, Anguilla japonica. Biochem Biophys Res Commun 2004; 323:288-92. [PMID: 15351735 DOI: 10.1016/j.bbrc.2004.08.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Indexed: 11/23/2022]
Abstract
We cloned cyclin B1, B2, and B3 cDNAs from the eel testis. Northern blot analysis indicated that these cyclin B mRNAs were expressed and increased from day 3 onward after the hormonal induction of spermatogenesis, and that cyclin B3 was most dominantly expressed during spermatogenesis. In situ hybridization showed that cyclin B1 and B2 were present from the spermatogonium stage to the spermatocyte stage. On the other hand, cyclin B3 mRNA was present only in spermatogonia. Although mouse cyclin B3 is expressed specifically in the early meiotic prophase, these results indicate that eel cyclin B3 expression is limited during spermatogenesis to spermatogonia, but is not present in spermatocytes. These facts together suggest that eel cyclin B3 is specifically involved in spermatogonial proliferation (mitosis), but not in meiosis.
Collapse
Affiliation(s)
- Hiroko Kajiura-Kobayashi
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; CREST, Kawaguchi, Saitama 332-0012, Japan
| | | | | |
Collapse
|
36
|
Basu D, Navneet AK, Dasgupta S, Bhattacharya S. Cdc2-Cyclin B–Induced G2 to M Transition in Perch Oocyte Is Dependent on Cdc251. Biol Reprod 2004; 71:894-900. [PMID: 15151934 DOI: 10.1095/biolreprod.104.029611] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The G2 to M phase transition in perch oocytes is regulated by maturation promoting factor (MPF), a complex of Cdc2 and cyclin B. In Anabas testudineus, a fresh water perch, 17 alpha,20 beta-dihydroxy-4-pregnen-3-one, the maturation inducing hormone (MIH), induced complete germinal vesicle breakdown (GVBD) of oocytes at 21 h. An unusual cyclin, p30 cyclin B, has been identified in oocyte extract using both monoclonal and polyclonal antibodies. Surprisingly, Cdc2 could not be identified, although a Northern blot with Cdc2 cDNA demonstrated expression of the gene. Purification of MPF through an immunoaffinity column followed by SDS-PAGE showed three proteins, Cdc2, cyclin B, and a 20 kDa fragment, indicating earlier failure in immunodetection may be due to the interference by this fragment. In uninduced oocytes, p30 cyclin B was present, and its expression was increased by MIH. MIH increased p30 cyclin B accumulation at 3 h, a high level which was maintained between 9 and 21 h, but an effective increase in GVBD and H1 kinase activation could only be observed between 15 and 21 h. This delay in active MPF formation was found to be related to the activation of Cdc25, phosphorylation of which was detected at 12 h, and a substantial increase occurred during 15-18 h. Sodium orthovanadate, a tyrosine phosphatase inhibitor, inhibited H1 kinase activity and GVBD, suggesting the requirement of Cdc25 activity in MPF activation. Our results show occurrence of pre-MPF in uninduced oocytes and its conversion to active MPF requires dephosphorylation by Cdc25, the existence of which has not yet been shown in fish.
Collapse
Affiliation(s)
- Dipanjan Basu
- Department of Zoology, School of Life Science, Visva-Bharati, Santiniketan 731 235, India
| | | | | | | |
Collapse
|
37
|
Morris MC, Chaloin L, Choob M, Archdeacon J, Heitz F, Divita G. Combination of a new generation of PNAs with a peptide-based carrier enables efficient targeting of cell cycle progression. Gene Ther 2004; 11:757-64. [PMID: 14961071 DOI: 10.1038/sj.gt.3302235] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The design of potent systems for the delivery of charged and noncharged molecules that target genes of interest remains a challenge. We describe a novel technology that combines a new generation of peptide nucleic acids (PNAs), or HypNA-pPNAs, with a new noncovalent peptide-based delivery system, Pep-2, which promotes efficient delivery of PNAs into several cell lines. We have validated the potential of this technology by showing that Pep2-mediated delivery of an antisense HypNA-pPNA chimera directed specifically against cyclin B1 induces rapid and robust downregulation of its protein levels and efficiently blocks cell cycle progression of several cell lines, as well as proliferation of cells derived from a breast cancer. Pep-2-based delivery system was shown to be 100-fold more efficient in delivering HypNA-pPNAs than classical cationic lipid-based methods. Whereas Pep-2 is essential for improving the bioavailability of PNAs and HypNA-pPNAs, the latter contribute significantly to the efficiency and specificity of the biological response. We have found that Pep-2/HypNA-pPNA strategy promotes potent antisense effects, which are approximately 25-fold greater than with classical antisense oligonucleotide directed specifically against the same cyclin B1 target. Taken together, these data demonstrate that peptide-mediated delivery of HypNA-pPNAs constitutes a very promising technology for therapeutic applications.
Collapse
Affiliation(s)
- M C Morris
- Department of Biophysics, Centre de Recherches de Biochimie Macromoléculaire, UPR-1086 CNRS, Montpellier, France
| | | | | | | | | | | |
Collapse
|
38
|
Herskovits AZ, Davies P. Cloning and expression analysis of two novel PCTAIRE 3 transcripts from human brain. Gene 2004; 328:59-67. [PMID: 15019984 DOI: 10.1016/j.gene.2003.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 12/02/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
PCTAIRE 3 is a member of the PCTAIRE subfamily of cdc2-related serine/threonine protein kinases. In the present study, cDNAs encoding two isoforms of PCTAIRE 3 have been cloned and the genomic organization of the human PCTAIRE 3 gene is reported. The gene spans 28.15 kb on chromosome 1q31-32 and contains 16 exons. The major transcript of PCTAIRE 3, designated PCTAIRE 3a, has an open reading frame that is 474 amino acids in length. Transcripts for PCTAIRE 3a were evident throughout the brain and in the majority of tissues analyzed. A second transcript containing an insert that adds 90 nucleotides to the third exon of the gene was also identified. This transcript, designated PCTAIRE 3b, encodes a polypeptide of 504 amino acids. Expression of PCTAIRE 3b was limited to several subcortical nuclei of the basal gangli and the spinal cord and substantial levels of this transcript were not evident outside of the central nervous system. Primary sequence comparisons between different cdc2-related serine/threonine protein kinases reveal that these proteins are most heterogeneous in their N-terminal domains and the PCTAIRE subfamily is further diversified by the presence of isoforms within this region.
Collapse
Affiliation(s)
- A Z Herskovits
- Albert Einstein College of Medicine, Departments of Neuroscience and Pathology, F526, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | |
Collapse
|
39
|
Oita E, Harada K, Chiba K. Degradation of Polyubiquitinated Cyclin B Is Blocked by the MAPK Pathway at the Metaphase I Arrest in Starfish Oocytes. J Biol Chem 2004; 279:18633-40. [PMID: 14985367 DOI: 10.1074/jbc.m311122200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the starfish ovary, maturing oocytes stimulated by 1-methyladenine undergo synchronous germinal vesicle breakdown and then arrest in metaphase of the first meiotic division (metaphase I). Immediately after spawning, an increase of intracellular pH (pH(i)) from approximately 7.0 to approximately 7.3 is induced by Na(+)/H(+) antiporter in oocytes, and meiosis reinitiation occurs. Here we show that an endogenous substrate of the proteasome, polyubiquitinated cyclin B, was stable at pH 7.0, whereas it was degraded at pH 7.3. When the MAPK pathway was blocked by MEK inhibitor U0126, degradation of polyubiquitinated cyclin B occurred even at pH 7.0 without an increase of the peptidase activity of the proteasome. These results indicate that the proteasome activity at pH 7.0 is sufficient for degradation of polyubiquitinated cyclin B and that the MAPK pathway blocks the degradation of polyubiquitinated cyclin B in the maturing oocytes in the ovary. Immediately after spawning, the increase in pH(i) mediated by Na(+)/H(+) antiporter cancels the inhibitory effects of the MAPK pathway, resulting in the degradation of polyubiquitinated cyclin B and the release of the arrest. Thus, the key step of metaphase I arrest in starfish oocytes occurs after the polyubiqutination of cyclin B but before cyclin B proteolysis by the proteasome.
Collapse
Affiliation(s)
- Eiko Oita
- Department of Biology, Ochanomizu University, 2-1-1 Ohtsuka, Tokyo 112-8610, Japan
| | | | | |
Collapse
|
40
|
Yokoo M, Sato E. Cumulus-oocyte complex interactions during oocyte maturation. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 235:251-91. [PMID: 15219785 DOI: 10.1016/s0074-7696(04)35006-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In most mammals, the oocyte in the Graafian follicle is surrounded by tightly packed layers of cumulus cells, forming the cumulus-oocyte complex. During the preovulatory period, cumulus cells change from a compact cell mass into a dispersed structure of cells for the synthesis and deposition of a mucoid intercellular matrix, a process referred to as cumulus expansion. Cumulus expansion is thought to influence a variety of fundamental developmental changes during oocyte maturation. Volumetric expansion of the cumulus-oocyte complex correlates, at least in pig, with the outcome of oocyte maturation, fertilization, and embryo development. Therefore, detailed functional studies of cumulus expansion seem to be required to elucidate the mechanism of oocyte maturation. We summarize the current knowledge about (1) morphological changes of cumulus-oocyte complexes during oocyte maturation, (2) follicle factors inducing cumulus expansion, (3) the role of cumulus expansion in oocyte maturation, (4) cytoplasmic regulators of oocyte maturation, and (5) possible roles of cumulus expansion.
Collapse
Affiliation(s)
- Masaki Yokoo
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | |
Collapse
|
41
|
Abstract
In the ovary, mammalian oocytes resume meiosis and mature to the second metaphase when they are stimulated with gonadotrophins. Similarly, oocytes can mature in vitro when they are liberated from ovarian follicles and cultured under appropriate conditions. Early in the process of maturation, oocytes undergo dramatic but well-ordered changes at the G2/M transition in the cell cycle including: (i) chromosome condensation; (ii) nucleolus disassembly; (iii) germinal vesicle breakdown (GVBD); and (iv) spindle formation in the first metaphase (MI-spindle). These events have been thought to be induced by MPF (maturation-promoting factor or M-phase promoting factor), now known as Cdc2 kinase or Cdk1 kinase, which consists of a catalytic subunit, Cdc2, and a cyclin B regulatory subunit. In fact, nuclear lamins are phosphorylated by Cdc2 kinase, and nuclear membrane breakdown occurs concomitantly with the activation of Cdc2 kinase in the M-phase of both somatic cells and oocytes. Based on the classical and recent studies of the pig oocyte, however, the chromosomes start to condense and the nucleolus disassembles before full activation of Cdc2 kinase, and the MI-spindle is formed after activation of both Cdc2 kinase and MAP kinase; another kinase known to become activated during oocyte maturation. These findings suggest that chromosome condensation and nucleolus disassembly in oocytes are induced by either some kinase(s) other than Cdc2 kinase and MAP kinase or some phosphatase(s). The accumulation of new results regarding the molecular nature of oocyte maturation is important for improving the reproductive technologies in domestic animals as well as in humans. (Reprod Med Biol 2003; 2: 91-99).
Collapse
Affiliation(s)
- Takashi Miyano
- Laboratory of Reproductive Biology and Biotechnology, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Jibak Lee
- Graduate School of Science and Technology, Kobe University, Kobe, Japan and
| | - Josef Fulka
- Institute of Animal Production, Prague, Czech Republic
| |
Collapse
|
42
|
Tosuji H, Fusetani N, Seki Y. Calyculin A causes the activation of histone H1 kinase and condensation of chromosomes in unfertilized sea urchin eggs independently of the maturation-promoting factor. Comp Biochem Physiol C Toxicol Pharmacol 2003; 135:415-24. [PMID: 12965186 DOI: 10.1016/s1532-0456(03)00143-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Calyculin A is known to inhibit the type-1 and type-2A phosphatases. We previously reported that calyculin A induces contractile ring formation in unfertilized sea urchin eggs, an increase in histone H(1) kinase activity, and chromosome condensation in the calyculin A-treated unfertilized eggs, and the changes induced by calyculin A are not affected by emetine, an inhibitor of protein synthesis. These observations suggest that the mechanism by which histone H(1) kinases are activated by calyculin A is different from that of maturation-promoting factor (MPF), which is activated by a molecular modification of existed cdc2 and newly synthesized cyclin B. We report here that no cyclin B was detected by immunoblotting of unfertilized calyculin A-treated eggs. In addition, no DNA synthesis was induced by calyculin A. As well, butyrolactone I (an inhibitor of cdc2 and cdk2 kinase) had no effect on the increase in histone H(1) kinase activity nor the chromosome condensation, both of which were induced by calyculin A. Thus, we conclude that calyculin A induces histone H(1) phosphorylation in an MPF-independent manner through inhibition of type-1 phosphatase, and that the chromosome condenses as a result of histone H(1) phosphorylation.
Collapse
Affiliation(s)
- Hiroaki Tosuji
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, 21-35, Korimoto-1, Kagoshima 890-0065, Japan.
| | | | | |
Collapse
|
43
|
Douglas RM, Haddad GG. Genetic models in applied physiology: invited review: effect of oxygen deprivation on cell cycle activity: a profile of delay and arrest. J Appl Physiol (1985) 2003; 94:2068-83; discussion 2084. [PMID: 12679355 DOI: 10.1152/japplphysiol.01029.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the most fascinating fields that have emanated in the past few decades is developmental biology. This is not only the case from a research point of view but also from the angle of clinical care and treatment strategies. It is now well demonstrated that there are many diseases (some believe all diseases) that have their roots in embryogenesis or in early life, where nature and environment often team up to facilitate the genesis of disease. There is probably no better example to illustrate the interactions between nature and environment than in early life, as early as in the first several cell cycles. As will be apparent in this review, the cell cycle is a very regulated activity and this regulation is genetic in nature, with checkpoint proteins playing an important role in controlling the timing, the size, and the growth of daughter cells. However, it is also very clear, as will be discussed in this work, that the microenvironment of the first dividing cells is so important for the outcome of the organism. In this review, we will focus on the effect of one stress, that of hypoxia, on the young embryo and its cell division and growth. We will first review some of the cell cycle definitions and stages and then review briefly our current knowledge and its gaps in this area.
Collapse
Affiliation(s)
- R M Douglas
- Division of Respiratory Medicine, Department of Pediatrics and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
44
|
Burstein DE, Oami S, Dembitzer F, Chu C, Cernaianu G, Leytin A, Misilim E, Jammula SR, Strauchen J, Kohtz DS. Monoclonal antibody specific for histone H1 phosphorylated by cyclin-dependent kinases: a novel immunohistochemical probe of proliferation and neoplasia. Mod Pathol 2002; 15:705-11. [PMID: 12118107 DOI: 10.1038/modpathol.3880593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monoclonal antibody 12D11 (MAb 12D11) has been shown to bind histone H1 isolated from human placenta and other tissues but not histone H1 that has been digested with bacterial alkaline phosphatase. We show here that phosphorylation of phosphatase-treated histone H1 with cyclin dependent-kinase (CDK) restores binding by MAb 12D11. We conclude that MAb 12D11 selectively binds histone H1 that has been phosphorylated by CDKs, and we have investigated the use of MAb 12D11 as an immunohistochemical probe of CDK activity in situ. Previous immunofluorescence studies have revealed strong nuclear staining by MAb 12D11 in proliferating cultured cells and the absence of staining in terminally differentiated cells. Immunohistochemical staining of frozen and formalin-fixed, paraffin-embedded sections of benign tissues with MAb 12D11 was nuclear and confined to recognized foci of cell proliferation. In lymphoid germinal centers, MAb 12D11 preferentially stained large lymphoid cells with a relative lack of staining in small cleaved cells, contrasting with a lack of cell size discrimination observed with the monoclonal antibody proliferation probe, MIB-1. Tumor tissues displayed strong albeit heterogeneous staining of malignant cells by MAb 12D11, with little or no staining observed in surrounding nonneoplastic stromal cells. Differential staining by MAb 12D11 of invasive and in situ carcinoma suggest applications in prognostication. MAb 12D11 may also be useful in identification of tumors more likely to respond to therapeutic CDK inhibitors.
Collapse
Affiliation(s)
- David E Burstein
- Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The idea that Cdc2 and cyclins play a key role in the control of the G2/M transition of the cell cycle came largely from genetic analysis of fission yeast and physiological studies of clam, frog, sea urchin and starfish eggs and oocytes. However, it took a long time to realise that Cdc2 and cyclins form a stoichiometric complex and that a cyclin subunit is necessary for the Cdc2 subunit to gain its protein kinase activity.
Cyclins were first recognized as proteins whose abundance oscillates during the early cell cycles of marine invertebrate eggs and their connection with MPF (maturation-promoting factor), the entity defined in frog and starfish oocytes whose activity controls entry into M phase, was far from clear at first. Indeed, it was a long time before MPF was shown to be a protein kinase,and direct proof that MPF is a heterodimer comprising one molecule of cyclin and one molecule of Cdc2 was finally obtained only when the Cdc2-associated component of purified starfish MPF was sequenced and found to be cyclin B. When this fundamental discovery was confirmed in vertebrates and mammalian members of the Cdc2 family were also shown to bind cyclins, Cdc2 became Cdk1,the first cyclin-dependent protein kinase.
Collapse
Affiliation(s)
- Marcel Dorée
- CRBM, UPR 1086-CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France.
| | | |
Collapse
|
46
|
Tian XC, Lonergan P, Jeong BS, Evans ACO, Yang X. Association of MPF, MAPK, and nuclear progression dynamics during activation of young and aged bovine oocytes. Mol Reprod Dev 2002; 62:132-8. [PMID: 11933170 DOI: 10.1002/mrd.10072] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously shown that bovine oocytes parthenogenetically activated after 40 hours (hr) of in vitro maturation proceed through the cell cycle faster than those after 20 hr of maturation. In the present study, we used this model of different speed of nuclear progression to investigate the correlation of two hallmarks of nuclear events, exit of metaphase arrest and pronuclear formation, with dynamics of MPF and MAPK. Bovine oocytes were matured in vitro for 20 hr (young) or 40 hr (aged) and activated in 7% ethanol followed by incubation in cycloheximide for 0, 0.5, 1, 3, 5, or 7 hr. Activity of MPF and MAPK was lower in aged than young oocytes. The responses to oocyte activation by both the two kinases and nuclear progression were faster in aged than in young oocytes. The activity of MPF declined to undetectable levels (P < 0.05) as early as 0.5 hr after activation in aged oocytes, while this did not happen in young oocytes until 3 hr after activation. The inactivation of MAPK occurred approximately 2 hr earlier in aged oocytes (5 hr post-activation) than in young oocytes (7 hr post-activation). Furthermore, the decline in MPF activity preceded that of MAPK in both young and aged oocytes by about 2 hr. The decrease in activity of MPF and MAPK corresponded with the exit from meiosis and pronuclei formation regardless of the speed of nuclear progression. Despite dramatic changes in activity of MPF and MAPK, the levels of Cdc2 and Erk2 proteins were unchanged (P > 0.05) during the first 7 hr of activation. These observations suggest that inactivation of MPF and MAPK are pre-requisite for the release from metaphase arrest and formation of pronuclei in bovine oocytes.
Collapse
Affiliation(s)
- X Cindy Tian
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4163, USA
| | | | | | | | | |
Collapse
|
47
|
Gall L, Ruffini S, Le Bourhis D, Boulesteix C. Cdc25C expression in meiotically competent and incompetent goat oocytes. Mol Reprod Dev 2002; 62:4-12. [PMID: 11933156 DOI: 10.1002/mrd.10117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Change in Cdc25C expression and localization during maturation and meiotic competence acquisition was investigated in goat oocytes. Western blot analysis revealed that Cdc25C is constitutively expressed throughout meiosis in competent goat oocytes, with changes in its phosphorylation level. Cdc25C was detected at 55 and 70 kDa, representing the nonphosphorylated form and the hyperphosphorylated active form, respectively. During the G2-M transition at meiosis resumption, Cdc25C was hyperphosphorylated as evidenced by a clear shift from 55 to 70 kDa. Okadaic acid which induced premature meiosis resumption associated with MPF activation also involved a premature shift from 55 to 70 kDa in goat competent oocytes. After artificial activation of goat oocytes, Cdc25C returned to its 55 kDa form. By indirect immunofluorescence, Cdc25C was found essentially localized in the nucleus at the germinal vesicle stage, suggesting that Cdc25C functions within the nucleus to regulate MPF activation. Concomitantly with germinal vesicle breakdown, Cdc25C was redistributed throughout the cytoplasm. The amount of Cdc25C, very low in incompetent oocytes, increased with meiosis competence acquisition. On the other hand, during oocyte growth while the expression of Cdc25C increased, its phosphorylation level increased concomitantly as well as its nuclear translocation. These results suggest that meiosis resumption needs a sufficient amount of Cdc25C which must be completely phosphorylated and nuclear and that the amount of Cdc25C may be a limiting factor for meiotic competence acquisition. We could consider that Cdc25C nuclear translocation and phosphorylation, during oocyte growth, prepare the oocytes in advance for the G2-M phase transition occurring during meiosis resumption.
Collapse
Affiliation(s)
- Laurence Gall
- Unité de Physiologie animale, INRA, 78352 Jouy-en-Josas cedex, France.
| | | | | | | |
Collapse
|
48
|
Anderson JE, Matteri RL, Abeydeera LR, Day BN, Prather RS. Degradation of maternal cdc25c during the maternal to zygotic transition is dependent upon embryonic transcription. Mol Reprod Dev 2001; 60:181-8. [PMID: 11553916 DOI: 10.1002/mrd.1075] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To gain a better understanding of the molecular differences that may contribute to cleavage arrest and the poorer development associated with laboratory produced embryos, a series of experiments were conducted to quantitate the message levels of the cell cycle controller cdc25c, over the maternal to zygotic transition (MZT) in 4-cell in vivo- and in vitro-derived porcine embryos. The experiments were designed to measure both maternal and embryonic derived cdc25c transcripts by quantitative reverse transcription-competitive polymerase chain reaction (RT-cPCR), determine the point of the transition to zygotic genome activation, and study the interaction between initial embryonic transcription and maternal cdc25c degradation. Analysis of in vivo- and in vitro-derived embryos revealed no difference in cdc25c message level for any of the times P4CC (P > 0.05). Comparison of control embryos from 5- to 33-hr P4CC revealed a reduction in transcript quantities in the 10-hr P4CC group that was maintained at later time points (P < 0.05). Embryos cultured in the RNA polymerase inhibitor, alpha-amanitin, from cleavage to 5-, 10-, 18-, 25-, or 33-hr P4CC displayed no difference in cdc25c levels when compared to controls at similar time points (P > 0.05). However, if embryos were first exposed to alpha-amanitin after 18-hr P4CC with this treatment continuing to 33 hr, the levels of cdc25c transcript were reduced (P < 0.04) when compared to those embryos that were first exposed to the inhibitor at either 5- or 10-hr P4CC. This finding and the comparison of these same embryos to the 0-33-hr alpha-amanitin and control groups allowed us to conclude that cdc25c transcription began between 10- and 18-hr P4CC, with the degradation of maternal cdc25c message dependent on transcriptional initiation.
Collapse
Affiliation(s)
- J E Anderson
- Department of Animal Science, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
49
|
Weber CK, Sommer G, Michl P, Fensterer H, Weimer M, Gansauge F, Leder G, Adler G, Gress TM. Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Gastroenterology 2001; 121:657-67. [PMID: 11522750 DOI: 10.1053/gast.2001.27222] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Biglycan (PG-I), a component of the extracellular matrix (ECM), is overexpressed in pancreatic cancer. To determine possible matrix-tumor interactions, we investigated the effects of PG-I on pancreatic cancer. METHODS PG-I expression in cell lines and tissue samples was examined by Northern blot and immunofluorescence. The effect of PG-I on proliferation was determined by measuring activity of Ras, ERK, Rb, [(3)H]-thymidine incorporation, and cell cycle analysis. Expression of cyclin A, B1, D1, E1, G1, PCNA, p21, and p27 was analyzed by Northern and Western blots. RESULTS PG-I was overexpressed in the ECM of pancreatic cancer samples compared with normal pancreas or chronic pancreatitis tissues. Addition of transforming growth factor (TGF)-beta induced PG-I expression in HFL and HFFF2 fibroblasts as well as in the pancreatic cancer cell line PANC-1. PG-I inhibited growth of both TGF-beta-responsive and TGF-beta-unresponsive pancreatic cancer cells by inducing G1-arrest, which is accompanied by an increase of p27 and reduction of cyclin A and proliferating cell nuclear antigen. Furthermore, endogenous Ras and ERK activation was partly reduced by PG-I in vitro. CONCLUSIONS The ECM protein PG-I inhibits growth by arresting pancreatic cancer cells in G1 and may be part of a host defense mechanism aimed at slowing down pancreatic tumor progression.
Collapse
Affiliation(s)
- C K Weber
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Salamone DF, Damiani P, Fissore RA, Robl JM, Duby RT. Biochemical and Developmental Evidence That Ooplasmic Maturation of Prepubertal Bovine Oocytes Is Compromised1. Biol Reprod 2001; 64:1761-8. [PMID: 11369606 DOI: 10.1095/biolreprod64.6.1761] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Our previous studies have shown that oocytes collected from prepubertal calves lack developmental competence. The overall objective of this study was to assess causes by comparing biochemical and physiologic changes during in vitro maturation of oocytes collected from ovaries of adult cattle at slaughter and from superstimulated calves (<6 mo old) by either laporotomy or ultrasound-guided follicular aspiration. Activity and/or concentrations of maturation-promoting factor (MPF), mitogen-activated protein kinase (MAPK), and inositol 1,4,5-trisphosphate receptor (IP(3)R) were determined by measuring phosphorylation of histone H-1 kinase, phosphorylation of myelin basic protein, or Western blotting, respectively, and were compared between oocytes collected from calves and for those collected from cows. The activities of MPF and MAPK and the relative amount of IP(3)R were significantly lower in calf oocytes. The physiologic significance of these observations was determined by assessing the developmental potential of embryos derived by reciprocal transfer of metaphase II (M-II) chromosomes between cow and calf ooplasts and transfer of adult cumulus cells (G0/G1) into cow and calf ooplasts. Procedural controls consisted of transfer of M-II between adult oocytes and parthenogenic activation of adult and calf oocytes. Adult parthenogenically activated oocytes cleaved and developed to blastocysts at a higher rate than did similarly activated calf oocytes (42.1% vs. 3.4%, P < 0.05). Cleavage was also higher in reciprocal M-II transfer embryos containing adult ooplasm (46.2% vs. 12.0%, P < 0.05). Cleavage (66.7% vs. 21.9%, P < 0.05) and development to blastocyst (20.1% vs. 4.8%, P < 0.05) of nuclear transfer embryos reconstructed from adult cumulus cells was higher after transfer to adult ooplasts. Collectively, these results support the hypothesis that lack of developmental competence of calf oocytes is due to their failure or inability to complete ooplasmic maturation.
Collapse
Affiliation(s)
- D F Salamone
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|