1
|
Gardner RS, Kyle M, Hughes K, Zhao LR. Single-Cell RNA Sequencing Reveals Immunomodulatory Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor Treatment in the Brains of Aged APP/PS1 Mice. Biomolecules 2024; 14:827. [PMID: 39062541 PMCID: PMC11275138 DOI: 10.3390/biom14070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) leads to progressive neurodegeneration and dementia. AD primarily affects older adults with neuropathological changes including amyloid-beta (Aβ) deposition, neuroinflammation, and neurodegeneration. We have previously demonstrated that systemic treatment with combined stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) reduces the Aβ load, increases Aβ uptake by activated microglia and macrophages, reduces neuroinflammation, and restores dendrites and synapses in the brains of aged APPswe/PS1dE9 (APP/PS1) mice. However, the mechanisms underlying SCF+G-CSF-enhanced brain repair in aged APP/PS1 mice remain unclear. This study used a transcriptomic approach to identify the potential mechanisms by which SCF+G-CSF treatment modulates microglia and peripheral myeloid cells to mitigate AD pathology in the aged brain. After injections of SCF+G-CSF for 5 consecutive days, single-cell RNA sequencing was performed on CD11b+ cells isolated from the brains of 28-month-old APP/PS1 mice. The vast majority of cell clusters aligned with transcriptional profiles of microglia in various activation states. However, SCF+G-CSF treatment dramatically increased a cell population showing upregulation of marker genes related to peripheral myeloid cells. Flow cytometry data also revealed an SCF+G-CSF-induced increase of cerebral CD45high/CD11b+ active phagocytes. SCF+G-CSF treatment robustly increased the transcription of genes implicated in immune cell activation, including gene sets that regulate inflammatory processes and cell migration. The expression of S100a8 and S100a9 was robustly enhanced following SCF+G-CSF treatment in all CD11b+ cell clusters. Moreover, the topmost genes differentially expressed with SCF+G-CSF treatment were largely upregulated in S100a8/9-positive cells, suggesting a well-conserved transcriptional profile related to SCF+G-CSF treatment in resident and peripherally derived CD11b+ immune cells. This S100a8/9-associated transcriptional profile contained notable genes related to pro-inflammatory and anti-inflammatory responses, neuroprotection, and Aβ plaque inhibition or clearance. Altogether, this study reveals the immunomodulatory effects of SCF+G-CSF treatment in the aged brain with AD pathology, which will guide future studies to further uncover the therapeutic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
2
|
Gardner R, Kyle M, Hughes K, Zhao LR. Single cell RNA sequencing reveals immunomodulatory effects of stem cell factor and granulocyte colony-stimulating factor treatment in the brains of aged APP/PS1 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593359. [PMID: 38766064 PMCID: PMC11100789 DOI: 10.1101/2024.05.09.593359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Alzheimers disease leads to progressive neurodegeneration and dementia. Alzheimers disease primarily affects older adults with neuropathological changes including amyloid beta deposition, neuroinflammation, and neurodegeneration. We have previously demonstrated that systemic treatment with combined stem cell factor, SCF, and granulocyte colony stimulating factor, GCSF, reduces amyloid beta load, increases amyloid beta uptake by activated microglia and macrophages, reduces neuroinflammation, and restores dendrites and synapses in the brains of aged APP-PS1 mice. However, the mechanisms underlying SCF-GCSF-enhanced brain repair in aged APP-PS1 mice remain unclear. This study used a transcriptomic approach to identify potential mechanisms by which SCF-GCSF treatment modulates microglia and peripheral myeloid cells to mitigate Alzheimers disease pathology in the aged brain. After injections of SCF-GCSF for 5 consecutive days, single cell RNA sequencing was performed on CD11b positive cells isolated from the brains of 28-month-old APP-PS1 mice. The vast majority of cell clusters aligned with transcriptional profiles of microglia in various activation states. However, SCF-GCSF treatment dramatically increased a cell population showing upregulation of marker genes related to peripheral myeloid cells. Flow cytometry data also revealed an SCF-GCSF-induced increase of cerebral CD45high-CD11b positive active phagocytes. SCF-GCSF treatment robustly increased the transcription of genes implicated in immune cell activation, including gene sets that regulate inflammatory processes and cell migration. Expression of S100a8 and S100a9 were robustly enhanced following SCF-GCSF treatment in all CD11b positive cell clusters. Moreover, the topmost genes differentially expressed with SCF-GCSF treatment were largely upregulated in S100a8-S100a9 positive cells, suggesting a well-conserved transcriptional profile related to SCF-GCSF treatment in resident and peripherally derived CD11b positive immune cells. This S100a8-S100a9-associated transcriptional profile contained notable genes related to proinflammatory and antiinflammatory responses, neuroprotection, and amyloid beta plaque inhibition or clearance. Altogether, this study reveals immunomodulatory effects of SCF-GCSF treatment in the aged brain with Alzheimers disease pathology, which will guide future studies to further uncover the therapeutic mechanisms.
Collapse
|
3
|
Liao R, Babatunde A, Qiu S, Harikumar H, Coon JJ, Overmyer KA, Hannun YA, Luberto C, Bresnick EH. A transcriptional network governing ceramide homeostasis establishes a cytokine-dependent developmental process. Nat Commun 2023; 14:7262. [PMID: 37945603 PMCID: PMC10636182 DOI: 10.1038/s41467-023-42978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Transcriptional mechanisms controlling developmental processes establish and maintain proteomic networks, which can govern the levels of intracellular small molecules. Although dynamic changes in bioactive small molecules can link transcription factor and genome activity with cell state transitions, many mechanistic questions are unresolved. Using quantitative lipidomics and multiomics, we discover that the hematopoietic transcription factor GATA1 establishes ceramide homeostasis during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Inhibiting a GATA1-induced sphingolipid biosynthetic enzyme, delta(4)-desaturase, or disrupting ceramide homeostasis with cell-permeable dihydroceramide or ceramide is detrimental to erythroid, but not myeloid, progenitor activity. Coupled with genetic editing-based rewiring of the regulatory circuitry, we demonstrate that ceramide homeostasis commissions vital stem cell factor and erythropoietin signaling by opposing an inhibitory protein phosphatase 2A-dependent, dual-component mechanism. Integrating bioactive lipids as essential components of GATA factor mechanisms to control cell state transitions has implications for diverse cell and tissue types.
Collapse
Affiliation(s)
- Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Abiola Babatunde
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephanie Qiu
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Hamsini Harikumar
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Book University, Stony Brook, NY, USA
- Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
4
|
Rasheed A. Niche Regulation of Hematopoiesis: The Environment Is "Micro," but the Influence Is Large. Arterioscler Thromb Vasc Biol 2022; 42:691-699. [PMID: 35418246 DOI: 10.1161/atvbaha.121.316235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune cell production is governed by a process known as hematopoiesis, where hematopoietic stem cells (HSCs) differentiate through progenitor cells and ultimately to the mature blood and immune cells found in circulation. While HSCs are capable of cell-autonomous regulation, they also rely on extrinsic factors to balance their state of quiescence and activation. These cues can, in part, be derived from the niche in which HSCs are found. Under steady-state conditions, HSCs are found in the bone marrow. This niche is designed to support HSCs but also to respond to external factors, which allows hematopoiesis to be a finely tuned and coordinated process. However, the niche, and its regulation, can become dysregulated to potentiate inflammation during disease. This review will highlight the architecture of the bone marrow and key regulators of hematopoiesis within this niche. Emphasis will be placed on how these mechanisms go awry to exacerbate hematopoietic contributions that drive cardiovascular disease.
Collapse
Affiliation(s)
- Adil Rasheed
- University of Ottawa Heart Institute, ON, Canada. Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| |
Collapse
|
5
|
Tsai M, Valent P, Galli SJ. KIT as a master regulator of the mast cell lineage. J Allergy Clin Immunol 2022; 149:1845-1854. [PMID: 35469840 PMCID: PMC9177781 DOI: 10.1016/j.jaci.2022.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
The discovery in 1987/1988 and 1990 of the cell surface receptor KIT and its ligand, stem cell factor (SCF), was a critical achievement in efforts to understand the development and function of multiple distinct cell lineages. These include hematopoietic progenitors, melanocytes, germ cells, and mast cells, which all are significantly affected by loss-of-function mutations of KIT or SCF. Such mutations also influence the development and/or function of additional cells, including those in parts of the central nervous system and the interstitial cells of Cajal (which control gut motility). Many other cells can express KIT constitutively or during immune responses, including dendritic cells, eosinophils, type 2 innate lymphoid cells, and taste cells. Yet the biological importance of KIT in many of these cell types largely remains to be determined. We here review the history of work investigating mice with mutations affecting the white spotting locus (which encodes KIT) or the steel locus (which encodes SCF), focusing especially on the influence of such mutations on mast cells. We also briefly review efforts to target the KIT/SCF pathway with anti-SCF or anti-Kit antibodies in mouse models of allergic disorders, parasite immunity, or fibrosis in which mast cells are thought to play significant roles.
Collapse
Affiliation(s)
- Mindy Tsai
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
6
|
Lee E, de Paula MN, Baek S, Ta HKK, Nguyen MT, Jeong TH, Kim CJ, Jang YJ, Choe H. Novel Bacterial Production of Two Different Bioactive Forms of Human Stem-Cell Factor. Int J Mol Sci 2021; 22:ijms22126361. [PMID: 34198626 PMCID: PMC8232154 DOI: 10.3390/ijms22126361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
Human stem-cell factor (hSCF) stimulates the survival, proliferation, and differentiation of hematopoietic cells by binding to the c-Kit receptor. Various applications of hSCF require the efficient and reliable production of hSCF. hSCF exists in three forms: as two membrane-spanning proteins hSCF248 and hSCF229 and truncated soluble N-terminal protein hSCF164. hSCF164 is known to be insoluble when expressed in Escherichia coli cytoplasm, requiring a complex refolding procedure. The activity of hSCF248 has never been studied. Here, we investigated novel production methods for recombinant hSCF164 and hSCF248 without the refolding process. To increase the solubility of hSCF164, maltose-binding protein (MBP) and protein disulfide isomerase b’a’ domain (PDIb’a’) tags were attached to the N-terminus of hSCF164. These fusion proteins were overexpressed in soluble form in the Origami 2(DE3) E. coli strain. These solubilization effects were enhanced at a low temperature. His-hSCF248, the poly-His tagged form of hSCF248, was expressed in a highly soluble form without a solubilization tag protein, which was unexpected because His-hSCF248 contains a transmembrane domain. hSCF164 was purified using affinity and ion-exchange chromatography, and His-hSCF248 was purified by ion-exchange and gel filtration chromatography. The purified proteins stimulated the proliferation of TF-1 cells. Interestingly, the EC50 value of His-hSCF248 was 1 pg/mL, 100-fold lower than 9 ng/mL hSCF164. Additionally, His-hSCF248 decreased the doubling time, increased the proportion of S and G2/M stages in the cell cycle, and increased the c-Myc expression at a 1000-fold lower concentration than hSCF164. In conclusion, His-hSCF248 was expressed in a soluble form in E. coli and had stronger activity than hSCF164. The molecular chaperone, MBP, enabled the soluble overexpression of hSCF164.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Michelle Novais de Paula
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Sangki Baek
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Huynh Kim Khanh Ta
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Minh Tan Nguyen
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Taeck-Hyun Jeong
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Chong Jai Kim
- Department of Pathology, Asan-Minnesota Institute for Innovating Transplantation, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Yeon Jin Jang
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
| | - Han Choe
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (E.L.); (M.N.d.P.); (S.B.); (H.K.K.T.); (M.T.N.); (T.-H.J.); (Y.J.J.)
- Correspondence: ; Tel.: +82-2-3010-4292; Fax: +82-2-3010-8148
| |
Collapse
|
7
|
Ichinohe N, Ishii M, Tanimizu N, Mizuguchi T, Yoshioka Y, Ochiya T, Suzuki H, Mitaka T. Extracellular vesicles containing miR-146a-5p secreted by bone marrow mesenchymal cells activate hepatocytic progenitors in regenerating rat livers. Stem Cell Res Ther 2021; 12:312. [PMID: 34051870 PMCID: PMC8164814 DOI: 10.1186/s13287-021-02387-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Small hepatocyte-like progenitor cells (SHPCs) appear to form transient clusters in rat livers treated with retrorsine (Ret) and 70% partial hepatectomy (PH). We previously reported that the expansion of SHPCs was amplified in Ret/PH-treated rat livers transplanted with Thy1+ cells derived from d-galactosamine-treated injured livers. Extracellular vesicles (EVs) produced by hepatic Thy1+ donor cells activated SHPCs via interleukin (IL)-17 receptor B signaling. As bone marrow-derived mesenchymal cells (BM-MCs) also express Thy1, we aimed to determine whether BM-MCs could also promote the growth of SHPCs. Methods BM-MCs were isolated from dipeptidyl-peptidase IV (DPPIV)-positive rats. BM-MCs or BM-MC-derived EVs were administered to DPPIV-negative Ret/PH rat livers, and the growth and the characteristics of SHPC clusters were evaluated 14 days post-treatment. miRNA microarrays and cytokine arrays examined soluble factors within EVs. Small hepatocytes (SHs) isolated from an adult rat liver were used to identify factors enhancing hepatocytic progenitor cells growth. Results The recipient’s livers were enlarged at 2 weeks post-BM-MC transplantation. The number and the size of SHPCs increased remarkably in livers transplanted with BM-MCs. BM-MC-derived EVs also stimulated SHPC growth. Comprehensive analyses revealed that BM-MC-derived EVs contained miR-146a-5p, interleukin-6, and stem cell factor, which could enhance SHs’ proliferation. Administration of EVs derived from the miR-146a-5p-transfected BM-MCs to Ret/PH rat livers remarkably enhanced the expansion of SHPCs. Conclusions miR-146a-5p involved in EVs produced by BM-MCs may play a major role in accelerating liver regeneration by activating the intrinsic hepatocytic progenitor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02387-6.
Collapse
Affiliation(s)
- Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Masayuki Ishii
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Toru Mizuguchi
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Nursing, Sapporo Medical University School of Health Science, Sapporo, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
8
|
Manini A, Pantoni L. CADASIL from Bench to Bedside: Disease Models and Novel Therapeutic Approaches. Mol Neurobiol 2021; 58:2558-2573. [PMID: 33464533 PMCID: PMC8128844 DOI: 10.1007/s12035-021-02282-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic disease caused by NOTCH3 mutations and characterized by typical clinical, neuroradiological, and pathological features. NOTCH3 belongs to a family of highly conserved transmembrane receptors rich of epidermal growth factor repeats, mostly expressed in vascular smooth muscle cells and pericytes, which perform essential developmental functions and are involved in tissues maintenance and renewal. To date, no therapeutic option for CADASIL is available except for few symptomatic treatments. Novel in vitro and in vivo models are continuously explored with the aim to investigate underlying pathogenic mechanisms and to test novel therapeutic approaches. In this scenario, knock-out, knock-in, and transgenic mice studies have generated a large amount of information on molecular and biological aspects of CADASIL, despite that they incompletely reproduce the human phenotype. Moreover, the field of in vitro models has been revolutionized in the last two decades by the introduction of induced pluripotent stem cells (iPSCs) technology. As a consequence, novel therapeutic approaches, including immunotherapy, growth factors administration, and antisense oligonucleotides, are currently under investigation. While waiting that further studies confirm the promising results obtained, the data reviewed suggest that our therapeutic approach to the disease could be transformed, generating new hope for the future.
Collapse
Affiliation(s)
- Arianna Manini
- Stroke and Dementia Lab, "Luigi Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milano, Italy
| | - Leonardo Pantoni
- Stroke and Dementia Lab, "Luigi Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milano, Italy.
| |
Collapse
|
9
|
Ping S, Qiu X, Gonzalez-Toledo ME, Liu X, Zhao LR. Stem Cell Factor in Combination With Granulocyte Colony-Stimulating Factor Protects the Brain From Capillary Thrombosis-Induced Ischemic Neuron Loss in a Mouse Model of CADASIL. Front Cell Dev Biol 2021; 8:627733. [PMID: 33511138 PMCID: PMC7835527 DOI: 10.3389/fcell.2020.627733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarct and leukoencephalopathy (CADASIL) is a Notch3 mutation-induced cerebral small vessel disease, leading to recurrent ischemic stroke and vascular dementia. There is currently no treatment that can stop or delay CADASIL progression. We have demonstrated the efficacy of treatment with combined stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) in reducing cerebral small vessel thrombosis in a TgNotch3R90C mouse model of CADASIL. However, it remains unknown whether SCF+G-CSF treatment protects neurons from microvascular thrombosis-induced ischemic damage. Using bone marrow transplantation to track thrombosis, we observed that capillary thrombosis was widely distributed in the cortex, striatum and hippocampus of 22-month-old TgNotch3R90C mice. However, the capillary thrombosis mainly occurred in the cortex. Neuron loss was seen in the area next to the thrombotic capillaries, and severe neuron loss was found in the areas adjacent to the thrombotic capillaries with bifurcations. SCF+G-CSF repeated treatment significantly attenuated neuron loss in the areas next to the thrombotic capillaries in the cortex of the 22-month-old TgNotch3R90C mice. Neuron loss caused by capillary thrombosis in the cerebral cortex may play a crucial role in the pathogenesis of CADASIL. SCF+G-CSF treatment ameliorates the capillary thrombosis-induced ischemic neuron loss in TgNotch3R90C mice. This study provides new insight into the understanding of CADASIL progression and therapeutic potential of SCF+G-CSF in neuroprotection under microvascular ischemia in CADASIL.
Collapse
Affiliation(s)
- Suning Ping
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, United States
| | - Xuecheng Qiu
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, United States
| | - Maria E. Gonzalez-Toledo
- Department of Neurology, Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Xiaoyun Liu
- Department of Neurology, Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, United States
- Department of Neurology, Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
10
|
Guo X, Liu Y, Morgan D, Zhao LR. Reparative Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor in Aged APP/PS1 Mice. Aging Dis 2020; 11:1423-1443. [PMID: 33269098 PMCID: PMC7673847 DOI: 10.14336/ad.2020.0201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/01/2020] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD), characterized by the accumulation of β-amyloid (Aβ) plaques and tau neurofibrillary tangles in the brain, neuroinflammation and neurodegeneration, is the most common form of neurodegenerative disease among the elderly. No effective treatment is available now in restricting the pathological progression of AD. The aim of this study is to determine the therapeutic efficacy of stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) in aged APPswe/PS1dE9 (APP/PS1) mice. SCF+G-CSF was subcutaneously injected for 12 days to 25-month-old male APP/PS1 mice. We observed that SCF+G-CSF treatment reduced the Aβ plaques in both the cortex and hippocampus. SCF+G-CSF treatment increased the association of TREM2+/Iba1+ cells with Aβ plaques and enhanced Aβ uptake by Iba1+ and CD68+cells in the brains of aged APP/PS1 mice. Importantly, cerebral expression area of P2RY12+and TMEM119+ homeostatic microglia and the branches of P2RY12+ homeostatic microglia were increased in the SCF+G-CSF-treated aged APP/PS1 mice. SCF+G-CSF treatment also decreased NOS-2 and increased IL-4 in the brains of aged APP/PS1 mice. Moreover, the loss of MAP2+dendrites and PSD-95+post-synapses and the accumulation of aggregated tau in the brains of aged APP/PS1 mice were ameliorated by SCF+G-CSF treatment. Furthermore, the density of P2RY12+ microglia was negatively correlated with Aβ deposits, but positively correlated with the densities of MAP2+ dendrites and PSD-95+ puncta in the brains of aged APP/PS1 mice. These findings reveal the therapeutic potential of SCF+G-CSF treatment in ameliorating AD pathology at the late stage.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York, 13210, USA
| | - Yanying Liu
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York, 13210, USA
| | - David Morgan
- Translational Neuroscience, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, 49503, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York, 13210, USA
| |
Collapse
|
11
|
Mickiene G, Dalgėdienė I, Zvirblis G, Dapkunas Z, Plikusiene I, Buzavaite-Verteliene E, Balevičius Z, Rukšėnaitė A, Pleckaityte M. Human granulocyte-colony stimulating factor (G-CSF)/stem cell factor (SCF) fusion proteins: design, characterization and activity. PeerJ 2020; 8:e9788. [PMID: 32884863 PMCID: PMC7444511 DOI: 10.7717/peerj.9788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/31/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF) are well-characterized vital hematopoietic growth factors that regulate hematopoiesis. G-CSF and SCF synergistically exhibit a stimulatory effect on hematopoietic progenitors. The combination of G-CSF and SCF has been used for mobilization of peripheral blood progenitor cells in cancer and non-cancerous conditions. To overcome challenges connected with the administration of two cytokines, we developed two fusion proteins composed of human SCF and human G-CSF interspaced by an alpha-helix-forming peptide linker. METHODS The recombinant proteins SCF-Lα-GCSF and GCSF-Lα-SCF were purified in three steps using an ion-exchange and mixed-mode chromatography. The purity and quantity of the proteins after each stage of purification was assessed using RP-HPLC, SDS-PAGE, and the Bradford assays. Purified proteins were identified using high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) and the Western blot analyses. The molecular weight was determined by size exclusion HPLC (SE-HPLC). The activity of heterodimers was assessed using cell proliferation assays in vitro. The capacity of recombinant fusion proteins to stimulate the increase of the absolute neutrophil count in rats was determined in vivo. The binding kinetics of the proteins to immobilized G-CSF and SCF receptors was measured using total internal reflection ellipsometry and evaluated by a standard Langmuir kinetics model. RESULTS The novel SCF-Lα-GCSF and GCSF-Lα-SCF proteins were synthesized in Escherichia coli. The purity of the heterodimers reached >90% as determined by RP-HPLC. The identity of the proteins was confirmed using the Western blot and HPLC/ESI-MS assays. An array of multimeric forms, non-covalently associated dimers or trimers were detected in the protein preparations by SE-HPLC. Each protein induced a dose-dependent proliferative response on the cell lines. At equimolar concentration, the heterodimers retain 70-140% of the SCF monomer activity (p ≤ 0.01) in promoting the M-07e cells proliferation. The G-CSF moiety in GCSF-Lα-SCF retained 15% (p ≤ 0.0001) and in SCF-Lα-GCSF retained 34% (p ≤ 0.01) of the monomeric G-CSF activity in stimulating the growth of G-NFS-60 cells. The obtained results were in good agreement with the binding data of each moiety in the fusion proteins to their respective receptors. The increase in the absolute neutrophil count in rats caused by the SCF-Lα-GCSF protein corresponded to the increase induced by a mixture of SCF and G-CSF.
Collapse
Affiliation(s)
- Gitana Mickiene
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- Profarma UAB, Vilnius, Lithuania
| | - Indrė Dalgėdienė
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | | - Zilvinas Dapkunas
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- Profarma UAB, Vilnius, Lithuania
| | - Ieva Plikusiene
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Ernesta Buzavaite-Verteliene
- Plasmonics and Nanophotonics Laboratory, Department of Laser Technology, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Zigmas Balevičius
- Plasmonics and Nanophotonics Laboratory, Department of Laser Technology, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | | | | |
Collapse
|
12
|
He J, Russell T, Qiu X, Hao F, Kyle M, Chin L, Zhao LR. The contribution of stem cell factor and granulocyte colony-stimulating factor in reducing neurodegeneration and promoting neurostructure network reorganization after traumatic brain injury. Brain Res 2020; 1746:147000. [PMID: 32579949 DOI: 10.1016/j.brainres.2020.147000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in young adults worldwide. TBI-induced long-term cognitive deficits represent a growing clinical problem. Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are involved in neuroprotection and neuronal plasticity. However, the knowledge concerning reparative efficacy of SCF + G-CSF treatment in post-acute TBI recovery remains incomplete. This study aims to determine the efficacy of SCF + G-CSF on post-acute TBI recovery in young adult mice. The controlled cortical impact model of TBI was used for inducing a severe damage in the motor cortex of the right hemisphere in 8-week-old male C57BL mice. SCF + G-CSF treatment was initiated 3 weeks after induction of TBI. Severe TBI led to persistent motor functional deficits (Rota-Rod test) and impaired spatial learning function (water maze test). SCF + G-CSF treatment significantly improved the severe TBI-impaired spatial learning function 6 weeks after treatment. TBI also caused significant increases of Fluoro-Jade C positive degenerating neurons in bilateral frontal cortex, striatum and hippocampus, and significant reductions in MAP2+ apical dendrites and overgrowth of SMI312+ axons in peri-TBI cavity frontal cortex and in the ipsilateral hippocampal CA1 at 24 weeks post-TBI. SCF + G-CSF treatment significantly reduced TBI-induced neurodegeneration in the contralateral frontal cortex and hippocampal CA1, increased MAP2+ apical dendrites in the peri-TBI cavity frontal cortex, and prevented TBI-induced axonal overgrowth in both the peri-TBI cavity frontal cortex and ipsilateral hippocampal CA1.These findings reveal a novel pathology of axonal overgrowth after severe TBI and demonstrate a therapeutic potential of SCF + G-CSF in ameliorating severe TBI-induced long-term neuronal pathology, neurostructural network malformation, and impairments in spatial learning.
Collapse
Affiliation(s)
- Junchi He
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Thomas Russell
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Fei Hao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Lawrence Chin
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
13
|
Abstract
A central feature of atherosclerosis, the most prevalent chronic vascular disease and root cause of myocardial infarction and stroke, is leukocyte accumulation in the arterial wall. These crucial immune cells are produced in specialized niches in the bone marrow, where a complex cell network orchestrates their production and release. A growing body of clinical studies has documented a correlation between leukocyte numbers and cardiovascular disease risk. Understanding how leukocytes are produced and how they contribute to atherosclerosis and its complications is, therefore, critical to understanding and treating the disease. In this review, we focus on the key cells and products that regulate hematopoiesis under homeostatic conditions, during atherosclerosis and after myocardial infarction.
Collapse
Affiliation(s)
- Wolfram C Poller
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
14
|
Ping S, Qiu X, Kyle M, Hughes K, Longo J, Zhao LR. Stem cell factor and granulocyte colony-stimulating factor promote brain repair and improve cognitive function through VEGF-A in a mouse model of CADASIL. Neurobiol Dis 2019; 132:104561. [PMID: 31376480 DOI: 10.1016/j.nbd.2019.104561] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarct and leukoencephalopathy (CADASIL) is a cerebral small vascular disease caused by NOTCH3 gene mutation in vascular smooth muscle cells (VSMCs), leading to ischemic stroke and vascular dementia. To date, the pathogenesis of CADASIL remains poorly understood, and there is no treatment that can slow the progression of CADASIL. Using a transgenic mouse model of CADASIL (TgNotch3R90C), this study reveals novel findings for understanding CADASIL pathogenesis that decreased cerebral vascular endothelial growth factor (VEGF/VEGF-A) is linked to reduced cerebral blood vessel density. Reduced endothelial cell (EC) proliferation and angiogenesis are seen in TgNotch3R90C mouse brain-isolated ECs. Decreased dendrites, axons, and synapses in the somatosensory and motor cortex layer 2/3 and in the hippocampal CA1, and reduced neurogenesis in both the subventricular zone and subgranular zone occur in 15-month-old TgNotch3R90C mice. These reductions in neuron structures, synapses, and neurogenesis are significantly correlated to decreased cerebral vasculature in the corresponding areas. Impaired spatial learning and memory in TgNotch3R90C mice are significantly correlated with the reduced cerebral vasculature, neuron structures, and synapses. Repeated treatment of stem cell factor and granulocyte colony-stimulating factor (SCF+G-CSF) at 9 and 10 months of age improves cognitive function, increases cerebral VEGF/VEGF-A, restores cerebral vasculature, and enhances regeneration of neuronal structures, synaptogenesis and neurogenesis in TgNotch3R90C mice. Pretreatment with Avastin, an angiogenesis inhibitor by neutralizing VEGF-A, completely eliminates the SCF+G-CSF-enhanced cognitive function, vascular and neuronal structure regeneration, synaptogenesis and neurogenesis in TgNotch3R90C mice. SCF+G-CSF-enhanced EC proliferation and angiogenesis in TgNotch3R90C mouse brain-isolated ECs are also blocked by Avastin pretreatment. These data suggest that SCF+G-CSF treatment may repair Notch3R90C mutation-damaged brain through the VEGF-A-mediated angiogenesis. This study provides novel insight into the involvement of VEGF/VEGF-A in the pathogenesis of CADASIL and sheds light on the mechanism underlying the SCF+G-CSF-enhanced brain repair in CADASIL.
Collapse
Affiliation(s)
- Suning Ping
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Karen Hughes
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - John Longo
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
15
|
Janardhan KS, Venkannagari P, Jensen H, Hoenerhoff MJ, Herbert RA, Malarkey DE, Sills RC, Pandiri AR. Do GISTs Occur in Rats and Mice? Immunohistochemical Characterization of Gastrointestinal Tumors Diagnosed as Smooth Muscle Tumors in The National Toxicology Program. Toxicol Pathol 2019; 47:577-584. [PMID: 31064278 DOI: 10.1177/0192623319845838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The majority of the tumors in the gastrointestinal (GI) tract of rats and mice, with spindle cell morphology, are diagnosed as smooth muscle tumors (SMTs). Similarly, several decades ago human GI tumors with spindle cell morphology were also diagnosed as SMTs. However, later investigations identified most of these tumors in humans as gastrointestinal stromal tumors (GISTs). The GISTs are considered to arise from the interstitial cells of Cajal located throughout the GI tract. Positive immunohistochemical staining with CKIT antibody is a well-accepted diagnostic marker for GISTs in humans. Since there is a considerable overlap between the histomorphology of SMTs and GISTs, it is not possible to distinguish them on hematoxylin and eosin stained sections. As a result, GISTs are not routinely diagnosed in toxicological studies. The current study was designed to evaluate the tumors diagnosed as leiomyoma or leiomyosarcoma in the National Toxicology Program's 2-year bioassays using CKIT, smooth muscle actin, and desmin immunohistochemistry. The results demonstrate that most of the mouse SMTs diagnosed as leiomyoma or leiomyosarcoma are likely GISTs, whereas in rats the tumors are likely SMTs and not GISTs.
Collapse
Affiliation(s)
| | - Priyanka Venkannagari
- 2 Division of National Toxicology Program, Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA. Venkannagari is now with the Bain and Company Inc, Boston, MA, USA. Mark is now with the Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Heather Jensen
- 2 Division of National Toxicology Program, Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA. Venkannagari is now with the Bain and Company Inc, Boston, MA, USA. Mark is now with the Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark J Hoenerhoff
- 2 Division of National Toxicology Program, Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA. Venkannagari is now with the Bain and Company Inc, Boston, MA, USA. Mark is now with the Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ronald A Herbert
- 2 Division of National Toxicology Program, Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA. Venkannagari is now with the Bain and Company Inc, Boston, MA, USA. Mark is now with the Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David E Malarkey
- 2 Division of National Toxicology Program, Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA. Venkannagari is now with the Bain and Company Inc, Boston, MA, USA. Mark is now with the Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Robert C Sills
- 2 Division of National Toxicology Program, Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA. Venkannagari is now with the Bain and Company Inc, Boston, MA, USA. Mark is now with the Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Arun R Pandiri
- 2 Division of National Toxicology Program, Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA. Venkannagari is now with the Bain and Company Inc, Boston, MA, USA. Mark is now with the Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Toshkezi G, Kyle M, Longo SL, Chin LS, Zhao LR. Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury. J Neurosurg 2018; 129:1286-1294. [PMID: 29372883 DOI: 10.3171/2017.7.jns17878] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/24/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVETraumatic brain injury (TBI) is a major cause of long-term disability and death in young adults. The lack of pharmaceutical therapy for post-acute TBI recovery remains a crucial medical challenge. Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF), which are 2 key hematopoietic growth factors, have shown neuroprotective and neurorestorative effects in experimental stroke. The objective of this study was to determine the therapeutic efficacy of combined treatment (SCF + G-CSF) in subacute TBI.METHODSYoung-adult male C57BL mice were subject to TBI in the cortex of the right hemisphere. After TBI induction, mice were randomly divided into 2 groups: a vehicle control group and an SCF + G-CSF treatment group. Mice without TBI served as sham operative controls. Treatment was initiated 2 weeks after TBI induction. SCF (200 μg/kg) and G-CSF (50 μg/kg) or an equal volume of vehicle solution was subcutaneously injected daily for 7 days. A battery of neurobehavioral tests for evaluation of memory and cognitive function (water maze and novel object recognition tests), anxiety (elevated plus maze test), and motor function (Rota-Rod test) was performed during the period of 2-9 weeks after treatment. Neurodegeneration and dendritic density in both hemispheres were determined through histochemistry and immunohistochemistry at 11 weeks posttreatment.RESULTSWater maze testing showed that TBI-impaired spatial learning and memory was restored by SCF + G-CSF treatment. The findings from the elevated plus maze tests revealed that SCF + G-CSF treatment recovered TBI-caused anxiety and risk-taking behavior. There were no significant differences between the treated and nontreated TBI mice in both the Rota-Rod test and novel object recognition test. In the brain sections, the authors observed that widespread degenerating neurons were significantly increased in both hemispheres in the TBI-vehicle control mice. TBI-induced increases in neurodegeneration were significantly reduced by SCF + G-CSF treatment in the contralateral hemisphere, making it no different from that of the sham controls. Dendritic density in the frontal cortex of the contralateral hemisphere was significantly reduced in the TBI-vehicle control mice, whereas SCF + G-CSF-treated TBI mice showed significant increases of the dendritic density in the same brain region. SCF + G-CSF-treated TBI mice also showed a trend toward increasing dendritic density in the contralateral hippocampus.CONCLUSIONSSCF + G-CSF treatment in the subacute phase of TBI restored TBI-impaired spatial learning and memory, prevented posttraumatic anxiety and risk-taking behavior, inhibited TBI-induced neurodegeneration, and enhanced neural network remodeling. These findings suggest the therapeutic potential of hematopoietic growth factors for brain repair in the subacute phase of TBI.
Collapse
|
17
|
Ping S, Qiu X, Gonzalez-Toledo ME, Liu X, Zhao LR. Stem Cell Factor in Combination with Granulocyte Colony-Stimulating Factor reduces Cerebral Capillary Thrombosis in a Mouse Model of CADASIL. Cell Transplant 2018; 27:637-647. [PMID: 29871518 PMCID: PMC6041883 DOI: 10.1177/0963689718766460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and
leucoencephalopathy (CADASIL) is a cerebral small vascular disease caused by NOTCH3
mutation-induced vascular smooth muscle cell (VSMC) degeneration, leading to ischemic
stroke and vascular dementia. Our previous study has demonstrated that repeated treatment
with a combination of stem cell factor (SCF) and granulocyte colony-stimulating factor
(G-CSF) reduces VSMC degeneration and cerebral endothelial cell (EC) damage and improves
cognitive function in a mouse model of CADASIL (TgNotch3R90C). This study aimed to
determine whether cerebral thrombosis occurs in TgNotch3R90C mice and whether repeated
SCF+G-CSF treatment reduces cerebral thrombosis in TgNotch3R90C mice. Using the approaches
of bone marrow transplantation to track bone marrow-derived cells and confocal imaging, we
observed bone marrow-derived blood cell occlusion in cerebral small vessels and
capillaries (thrombosis). Most thrombosis occurred in the cerebral capillaries (93% of
total occluded vessels), and the thrombosis showed an increased frequency in the regions
of capillary bifurcation. Degenerated capillary ECs were seen inside and surrounding the
thrombosis, and the bone marrow-derived ECs were also found next to the thrombosis. IgG
extravasation was seen in and next to the areas of thrombosis. SCF+G-CSF treatment
significantly reduced cerebral capillary thrombosis and IgG extravasation. These data
suggest that the EC damage is associated with thrombosis and blood–brain barrier leakage
in the cerebral capillaries under the CADASIL-like condition, whereas SCF+G-CSF treatment
diminishes these pathological alterations. This study provides new insight into the
involvement of cerebral capillary thrombosis in the development of CADASIL and potential
approaches to reduce the thrombosis, which may restrict the pathological progression of
CADASIL.
Collapse
Affiliation(s)
- Suning Ping
- 1 Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, New York, NY, USA
| | - Xuecheng Qiu
- 1 Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, New York, NY, USA
| | - Maria E Gonzalez-Toledo
- 2 Departments of Neurology, Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Xiaoyun Liu
- 2 Departments of Neurology, Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Li-Ru Zhao
- 1 Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, New York, NY, USA.,2 Departments of Neurology, Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
18
|
Migliaccio AR, Varricchio L. Concise Review: Advanced Cell Culture Models for Diamond Blackfan Anemia and Other Erythroid Disorders. Stem Cells 2018; 36:172-179. [PMID: 29124822 PMCID: PMC5785423 DOI: 10.1002/stem.2735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/14/2017] [Accepted: 11/01/2017] [Indexed: 01/26/2023]
Abstract
In vitro surrogate models of human erythropoiesis made many contributions to our understanding of the extrinsic and intrinsic regulation of this process in vivo and how they are altered in erythroid disorders. In the past, variability among the levels of hemoglobin F produced by adult erythroblasts generated in vitro by different laboratories identified stage of maturation, fetal bovine serum, and accessory cells as "confounding factors," that is, parameters intrinsically wired in the experimental approach that bias the results observed. The discovery of these factors facilitated the identification of drugs that accelerate terminal maturation or activate specific signaling pathways for the treatment of hemoglobinopathies. It also inspired studies to understand how erythropoiesis is regulated by macrophages present in the erythroid islands. Recent cell culture advances have greatly increased the number of human erythroid cells that can be generated in vitro and are used as experimental models to study diseases, such as Diamond Blackfan Anemia, which were previously poorly amenable to investigation. However, in addition to the confounding factors already identified, improvement in the culture models has introduced novel confounding factors, such as possible interactions between signaling from cKIT, the receptor for stem cell factor, and from the glucocorticoid receptor, the cell proliferation potential and the clinical state of the patients. This review will illustrate these new confounding factors and discuss their clinical translation potential to improve our understanding of Diamond Blackfan Anemia and other erythroid disorders. Stem Cells 2018;36:172-179.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| |
Collapse
|
19
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:145/1/dev151423. [PMID: 29321181 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
20
|
Tokoro Y, Yamada Y, Takayanagi SI, Hagiwara T. 57R2A, a newly established monoclonal antibody against mouse GPR56, marks long-term repopulating hematopoietic stem cells. Exp Hematol 2017; 59:51-59.e1. [PMID: 29225194 DOI: 10.1016/j.exphem.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022]
Abstract
GPR56 molecule, a G-protein-coupled receptor, was suggested to be expressed in mouse hematopoietic stem cells (HSCs) by gene expression analyses. However, little is known about the cell surface expression of GPR56 protein in mouse HSCs due to the absence of an appropriate monoclonal antibody against GPR56 for flow cytometry analyses. In the present study, we established a novel monoclonal antibody against mouse GPR56 (57R2A) to examine the expression and distribution of GPR56 protein in HSCs. A flow cytometry analysis using 57R2A showed that GPR56 was highly expressed in the CD34-, c-Kit+, Sca-1+, lineage-negative (Lin-) fraction, which are highly enriched with HSCs. The competitive long-term repopulation (LTR) assay showed that LTR cells were included only within the GPR56+ fraction (≤15%) of bone marrow mononuclear cells (BMMNCs), but not within the remaining GPR56- fraction (85%), suggesting that all HSCs express GPR56 protein on their surface. Furthermore, we showed that double staining of BMMNCs with only 57R2A and AMM2 (monoclonal antibody against the HSC marker MPL) enabled enrichment of all LTR cells in the double-positive fraction (0.8% of BMMNCs), within which the LTR potency was consistent with the expression of both GPR56 and MPL. In conclusion, these findings for 57R2A suggest that all HSCs in mouse BMMNCs express GPR56 protein on their surface and that GPR56 is a positive marker for HSCs.
Collapse
Affiliation(s)
- Yusuke Tokoro
- Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan; Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
21
|
Turning Death to Growth: Hematopoietic Growth Factors Promote Neurite Outgrowth through MEK/ERK/p53 Pathway. Mol Neurobiol 2017; 55:5913-5925. [PMID: 29119536 DOI: 10.1007/s12035-017-0814-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/27/2017] [Indexed: 12/23/2022]
Abstract
Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are the essential hematopoietic growth factors to control hematopoiesis. However, the role of SCF and G-CSF in the central nervous system remains poorly understood. Here, we have demonstrated the involvement of MEK/ERK/p53 signaling in SCF + G-CSF-enhanced neurite extension. Cortical neurons dissected from embryonic rat brains were seeded onto the membranes of transwell inserts, and neurite outgrowth was determined by using both the neurite outgrowth quantification assay kit and immunostaining of β III tubulin. Quantitative RT-PCR and western blotting were used for determining gene and protein expression of ERK and p53, respectively. p53 small interfering RNA (siRNAs) were introduced into neurons for examining the involvement of p53 in SCF + G-CSF-mediated neurite outgrowth. We observed that both SCF and G-CSF alone increased activation of MEK/ERK and gene expression of p53, while SCF + G-CSF synergistically activated the MEK/ERK signaling and upregulated p53 expression. MEK specific inhibitors (PD98059 and U0126) blocked the SCF + G-CSF-increased ERK phosphorylation and p53 gene and protein expression, and the MEK specific inhibitors also eliminated the SCF + G-CSF-promoted neurite outgrowth. p53 siRNAs knocked down the SCF + G-CSF-elevated p53 protein and prevented the SCF + G-CSF-enhanced neurite outgrowth. These findings suggest that activation of MEK/ERK/p53 signaling is required for SCF + G-CSF-promoted neurite outgrowth. Through the pro-apoptotic pathway of the MEK/ERK/p53, SCF + G-CSF turns neuronal fate from apoptotic commitment toward neural network generation. This observation provides novel insights into the putative role of SCF + G-CSF in supporting generation of neural connectivity during CNS development and in brain repair under pathological or neurodegenerative conditions.
Collapse
|
22
|
Karimi A, Shahrooz R, Hobbenaghi R, Mohammadi R, Mortaz E. Mouse Bone Marrow-Derived Mast Cells Induce Angiogenesis by Tissue Engineering in Rats: Histological Evidence. CELL JOURNAL 2017; 19:578-584. [PMID: 29105392 PMCID: PMC5672096 DOI: 10.22074/cellj.2018.4277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
Objective Therapeutic angiogenesis is employed to induce vascular network formation and improve functional
recovery in ischemia. The aim of this study is to find an appropriate method to recover local ischemic conditions.
Materials and Methods In this experimental survey, 20 male Wistar rats weighing approximately 200-250 g were
randomly divided into four experimental groups respectively: ischemia group in which the femoral artery was transected;
phosphate buffer solution group (PBS) in which the femoral artery transected location was immersed with PBS; chitosan
(CHIT) group in which the transected location was immersed in a 50 µL CHIT solution; and mast cell transplanted group in
which the transected location was immersed with a mixture of 50 µL CHIT and 50 µL PBS that contained 1×106 mast cells.
Results On day 14 after surgery, mean numbers of blood vessels of different sizes in the CHIT/mast cell group
significantly increased compared to the other experimental groups (P<0.05).
Conclusion Our data suggest that mast cell reconstitution could offer a new approach for therapeutic angiogenesis in
cases of peripheral arterial diseases.
Collapse
Affiliation(s)
- Ali Karimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rasoul Shahrooz
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Rahim Hobbenaghi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Esmaeil Mortaz
- Massih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
23
|
KIT signaling is dispensable for human mast cell progenitor development. Blood 2017; 130:1785-1794. [PMID: 28790106 DOI: 10.1182/blood-2017-03-773374] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/30/2017] [Indexed: 01/17/2023] Open
Abstract
Human hematopoietic progenitors are generally assumed to require stem cell factor (SCF) and KIT signaling during differentiation for the formation of mast cells. Imatinib treatment, which inhibits KIT signaling, depletes mast cells in vivo. Furthermore, the absence of SCF or imatinib treatment prevents progenitors from developing into mast cells in vitro. However, these observations do not mean that mast cell progenitors require SCF and KIT signaling throughout differentiation. Here, we demonstrate that circulating mast cell progenitors are present in patients undergoing imatinib treatment. In addition, we show that mast cell progenitors from peripheral blood survive, mature, and proliferate without SCF and KIT signaling in vitro. Contrary to the prevailing consensus, our results show that SCF and KIT signaling are dispensable for early mast cell development.
Collapse
|
24
|
Abstract
This review is restricted to neutrophilic granulocytes (granulocytes), monocytes (macrophages), and eosinophils, with only passing reference to cells that are also usually included in the "myeloid" category-megakaryocytes, mast cells, and erythroid cells. Although some dendritic cells are of myeloid origin, they are discussed elsewhere. The validity of the information to be described depends on two assumptions: (a) that in vitro data are applicable to events in vivo and (b) that mouse data reflect events in man. Both assumptions are likely to be broadly correct.
Collapse
|
25
|
Amos TA, Gordon MY. Sources of Human Hematopoietic Stem Cells for Transplantation–A Review. Cell Transplant 2017; 4:547-69. [PMID: 8714777 DOI: 10.1177/096368979500400605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transplantation of hematopoietic stem cells provides a means of replacing a defective hematopoietic system in patients with a wide range of malignant and nonmalignant disorders that affect the blood forming tissue. The same procedure has also allowed dose-escalation of standard chemotherapy and radiotherapy in the treatment of malignant disease of nonhematological origin. Until recently, bone marrow has been the sole source of hematopoietic stem cells, but limitations of conventional bone marrow transplantation have stimulated a search for alternative sources and uses of stem cells. Fetal tissues (especially liver) are a recognized source of transplantable stem cells and offer the great advantage of reduced immunogenicity, potentially removing the problems of tissue type matching. Umbilical cord blood is also a rich source of stem cells and, although it contains alloreactive cells, it is readily available without special ethical constraints. Both fetal tissue and cord blood suffer the disadvantages of limited numbers of stem cells per donation, and there is much interest in the development of technologies for the safe and reliable expansion and/or pooling of stem and progenitor cells. The observation that small numbers of stem cells are found in the peripheral blood of adults has led to the exploitation of the blood as a further source of stem cells. The ability to mobilize these cells from the medullary compartment into the periphery by the use of chemotherapy and/or recombinant hematopoietic growth factors has enabled the collection of sufficient numbers of cells for transplantation purposes. All of these advances are increasing the options and the range of choices available to clinicians and patients in the arena of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- T A Amos
- Leukaemia Research Fund Centre, Institute of Cancer Research, London, UK
| | | |
Collapse
|
26
|
Abstract
Stem cell niches are specialized microenvironments that promote the maintenance of stem cells and regulate their function. Recent advances have improved our understanding of the niches that maintain adult haematopoietic stem cells (HSCs). These advances include new markers for HSCs and niche cells, systematic analyses of the expression patterns of niche factors, genetic tools for functionally identifying niche cells in vivo, and improved imaging techniques. Together, they have shown that HSC niches are perivascular in the bone marrow and spleen. Endothelial cells and mesenchymal stromal cells secrete factors that promote HSC maintenance in these niches, but other cell types also directly or indirectly regulate HSC niches.
Collapse
|
27
|
Differentiation of Mouse Primordial Germ Cells into Functional Oocytes In Vitro. Ann Biomed Eng 2017; 45:1608-1619. [PMID: 28243826 PMCID: PMC5489615 DOI: 10.1007/s10439-017-1815-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/15/2017] [Indexed: 01/01/2023]
Abstract
Various complex molecular events in oogenesis cannot be observed in vivo. As a bioengineering technique for female reproductive tissues, in vitro culture systems for female germ cells have been used to analyze oogenesis and preserve germ cells for over 20 years. Recently, we have established a new methodological approach for the culture of primordial germ cells (PGCs) and successfully obtained offspring. Our PGC culture system will be useful to clarify unresolved mechanisms of fertility and sterility from the beginning of mammalian oogenesis, before meiosis. This review summarizes the history of culture methods for mammalian germ cells, our current in vitro system, and future prospects for the culture of germ cells.
Collapse
|
28
|
Cui L, Wang D, McGillis S, Kyle M, Zhao LR. Repairing the Brain by SCF+G-CSF Treatment at 6 Months Postexperimental Stroke: Mechanistic Determination of the Causal Link Between Neurovascular Regeneration and Motor Functional Recovery. ASN Neuro 2016; 8:8/4/1759091416655010. [PMID: 27511907 PMCID: PMC4984318 DOI: 10.1177/1759091416655010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/19/2016] [Indexed: 02/05/2023] Open
Abstract
Stroke, a leading cause of adult disability in the world, is a severe medical condition with limited treatment. Physical therapy, the only treatment available for stroke rehabilitation, appears to be effective within 6 months post-stroke. Here, we have mechanistically determined the efficacy of combined two hematopoietic growth factors, stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF; SCF + G-CSF), in brain repair 6 months after cortical infarct induction in the transgenic mice carrying yellow fluorescent protein in Layer V pyramidal neurons (Thy1-YFP-H). Using a combination of live brain imaging, whole brain imaging, molecular manipulation, synaptic and vascular assessments, and motor function examination, we found that SCF + G-CSF promoted mushroom spine formation, enlarged postsynaptic membrane size, and increased postsynaptic density-95 accumulation and blood vessel density in the peri-infarct cavity cortex; and that SCF + G-CSF treatment improved motor functional recovery. The SCF + G-CSF-enhanced motor functional recovery was dependent on the synaptic and vascular regeneration in the peri-infarct cavity cortex. These data suggest that a stroke-damaged brain is repairable by SCF + G-CSF even 6 months after the lesion occurs. This study provides novel insights into the development of new restorative strategies for stroke recovery.
Collapse
Affiliation(s)
- Lili Cui
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Dandan Wang
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Sandra McGillis
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
29
|
Hammond WP, Wun T, Kaplan A, Kaplan S, Paglieroni T, Kaushansky K, Foster DC. High Concentrations of Thrombopoietin Activate Platelets In Vitro. Clin Appl Thromb Hemost 2016. [DOI: 10.1177/107602969800400306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thrombopoietin (TPO), the ligand for the proto- oncogene c-mpl, has been cloned and expressed from both human and murine sources. Thrombopoietin increases platelet counts when given in vivo and acts on progenitor cells to in crease their proliferation and maturation into megakaryocytes. The effects of TPO on mature platelets were investigated by evaluating platelet aggregation and platelet activation- dependent antigen expression. Platelet aggregation score, a quantitative representation of aggregation, showed potentiation of response to ADP-induced aggregation but no direct agonist response to TPO alone. Soluble c-mpl blocked the effect of TPO on the platelet aggregation score. Flow cytometry showed that TPO at concentrations >250 U/ml (50 ng/ml) caused a minority population of platelets to express the activation mark ers CD62, CD63 and activated glycoprotein IIb/IIIa. While stem cell factor and interleukins-3 and -6 did not affect platelet activation antigen expression, interleukin-11 increased CD62 expression on platelets in vitro. The effects of TPO on antigenic expression and aggregability were partially inhibited in vitro by preincubation with aspirin. We conclude that high concentra tions of TPO promote platelet activation antigen expression on a proportion of platelets and potentiate platelet aggregability to ADP in vitro by a process that is partially inhibited by aspirin.
Collapse
Affiliation(s)
- William P. Hammond
- Departments of Chemistry/Hematology and Molecular Biology and Division of Applied Mathematics and Engineering, The Hope Heart Institute, Providence Seattle Medical Center, Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle
| | - Theodore Wun
- Sacramento Medical Foundation Center for Blood Research, the University of California, Davis Cancer Center, Sacramento, California
| | - Alexander Kaplan
- Departments of Chemistry/Hematology and Molecular Biology and Division of Applied Mathematics and Engineering, The Hope Heart Institute, Providence Seattle Medical Center
| | - Svetlana Kaplan
- Departments of Chemistry/Hematology and Molecular Biology and Division of Applied Mathematics and Engineering, The Hope Heart Institute, Providence Seattle Medical Center
| | - Teresa Paglieroni
- Sacramento Medical Foundation Center for Blood Research, the University of California, Davis Cancer Center, Sacramento, California
| | - Kenneth Kaushansky
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle
| | | |
Collapse
|
30
|
Jones CLR, Grahn RA, Chien MB, Lyons LA, London CA. Detection of c-kit Mutations in Canine Mast Cell Tumors using Fluorescent Polyacrylamide Gel Electrophoresis. J Vet Diagn Invest 2016; 16:95-100. [PMID: 15053358 DOI: 10.1177/104063870401600201] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mutations consisting of internal tandem duplications (ITDs) in exons 11 and 12 of the proto-oncogene c- kit are found in 30–50% of malignant canine mast cell tumors (MCTs). Traditionally, identification of such mutations in tumor specimens has been undertaken using standard polymerase chain reaction (PCR) and agarose gel electrophoresis. This procedure is limited to the detection of insertions and deletions larger than 9 base pairs in size. The purpose of this study was to compare the efficiency and accuracy of standard agarose gel electrophoresis with fluorescent polyacrylamide gel electrophoresis (PAGE) for the detection of ITDs in canine MCTs. The results of this study demonstrate that PAGE of labeled PCR products accurately predicts the size of the ITD in each tumor. In addition, other small insertions and deletions were not identified, suggesting that if they occur in canine MCTs, they do so infrequently. Because fluorescent and polyacrylamide formats are automated and have better resolution than agarose gels, fluorescent PAGE provides a more accurate, economical, and higher throughput method for the detection of c- kit mutations in canine MCTs.
Collapse
Affiliation(s)
- Cameron L R Jones
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
31
|
Miyahara D, Oishi I, Makino R, Kurumisawa N, Nakaya R, Ono T, Kagami H, Tagami T. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2. J Reprod Dev 2015; 62:143-9. [PMID: 26727404 PMCID: PMC4848571 DOI: 10.1262/jrd.2015-128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An in vitro culture system of chicken primordial germ cells (PGCs) has been recently
developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present
study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro
proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that
stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL).
Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2),
and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate
of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on
chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of
chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However,
the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2
would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to
recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs
by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%.
The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining
germline competency in vitro in cooperation with FGF2.
Collapse
Affiliation(s)
- Daichi Miyahara
- Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ueda T, Akuta T, Kikuchi-Ueda T, Imaizumi K, Ono Y. Improving the soluble expression and purification of recombinant human stem cell factor (SCF) in endotoxin-free Escherichia coli by disulfide shuffling with persulfide. Protein Expr Purif 2015; 120:99-105. [PMID: 26724416 DOI: 10.1016/j.pep.2015.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022]
Abstract
We here present a new method for the expression and purification of recombinant human stem cell factor (rhSCF(164)) in endotoxin-free ClearColi(®) BL21(DE3) cells harboring codon-optimized Profinity eXact™-tagged hSCF cDNA. Previously, we demonstrated that co-expression with thioredoxin increased the solubility of rhSCF in Escherichia coli BL21(DE3), and addition of l-arginine enhanced chromatography performance by removing the endotoxin-masked surface of rhSCF. Initially, we tried to express rhSCF in an endotoxin-free strain using a thioredoxin co-expression system, which resulted in significantly lower expression, possibly due to the stress imposed by overexpressed thioredoxin or antibiotics susceptibility. Therefore, we developed a new expression system without thioredoxin. External redox coupling was tested using persulfides such as glutathione persulfide or cysteine persulfide for the in vivo-folding of hSCF in the cytoplasm. Persulfides improved the protein solubility by accelerating disulfide-exchange reactions for incorrectdisulfides during folding in E. coli. Furthermore, the persulfides enhanced the expression level, likely due to upregulation of the enzymatic activity of T7 RNA polymerase. The recombinant protein was purified via affinity chromatography followed by cleavage with sodium fluoride, resulting in complete proteolytic removal of the N-terminal tag. The endotoxin-free fusion protein from ClearColi(®) BL21(DE3) could bind to the resin in the standard protocol using sodium phosphate (pH 7.2). Furthermore, purified rhSCF enhanced the proliferation and maturation of the human mast cell line LAD2. Thus, we conclude that use of the protein expression system employing E. coli by disulfide shuffling with persulfide addition could be a very useful method for efficient protein production.
Collapse
Affiliation(s)
- Takafumi Ueda
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Teruo Akuta
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; Kyokuto Pharmaceutical Industrial Co. Ltd., 7-8, Nihonbashi Kobunacho, Chuo-ku, Tokyo 103-0024, Japan.
| | - Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Keitaro Imaizumi
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; Kyokuto Pharmaceutical Industrial Co. Ltd., 7-8, Nihonbashi Kobunacho, Chuo-ku, Tokyo 103-0024, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
33
|
Shen B, Jiang W, Fan J, Dai W, Ding X, Jiang Y. Residues 39-56 of Stem Cell Factor Protein Sequence Are Capable of Stimulating the Expansion of Cord Blood CD34+ Cells. PLoS One 2015; 10:e0141485. [PMID: 26505626 PMCID: PMC4624785 DOI: 10.1371/journal.pone.0141485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/08/2015] [Indexed: 01/07/2023] Open
Abstract
Background Stem cell factor (SCF) can stimulate hematopoietic stem cell (HSC) expansion; however, the specific structural region(s) of SCF protein that are critical for this function are still unknown. A novel monoclonal antibody (named 23C8) against recombinant human SCF (rhSCF) was previously found to inhibit the ability of rhSCF to enhance HSC expansion, making it possible to identify the relevant active region to HSC. Methods Eleven polypeptides were synthesized, which were designed to cover the full-length of rhSCF, with overlaps that are at least 3 amino acids long. ELISA was used to identify the polypeptide(s) that specifically react with the anti-SCF. The effects of the synthetic polypeptides on human HSC expansion, or on the ability of the full-length rhSCF to stimulate cell proliferation, were evaluated ex vivo. Total cell number was monitored using hemocytometer whereas CD34+ cell number was calculated based on the proportion determined via flow cytometry on day 6 of culture. Results Of all polypeptides analyzed, only one, named P0, corresponding to the SCF protein sequence at residues 39–56, was recognized by 23C8 mAb during ELISA. P0 stimulated the expansion of CD34+ cells derived from human umbilical cord blood (UCB). Addition of P0 increased the numbers of total mononucleated cells and CD34+ cells, by ~2 fold on day 6. P0 also showed partial competition against full-length rhSCF in the ex vivo cell expansion assay. Conclusion Residues 39–56 of rhSCF comprise a critical functional region for its ability to enhance expansion of human UCB CD34+ cells. The peptide P0 is a potential candidate for further development as a synthetic substitute for rhSCF in laboratory and clinical applications.
Collapse
Affiliation(s)
- Bin Shen
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | | | - Jie Fan
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Wei Dai
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, United States of America
| | - Xinxin Ding
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York, United States of America
- * E-mail: (YJ); (XD)
| | - Yongping Jiang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- * E-mail: (YJ); (XD)
| |
Collapse
|
34
|
Xie J, Zhang C. Ex vivo expansion of hematopoietic stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:839-53. [PMID: 26246379 DOI: 10.1007/s11427-015-4895-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023]
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.
Collapse
Affiliation(s)
- JingJing Xie
- Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, 264003, China
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ChengCheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| |
Collapse
|
35
|
Liu XY, Gonzalez-Toledo ME, Fagan A, Duan WM, Liu Y, Zhang S, Li B, Piao CS, Nelson L, Zhao LR. Stem cell factor and granulocyte colony-stimulating factor exhibit therapeutic effects in a mouse model of CADASIL. Neurobiol Dis 2015; 73:189-203. [DOI: 10.1016/j.nbd.2014.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/27/2014] [Accepted: 09/12/2014] [Indexed: 11/28/2022] Open
|
36
|
Expression of bioactive soluble human stem cell factor (SCF) from recombinant Escherichia coli by coproduction of thioredoxin and efficient purification using arginine in affinity chromatography. Protein Expr Purif 2014; 105:1-7. [PMID: 25286400 DOI: 10.1016/j.pep.2014.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 11/20/2022]
Abstract
Stem cell factor (SCF) known as the c-kit ligand is a two disulfide bridge-containing cytokine in the regulation of the development and function of hematopoietic cell lineages and other cells such as mast cells, germ cells, and melanocytes. The secreted soluble form of SCF exists as noncovalently associated homodimer and exerts its activity by signaling through the c-Kit receptor. In this report, we present the high level expression of a soluble recombinant human SCF (rhSCF) in Escherichia coli. A codon-optimized Profinity eXact™-tagged hSCF cDNA was cloned into pET3b vector, and transformed into E. coli BL21(DE3) harboring a bacterial thioredoxin coexpression vector. The recombinant protein was purified via an affinity chromatography processed by cleavage with sodium fluoride, resulting in the complete proteolytic removal the N-terminal tag. Although almost none of the soluble fusion protein bound to the resin in standard protocol using 0.1M sodium phosphate buffer (pH 7.2), the use of binding buffer containing 0.5M l-arginine for protein stabilization dramatically enhanced binding to resin and recovery of the protein beyond expectation. Also pretreatment by Triton X-114 for removing endotoxin was effective for affinity chromatography. In chromatography performance, l-arginine was more effective than Triton X-114 treatment. Following Mono Q anion exchange chromatography, the target protein was isolated in high purity. The rhSCF protein specifically enhanced the viability of human myeloid leukemia cell line TF-1 and the proliferation and maturation of human mast cell line LAD2 cell. This novel protocol for the production of rhSCF is a simple, suitable, and efficient method.
Collapse
|
37
|
Zhao LR, Piao CS, Murikinati SR, Gonzalez-Toledo ME. The role of stem cell factor and granulocyte-colony stimulating factor in treatment of stroke. ACTA ACUST UNITED AC 2014; 8:2-12. [PMID: 23173646 DOI: 10.2174/1574889811308010002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 11/22/2022]
Abstract
Stroke is a serious cerebrovascular disease that causes high mortality and persistent disability in adults worldwide. Stroke is also an enormous public health problem and a heavy public financial burden in the United States. Treatment for stroke is very limited. Thrombolytic therapy by tissue plasminogen activator (tPA) is the only approved treatment for acute stroke, and no effective treatment is available for chronic stroke. Developing new therapeutic strategies, therefore, is a critical need for stroke treatment. This article summarizes the discovery of new routes of treatment for acute and chronic stroke using two hematopoietic growth factors, stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF). In a study of acute stroke, SCF and G-CSF alone or in combination displays neuroprotective effects in an animal model of stroke. SCF appears to be the optimal treatment for acute stroke as the functional outcome is superior to G-CSF alone or in combination (SCF+G-CSF); however, SCF+G-CSF does show better functional recovery than G-CSF. In a chronic stroke study, the therapeutic effects of SCF and G-CSF alone or in combination appear differently as compared with their effects on the acute stroke. SCF+G-CSF induces stable and long-lasting functional improvement; SCF alone also improves functional outcome but its effectiveness is less than SCF+G-CSF, whereas G-CSF shows no therapeutic effects. Although the mechanism by which SCF+G-CSF repairs the brain in chronic stroke remains poorly understood, our recent findings suggest that the SCF+G-CSF-induced functional improvement in chronic stroke is associated with a contribution to increasing angiogenesis and neurogenesis through bone marrow-derived cells and the direct effects on stimulating neurons to form new neuronal networks. These findings would assist in developing new treatment for stroke. The article presents some promising patents on role of stem cell factor and granulocyte-colony stimulating factor in treatment of stroke.
Collapse
Affiliation(s)
- Li R Zhao
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, Louisiana 71130, USA.
| | | | | | | |
Collapse
|
38
|
Wang X, Ren H, Zhao T, Chen J, Sun W, Sun Y, Ma W, Wang J, Gao C, Gao S, Lang M, Jia L, Hao J. Stem cell factor is a novel independent prognostic biomarker for hepatocellular carcinoma after curative resection. Carcinogenesis 2014; 35:2283-90. [PMID: 25086759 DOI: 10.1093/carcin/bgu162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stem cell factor (SCF), a ligand of c-kit, is a hematopoietic growth factor. Uncontrolled activity of SCF/c-kit signaling pathway contributes to the formation of a variety of human malignancies. In this study, we determined whether SCF expression could risk-stratify patients with hepatocellular carcinoma (HCC) after curative resection. HCC tissues from 160 patients were collected during curative resection and stained with SCF and CD34, a marker for microvessel density (MVD), using immunohistochemistry. Two statistical analyses were performed: an independent continuous and a multivariate categorical analysis, with test/validation set-defined cut points, and Kaplan-Meier estimated outcome measures of overall survival (OS) and relapse-free survival (RFS). We found that higher levels of SCF confer worse OS (continuous P = 0.014; and categorical P = 0.009), and RFS (continuous P = 0.002; categorical P = 0.003) of patients with HCC. SCF varies independently from MVD-CD34, tumor node metastasis, histologic grade, age and gender, and retains prognostic significance when analysed as a categorical variable in a multivariate analysis . We confirmed that MVD-CD34 is also an independent prognostic marker for patients with HCC. The levels of SCF and CD34 showed a positive and significant correlation (P < 0.0001) and double low expression confers superior OS (median = 48 months) and RFS (median = 24 months), whereas double high expression confers shortest RFS (median = 10.5 months) compared with single measurements. The prognostic values of SCF and CD34 were independently determined in this study and we propose that both of them are independent prognostic markers for HCC.
Collapse
Affiliation(s)
- Xiuchao Wang
- Department of Abdominal Oncology and Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - He Ren
- Department of Abdominal Oncology and Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Tiansuo Zhao
- Department of Abdominal Oncology and Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jing Chen
- Department of Abdominal Oncology and Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wei Sun
- Department of Abdominal Oncology and Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Yan Sun
- Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and
| | - Weidong Ma
- Department of Abdominal Oncology and Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jian Wang
- Department of Abdominal Oncology and Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Chuntao Gao
- Department of Abdominal Oncology and Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Song Gao
- Department of Abdominal Oncology and Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mingxiao Lang
- Department of Abdominal Oncology and Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Li Jia
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jihui Hao
- Department of Abdominal Oncology and Department of Pathology, National Clinical Research Center for Cancer, Key Lab of Cancer Treatment and Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China and Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
39
|
Borriello F, Granata F, Varricchi G, Genovese A, Triggiani M, Marone G. Immunopharmacological modulation of mast cells. Curr Opin Pharmacol 2014; 17:45-57. [PMID: 25063971 DOI: 10.1016/j.coph.2014.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
Mast cells produce a wide spectrum of mediators and they have been implicated in several physiopathological conditions (e.g. allergic reactions and certain tumors). Pharmacologic agents that modulate the release of mediators from mast cells has helped to elucidate the biochemical mechanisms by which immunological and non-immunological stimuli activate these cells. Furthermore, the study of surface receptors and signaling pathways associated with mast cell activation revealed novel pharmacologic targets. Thus, the development of pharmacologic agents based on this new wave of knowledge holds promise for the treatment of several mast cell-mediated disorders.
Collapse
Affiliation(s)
- Francesco Borriello
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Arturo Genovese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, School of Medicine, Salerno, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
40
|
Jeong Y, Choi J, Lee KH. Technology advancement for integrative stem cell analyses. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:669-82. [PMID: 24874188 DOI: 10.1089/ten.teb.2014.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.
Collapse
Affiliation(s)
- Yoon Jeong
- 1 BK21+ Department of BioNano Technology, Hanyang University , Seoul Campus, Seoul, Republic of Korea
| | | | | |
Collapse
|
41
|
Avula MN, Rao AN, McGill LD, Grainger DW, Solzbacher F. Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kit(w-Sh) murine model. Acta Biomater 2014; 10:1856-63. [PMID: 24406200 DOI: 10.1016/j.actbio.2013.12.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/11/2013] [Accepted: 12/26/2013] [Indexed: 12/17/2022]
Abstract
Mast cells (MCs)_are recognized for their functional role in wound-healing and allergic and inflammatory responses - host responses that are frequently detrimental to implanted biomaterials if extended beyond acute reactivity. These tissue reactions impact especially on the performance of sensing implants such as continuous glucose monitoring (CGM) devices. Our hypothesis that effective blockade of MC activity around implants could alter the host foreign body response (FBR) and enhance the in vivo lifetime of these implantable devices motivated this study. Stem cell factor and its ligand c-KIT receptor are critically important for MC survival, differentiation and degranulation. Therefore, an MC-deficient sash mouse model was used to assess MC relationships to the in vivo performance of CGM implants. Additionally, local delivery of a tyrosine kinase inhibitor (TKI) that inhibits c-KIT activity was also used to evaluate the role of MCs in modulating the FBR. Model sensor implants comprising polyester fibers coated with a rapidly dissolving polymer coating containing drug-releasing degradable microspheres were implanted subcutaneously in sash mice for various time points, and the FBR was evaluated for chronic inflammation and fibrous capsule formation around the implants. No significant differences were observed in the foreign body capsule formation between control and drug-releasing implant groups in MC-deficient mice. However, fibrous encapsulation was significantly greater around the drug-releasing implants in sash mice compared to drug-releasing implants in wild-type (e.g. MC-competent) mice. These results provide insights into the role of MCs in the FBR, suggesting that MC deficiency provides alternative pathways for host inflammatory responses to implanted biomaterials.
Collapse
Affiliation(s)
- M N Avula
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - A N Rao
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - L D McGill
- Associated Regional and University Pathologist Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - D W Grainger
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | - F Solzbacher
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
42
|
Leitch HG, Tang WWC, Surani MA. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr Top Dev Biol 2014; 104:149-87. [PMID: 23587241 DOI: 10.1016/b978-0-12-416027-9.00005-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of the gametes and represent the founder cells of the germline. Specification of PGCs is a critical divergent point during embryogenesis. Whereas the somatic lineages will ultimately perish, cells of the germline have the potential to form a new individual and hence progress to the next generation. It is therefore critical that the genome emerges intact and carrying the appropriate epigenetic information during its passage through the germline. To ensure this fidelity of transmission, PGC development encompasses extensive epigenetic reprogramming. The low cell numbers and relative inaccessibility of PGCs present a challenge to those seeking mechanistic understanding of the crucial developmental and epigenetic processes in this most fascinating of lineages. Here, we present an overview of PGC development in the mouse and compare this with the limited information available for other mammalian species. We believe that a comparative approach will be increasingly important to uncover the extent to which mechanisms are conserved and reveal the critical steps during PGC development in humans.
Collapse
Affiliation(s)
- Harry G Leitch
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
43
|
A role for c-Kit in the maintenance of undifferentiated human mesenchymal stromal cells. Biomaterials 2014; 35:3618-26. [PMID: 24462355 DOI: 10.1016/j.biomaterials.2014.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/10/2014] [Indexed: 12/19/2022]
Abstract
The multipotency of human mesenchymal stromal cells (hMSCs) and the feasibility of deriving these cells from periodontal ligament hold promise for stem cell-based tissue engineering. However, the regulation of adult hMSCs activity is not well understood. The present study investigated the c-Kit surface receptor and downstream gene expression in hMSCs. The c-Kit-positive population showed increased colony-forming ability rather than differentiation potential. The knockdown of c-Kit and/or stem cell factor (SCF) genes enhanced alkaline phosphatase activity and also upregulated osteoblast- and adipocyte-specific genes, including osteocalcin, runt-related transcription factor 2, osteopontin, peroxisome proliferator-activated receptor-γ, and lipoprotein lipase. Stimulation with growth factors, including fibroblast growth factor-2, transforming growth factor-β1, and enamel matrix derivative significantly suppressed the mRNA expression of c-Kit. These results support an emerging understanding of the roles of the c-Kit/SCF signal in maintaining the undifferentiated stage of hMSCs by inhibiting the expression of lineage-specific genes in hMSCs and regulating the effect of growth factors on the proliferation and differentiation of hMSCs. The modulation of c-Kit/SCF signaling might contribute to future regenerative approaches in controlling both the stemness and differentiation properties of hMSCs.
Collapse
|
44
|
Culture Conditions for Maintain Propagation, Long-term Survival and Germline Transmission of Chicken Primordial Germ Cell-Like Cells. J Poult Sci 2014. [DOI: 10.2141/jpsa.0130077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Liu XY, Gonzalez-Toledo ME, Fagan A, Duan WM, Liu Y, Zhang S, Li B, Piao CS, Nelson L, Zhao LR. Novel pathological features and potential therapeutic approaches for CADASIL: insights obtained from a mouse model of CADASIL. THERAPEUTIC TARGETS FOR NEUROLOGICAL DISEASES 2014; 1. [PMID: 30090853 DOI: 10.14800/ttnd.434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common condition of hereditary stroke and vascular dementia. CADASIL is caused by Notch3 mutation, leading to progressive degeneration of vascular smooth muscle cells (vSMCs) of the small arteries in the brain. However, the pathogenesis of CADASIL remains largely unknown, and treatment that can stop or delay the progression of CADASIL is not yet available. Using both wild type mice and transgenic mice carrying the human mutant Notch3 gene (CADASIL mice), we have recently characterized the pathological features of CADASIL and determined the therapeutic efficacy of two hematopoietic growth factors, stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) in CADASIL. Our findings have revealed novel pathological changes in the endothelium of cerebral capillaries and in the neural stem cells (NSCs). We have also observed the impairment of cognitive function in CADASIL mice. Moreover, SCF+G-CSF treatment improves cognitive function, inhibits Notch3 mutation-induced vSMC degeneration, cerebral blood bed reduction, cerebral capillary damage, and NSC loss, and increases neurogenesis and angiogenesis. Here we compile an overview of our recently published studies, which provide new insights into understanding the pathogenesis of CADASIL and developing therapeutic strategies for this devastating neurological disease.
Collapse
Affiliation(s)
- Xiao-Yun Liu
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Maria E Gonzalez-Toledo
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Austin Fagan
- Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Wei-Ming Duan
- Department of Anatomy, Capital Medical University, Beijing 100069, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Yanying Liu
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, New York, 13210, USA
| | - Siyuan Zhang
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Bin Li
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Chun-Shu Piao
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Lila Nelson
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA
| | - Li-Ru Zhao
- Departments of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA.,Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, USA.,Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, New York, 13210, USA.,Department of Neurobiology, Capital Medical University, Beijing 100069, China, Beijing 100069, China
| |
Collapse
|
46
|
Farhadi B, Shekari Khaniani M, Mansoori Derakhshan S. Construction of pPIC9 Recombinant Vector Containing Human Stem Cell Factor. Adv Pharm Bull 2013; 3:303-8. [PMID: 24312852 DOI: 10.5681/apb.2013.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Various cytokine regulates hematopoesis; they promote number of stages in stem cells biology such as proliferation, differentiation and endurance. Biological effects of SCF, as a hematopoietic cytokine; is triggered by binding to its ligand c-kit. Potential therapeutic applications of SCF include hematopoietic stem cell mobilization, exvivo stem/progenitor cell expansion, gene therapy, and immunotherapy. In this study we tried to construct of pPIC9 recombinant vector containing human SCF. METHODS hSCF cDNA was amplified by PCR and both hSCF cDNA and pPIC9 as yeast expression vector (shuttle vector) digested by EcoR I and Xho I restriction enzymes. Subsequent the digestion reaction, ligation reaction was carried out. In order to verifying of pPIC9 recombinant vector containing hSCF, PCR and sequence analysis was performed. RESULTS The construction of recombinant expression vector of pPIC9 containing hSCF cDNA was confirmed by sequencing method successfully. CONCLUSION rhSCF/pPIC9 vector can be transformed into the Picha pastoris yeast as a eukaryotic host in order to produce human SCF at industrial scale.
Collapse
Affiliation(s)
- Behrooz Farhadi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences Tabriz, Iran
| | | | | |
Collapse
|
47
|
Su Y, Cui L, Piao C, Li B, Zhao LR. The effects of hematopoietic growth factors on neurite outgrowth. PLoS One 2013; 8:e75562. [PMID: 24116056 PMCID: PMC3792965 DOI: 10.1371/journal.pone.0075562] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/14/2013] [Indexed: 01/06/2023] Open
Abstract
Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are initially discovered as the essential hematopoietic growth factors regulating bone marrow stem cell proliferation and differentiation, and SCF in combination with G-CSF (SCF+G-CSF) has synergistic effects on bone marrow stem cell mobilization. In this study we have determined the effect of SCF and G-CSF on neurite outgrowth in rat cortical neurons. Using molecular and cellular biology and live cell imaging approaches, we have revealed that receptors for SCF and G-CSF are expressed on the growth core of cortical neurons, and that SCF+G-CSF synergistically enhances neurite extension through PI3K/AKT and NFκB signaling pathways. Moreover, SCF+G-CSF induces much greater NFκB activation, NFκB transcriptional binding and brain-derived neurotrophic factor (BDNF) production than SCF or G-CSF alone. In addition, we have also observed that BDNF, the target gene of NFκB, is required for SCF+G-CSF-induced neurite outgrowth. These data suggest that SCF+G-CSF has synergistic effects to promote neurite growth. This study provides new insights into the contribution of hematopoietic growth factors in neuronal plasticity.
Collapse
Affiliation(s)
- Ye Su
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Lili Cui
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Chunshu Piao
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Bin Li
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Li-Ru Zhao
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
48
|
Musiychuk K, Sivalenka R, Jaje J, Bi H, Flores R, Shaw B, Jones RM, Golovina T, Schnipper J, Khandker L, Sun R, Li C, Kang L, Voskinarian-Berse V, Zhang X, Streatfield S, Hambor J, Abbot S, Yusibov V. Plant-produced human recombinant erythropoietic growth factors support erythroid differentiation in vitro. Stem Cells Dev 2013; 22:2326-40. [PMID: 23517237 PMCID: PMC3730378 DOI: 10.1089/scd.2012.0489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 03/21/2013] [Indexed: 01/11/2023] Open
Abstract
Clinically available red blood cells (RBCs) for transfusions are at high demand, but in vitro generation of RBCs from hematopoietic stem cells requires significant quantities of growth factors. Here, we describe the production of four human growth factors: erythropoietin (EPO), stem cell factor (SCF), interleukin 3 (IL-3), and insulin-like growth factor-1 (IGF-1), either as non-fused proteins or as fusions with a carrier molecule (lichenase), in plants, using a Tobacco mosaic virus vector-based transient expression system. All growth factors were purified and their identity was confirmed by western blotting and peptide mapping. The potency of these plant-produced cytokines was assessed using TF1 cell (responsive to EPO, IL-3 and SCF) or MCF-7 cell (responsive to IGF-1) proliferation assays. The biological activity estimated here for the cytokines produced in plants was slightly lower or within the range cited in commercial sources and published literature. By comparing EC50 values of plant-produced cytokines with standards, we have demonstrated that all four plant-produced growth factors stimulated the expansion of umbilical cord blood-derived CD34+ cells and their differentiation toward erythropoietic precursors with the same potency as commercially available growth factors. To the best of our knowledge, this is the first report on the generation of all key bioactive cytokines required for the erythroid development in a cost-effective manner using a plant-based expression system.
Collapse
Affiliation(s)
| | | | - Jennifer Jaje
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Hong Bi
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Rosemary Flores
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Brenden Shaw
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Tatiana Golovina
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | | | - Ruiqiang Sun
- Celgene Cellular Therapeutics, Warren, New Jersey
| | - Chang Li
- Celgene Cellular Therapeutics, Warren, New Jersey
| | - Lin Kang
- Celgene Cellular Therapeutics, Warren, New Jersey
| | | | | | | | - John Hambor
- Celgene Cellular Therapeutics, Warren, New Jersey
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| |
Collapse
|
49
|
Concordant mast cell and basophil production by individual hematopoietic blast colony-forming cells. Proc Natl Acad Sci U S A 2013; 110:9031-5. [PMID: 23671076 DOI: 10.1073/pnas.1307711110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previous studies have shown that mouse bone marrow cells can produce mast cells when stimulated in vitro by stem cell factor (SCF) and interleukin-3 (IL-3). Experiments to define the marrow cells able to generate mast cells showed that the most active subpopulations were the Kit(+) Sca1(-) progenitor cell fraction and the more ancestral Kit(+) Sca1(+) blast colony-forming cell fraction. In clonal cultures, up to 64% of blast colony-forming cells were able to generate mast cells when stimulated by SCF and IL-3, and, of these, the most active were those in the CD34(-) Flt3R(-) long-term repopulating cell fraction. Basophils, identified by the monoclonal antibody mMCP-8 to mouse mast cell serine protease-8, were also produced by 50% of blast colony-forming cells with a strong concordance in the production of both cell types by individual blast colony-forming cells. Enriched populations of marrow-derived basophils were shown to generate variable numbers of mast cells after a further incubation with SCF and IL-3. The data extend the repertoire of lineage-committed cells able to be produced by multipotential hematopoietic blast colony-forming cells and show that basophils and mast cells can have common ancestral cells and that basophils can probably generate mast cells at least under defined in vitro conditions.
Collapse
|
50
|
Piao CS, Gonzalez-Toledo ME, Gu X, Zhao LR. The combination of stem cell factor and granulocyte-colony stimulating factor for chronic stroke treatment in aged animals. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2012; 4:25. [PMID: 23254113 PMCID: PMC3552930 DOI: 10.1186/2040-7378-4-25] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/30/2012] [Indexed: 11/29/2022]
Abstract
Background Stroke occurs more frequently in the elderly population and presents the number one leading cause of persistent disability worldwide. Lack of effective treatment to enhance brain repair and improve functional restoration in chronic stroke, the recovery phase of stroke, is a challenging medical problem to be solved in stroke research. Our early study has revealed the therapeutic effects of stem cell factor (SCF) in combination with granulocyte-colony stimulating factor (G-CSF) (SCF+G-CSF) on chronic stroke in young animals. However, whether this treatment is effective and safe to the aged population remains to be determined. Methods Cortical brain ischemia was produced in aged C57BL mice or aged spontaneously hypertensive rats. SCF+G-CSF or equal volume of vehicle solution was subcutaneously injected for 7 days beginning at 3–4 months after induction of cortical brain ischemia. Using the approaches of biochemistry assays, flow cytometry, pathology, and evaluation of functional outcome, several doses of SCF+G-CSF have been examined for their safety and efficiency on chronic stroke in aged animals. Results All tested doses did not show acute or chronic toxicity in the aged animals. Additionally, SCF+G-CSF treatment in chronic stroke of aged animals mobilized bone marrow stem cells and improved functional outcome in a dose-dependent manner. Conclusions SCF+G-CSF treatment is a safe and effective approach to chronic stroke in the aged condition. This study provides important information needed for developing a new therapeutic strategy to improve the health of older adults with chronic stroke.
Collapse
Affiliation(s)
- Chun-Shu Piao
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| | | | | | | |
Collapse
|