1
|
Tan K, Chen Y, Ma K, Wang Q, Liu X, Wang F. Spatiotemporally Tracking the Programmable Mitochondrial Membrane Potential Evolutions by a Robust Molecular Rotor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903266. [PMID: 31389181 DOI: 10.1002/smll.201903266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 05/26/2023]
Abstract
Mitochondrial membrane potential (MMP) represents an essential parameter of cellular activities, and even a minute MMP variation could significantly affect the biological functions of living organisms. Thus, convenient and accurate MMP detection is highly desirable since conventional MMP probes are always constrained by photobleaching, inconvenience, and irreversibility. Herein, a spatial-dependent fluorescent molecular rotor Mito-Cy is introduced for efficiently tracking the varied MMP status through its restricted intramolecular rotation in mitochondria and nucleus compartments. Based on a systematic investigation, the specifically lit up fluorescent Mito-Cy enables us to explore different MMP situations by determining their varied distributions. Accordingly, Mito-Cy concentrates in mitochondria under normal MMP status. Yet Mito-Cy starts to migrate gradually from mitochondria to the nucleus in decreasing MMP status, as represented by the increasing distribution levels of fluorescent Mito-Cy in the nucleus. Mito-Cy exclusively accumulates in the nucleus at ultimate vanishing MMP status. The facile operation of Mito-Cy, together with its high photostability and sensitivity, facilitates the monitoring of the reversible and programmable MMP evolutions in living cells. The Mito-Cy-involved logic control over MMP, e.g., AND and OR gates, indicates that the robust and versatile Mito-Cy holds great potential for illuminating mitochondrial viscosity-related bioprocesses.
Collapse
Affiliation(s)
- Kaiyue Tan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430000, P. R. China
| | - Yingying Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430000, P. R. China
| | - Kang Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430000, P. R. China
| | - Qing Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430000, P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430000, P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430000, P. R. China
| |
Collapse
|
2
|
Intracellular delivery of colloids: Past and future contributions from microinjection. Adv Drug Deliv Rev 2018; 132:3-15. [PMID: 29935217 DOI: 10.1016/j.addr.2018.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/06/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023]
Abstract
The manipulation of single cells and whole tissues has been possible since the early 70's, when semi-automatic injectors were developed. Since then, microinjection has been used to introduce an ever-expanding range of colloids of up to 1000 nm in size into living cells. Besides injecting nucleic acids to study transfection mechanisms, numerous cellular pathways have been unraveled through the introduction of recombinant proteins and blocking antibodies. The injection of nanoparticles has also become popular in recent years to investigate toxicity mechanisms and intracellular transport, and to conceive semi-synthetic cells containing artificial organelles. This article reviews colloidal systems such as proteins, nucleic acids and nanoparticles that have been injected into cells for different research aims, and discusses the scientific advances achieved through them. The colloids' intracellular processing and ultimate fate are also examined from a drug delivery perspective with an emphasis on the differences observed for endocytosed versus microinjected material.
Collapse
|
3
|
Shibata A, Machida J, Yamaguchi S, Kimura M, Tatematsu T, Miyachi H, Nakayama A, Shimozato K, Tokita Y. Identification of nuclear localization signals in the human homeoprotein MSX1. Biochem Cell Biol 2017; 96:483-489. [PMID: 29156143 DOI: 10.1139/bcb-2017-0263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MSX1 is one of the homeoproteins with the homeodomain (HD) sequence, which regulates proliferation and differentiation of mesenchymal cells. In this study, we investigated the nuclear localization signal (NLS) in the MSX1 HD by deletion and amino acid substitution analyses. The web-based tool NLStradamus predicted 2 putative basic motifs in the N- and C-termini of the MSX1 HD. Green fluorescent protein (GFP) chimera studies revealed that NLS1 (161RKHKTNRKPR170) and NLS2 (216NRRAKAKR223) were independently insufficient for robust nuclear localization. However, they can work cooperatively to promote nuclear localization of MSX1, as was shown by the 2 tandem NLS motifs partially restoring functional NLS, leading to a significant nuclear accumulation of the GFP chimera. These results demonstrate a unique NLS motif in MSX1, which consists of an essential single core motif in helix-I, with weak potency, and an auxiliary subdomain in helix-III, which alone does not have nuclear localization potency. Additionally, other peptide sequences, other than predicted 2 motifs in the spacer, may be necessary for complete nuclear localization in MSX1 HD.
Collapse
Affiliation(s)
- Akio Shibata
- a Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.,b Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Junichiro Machida
- a Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.,c Department of Oral and Maxillofacial Surgery, Toyota Memorial Hospital, Toyota, Japan
| | - Seishi Yamaguchi
- a Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.,d Department of Dentistry and Oral Surgery, Aichi Children's Health and Medical Center, Obu, Japan
| | - Masashi Kimura
- a Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.,e Department of Oral and Maxillofacial Surgery, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tadashi Tatematsu
- a Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.,b Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hitoshi Miyachi
- a Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Atsuo Nakayama
- f Department of Embryology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Kazuo Shimozato
- a Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Yoshihito Tokita
- b Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| |
Collapse
|
4
|
Witten J, Ribbeck K. The particle in the spider's web: transport through biological hydrogels. NANOSCALE 2017; 9:8080-8095. [PMID: 28580973 PMCID: PMC5841163 DOI: 10.1039/c6nr09736g] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biological hydrogels such as mucus, extracellular matrix, biofilms, and the nuclear pore have diverse functions and compositions, but all act as selectively permeable barriers to the diffusion of particles. Each barrier has a crosslinked polymeric mesh that blocks penetration of large particles such as pathogens, nanotherapeutics, or macromolecules. These polymeric meshes also employ interactive filtering, in which affinity between solutes and the gel matrix controls permeability. Interactive filtering affects the transport of particles of all sizes including peptides, antibiotics, and nanoparticles and in many cases this filtering can be described in terms of the effects of charge and hydrophobicity. The concepts described in this review can guide strategies to exploit or overcome gel barriers, particularly for applications in diagnostics, pharmacology, biomaterials, and drug delivery.
Collapse
Affiliation(s)
- Jacob Witten
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
5
|
Grayton JE, Miller T, Wilson-Robles H. In vitro evaluation of Selective Inhibitors of Nuclear Export (SINE) drugs KPT-185 and KPT-335 against canine mammary carcinoma and transitional cell carcinoma tumor initiating cells. Vet Comp Oncol 2017; 15:1455-1467. [PMID: 28133930 DOI: 10.1111/vco.12289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Affiliation(s)
- J E Grayton
- Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - T Miller
- Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - H Wilson-Robles
- Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
Martin RM, Ter-Avetisyan G, Herce HD, Ludwig AK, Lättig-Tünnemann G, Cardoso MC. Principles of protein targeting to the nucleolus. Nucleus 2016; 6:314-25. [PMID: 26280391 PMCID: PMC4615656 DOI: 10.1080/19491034.2015.1079680] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of rRNA synthesis and assembly of ribosomes. Nucleolar proteins dynamically localize and accumulate in this nuclear compartment relative to the surrounding nucleoplasm. In this study, we have assessed the molecular requirements that are necessary and sufficient for the localization and accumulation of peptides and proteins inside the nucleoli of living cells. The data showed that positively charged peptide entities composed of arginines alone and with an isoelectric point at and above 12.6 are necessary and sufficient for mediating significant nucleolar accumulation. A threshold of 6 arginines is necessary for peptides to accumulate in nucleoli, but already 4 arginines are sufficient when fused within 15 amino acid residues of a nuclear localization signal of a protein. Using a pH sensitive dye, we found that the nucleolar compartment is particularly acidic when compared to the surrounding nucleoplasm and, hence, provides the ideal electrochemical environment to bind poly-arginine containing proteins. In fact, we found that oligo-arginine peptides and GFP fusions bind RNA in vitro. Consistent with RNA being the main binding partner for arginines in the nucleolus, we found that the same principles apply to cells from insects to man, indicating that this mechanism is highly conserved throughout evolution.
Collapse
Affiliation(s)
- Robert M Martin
- a Instituto de Medicina Molecular ; Faculdade de Medicina ; Universidade de Lisboa ; Lisboa , Portugal
| | | | | | | | | | | |
Collapse
|
7
|
Roggero VR, Zhang J, Parente LE, Doshi Y, Dziedzic RC, McGregor EL, Varjabedian AD, Schad SE, Bondzi C, Allison LA. Nuclear import of the thyroid hormone receptor α1 is mediated by importin 7, importin β1, and adaptor importin α1. Mol Cell Endocrinol 2016; 419:185-97. [PMID: 26525414 PMCID: PMC4684427 DOI: 10.1016/j.mce.2015.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 01/27/2023]
Abstract
The thyroid hormone receptor α1 (TRα1) is a nuclear receptor for thyroid hormone that shuttles rapidly between the nucleus and cytoplasm. Our prior studies showed that nuclear import of TRα1 is directed by two nuclear localization signals, one in the N-terminal A/B domain and the other in the hinge domain. Here, we showed using in vitro nuclear import assays that TRα1 nuclear localization is temperature and energy-dependent and can be reconstituted by the addition of cytosol. In HeLa cells expressing green fluorescent protein (GFP)-tagged TRα1, knockdown of importin 7, importin β1 and importin α1 by RNA interference, or treatment with an importin β1-specific inhibitor, significantly reduced nuclear localization of TRα1, while knockdown of other importins had no effect. Coimmunoprecipitation assays confirmed that TRα1 interacts with importin 7, as well as importin β1 and the adapter importin α1, suggesting that TRα1 trafficking into the nucleus is mediated by two distinct pathways.
Collapse
Affiliation(s)
- Vincent R Roggero
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Jibo Zhang
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Laura E Parente
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Yazdi Doshi
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Rose C Dziedzic
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Emma L McGregor
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Arev D Varjabedian
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Sara E Schad
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Cornelius Bondzi
- Department of Biological Sciences, Hampton University, Hampton, VA, 23668, USA
| | - Lizabeth A Allison
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
8
|
Savada RP, Bonham-Smith PC. Charge versus sequence for nuclear/nucleolar localization of plant ribosomal proteins. PLANT MOLECULAR BIOLOGY 2013; 81:477-93. [PMID: 23359052 DOI: 10.1007/s11103-013-0017-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Ribosomal subunit assembly in the nucleolus is dependent on efficient targeting of ribosomal proteins (RPs) from the cytoplasm into the nucleus and nucleolus. Nuclear/nucleolar localization of a protein is generally mediated by one or more specific stretches of basic amino acids-nuclear/nucleolar localization signals (NLSs/NoLSs). Arabidopsis thaliana RPL23aA has eight putative NLSs/NoLSs (pNLSs/NoLSs). Here we mutated all eight NLS/NoLSs individually and in groups and showed, via transient expression in tobacco cells that nucleolar localization of RPL23aA was disrupted by mutation of various combinations of five or more pNLSs/NoLSs. Mutation of all eight pNLSs/NoLSs, a 50 % reduction in total basic charge of RPL23aA, resulted in a complete disruption of nucleolar localization, however, the protein can still localize to the nucleus. As no individual or specific combination of NoLSs was absolutely required for nucleolar localization, we suggest that nucleolar localization/retention of RPL23aA is dependent on the overall basic charge. In addition to the optimal basic charge conferred by these NoLSs, nucleolar localization/retention of RPL23aA also required a C-terminal putative 26S rRNA binding site. In contrast, in the RPs RPS8A and RPL15A, mutation of just two and three N-terminal pNLSs, respectively, disrupted both nuclear and nucleolar localization of these two RPs, indicating differential signal requirements for nuclear and nucleolar localization of the three Arabidopsis RPs RPL23aA, RPL15A and RPS8A.
Collapse
Affiliation(s)
- Raghavendra P Savada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | | |
Collapse
|
9
|
Azar WJ, Zivkovic S, Werther GA, Russo VC. IGFBP-2 nuclear translocation is mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in cancer cells. Oncogene 2013; 33:578-88. [PMID: 23435424 DOI: 10.1038/onc.2012.630] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/11/2012] [Accepted: 12/05/2012] [Indexed: 12/29/2022]
Abstract
IGFBP-2 is highly expressed in both the serum and tumor tissues of most cancers, and is considered one of the most significant genes in the signature of major cancers. IGFBP-2 mainly modulates IGF actions in the pericellular space; however, there is considerable evidence to suggest that IGFBP-2 may also act independently of the IGFs. These IGF-independent actions of IGFBP-2 are exerted either via interactions at the cell surface or intracellularly, via interaction with cytoplasmic or nuclear-binding partners. The precise mechanism underlying the intracellular/intranuclear localization of IGFBP-2 remains unclear. In this study, we investigated IGFBP-2 nuclear localization in several common cancer cells with the aim of dissecting the mechanism of its nuclear trafficking. IGFBP-2 is detected in the nuclei of common cancer cells, including breast, prostate and several neuroblastoma cell lines, using cell fractionation and confocal microscopy. Via nuclear import assays, we show that nuclear entry of IGFBP-2 is mediated by the classical nuclear import mechanisms, primarily through importin-α, as demonstrated by the use of blocking, competition and co-immunoprecipitation assays. Bioinformatics analysis of the IGFBP-2 protein sequence with PSORT II identified a classical nuclear localization signal (cNLS) sequence at 179PKKLRPP185, within the IGFBP-2 linker domain, mutagenesis of which abolishes IGFBP-2 nuclear import. Accordingly, the NLSmutIGFBP-2 fails to activate the VEGF promoter, which would otherwise occur in the presence of wild-type IGFBP-2. As a consequence, no activation of angiogenic processes were observed in NLSmutIGFBP-2 expressing SHEP cells when implanted onto our in vivo quail chorio-allantoic membrane model. Taken together, these data show for the first time that IGFBP-2 possesses a functional NLS sequence and that IGFBP-2 actively translocates into the nucleus by a classical nuclear import mechanism, involving formation of IGFBP-2 complexes with importin-α. Nuclear IGFBP-2 is required for the activation of VEGF expression and consequent angiogenesis.
Collapse
Affiliation(s)
- W J Azar
- 1] Hormone Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia [2] Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - S Zivkovic
- Hormone Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - G A Werther
- 1] Hormone Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia [2] Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - V C Russo
- 1] Hormone Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia [2] Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Depping R, Schindler SG, Jacobi C, Kirschner KM, Scholz H. Nuclear transport of Wilms' tumour protein Wt1 involves importins α and β. Cell Physiol Biochem 2012; 29:223-32. [PMID: 22415091 DOI: 10.1159/000337603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND/AIMS Wilms' tumour protein, Wt1, is a zinc finger molecule, which is required for normal embryonic development. Mutations of the WT1 gene can give rise to childhood cancer of the kidneys. Different Wt1 isoforms exist, which function either as transcription factors or have a presumed role in mRNA processing. Previous studies suggested that Wt1 undergoes nucleocytoplasmic shuttling, and cytoplasmic Wt1 was higher in malignant than in normal cells. The aim of this study was to analyse the molecular pathways along which Wt1 shuttles between the cytoplasm and nucleus. METHODS Interaction of Wt1 protein with various importin α subtypes and importin β was assessed in pull-down assays and co-immunoprecipitation experiments. Nuclear localisation signals (NLS) were identified by combining site-directed mutagenesis with subcellular immunodetection of the transfected Wt1 variants. RESULTS Wt1(+/-KTS) proteins were found to interact with importin α1 and importin β in vitro and in living cells in vivo. A NLS that was necessary and sufficient for nuclear import could be mapped to the third Wt1 zinc finger. Mutation of this NLS strongly weakened binding of Wt1 to importins. CONCLUSION Nuclear translocation of Wilms' tumour protein involves importins α and β, and a NLS in the third zinc finger.
Collapse
Affiliation(s)
- Reinhard Depping
- Institut für Physiologie, Zentrum für Medizinische Struktur- und Zellbiologie, Universität zu Lübeck, Lübeck, Germany
| | | | | | | | | |
Collapse
|
11
|
Grünwald D, Singer RH. Multiscale dynamics in nucleocytoplasmic transport. Curr Opin Cell Biol 2011; 24:100-6. [PMID: 22196930 DOI: 10.1016/j.ceb.2011.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/24/2011] [Indexed: 01/06/2023]
Abstract
The nuclear pore complex (NPC) has long been viewed as a point-like entry and exit channel between the nucleus and the cytoplasm. New data support a different view whereby the complex displays distinct spatial dynamics of variable duration ranging from milliseconds to events spanning the entire cell cycle. Discrete interaction sites outside the central channel become apparent, and transport regulation at these sites seems to be of greater importance than currently thought. Nuclear pore components are highly active outside the NPC or impact the fate of cargo transport away from the nuclear pore. The NPC is a highly dynamic, crowded environment-constantly loaded with cargo while providing selectivity based on unfolded proteins. Taken together, this comprises a new paradigm in how we view import/export dynamics and emphasizes the multiscale nature of NPC-mediated cellular transport.
Collapse
Affiliation(s)
- David Grünwald
- Delft University of Technology, Kavli Institute of Nanoscience, Department of Bionanoscience, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | | |
Collapse
|
12
|
Castelló MJ, Carrasco JL, Navarrete-Gómez M, Daniel J, Granot D, Vera P. A plant small polypeptide is a novel component of DNA-binding protein phosphatase 1-mediated resistance to plum pox virus in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:2206-15. [PMID: 22021419 PMCID: PMC3327197 DOI: 10.1104/pp.111.188953] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 10/20/2011] [Indexed: 05/21/2023]
Abstract
DNA-binding protein phosphatases (DBPs) have been identified as a novel class of plant-specific regulatory factors playing a role in plant-virus interactions. NtDBP1 from tobacco (Nicotiana tabacum) was shown to participate in transcriptional regulation of gene expression in response to virus infection in compatible interactions, and AtDBP1, its closest relative in the model plant Arabidopsis (Arabidopsis thaliana), has recently been found to mediate susceptibility to potyvirus, one of the most speciose taxa of plant viruses. Here, we report on the identification of a novel family of highly conserved small polypeptides that interact with DBP1 proteins both in tobacco and Arabidopsis, which we have designated DBP-interacting protein 2 (DIP2). The interaction of AtDIP2 with AtDBP1 was demonstrated in vivo by bimolecular fluorescence complementation, and AtDIP2 was shown to functionally interfere with AtDBP1 in yeast. Furthermore, reducing AtDIP2 gene expression leads to increased susceptibility to the potyvirus Plum pox virus and to a lesser extent also to Turnip mosaic virus, whereas overexpression results in enhanced resistance. Therefore, we describe a novel family of conserved small polypeptides in plants and identify AtDIP2 as a novel host factor contributing to resistance to potyvirus in Arabidopsis.
Collapse
Affiliation(s)
- María José Castelló
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Sardo L, Lucioli A, Tavazza M, Masenga V, Tavazza R, Accotto GP, Noris E. An RGG sequence in the replication-associated protein (Rep) of Tomato yellow leaf curl Sardinia virus is involved in transcriptional repression and severely impacts resistance in Rep-expressing plants. J Gen Virol 2011; 92:204-9. [PMID: 20943892 DOI: 10.1099/vir.0.025817-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Truncated versions of the replication-associated protein (Rep) of Tomato yellow leaf curl Sardinia virus (TYLCSV) can interfere with various viral functions and the N-terminal 130 aa are sufficient for strongly inhibiting C1-gene transcription and virus replication and confer resistance in transgenic plants. In this work, we analysed the relevance of an RGG sequence at aa 124-126, highly conserved in begomoviruses, in these inhibitory functions as well as in the subcellular localization of Rep. Although no role of this RGG sequence was detected by cell fractionation and immunogold labelling in Rep localization, this sequence appears relevant for the transcriptional control of the C1-gene and for the inhibition of viral replication and dramatically impacts resistance in transgenic plants. These results are discussed in the context of the model of Rep-mediated resistance against TYLCSV.
Collapse
Affiliation(s)
- Luca Sardo
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhou G, Doçi CL, Lingen MW. Identification and functional analysis of NOL7 nuclear and nucleolar localization signals. BMC Cell Biol 2010; 11:74. [PMID: 20875127 PMCID: PMC2957388 DOI: 10.1186/1471-2121-11-74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 09/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NOL7 is a candidate tumor suppressor that localizes to a chromosomal region 6p23. This locus is frequently lost in a number of malignancies, and consistent loss of NOL7 through loss of heterozygosity and decreased mRNA and protein expression has been observed in tumors and cell lines. Reintroduction of NOL7 into cells resulted in significant suppression of in vivo tumor growth and modulation of the angiogenic phenotype. Further, NOL7 was observed to localize to the nucleus and nucleolus of cells. However, the mechanisms regulating its subcellular localization have not been elucidated. RESULTS An in vitro import assay demonstrated that NOL7 requires cytosolic machinery for active nuclear transport. Using sequence homology and prediction algorithms, four putative nuclear localization signals (NLSs) were identified. NOL7 deletion constructs and cytoplasmic pyruvate kinase (PK) fusion proteins confirmed the functionality of three of these NLSs. Site-directed mutagenesis of PK fusions and full-length NOL7 defined the minimal functional regions within each NLS. Further characterization revealed that NLS2 and NLS3 were critical for both the rate and efficiency of nuclear targeting. In addition, four basic clusters within NLS2 and NLS3 were independently capable of nucleolar targeting. The nucleolar occupancy of NOL7 revealed a complex balance of rapid nucleoplasmic shuttling but low nucleolar mobility, suggesting NOL7 may play functional roles in both compartments. In support, targeting to the nucleolar compartment was dependent on the presence of RNA, as depletion of total RNA or rRNA resulted in a nucleoplasmic shift of NOL7. CONCLUSIONS These results identify the minimal sequences required for the active targeting of NOL7 to the nucleus and nucleolus. Further, this work characterizes the relative contribution of each sequence to NOL7 nuclear and nucleolar dynamics, the subnuclear constituents that participate in this targeting, and suggests a functional role for NOL7 in both compartments. Taken together, these results identify the requisite protein domains for NOL7 localization, the kinetics that drive this targeting, and suggest NOL7 may function in both the nucleus and nucleolus.
Collapse
Affiliation(s)
- Guolin Zhou
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
15
|
Baibakov B, Murtazina R, Elowsky C, Giardiello FM, Kovbasnjuk O. Shiga toxin is transported into the nucleoli of intestinal epithelial cells via a carrier-dependent process. Toxins (Basel) 2010; 2:1318-35. [PMID: 22069640 PMCID: PMC3153243 DOI: 10.3390/toxins2061318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/19/2010] [Accepted: 06/03/2010] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin (Stx) produced by the invasive Shigella dysenteriae serotype 1 (S. dysenteriae1) causes gastrointestinal and kidney complications. It has been assumed that Stx is released intracellularly after enterocyte invasion by S. dysenteriae1. However, there is little information about Stx distribution inside S. dysenteriae1-infected enterocytes. Here, we use intestinal epithelial T84 cells to characterize the trafficking of Stx delivered into the cytosol, in ways that mimic aspects of S. dysenteriae1 infection. We find that cytoplasmic Stx is transported into nucleoli. Stx nucleolar movement is carrier- and energy-dependent. Stx binding to the nucleoli of normal human enterocytes in vitro supports possible roles for nucleolar trafficking in toxin-induced intestinal pathology.
Collapse
Affiliation(s)
- Boris Baibakov
- GI Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
16
|
Okoroukwu ON, Green GR, D’Souza MJ. Development of albumin microspheres containing Sp H1-DNA complexes: A novel gene delivery system. J Microencapsul 2010; 27:142-9. [DOI: 10.3109/02652040903052028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Kim S, Lim B, Kim J. EWS-Oct-4B, an alternative EWS-Oct-4 fusion gene, is a potent oncogene linked to human epithelial tumours. Br J Cancer 2010; 102:436-46. [PMID: 20051954 PMCID: PMC2816667 DOI: 10.1038/sj.bjc.6605516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Characterisation of EWS-Oct-4 translocation fusion product in bone and soft-tissue tumours revealed a chimeric gene resulting from an in-frame fusion between EWS (Ewing's sarcoma gene) exons 1-6 and Oct-4 exons 1-4. Recently, an alternative form of the fusion protein between the EWS and Oct-4 genes, named EWS-Oct-4B, was reported in two types of epithelial tumours, a hidradenoma of the skin and a mucoepidermoid carcinoma of the salivary glands. As the N-terminal and POU domains of the EWS-Oct-4 and EWS-Oct-4B proteins are not structurally identical, we decided to investigate the functional consequences of the EWS-Oct-4B fusion. METHODS In this report, we have characterised the EWS-Oct-4B fusion protein. To investigate how the EWS-Oct-4B protein contributes to tumourigenesis in human cancers, we analysed its DNA-binding activity, subcellular localisation, transcriptional activation behaviour, and oncogenic properties. RESULTS We found that this new chimeric gene encodes a nuclear protein that binds DNA with the same sequence specificity as the parental Oct-4 protein or the fusion EWS-Oct-4 protein. We show that the nuclear localisation signal of EWS-Oct-4B is dependent on the POU DNA-binding domain, and we identified a cluster of basic amino acids, (269)RKRKR(273), in the POU domain that specifically mediates the nuclear localisation of EWS-Oct-4B. Comparison of the properties of EWS-Oct-4B and EWS-Oct-4 indicated that EWS-Oct-4B is a less-potent transcriptional activator of a reporter construct carrying the Oct-4-binding sites. Deletion analysis of the functional domains of EWS-Oct-4B revealed that the EWS N-terminal domain (NTD)(B), POU, and C-terminal domain (CTD) are necessary for its full transactivation potential. Despite its reduced activity as a transcriptional activator, EWS-Oct-4B regulated the expression of fgf-4 (fibroblast growth factor-4) and nanog, which are potent mitogens, as well as of Oct-4 downstream target genes, the promoters of which contain potential Oct-4-binding sites. Finally, ectopic expression of EWS-Oct-4B in Oct-4-null ZHBTc4 ES cells resulted in increased tumourigenic growth potential in nude mice. CONCLUSION These results suggest that the oncogenic effect of the t(6;22) translocation is due to the EWS-Oct-4B chimeric protein, and that alternative fusion of the EWS amino terminal domain to the Oct-4 DNA-binding domain produces another transforming chimeric product in human epithelial tumours.
Collapse
Affiliation(s)
- S Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-742, Korea
| | | | | |
Collapse
|
18
|
Lufei C, Cao X. Nuclear import of Pin1 is mediated by a novel sequence in the PPIase domain. FEBS Lett 2009; 583:271-6. [PMID: 19084525 DOI: 10.1016/j.febslet.2008.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 11/27/2008] [Accepted: 12/01/2008] [Indexed: 02/07/2023]
Abstract
Pin1 actively regulates diverse biological/pathological processes, but little is known about the regulatory mechanisms of its cellular localization. In this study, we report that the endogenous Pin1 is distributed in both nucleus and cytoplasm. We found that point mutations of several basic amino acids in the PPIase domain of Pin1 significantly compromise its nuclear localization. Such inhibition is independent of Pin1 enzymatic activity, and is mainly due to the defects in the nuclear import. A novel sequence harboring these residues was identified as a putative nuclear localization signal (NLS) of Pin1. Importin alpha5 of the nuclear import machinery was found to interact with Pin1.
Collapse
Affiliation(s)
- Chengchen Lufei
- Institute of Molecular and Cell Biology, A *STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Biopolis, Singapore 138673, Republic of Singapore
| | | |
Collapse
|
19
|
del Castillo E, Robinson WE. Nuclear and cytosolic distribution of metallothionein in the blue mussel Mytilus edulis L. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:46-51. [DOI: 10.1016/j.cbpb.2008.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 05/16/2008] [Accepted: 05/17/2008] [Indexed: 10/22/2022]
|
20
|
Voyer J, Heikkila JJ. Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:253-61. [PMID: 18675372 DOI: 10.1016/j.cbpa.2008.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 11/24/2022]
Abstract
In this study, we compared the effect of KNK437 (N-formyl-3, 4-methylenedioxy-benzylidene-gamma-butyrolactam), a benzylidene lactam compound, on heat shock and chemical stressor-induced hsp30 gene expression in Xenopus laevis A6 kidney epithelial cells. Previously, KNK437 was shown to inhibit HSE-HSF1 binding activity and heat-induced hsp gene expression. In the present study, Northern and Western blot analysis revealed that pretreatment of A6 cells with KNK437 inhibited hsp30 mRNA and HSP30 and HSP70 protein accumulation induced by chemical stressors including sodium arsenite, cadmium chloride and herbimycin A. In A6 cells subjected to sodium arsenite, cadmium chloride, herbimycin A or a 33 degrees C heat shock treatment, immunocytochemistry and confocal microscopy revealed that HSP30 accumulated primarily in the cytoplasm. However, incubation of A6 cells at 35 degrees C resulted in enhanced HSP30 accumulation in the nucleus. Pre-treatment with 100 microM KNK437 completely inhibited HSP30 accumulation in A6 cells heat shocked at 33 or 35 degrees C as well as cells treated with 10 microM sodium arsenite, 100 microM cadmium chloride or 1 microg/mL herbimycin A. These results show that KNK437 is effective at inhibiting both heat shock- and chemical stress-induced hsp gene expression in amphibian cells.
Collapse
Affiliation(s)
- Janine Voyer
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
21
|
Kim S, Lee HJ, Jun HJ, Kim J. The hTAF II 68-TEC fusion protein functions as a strong transcriptional activator. Int J Cancer 2008; 122:2446-53. [PMID: 18330902 DOI: 10.1002/ijc.23379] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human extraskeletal myxoid chondrosarcoma (EMC) is caused by a chromosomal translocation that involves TEC (translocated in extraskeletal myxoid chondrosarcoma), and either EWS (Ewing's sarcoma) or hTAF(II)68 (human TATA-binding protein-associated factor II 68), which generates EWS-TEC or hTAF(II)68-TEC fusion proteins, respectively. Although there has been a great deal of progress in characterizing EWS-TEC, there is relatively little known about the biological function of hTAF(II)68-TEC. We have examined the functional consequences of the fusion of the amino terminal domain (NTD) of hTAF(II)68 to TEC in EMC. The chimeric gene encodes a nuclear protein that binds DNA with the same sequence specificity as parental TEC. Nuclear localization of hTAF(II)68-TEC was dependent on the DNA binding domain, and we identified a cluster of basic amino acids in the DNA binding domain, KRRR, that specifically mediate the nuclear localization of hTAF(II)68-TEC. The transactivation activity of hTAF(II)68-TEC was higher than TEC towards a known target promoter that contained several TEC binding sites. Finally, deletion analysis of hTAF(II)68-TEC indicated that the hTAF(II)68 NTD, and the AF1 and AF2 domains of hTAF(II)68-TEC are necessary for full transactivation potential. These results suggest that the oncogenic effect of the t(9;17) translocation may be due to the hTAF(II)68-TEC chimeric protein and that fusion of the hTAF(II)68 NTD to the TEC protein produces a gain of function chimeric product.
Collapse
Affiliation(s)
- Sol Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | | | | | | |
Collapse
|
22
|
Sorokin AV, Kim ER, Ovchinnikov LP. Nucleocytoplasmic transport of proteins. BIOCHEMISTRY (MOSCOW) 2008; 72:1439-57. [PMID: 18282135 DOI: 10.1134/s0006297907130032] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
23
|
Abstract
Controlled nucleocytoplasmic localization regulates activity of NF kappa B as well as other transcription factors. Analysis of the nucleocytoplasmic protein shuttling has been greatly facilitated by the use of leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export. The authors have previously shown that LMB inhibits NF kappa B activity in human neutrophils by increasing the nuclear accumulation of NF kappa B inhibitor, I kappa B alpha. In this chapter, the authors describe a protocol that uses LMB to study the nucleocytoplasmic shuttling of I kappa B alpha in human macrophage-like U937 cells, thus inhibiting NF kappa B activity. This protocol should be readily adaptable to analyze the nucleocytoplasmic shuttling of other proteins in human leukocytes.
Collapse
|
24
|
Zaltsman A, Yi BY, Krichevsky A, Gafni Y, Citovsky V. Yeast-plant coupled vector system for identification of nuclear proteins. PLANT PHYSIOLOGY 2007; 145:1264-71. [PMID: 17704231 PMCID: PMC2151716 DOI: 10.1104/pp.107.105973] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nuclear proteins are involved in many critical biological processes within plant cells and, therefore, are in the focus of studies that usually begin with demonstrating that the protein of interest indeed exhibits nuclear localization. Thus, studies of plant nuclear proteins would be facilitated by a convenient experimental system for identification of proteins that are actively imported into the cell nucleus and visualization of their nuclear accumulation in vivo. To this end, we developed a system of vectors that allows screening for cDNAs coding for nuclear proteins in a simple genetic assay in yeast cells, and verification of nuclear accumulation in planta following one-step transfer and autofluorescent tagging of the identified clones into a multiple cloning site-compatible and reading frame-compatible plant expression vector. In a recommended third experimental step, the plant expression cassette containing the identified clone can be transferred, also by a one-step cloning, into a binary multigene expression vector for transient or stable coexpression with any other proteins.
Collapse
Affiliation(s)
- Adi Zaltsman
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | | | | | | | |
Collapse
|
25
|
Grundt K, Haga IV, Huitfeldt HS, Ostvold AC. Identification and characterization of two putative nuclear localization signals (NLS) in the DNA-binding protein NUCKS. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1398-406. [PMID: 17604136 DOI: 10.1016/j.bbamcr.2007.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 05/21/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
Immunofluorescence analyses show that the vertebrate specific and DNA-binding protein NUCKS is distributed throughout the cytoplasm in mitotic cells and targeted to the reforming nuclei in late telophase of the cell cycle. Computer analysis of the primary structure of NUCKS revealed the presence of two regions of highly charged, basic residues, which were identified as potential nuclear localization signals (NLSs). One of these signals (NLS1) is highly conserved between the species investigated, and fits to the description of being a classical bipartite NLS. The other amino acid motif (NLS2) is less conserved and does not constitute a classical bipartite NLS consensus sequence. We have shown that each of the two putative NLSs is capable of translocating green fluorescent protein (GFP) into the nucleus. The highly conserved NLS1 is monopartite, resembling the signals of c-Myc and RanBP3. Surprisingly, a natural occurring splice variant of NUCKS lacking 40 amino acids including NLS1, is not capable of translocating a corresponding NUCKS-GFP fusion protein into the nucleus, indicating that NLS1 is the main nuclear localization signal in NUCKS. This is also confirmed by site-directed mutagenesis of the full-length protein. By GFP-immunoprecipitation and GST-pull down experiments, we show that NUCKS binds to importin alpha3 and importin alpha5 in vitro, suggesting that the nuclear targeting of NUCKS follows a receptor-mediated and energy-dependent import mechanism.
Collapse
Affiliation(s)
- Kirsten Grundt
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1112, Blindern, 0317 Oslo, Norway
| | | | | | | |
Collapse
|
26
|
Ito I, Fukazawa J, Yoshida M. Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem 2007; 282:16336-44. [PMID: 17403684 DOI: 10.1074/jbc.m608467200] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
High mobility group box 1 (HMGB1) protein plays multiple roles in transcription, replication, and cellular differentiation. HMGB1 is also secreted by activated monocytes and macrophages and passively released by necrotic or damaged cells, stimulating inflammation. HMGB1 is a novel antigen of anti-neutrophil cytoplasmic antibodies (ANCA) observed in the sera of patients with ulcerative colitis and autoimmune hepatitis, suggesting that HMGB1 is secreted from neutrophils to the extracellular milieu. However, the actual distribution of HMGB1 in the cytoplasm of neutrophils and the mechanisms responsible for it are obscure. Here we show that HMGB1 in neutrophils is post-translationally mono-methylated at Lys42. The methylation alters the conformation of HMGB1 and weakens its DNA binding activity, causing it to become largely distributed in the cytoplasm by passive diffusion out of the nucleus. Thus, post-translational methylation of HMGB1 causes its cytoplasmic localization in neutrophils. This novel pathway explains the distribution of nuclear HMGB1 to the cytoplasm and is important for understanding how neutrophils release HMGB1 to the extracellular milieu.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/immunology
- Animals
- Antibodies, Antineutrophil Cytoplasmic/blood
- Antibodies, Antineutrophil Cytoplasmic/immunology
- Cell Nucleus/immunology
- Cell Nucleus/metabolism
- Cell Nucleus/pathology
- Colitis, Ulcerative/blood
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Cytoplasm/pathology
- DNA/immunology
- DNA/metabolism
- HL-60 Cells
- HMGB1 Protein/immunology
- HMGB1 Protein/metabolism
- HeLa Cells
- Hepatitis, Autoimmune/blood
- Hepatitis, Autoimmune/immunology
- Hepatitis, Autoimmune/pathology
- Humans
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Methylation
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- Protein Binding/immunology
- Protein Processing, Post-Translational/immunology
- Swine
Collapse
Affiliation(s)
- Ichiaki Ito
- Department of Biological Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | |
Collapse
|
27
|
Rassow J, Pfanner N. Molecular chaperones and intracellular protein translocation. Rev Physiol Biochem Pharmacol 2006; 126:199-264. [PMID: 7886379 DOI: 10.1007/bfb0049777] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Rassow
- Biochemisches Institut, Universität Freiburg, Germany
| | | |
Collapse
|
28
|
Abstract
Nonviral vectors continue to be attractive alternatives to viruses due to their low toxicity and immunogenicity, lack of pathogenicity, and ease of pharmacologic production. However, nonviral vectors also continue to suffer from relatively low levels of gene transfer compared to viruses, thus the drive to improve these vectors continues. Many studies on vector-cell interactions have reported that nonviral vectors bind and enter cells efficiently, but yield low gene expression, thus directing our attention to the intracellular trafficking of these vectors to understand where the obstacles occur. Here, we will review nonviral vector trafficking pathways, which will be considered here as the steps from cell binding to nuclear delivery. Studies on the intracellular trafficking of nonviral vectors has given us valuable insights into the barriers these vectors must overcome to mediate efficient gene transfer. Importantly, we will highlight the different approaches used by researchers to overcome certain trafficking barriers to gene transfer, many of which incorporate components from biological systems that have naturally evolved the capacity to overcome such obstacles. The tools used to study trafficking pathways will also be discussed.
Collapse
Affiliation(s)
- L K Medina-Kauwe
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
29
|
Krichevsky A, Kozlovsky SV, Gafni Y, Citovsky V. Nuclear import and export of plant virus proteins and genomes. MOLECULAR PLANT PATHOLOGY 2006; 7:131-146. [PMID: 20507434 DOI: 10.1111/j.1364-3703.2006.00321.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Nuclear import and export are crucial processes for any eukaryotic cell, as they govern substrate exchange between the nucleus and the cytoplasm. Proteins involved in the nuclear transport network are generally conserved among eukaryotes, from yeast and fungi to animals and plants. Various pathogens, including some plant viruses, need to enter the host nucleus to gain access to its replication machinery or to integrate their DNA into the host genome; the newly replicated viral genomes then need to exit the nucleus to spread between host cells. To gain the ability to enter and exit the nucleus, these pathogens encode proteins that recognize cellular nuclear transport receptors and utilize the host's nuclear import and export pathways. Here, we review and discuss our current knowledge about the molecular mechanisms by which plant viruses find their way into and out of the host cell nucleus.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
30
|
Ball JR, Ullman KS. Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153. Chromosoma 2005; 114:319-30. [PMID: 16133350 DOI: 10.1007/s00412-005-0019-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/08/2005] [Accepted: 07/10/2005] [Indexed: 10/25/2022]
Abstract
The vertebrate pore protein Nup153 plays pivotal roles in nuclear pore function. In addition to being important to pore architecture, Nup153 is a key participant in both import and export. The scope of Nup153 function also extends beyond the canonical view of the pore as a trafficking gateway. During the transition into mitosis, Nup153 directs proteins involved in membrane remodeling to the nuclear envelope. As cells exit mitosis, Nup153 is recruited to the chromosomal surface, where nuclear pores are formed anew in a complicated process still under much experimental scrutiny. In addition, Nup153 is targeted for protease cleavage during apoptosis and in response to certain viral infections, providing molecular insight into pore reconfiguration during cell response. Overall, the versatile nature of Nup153 underscores an emerging view of the nuclear pore at the nexus of many key cellular processes.
Collapse
Affiliation(s)
- Jennifer R Ball
- Department of Oncological Sciences, Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
31
|
Adell T, Müller WEG. Expression pattern of the Brachyury and Tbx2 homologues from the sponge Suberites domuncula. Biol Cell 2005; 97:641-50. [PMID: 15850455 DOI: 10.1042/bc20040135] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION T-box transcription factors are a large family of transcriptional regulators involved in many aspects of embryonic development. In a previous report, we described the isolation and genomic characterization of two T-box genes from the siliceous sponge Suberites domuncula: a Brachyury homologue, Sd-Bra, and a Tbx2 homologue, Sd-Tbx2. Elucidation of the genomic structure of Sd-Bra allowed us to demonstrate the existence of two different isoforms, resulting from alternative splicing. Moreover, we demonstrated that the shorter isoform exists in two different glycosylation states. RESULTS In the present study, we demonstrate a differential subcellular localization of the three Sd-Bra isoforms, suggesting that its differential nuclear import could be an important mechanism for its functional regulation. Furthermore, we demonstrate that Sd-Tbx2 exists only in one isoform, which is mainly localized in the nucleus. The pattern of expression of Sd-Bra and Sd-Tbx2 genes is analysed in sponge tissue, in gemmules and in cultured cells. CONCLUSION These results suggest a conserved role for Sd-Bra in the control of morphogenetic movements through the regulation of cell-adhesion properties and the involvement of Sd-Tbx2 in the determination of cell identity in the early stages of differentiation, reminiscent of the function of Tbx2-3-4-5 in vertebrates during limb specification. Also, the fact that a Brachyury and a Tbx2 homologue exist in S. domuncula suggests that the first divergence from the ancestral Brachyury-like gene might be a Tbx2-like gene and not a Tbrain-like gene as had been previously suggested.
Collapse
Affiliation(s)
- Teresa Adell
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | |
Collapse
|
32
|
Ueki S, Citovsky V. Control improves with age: intercellular transport in plant embryos and adults. Proc Natl Acad Sci U S A 2005; 102:1817-8. [PMID: 15684080 PMCID: PMC548589 DOI: 10.1073/pnas.0409785102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shoko Ueki
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | | |
Collapse
|
33
|
Goldfarb D, Michaud N. Pathways for the nuclear transport of proteins and RNAs. Trends Cell Biol 2004; 1:20-4. [PMID: 14731805 DOI: 10.1016/0962-8924(91)90065-h] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nuclear pore complex catalyses the import and export of both proteins and RNAs. The molecular mechanisms of RNA and protein translocation through the nuclear pore are likely to be similar; however, their signals and targeting apparatus may differ. Recent insights into RNA transport have come from studies of kinetic control mechanisms and the preconditions for translocation that include processing, RNP assembly, and a targeting function for 5' caps.
Collapse
Affiliation(s)
- D Goldfarb
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
34
|
Banmeyer I, Marchand C, Verhaeghe C, Vucic B, Rees JF, Knoops B. Overexpression of human peroxiredoxin 5 in subcellular compartments of Chinese hamster ovary cells: effects on cytotoxicity and DNA damage caused by peroxides. Free Radic Biol Med 2004; 36:65-77. [PMID: 14732291 DOI: 10.1016/j.freeradbiomed.2003.10.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 10/22/2003] [Accepted: 10/27/2003] [Indexed: 11/24/2022]
Abstract
Peroxiredoxin 5 is a mammalian thioredoxin peroxidase ubiquitously expressed in tissues. Peroxiredoxin 5 can be intracellularly localized to mitochondria, peroxisomes, the cytosol, and, to a lesser extent, the nucleus. This remarkably wide subcellular distribution compared with the five other mammalian peroxiredoxins prompted us to further investigate the antioxidant protective function of peroxiredoxin 5 in mammalian cells according to its subcellular localization. Chinese hamster ovary cells overexpressing human peroxiredoxin 5 in the cytosol, in mitochondria, or in the nucleus were established by stable transfection. Cells overexpressing peroxiredoxin 5 were exposed for 1 h to low or acute oxidative stress with exogenously added hydrogen peroxide or tert-butylhydroperoxide. Cell protection conferred by peroxiredoxin 5 was evaluated by clonogenicity and lactate dehydrogenase assays. Overexpressing peroxiredoxin 5 in either the cytosolic, mitochondrial, or nuclear compartment significantly reduced cell death, with more effective protection with overexpression of peroxiredoxin 5 in mitochondria, confirming that this organelle is a major target of peroxides. Moreover, we evaluated, with the comet assay, nuclear DNA damage induced by hydrogen peroxide or tert-butylhydroperoxide. Overexpression of peroxiredoxin 5 in the nucleus significantly decreased DNA damage induced by both peroxides. In conclusion, the present study suggests that multiple subcellular targeting of peroxiredoxin 5 in mammalian cells can be implicated in antioxidant protective mechanisms under nonpathological conditions but also during acute oxidative stress caused by peroxides occurring in pathophysiological situations.
Collapse
Affiliation(s)
- Ingrid Banmeyer
- Laboratory of Cell Biology, Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
35
|
Greiner M, Caesar S, Schlenstedt G. The histones H2A/H2B and H3/H4 are imported into the yeast nucleus by different mechanisms. Eur J Cell Biol 2004; 83:511-20. [PMID: 15679097 DOI: 10.1078/0171-9335-00418] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins are imported from the cytoplasm into the nucleus by importin beta-related transport receptors. The yeast Saccharomyces cerevisiae contains ten of these importins, but only two of them are essential. After transfer through the nuclear pore, importins release their cargo upon binding to the Ran GTPase, the key regulator of nuclear transport. We investigated the import of the core histones in yeast and found that four importins are involved. The essential Pse1p and the nonessential importins Kap114p, Kap104p, and Yrb4p/Kap123p specifically bind to histones H2A and H2B. Release of H2 histones from importins requires Ran-GTP and DNA simultaneously suggesting a function of the importins in intranuclear targeting. H3 and H4 associate mainly with Pse1p and the dissociation requires Ran but not DNA, which points to a different import mechanism. Import of green fluorescent protein fusions to H2A and H2B requires primarily Pse1p and Kap114p, whereas Yrb4p plays an auxiliary role. Pse1p is predominantly necessary for nuclear uptake of H3 and H4, while Kap104p and Yrb4p also support import. We conclude from our in vivo and in vitro experiments that import of the essential histones is mediated mainly by the essential importin Pse1p, while the non-essential Kap114p functions in a parallel import pathway for H2A and H2B.
Collapse
Affiliation(s)
- Markus Greiner
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Homburg, Germany
| | | | | |
Collapse
|
36
|
Ullas KS, Rao MRS. Phosphorylation of rat spermatidal protein TP2 by sperm-specific protein kinase A and modulation of its transport into the haploid nucleus. J Biol Chem 2003; 278:52673-80. [PMID: 14514679 DOI: 10.1074/jbc.m308365200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transition protein 2 (TP2), which is expressed during stages 12-15 of mammalian spermiogenesis, has been shown to undergo phosphorylation immediately after its synthesis. We reported earlier that TP2 is phosphorylated in vitro at threonine 101 and serine 109 by the salt extract of sonication-resistant (elongating and elongated) spermatid nuclei and the protein kinase phosphorylating TP2 was identified to be protein kinase A (PKA). We now report that the cytosol from haploid spermatids but not from premeiotic germ cells is able to phosphorylate recombinant TP2 in vitro at threonine 101 and serine 109. The kinase present in the haploid spermatid cytosol that phosphorylates TP2 has been identified to be the sperm-specific isoform of protein kinase A (Cs-PKA). Reverse transcription-PCR analysis indicated that Cs-PKA was present in the haploid spermatids and absent from premeiotic germ cells. The rat Cs-PKA transcript was amplified and sequenced using the isoform-specific primers. The sequence of rat Cs-PKA at the N terminus differs from mouse and human by one amino acid. Western blot analysis using specific anti-Calpha1 antibodies revealed that Calpha1-PKA is absent in haploid spermatid cytosol. We have also established an in vitro nuclear transport assay for the haploid round spermatids. Using this assay, we have found that the cytoplasmic factors and ATP are absolutely essential for translocation of TP2 into the nucleus. Phosphorylation was found to positively modulate the NLS dependent import of TP2 into the nucleus.
Collapse
Affiliation(s)
- Kolthur S Ullas
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
37
|
Abstract
Ribosome synthesis is a highly complex and coordinated process that occurs not only in the nucleolus but also in the nucleoplasm and the cytoplasm of eukaryotic cells. Based on the protein composition of several ribosomal subunit precursors recently characterized in yeast, a total of more than 170 factors are predicted to participate in ribosome biogenesis and the list is still growing. So far the majority of ribosomal factors have been implicated in RNA maturation (nucleotide modification and processing). Recent advances gave insight into the process of ribosome export and assembly. Proteomic approaches have provided the first indications for a ribosome assembly pathway in eukaryotes and confirmed the dynamic character of the whole process.
Collapse
|
38
|
Abstract
Eukaryotic cells export several different classes of RNA molecule from the nucleus, where they are transcribed, to the cytoplasm, where the majority participate in different aspects of protein synthesis. It is now clear that these different classes of RNA, including rRNAs, tRNAs, mRNAs and snRNAs, are specifically directed into distinct but in some cases partially overlapping nuclear export pathways. All non-coding RNAs are now known to depend on members of the karyopherin family of Ran-dependent nucleocytoplasmic transport factors for their nuclear export. In contrast, mRNA export is generally mediated by a distinct, Ran-independent nuclear export pathway that is both complex and, as yet, incompletely understood. However, for all classes of RNA molecules, nuclear export is dependent on the assembly of the RNA into the appropriate ribonucleoprotein complex, and nuclear export therefore also appears to function as an important proofreading mechanism.
Collapse
Affiliation(s)
- Bryan R Cullen
- Howard Hughes Medical Institute and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
39
|
Wei X, Henke VG, Strübing C, Brown EB, Clapham DE. Real-time imaging of nuclear permeation by EGFP in single intact cells. Biophys J 2003; 84:1317-27. [PMID: 12547812 PMCID: PMC1302708 DOI: 10.1016/s0006-3495(03)74947-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The NPC is the portal for the exchange of proteins, mRNA, and ions between nucleus and cytoplasm. Many small molecules (<10 kDa) permeate the nucleus by simple diffusion through the pore, but molecules larger than 70 kDa require ATP and a nuclear localization sequence for their transport. In isolated Xenopus oocyte nuclei, diffusion of intermediate-sized molecules appears to be regulated by the NPC, dependent upon [Ca(2+)] in the nuclear envelope. We have applied real-time imaging and fluorescence recovery after photobleaching to examine the nuclear pore permeability of 27-kDa EGFP in single intact cells. We found that EGFP diffused bidirectionally via the NPC across the nuclear envelope. Although diffusion is slowed approximately 100-fold at the nuclear envelope boundary compared to diffusion within the nucleus or cytoplasm, this delay is expected for the reduced cross-sectional area of the NPCs. We found no evidence for significant nuclear pore gating or block of EGFP diffusion by depletion of perinuclear Ca(2+) stores, as assayed by a nuclear cisterna-targeted Ca(2+) indicator. We also found that EGFP exchange was not altered significantly during the cell cycle.
Collapse
Affiliation(s)
- Xunbin Wei
- Howard Hughes Medical Institute, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
We describe the design, synthesis and cell-membrane translocation properties of a series of beta-peptides with the general sequence fluorescein-Adoa-(beta-homolysine)(n)-NH(2), n=5-8 and Adoa=8-amino-3,6-dioxaoctanoic acid. These beta-peptides are able to cross the cytoplasmic membrane and accumulate in the nucleus of mammalian cells.
Collapse
|
41
|
Selvam R, Vijaya R, Sivakamasundari P. Characterisation of nuclear pore complex oxalate binding protein from human kidney. Mol Cell Biochem 2003; 243:1-8. [PMID: 12619882 DOI: 10.1023/a:1021641223419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Both rat and human kidney nuclei exhibited time and pH dependent oxalate or histone-oxalate uptake which was inhibited by anion transport inhibitor, 4,4'-dithiocyanostilbene-2,2'-disulphonic acid. Sodium chloride had no effect. Nuclear membrane had oxalate binding at pH 7.4. Extraction of nuclear membrane by Triton-high salt mixture showed maximal oxalate binding activity with nuclear pore complex while nuclear lamin had no oxalate binding. The rat and human kidney nuclear pore complex showed oxalate binding of 144 and 220 pmoles/mg protein respectively. Subsequent purification of the protein on diethyl amino ethyl-Sephadex A 50 column and Sephadex G-200 column yielded 4-fold purification. The protein revealed a molecular weight of 205 kDa on SDS-PAGE. The protein was found to be saturable at 2 microM oxalate and had a Kd of 2.98 pM and a Bmax of 197 pmoles. Antibody for 205 kD was separated from primary biliary cirrhosis serum containing auto antibody against 205 kDa using affinity column chromatography. The oxalate binding activity as well as the nuclear uptake of oxalate or histone-oxalate were inhibited by its antibody.
Collapse
Affiliation(s)
- R Selvam
- Department of Medical Biochemistry, Dr A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | | | | |
Collapse
|
42
|
Bäuerle M, Doenecke D, Albig W. The requirement of H1 histones for a heterodimeric nuclear import receptor. J Biol Chem 2002; 277:32480-9. [PMID: 12080050 DOI: 10.1074/jbc.m202765200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
After synthesis in the cytoplasm, H1 histones are imported into the nucleus through an energy-dependent process that can be mediated by an importin beta-importin 7 (Impbeta-Imp7) heterodimer. H1 histones contain two structurally different types of nuclear localization signals (NLS). The first type of NLS resides within the unstructured C-terminal domain and is rich in basic amino acids. In contrast, the highly conserved central domain of the H1 histone contains comparatively few basic amino acids but also represents a functional NLS. The competence for the nuclear import of this globular domain seems to be based on its secondary structure. Here, we show that the Impbeta-Imp7 heterodimer is the only receptor for H1 import. Furthermore, we identified the import receptors mediating the in vitro transport of different NLS of the H1 histone. Using the digitonin-permeabilized cell import assay we show that Impbeta is the most efficient import receptor for the globular domain of H1 histones, whereas the heterodimer of Impbeta and Imp7 is the functional receptor for the entire C-terminal domain. However, short fragments of the C-terminal domain are imported in vitro by at least four different importins, which resembles the import pathway of ribosomal proteins and core histones. In addition, we show that heterodimerization of Impbeta with Imp7 is absolutely necessary for their proper function as an import receptor for H1 histones. These findings point to a chaperone-like function of the heterodimeric complex in addition to its function as an import receptor. It appears that the Impbeta-Imp7 heterodimer is specialized for NLS consisting of extended basic domains.
Collapse
Affiliation(s)
- Marc Bäuerle
- Institut für Biochemie und Molekulare Zellbiologie, Abteilung für Molekularbiologie, Universität Göttingen, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
43
|
Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci U S A 2002; 99:10156-61. [PMID: 12119406 PMCID: PMC126640 DOI: 10.1073/pnas.152259999] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exchange of information between the nucleus and cytosol depends on the metabolic state of the cell, yet the energy-supply pathways to the nuclear compartment are unknown. Here, the energetics of nucleocytoplasmic communication was determined by imaging import of a constitutive nuclear protein histone H1. Translocation of H1 through nuclear pores in cardiac cells relied on ATP supplied by mitochondrial oxidative phosphorylation, but not by glycolysis. Although mitochondria clustered around the nucleus, reducing the distance for energy transfer, simple nucleotide diffusion was insufficient to meet the energetic demands of nuclear transport. Rather, the integrated phosphotransfer network was required for delivery of high-energy phosphoryls from mitochondria to the nucleus. In neonatal cardiomyocytes with low creatine kinase activity, inhibition of adenylate kinase-catalyzed phosphotransfer abolished nuclear import. With deficient adenylate kinase, nucleoside diphosphate kinase, which secures phosphoryl exchange between ATP and GTP, was unable to sustain nuclear import. Up-regulation of creatine kinase phosphotransfer, to mimic metabolic conditions of adult cardiac cells, rescued H1 import, suggesting a developmental plasticity of the cellular energetic system. Thus, mitochondrial oxidative phosphorylation coupled with phosphotransfer relays provides an efficient energetic unit in support of nuclear transport.
Collapse
Affiliation(s)
- Petras P Dzeja
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
44
|
Ha S, Park S, Yun CH, Choi Y. Characterization of nuclear localization signal in mouse ING1 homolog protein. Biochem Biophys Res Commun 2002; 293:163-6. [PMID: 12054579 DOI: 10.1016/s0006-291x(02)00224-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We reported previously that mouse ING1 homolog (mINGh), localized in the nucleus, enhanced cell death in HC11 mouse mammary epithelial cells. Analysis of the mINGh amino acid sequences revealed the presence of potential nuclear localization signal (NLS) and plant homeodomain (PHD) finger DNA binding domain. In the present study, NLS site in mINGh was determined using different pieces of mutant mINGh proteins, which were fused to green fluorescent protein (GFP), and transfected into HC11 cells. NLS of mINGh was split into two parts consisting of amino acids KEKK and KKLK. Mutation in NLS sites of mINGh resulted in no enhancement of the cell death when over-expressed. These results indicated that mINGh contains NLS of bipartite type, which is essential for the regulation of cell death.
Collapse
Affiliation(s)
- Seckho Ha
- School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Republic of Korea
| | | | | | | |
Collapse
|
45
|
Wolff T, Unterstab G, Heins G, Richt JA, Kann M. Characterization of an unusual importin alpha binding motif in the borna disease virus p10 protein that directs nuclear import. J Biol Chem 2002; 277:12151-7. [PMID: 11796712 DOI: 10.1074/jbc.m109103200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear import of many cellular and viral proteins is mediated by short nuclear localization signals (NLS) that are recognized by intracellular receptor proteins belonging to the importin/karyopherin alpha and beta families. The primary structure of NLS is not well defined, but most contain at least three basic amino acids and harbor the relative consensus sequence K(K/R)X(K/R). We have studied the nuclear import of the Borna disease virus p10 protein that lacks a canonical oligobasic NLS. It is shown that the p10 protein exhibits all characteristics of an actively transported molecule in digitonin-permeabilized cells. Import activity was found to reside in the 20 N-terminal p10 amino acids that are devoid of an NLS consensus motif. Unexpectedly, p10-dependent import was blocked by a peptide inhibitor of importin alpha-dependent nuclear translocation, and the transport activity of the p10 N-terminal domain was shown to correlate with the ability to bind to importin alpha. These findings suggest that nuclear import of the Borna disease virus p10 protein occurs through a nonconventional karyophilic signal and highlight that the cellular importin alpha NLS receptor proteins can recognize nuclear targeting signals that substantially deviate from the consensus sequence.
Collapse
Affiliation(s)
- Thorsten Wolff
- Robert-Koch-Institut, Nordufer 20, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
46
|
Mosammaparast N, Guo Y, Shabanowitz J, Hunt DF, Pemberton LF. Pathways mediating the nuclear import of histones H3 and H4 in yeast. J Biol Chem 2002; 277:862-8. [PMID: 11694505 DOI: 10.1074/jbc.m106845200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The correct assembly of chromatin is necessary for the maintenance of genomic stability in eukaryotic cells. A critical step in the assembly of new chromatin is the cell cycle-regulated synthesis and nuclear import of core histones. Here we demonstrate that the nuclear import pathway of histones H3 and H4 is mediated by at least two karyopherins/importins, Kap123p and Kap121p. Cytosolic H4 is found associated with Kap123p and H3. Kap121p is also present in the H4-PrA-associated fractions, albeit in lesser amounts than Kap123p, suggesting that this Kap serves as an additional import receptor. We further demonstrate that cytosolic Kap123p is associated with acetylated H3 and H4. H3 and H4 each contain a nuclear localization signal (NLS) in their amino-terminal domains. These amino-terminal domains were found to be essential for the nuclear accumulation of H3 and H4-green fluorescent protein reporters. Each NLS mediated direct binding to Kap123p and Kap121p, and decreased nuclear accumulation of H3 and H4 NLS-green fluorescent protein reporters was observed in specific kap mutant strains. H3 and H4 are the first histones to be assembled onto DNA, and these results show that their import is mediated by at least two import pathways.
Collapse
Affiliation(s)
- Nima Mosammaparast
- Center for Cell Signaling, Department of Microbiology, University of Virginia Health Sciences Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
47
|
Kamath RV, Leary DJ, Huang S. Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from RNA export. Mol Biol Cell 2001; 12:3808-20. [PMID: 11739782 PMCID: PMC60757 DOI: 10.1091/mbc.12.12.3808] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Revised: 08/21/2001] [Accepted: 09/05/2001] [Indexed: 02/05/2023] Open
Abstract
Polypyrimidine tract binding protein, PTB/hnRNP I, is involved in pre-mRNA processing in the nucleus and RNA localization and translation in the cytoplasm. In this report, we demonstrate that PTB shuttles between the nucleus and cytoplasm in an energy-dependent manner. Deletion mutagenesis demonstrated that a minimum of the N terminus and RNA recognition motifs (RRMs) 1 and 2 are necessary for nucleocytoplasmic shuttling. Deletion of RRM3 and 4, domains that are primarily responsible for RNA binding, accelerated the nucleocytoplasmic shuttling of PTB. Inhibition of transcription directed by either RNA polymerase II alone or all RNA polymerases yielded similar results. In contrast, selective inhibition of RNA polymerase I did not influence the shuttling kinetics of PTB. Furthermore, the intranuclear mobility of GFP-PTB, as measured by fluorescence recovery after photobleaching analyses, increased significantly in transcriptionally inactive cells compared with transcriptionally active cells. These observations demonstrate that nuclear RNA transcription and export are not necessary for the shuttling of PTB. In addition, binding to nascent RNAs transcribed by RNA polymerase II and/or III retards both the nuclear export and nucleoplasmic movement of PTB. The uncoupling of PTB shuttling and RNA export suggests that the nucleocytoplasmic shuttling of PTB may also play a regulatory role for its functions in the nucleus and cytoplasm.
Collapse
Affiliation(s)
- R V Kamath
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
48
|
Abstract
The ability to orchestrate the transport of proteins between nucleus and cytoplasm provides cells with a powerful regulatory mechanism. Selective translocation between these compartments is often used to propagate cellular signals, and it is an intimate part of the processes that control cell division, viral replication, and other cellular events. Therefore, precise experimental control over protein localization, through the agency of light, would provide a powerful tool for the study and manipulation of these events. To this end, a prototype photoregulated nuclear localization signal (NLS) was derived from a native NLS. A library of 30 mutants of the bipartite NLS from Xenopus laevis nucleoplasmin containing a novel, photoisomerizable amino acid was prepared by parallel, solid-phase synthesis and screened in vitro for binding to the nuclear import receptor karyopherin alpha, which mediates the nuclear import of cellular proteins. A single peptide was identified in which the cis and trans photoisomers bind the receptor differentially. The strategy used to obtain this peptide is systematic and empirical; therefore, it is potentially applicable to any peptide-receptor system.
Collapse
Affiliation(s)
- S B Park
- Texas A&M University, Department of Chemistry, PO Box 30012, College Station, TX 77842-3012, USA
| | | |
Collapse
|
49
|
Baake M, Bäuerle M, Doenecke D, Albig W. Core histones and linker histones are imported into the nucleus by different pathways. Eur J Cell Biol 2001; 80:669-77. [PMID: 11824786 DOI: 10.1078/0171-9335-00208] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histones are the major structural proteins in eukaryotic chromosomes. This group of small very basic proteins consists of the H1 linker histones and the core histones H2A, H2B, H3 and H4. Despite their small size, the nuclear import of histones occurs by an active transport mechanism and not simply by diffusion. Histones contain several nuclear localisation signals (NLS) that can be subdivided into two different types of signal structures. We have previously shown that H1 histones are transported by a heterodimeric import receptor complex consisting of importin beta and importin 7, and we now describe the receptors required for the import of the core histones. Competition experiments using the in vitro transport assay indicate that the import pathway of the core histones differs from that of the linker histones and of nuclear proteins with classical NLS. In vitro binding assays show that each of the import receptors importin beta, importin 5, importin 7 and transportin, has the capacity to bind to any of the four core histones. Reconstitution experiments with recombinant factors indicate that each of these factors can independently serve as an import receptor for each of the core histones.
Collapse
Affiliation(s)
- M Baake
- Institut für Biochemie und Molekulare Zellbiologie, Abteilung für Molekularbiologie, Universität Göttingen, Germany
| | | | | | | |
Collapse
|
50
|
Ren X, Harms JS, Splitter GA. Bovine herpesvirus 1 tegument protein VP22 interacts with histones, and the carboxyl terminus of VP22 is required for nuclear localization. J Virol 2001; 75:8251-8. [PMID: 11483770 PMCID: PMC115069 DOI: 10.1128/jvi.75.17.8251-8258.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine herpesvirus 1 (BHV-1) UL49 gene encodes a viral tegument protein termed VP22. UL49 homologs are conserved among alphaherpesviruses. Interestingly, the BHV-1 VP22 deletion mutant virus is asymptomatic and avirulent in infected cattle but produces only a slight reduction in titer in vitro. Attenuation of the BHV-1 VP22 deletion mutant virus in vivo suggests that VP22 plays a functional role in BHV-1 replication. In herpes simplex virus type 1, the VP22 homolog was previously shown to interact with another tegument protein,VP16, the alpha-transinducing factor in vitro. In this report, we show that (i) the nuclear targeting of VP22 is independent of other viral factors, (ii) the carboxyl terminus of VP22 is required for its nuclear localization, (iii) VP22 associates with histones and nucleosomes, (iv) an antihistone monoclonal antibody cross-reacts with VP22, and (v) acetylation of histone H4 is decreased in VP22-expressing cells as well as virus-infected cells. Our data suggest that VP22 may have a modulatory function during BHV-1 infection.
Collapse
Affiliation(s)
- X Ren
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706-1581, USA
| | | | | |
Collapse
|