1
|
Colombo SF, Cardani S, Maroli A, Vitiello A, Soffientini P, Crespi A, Bram RF, Benfante R, Borgese N. Tail-anchored Protein Insertion in Mammals: FUNCTION AND RECIPROCAL INTERACTIONS OF THE TWO SUBUNITS OF THE TRC40 RECEPTOR. J Biol Chem 2016; 291:15292-306. [PMID: 27226539 DOI: 10.1074/jbc.m115.707752] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 11/06/2022] Open
Abstract
The GET (guided entry of tail-anchored proteins)/TRC (transmembrane recognition complex) pathway for tail-anchored protein targeting to the endoplasmic reticulum (ER) has been characterized in detail in yeast and is thought to function similarly in mammals, where the orthologue of the central ATPase, Get3, is known as TRC40 or Asna1. Get3/TRC40 function requires an ER receptor, which in yeast consists of the Get1/Get2 heterotetramer and in mammals of the WRB protein (tryptophan-rich basic protein), homologous to yeast Get1, in combination with CAML (calcium-modulating cyclophilin ligand), which is not homologous to Get2. To better characterize the mammalian receptor, we investigated the role of endogenous WRB and CAML in tail-anchored protein insertion as well as their association, concentration, and stoichiometry in rat liver microsomes and cultured cells. Functional proteoliposomes, reconstituted from a microsomal detergent extract, lost their activity when made with an extract depleted of TRC40-associated proteins or of CAML itself, whereas in vitro synthesized CAML and WRB together were sufficient to confer insertion competence to liposomes. CAML was found to be in ∼5-fold excess over WRB, and alteration of this ratio did not inhibit insertion. Depletion of each subunit affected the levels of the other one; in the case of CAML silencing, this effect was attributable to destabilization of the WRB transcript and not of WRB protein itself. These results reveal unanticipated complexity in the mutual regulation of the TRC40 receptor subunits and raise the question as to the role of the excess CAML in the mammalian ER.
Collapse
Affiliation(s)
- Sara Francesca Colombo
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | - Silvia Cardani
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | - Annalisa Maroli
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | - Adriana Vitiello
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | - Paolo Soffientini
- IFOM, the FIRC Institute for Molecular Oncology Foundation, Milan, Italy 20100 and
| | - Arianna Crespi
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | | | - Roberta Benfante
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| | - Nica Borgese
- From the CNR Institute of Neuroscience and BIOMETRA Department, Università degli Studi di Milano and
| |
Collapse
|
2
|
Velloso LA, Folli F, Saad MJ. TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocr Rev 2015; 36:245-71. [PMID: 25811237 DOI: 10.1210/er.2014-1100] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is accompanied by the activation of low-grade inflammatory activity in metabolically relevant tissues. Studies have shown that obesity-associated insulin resistance results from the inflammatory targeting and inhibition of key proteins of the insulin-signaling pathway. At least three apparently distinct mechanisms-endoplasmic reticulum stress, toll-like receptor (TLR) 4 activation, and changes in gut microbiota-have been identified as triggers of obesity-associated metabolic inflammation; thus, they are expected to represent potential targets for the treatment of obesity and its comorbidities. Here, we review the data that place TLR4 in the center of the events that connect the consumption of dietary fats with metabolic inflammation and insulin resistance. Changes in the gut microbiota can lead to reduced integrity of the intestinal barrier, leading to increased leakage of lipopolysaccharides and fatty acids, which can act upon TLR4 to activate systemic inflammation. Fatty acids can also trigger endoplasmic reticulum stress, which can be further stimulated by cross talk with active TLR4. Thus, the current data support a connection among the three main triggers of metabolic inflammation, and TLR4 emerges as a link among all of these mechanisms.
Collapse
Affiliation(s)
- Licio A Velloso
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Franco Folli
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Mario J Saad
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
3
|
Liu L, Qi H, Wang J, Lin H. PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition. Development 2011; 138:1863-73. [PMID: 21447556 DOI: 10.1242/dev.059287] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nuage is a germline-specific perinuclear structure that remains functionally elusive. Recently, the nuage in Drosophila was shown to contain two of the three PIWI proteins - Aubergine and Argonaute 3 (AGO3) - that are essential for germline development. The PIWI proteins bind to PIWI-interacting RNAs (piRNAs) and function in epigenetic regulation and transposon control. Here, we report a novel nuage component, PAPI (Partner of PIWIs), that contains a TUDOR domain and interacts with all three PIWI proteins via symmetrically dimethylated arginine residues in their N-terminal domain. In adult ovaries, PAPI is mainly cytoplasmic and enriched in the nuage, where it partially colocalizes with AGO3. The localization of PAPI to the nuage does not require the arginine methyltransferase dPRMT5 or AGO3. However, AGO3 is largely delocalized from the nuage and becomes destabilized in the absence of PAPI or dPRMT5, indicating that PAPI recruits PIWI proteins to the nuage to assemble piRNA pathway components. As expected, papi deficiency leads to transposon activation, phenocopying piRNA mutants. This further suggests that PAPI is involved in the piRNA pathway for transposon silencing. Moreover, AGO3 and PAPI associate with the P body component TRAL/ME31B complex in the nuage and transposon activation is observed in tral mutant ovaries. This suggests a physical and functional interaction in the nuage between the piRNA pathway components and the mRNA-degrading P-body components in transposon silencing. Overall, our study reveals a function of the nuage in safeguarding the germline genome against deleterious retrotransposition via the piRNA pathway.
Collapse
Affiliation(s)
- Li Liu
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06509, USA
| | | | | | | |
Collapse
|
4
|
Dejgaard K, Theberge JF, Heath-Engel H, Chevet E, Tremblay ML, Thomas DY. Organization of the Sec61 Translocon, Studied by High Resolution Native Electrophoresis. J Proteome Res 2010; 9:1763-71. [DOI: 10.1021/pr900900x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kurt Dejgaard
- Department of Biochemistry, and McGill Cancer Centre, McIntyre Medical Building, McGill University, 3655 Promenade Sir William Osler, Montreal H3B 1Y6, Canada, and GREF INSERM U889, IFR66, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Jean-Francois Theberge
- Department of Biochemistry, and McGill Cancer Centre, McIntyre Medical Building, McGill University, 3655 Promenade Sir William Osler, Montreal H3B 1Y6, Canada, and GREF INSERM U889, IFR66, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Hannah Heath-Engel
- Department of Biochemistry, and McGill Cancer Centre, McIntyre Medical Building, McGill University, 3655 Promenade Sir William Osler, Montreal H3B 1Y6, Canada, and GREF INSERM U889, IFR66, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Eric Chevet
- Department of Biochemistry, and McGill Cancer Centre, McIntyre Medical Building, McGill University, 3655 Promenade Sir William Osler, Montreal H3B 1Y6, Canada, and GREF INSERM U889, IFR66, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Michel L. Tremblay
- Department of Biochemistry, and McGill Cancer Centre, McIntyre Medical Building, McGill University, 3655 Promenade Sir William Osler, Montreal H3B 1Y6, Canada, and GREF INSERM U889, IFR66, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - David Y. Thomas
- Department of Biochemistry, and McGill Cancer Centre, McIntyre Medical Building, McGill University, 3655 Promenade Sir William Osler, Montreal H3B 1Y6, Canada, and GREF INSERM U889, IFR66, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
5
|
Szakmary A, Reedy M, Qi H, Lin H. The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster. ACTA ACUST UNITED AC 2009; 185:613-27. [PMID: 19433453 PMCID: PMC2711570 DOI: 10.1083/jcb.200903034] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yb regulates the proliferation of both germline and somatic stem cells in the Drosophila melanogaster ovary by activating piwi and hh expression in niche cells. In this study, we show that Yb protein is localized as discrete cytoplasmic spots exclusively in the somatic cells of the ovary and testis. These spots, which are different from all known cytoplasmic structures in D. melanogaster, are evenly electron-dense spheres 1.5 µm in diameter (herein termed the Yb body). The Yb body is frequently associated with mitochondria and a less electron-dense sphere of similar size that appears to be RNA rich. There are one to two Yb bodies/cell, often located close to germline cells. The N-terminal region of Yb is required for hh expression in niche cells, whereas the C-terminal region is required for localization to Yb bodies. The entire Yb protein is necessary for piwi expression in niche cells. A double mutant of Yb and a novel locus show male germline loss, revealing a function for Yb in male germline stem cell maintenance.
Collapse
Affiliation(s)
- Akos Szakmary
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
6
|
Yuki H, Hamanaka R, Shinohara T, Sakai K, Watanabe M. A novel approach for N-glycosylation studies using detergent extracted microsomes. Mol Cell Biochem 2005; 278:157-63. [PMID: 16180101 DOI: 10.1007/s11010-005-7282-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Recently, it has become apparent that asparagine-linked (N-linked) oligosaccharide at an early stage of processing can play an important role in quality control of the secretory pathway. Here, we have developed a system for better understanding of the N-glycosylation machinery and its involvement in quality control in the endoplasmic reticulum (ER). Rough microsomes (RM) treated with 0.18% Tx-100 (TxRM) preserved translocation activities to a similar extent detected in RM. TxRM were depleted of many soluble proteins including glucosidase II, BiP and Erp72, but maintained approximately 80% of calnexin, a membrane protein. More importantly, TxRM revealed insufficient glycosylation of T cell receptor-alpha (TCR-alpha), suggesting that a factor or factors extracted with 0.18% Tx-100 is responsible for facilitating the transfer of oligosaccharides to the protein. In addition, the top band of TCR-alpha translated in TxRM migrated slower than that in RM, but faster than that in RM treated with castanospermine (CST), an inhibitor of glucosidase I/II. This suggests that the trimming of the inner two glucose sugars is impaired by the loss of glucosidase II. Furthermore, we demonstrated that TCR-alpha coprecipitated with calnexin migrated between unglucosylated and diglucosylated forms on SDS-PAGE. Thus, the treatment of RM with low concentration of detergent is a very powerful method for elucidating not only N-glycosylation processes but also other biological functions such as quality control in the ER.
Collapse
Affiliation(s)
- Hideo Yuki
- Department of Anatomy, Biology and Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, Japan
| | | | | | | | | |
Collapse
|
7
|
Brambillasca S, Yabal M, Soffientini P, Stefanovic S, Makarow M, Hegde RS, Borgese N. Transmembrane topogenesis of a tail-anchored protein is modulated by membrane lipid composition. EMBO J 2005; 24:2533-42. [PMID: 15973434 PMCID: PMC1176458 DOI: 10.1038/sj.emboj.7600730] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 06/06/2005] [Indexed: 11/08/2022] Open
Abstract
A large class of proteins with cytosolic functional domains is anchored to selected intracellular membranes by a single hydrophobic segment close to the C-terminus. Although such tail-anchored (TA) proteins are numerous, diverse, and functionally important, the mechanism of their transmembrane insertion and the basis of their membrane selectivity remain unclear. To address this problem, we have developed a highly specific, sensitive, and quantitative in vitro assay for the proper membrane-spanning topology of a model TA protein, cytochrome b5 (b5). Selective depletion from membranes of components involved in cotranslational protein translocation had no effect on either the efficiency or topology of b5 insertion. Indeed, the kinetics of transmembrane insertion into protein-free phospholipid vesicles was the same as for native ER microsomes. Remarkably, loading of either liposomes or microsomes with cholesterol to levels found in other membranes of the secretory pathway sharply and reversibly inhibited b5 transmembrane insertion. These results identify the minimal requirements for transmembrane topogenesis of a TA protein and suggest that selectivity among various intracellular compartments can be imparted by differences in their lipid composition.
Collapse
Affiliation(s)
- Silvia Brambillasca
- CNR Institute of Neuroscience – Cell Mol Pharmacology – and Department of Medical Pharmacology, University of Milan, Milan, Italy
| | - Monica Yabal
- Program of Cellular Biotechnology, Institute of Biotechnology and Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | - Paolo Soffientini
- CNR Institute of Neuroscience – Cell Mol Pharmacology – and Department of Medical Pharmacology, University of Milan, Milan, Italy
| | - Sandra Stefanovic
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marja Makarow
- Program of Cellular Biotechnology, Institute of Biotechnology and Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | - Ramanujan S Hegde
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, 18 Library Drive, Bldg. 18, Room 101, Bethesda, MD 20892, USA. Tel.: +1 301 496 4855; Fax: +1 301 402 0078; E-mail:
| | - Nica Borgese
- CNR Institute of Neuroscience – Cell Mol Pharmacology – and Department of Medical Pharmacology, University of Milan, Milan, Italy
- Faculty of Pharmacy, University of Catanzaro Magna Graecia, Roccelletta di Borgia (CZ), Italy
- CNR Institute of Neuroscience/Cell Mol Pharmacology, via Vanvitelli 32, 20129 Milano, Italy. Tel.: +39 02 503 16971; Fax: +39 02 749 0574; E-mail:
| |
Collapse
|
8
|
Ali BRS, Edwards LC, Field MC. Reconstitution of glycopeptide export in mixed detergent-solubilised and resealed microsomes depleted of lumenal components. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2005; 62:1-12. [PMID: 15656939 DOI: 10.1016/j.jbbm.2004.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 12/22/2003] [Accepted: 01/01/2004] [Indexed: 02/05/2023]
Abstract
Export of macromolecules from the endoplasmic reticulum (ER) lumen into the cytosol is a major aspect of the quality control systems operating within the early secretory system. Glycopeptides are exported from the ER by an ATP- and GTP-dependent pathway, which shares many similarities to the protein export system. Significantly, for glycopeptides, there is no requirement for cytosolic factors, biochemically distinguishing the glycopeptide and protein paths and probably reflecting the lower conformational complexity of the former substrate. Genetic studies in yeast, and biochemical data from higher eukaryotes, indicate that glycopeptides utilise the Sec61 translocon. Here, we report a new system allowing access to lumenal ER components, facilitating assessment of their importance in glycopeptide retrotranslocation and potentially other processes. Saponin, in combination with CHAPS, but not saponin alone, facilitated removal of >95% of lumenal protein disulphide isomerase (PDI) and BiP. Upon resealing, these microsomes retained glycopeptide export competence. These data suggest that the majority of lumenal components of the ER are most likely nonessential for glycopeptide export. In addition, export competence was highly sensitive to the addition of external protease, indicating a role for protein factors with cytoplasmically exposed determinants.
Collapse
Affiliation(s)
- Bassam R S Ali
- Department of Biological Sciences, Imperial College, London, SW7 2AY, UK
| | | | | |
Collapse
|
9
|
Meyer DI. Protein translocation into the endoplasmic reticulum: a light at the end of the tunnel. Trends Cell Biol 2004; 1:154-9. [PMID: 14731858 DOI: 10.1016/0962-8924(91)90016-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intracellular transport of secretory of proteins and many membrane proteins in eukaryotic cells commences with their translocation into or across the membrane of the rough endoplasmic reticulum. Several components of the cellular machinery that mediates this process have been elucidated using in vitro assays or by genetic means. An analysis of how they function will depend on the ability to reassemble them into translocation-competent lipid vesicles.
Collapse
Affiliation(s)
- D I Meyer
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90024, USA
| |
Collapse
|
10
|
Isaac C, Pollard JW, Meier UT. Intranuclear endoplasmic reticulum induced by Nopp140 mimics the nucleolar channel system of human endometrium. J Cell Sci 2001; 114:4253-64. [PMID: 11739657 DOI: 10.1242/jcs.114.23.4253] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Exogenous expression of the characteristic repeat domain of the nucleolar chaperone Nopp140 induces the formation of intranuclear structures, termed R-rings. Here, the R-rings are identified as extensive stacks of membrane cisternae in the otherwise membrane-free nucleus. They consist of bona fide endoplasmic reticulum (ER) containing integral membrane proteins of the smooth and rough ER. Although lacking nuclear pore complexes and lamina, the R-rings derive specifically from the inner nuclear membrane. These findings are consistent with the idea that all transmembrane proteins synthesized in the ER and the outer nuclear membrane can freely diffuse through the pore membrane domain into the inner membrane. Uniquely, the soluble transfected Nopp140 is directly involved in the generation of these membrane stacks as it localizes to the electron dense matrix in which they are embedded. The only well-documented example of intranuclear membrane proliferation is the nucleolar channel system of the postovulation human endometrium. The transient emergence of the nucleolar channel system correlates precisely with the readiness of the endometrium for the implantation of the fertilized egg. The nucleolar channel system exhibits an ultrastructure that is indistinguishable from R-rings, and nuclei of human endometrium harbor Nopp140 and ER marker containing structures. Therefore, the nucleolar channel system appears to be identical to the R-rings, suggesting a role for Nopp140 in human reproduction.
Collapse
Affiliation(s)
- C Isaac
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
11
|
Webb GC, Akbar MS, Zhao C, Steiner DF. Expression profiling of pancreatic beta cells: glucose regulation of secretory and metabolic pathway genes. Proc Natl Acad Sci U S A 2000; 97:5773-8. [PMID: 10811900 PMCID: PMC18509 DOI: 10.1073/pnas.100126597] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pancreatic beta cells respond to changes in blood glucose by secreting insulin and increasing insulin synthesis. To identify genes used in these responses, we have carried out expression profiling of beta cells exposed to high (25 mM) or low (5.5 mM) glucose by using oligonucleotide microarrays. Functional clustering of genes that averaged a 2.2-fold or greater change revealed large groups of secretory pathway components, enzymes of intermediary metabolism, cell-signaling components, and transcription factors. Many secretory pathway genes were up-regulated in high glucose, including seven members of the endoplasmic reticulum (ER) translocon. In agreement with array analysis, protein levels of translocon components were increased by high glucose. Most dramatically, the alpha subunit of the signal recognition particle receptor was increased over 20-fold. These data indicate that the translocon and ribosome docking are major regulatory targets of glucose in the beta cell. Analysis of genes encoding enzymes of intermediary metabolism indicated that low glucose brought about greater utilization of amino acids as an energy source. This conclusion was supported by observations of increased urea production under low-glucose conditions. The above results demonstrate genome-wide integration of beta-cell functions at the level of transcript abundance and validate the efficacy of expression profiling in identifying genes involved in the beta-cell glucose response.
Collapse
Affiliation(s)
- G C Webb
- Department of Biochemistry and Molecular Biology, University of Chicago, and Howard Hughes Medical Institute, 5841 South Maryland Avenue, Room N216, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
12
|
Le Poole IC, Boissy RE, Sarangarajan R, Chen J, Forristal JJ, Sheth P, Westerhof W, Babcock G, Das PK, Saelinger CB. PIG3V, an immortalized human vitiligo melanocyte cell line, expresses dilated endoplasmic reticulum. In Vitro Cell Dev Biol Anim 2000; 36:309-19. [PMID: 10937834 DOI: 10.1290/1071-2690(2000)036<0309:paihvm>2.0.co;2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vitiligo is an enigmatic pigmentary disorder of the skin. Factors potentially involved in the progressive loss of melanocytes from the basal layer of the epidermis include genetically determined aberrancies of the vitiligo melanocyte. It follows that analysis of melanocytes cultured from vitiligo donors can contribute to a further understanding of the etiopathomechanism. A setback for vitiligo research has been the limited availability of vitiligo-derived melanocytes. To overcome this limitation, we have generated a vitiligo melanocyte cell line according to a protocol established previously for the immortalization of normal human melanocytes. Vitiligo melanocytes Ma9308P4 were transfected with HPV16 E6 and E7 genes using the retroviral construct LXSN16E6E7. Successful transformants were selected using geneticin and subsequently cloned to ensure genetic homogeneity. The resulting cell line PIG3V has undergone more than 100 cell population doublings since its establishment as a confluent primary culture, whereas untransfected melanocytes derived from adult skin senesce after a maximum of 50 population doublings. Cells immortalized by this transfection procedure retain lineage-specific characteristics and proliferate significantly faster than parental cells. In this study, the phenotype of PIG3V resembled melanocytes rather than melanoma cells in culture. Tyrosinase was processed properly and melanosomes remained pigmented. Importantly, ultrastructural characterization of PIG3V cells revealed dilated endoplasmic reticulum profiles characteristic of vitiligo melanocytes. An explanation for this dilation may be found in the retention of proteins with molecular weight of 37.5. 47.5, and 56.5 kDa, as determined by gel electrophoresis of microsomal proteins isolated from radiolabeled cells.
Collapse
Affiliation(s)
- I C Le Poole
- Department of Dermatology, Amsterdam University, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pedrazzini E, Villa A, Longhi R, Bulbarelli A, Borgese N. Mechanism of residence of cytochrome b(5), a tail-anchored protein, in the endoplasmic reticulum. J Cell Biol 2000; 148:899-914. [PMID: 10704441 PMCID: PMC2174551 DOI: 10.1083/jcb.148.5.899] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endoplasmic reticulum (ER) proteins maintain their residency by static retention, dynamic retrieval, or a combination of the two. Tail-anchored proteins that contain a cytosolic domain associated with the lipid bilayer via a hydrophobic stretch close to the COOH terminus are sorted within the secretory pathway by largely unknown mechanisms. Here, we have investigated the mode of insertion in the bilayer and the intracellular trafficking of cytochrome b(5) (b[5]), taken as a model for ER-resident tail-anchored proteins. We first demonstrated that b(5) can acquire a transmembrane topology posttranslationally, and then used two tagged versions of b(5), N-glyc and O-glyc b(5), containing potential N- and O-glycosylation sites, respectively, at the COOH-terminal lumenal extremity, to discriminate between retention and retrieval mechanisms. Whereas the N-linked oligosaccharide provided no evidence for retrieval from a downstream compartment, a more stringent assay based on carbohydrate acquisition by O-glyc b(5) showed that b(5) gains access to enzymes catalyzing the first steps of O-glycosylation. These results suggest that b(5) slowly recycles between the ER and the cis-Golgi complex and that dynamic retrieval as well as retention are involved in sorting of tail-anchored proteins.
Collapse
Affiliation(s)
- Emanuela Pedrazzini
- Consiglio Nazionale Ricerche Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Italy 20129
| | - Antonello Villa
- Consiglio Nazionale Ricerche Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Italy 20129
- Biological and Technological Research Department, Scientific Institute San Raffaele, Milan, Italy 20132
| | - Renato Longhi
- Consiglio Nazionale Ricerche Institute of Biocatalysis and Molecular Recognition, Milan, Italy 20133
| | - Alessandra Bulbarelli
- Consiglio Nazionale Ricerche Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Italy 20129
| | - Nica Borgese
- Consiglio Nazionale Ricerche Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Italy 20129
- Faculty of Pharmacy, University of Catanzaro “Magna Graecia”, Roccelletta di Borgia (Catanzaro), Italy 88021
| |
Collapse
|
14
|
Rancour DM, Menon AK. Identification of endoplasmic reticulum proteins involved in glycan assembly: synthesis and characterization of P3-(4-azidoanilido)uridine 5'-triphosphate, a membrane-topological photoaffinity probe for uridine diphosphate-sugar binding proteins. Biochem J 1998; 333 ( Pt 3):661-9. [PMID: 9677326 PMCID: PMC1219630 DOI: 10.1042/bj3330661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Much of the enzymic machinery required for the assembly of cell surface carbohydrates is located in the endoplasmic reticulum (ER) of eukaryotic cells. Structural information on these proteins is limited and the identity of the active polypeptide(s) is generally unknown. This paper describes the synthesis and characteristics of a photoaffinity reagent that can be used to identify and analyse members of the ER glycan assembly apparatus, specifically those glycosyltransferases, nucleotide phosphatases and nucleotide-sugar transporters that recognize uridine nucleotides or UDP-sugars. The photoaffinity reagent, P3-(4-azidoanilido)uridine 5'-triphosphate (AAUTP), was synthesized easily from commercially available precursors. AAUTP inhibited the activity of ER glycosyltransferases that utilize UDP-GlcNAc and UDP-Glc, indicating that it is recognized by UDP-sugar-binding proteins. In preliminary tests AAUTP[alpha-32P] labelled bovine milk galactosyltransferase, a model UDP-sugar-utilizing enzyme, in a UV-light-dependent, competitive and saturable manner. When incubated with rat liver ER vesicles, AAUTP[alpha-32P] labelled a discrete subset of ER proteins; labelling was light-dependent and metal ion-specific. Photolabelling of intact ER vesicles with AAUTP[alpha-32P] caused selective incorporation of radioactivity into proteins with cytoplasmically disposed binding sites; UDP-Glc:glycoprotein glucosyltransferase, a lumenal protein, was labelled only when the vesicle membrane was disrupted. These data indicate that AAUTP is a membrane topological probe of catalytic sites in target proteins. Strategies for using AAUTP to identify and study novel ER proteins involved in glycan assembly are discussed.
Collapse
Affiliation(s)
- D M Rancour
- Department of Biochemistry, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706-1569, USA
| | | |
Collapse
|
15
|
Mothes W, Jungnickel B, Brunner J, Rapoport TA. Signal sequence recognition in cotranslational translocation by protein components of the endoplasmic reticulum membrane. J Cell Biol 1998; 142:355-64. [PMID: 9679136 PMCID: PMC2133054 DOI: 10.1083/jcb.142.2.355] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/1997] [Revised: 06/09/1998] [Indexed: 02/08/2023] Open
Abstract
We have investigated the role of membrane proteins and lipids during early phases of the cotranslational insertion of secretory proteins into the translocation channel of the endoplasmic reticulum (ER) membrane. We demonstrate that all steps, including the one during which signal sequence recognition occurs, can be reproduced with purified translocation components in detergent solution, in the absence of bulk lipids or a bilayer. Photocross-linking experiments with native membranes show that upon complete insertion into the channel signal sequences are both precisely positioned with respect to the protein components of the channel and contact lipids. Together, these results indicate that signal sequences are bound to a specific binding site at the interface between the channel and the surrounding lipids, and are recognized ultimately by protein-protein interactions. Our data also suggest that at least some signal sequences reach the binding site by transfer through the interior of the channel.
Collapse
Affiliation(s)
- W Mothes
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
16
|
Hegde RS, Voigt S, Lingappa VR. Regulation of protein topology by trans-acting factors at the endoplasmic reticulum. Mol Cell 1998; 2:85-91. [PMID: 9702194 DOI: 10.1016/s1097-2765(00)80116-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In mammalian cells, the Sec61 complex and translocating chain-associated membrane protein (TRAM) are necessary and sufficient to direct the biogenesis, in the appropriate topology, of all secretory and membrane proteins examined thus far. We demonstrate here that the proper translocation of the prion protein (PrP), a substrate that can be synthesized in more than one topologic form, requires additional factors. In the absence of these additional factors, PrP is synthesized exclusively in the transmembrane topology (termed the CtmPrP form) associated with the development of neurodegenerative disease. Thus, translocation accessory factors, acting on some but not other substrates, can function as molecular switches to redirect nascent proteins toward divergent topologic fates with different functional consequences.
Collapse
Affiliation(s)
- R S Hegde
- Department of Physiology, University of California, San Francisco 94143-0444, USA
| | | | | |
Collapse
|
17
|
Brodsky JL. Translocation of proteins across the endoplasmic reticulum membrane. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 178:277-328. [PMID: 9348672 DOI: 10.1016/s0074-7696(08)62139-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Secretory protein biogenesis begins with the insertion of a preprotein into the lumen of the endoplasmic reticulum (ER). This insertion event, known as ER protein translocation, can occur either posttranslationally, in which the preprotein is completely synthesized on cytosolic ribosomes before being translocated, or cotranslationally, in which membrane-associated ribosomes direct the nascent polypeptide chain into the ER concomitant with polypeptide elongation. In either case, preproteins are targeted to the ER membrane through specific interactions with cytosolic and/or ER membrane factors. The preprotein is then transferred to a multiprotein translocation machine in the ER membrane that includes a pore through which the preprotein passes into the ER lumen. The energy required to drive protein translocation may derive either from the coupling of translation to translocation (during cotranslational translocation) or from ER lumenal molecular chaperones that may harness the preprotein or regulate the translocation machinery (during posttranslational translocation).
Collapse
Affiliation(s)
- J L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
18
|
Hinnah SC, Hill K, Wagner R, Schlicher T, Soll J. Reconstitution of a chloroplast protein import channel. EMBO J 1997; 16:7351-60. [PMID: 9405364 PMCID: PMC1170335 DOI: 10.1093/emboj/16.24.7351] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chloroplastic outer envelope protein OEP75 with a molecular weight of 75 kDa probably forms the central pore of the protein import machinery of the outer chloroplastic membrane. Patch-clamp analysis shows that heterologously expressed, purified and reconstituted OEP75 constitutes a voltage-gated ion channel with a unit conductance of Lambda = 145pS. Activation of the OEP75 channel in vitro is completely dependent on the magnitude and direction of the voltage gradient. Therefore, movements of protein charges of parts of OEP75 in the membrane electric field are required either for pore formation or its opening. In the presence of precursor protein from only one side of the bilayer, strong flickering and partial closing of the channel was observed, indicating a specific interaction of the precursor with OEP75. The comparatively low ionic conductance of OEP75 is compatible with a rather narrow aqueous pore (dporeapproximately equal to 8-9 A). Provided that protein and ion translocation occur through the same pore, this implies that the environment of the polypeptide during the transit is mainly hydrophilic and that protein translocation requires almost complete unfolding of the precursor.
Collapse
Affiliation(s)
- S C Hinnah
- Biophysik, Universität Osnabrück, FB Biologie/Chemie, D-49034 Osnabr-uck, Germany
| | | | | | | | | |
Collapse
|
19
|
Savitz AJ, Meyer DI. Receptor-mediated ribosome binding to liposomes depends on lipid composition. J Biol Chem 1997; 272:13140-5. [PMID: 9148928 DOI: 10.1074/jbc.272.20.13140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ribosome binding to the endoplasmic reticulum has been traditionally studied using an in vitro assay in which potential ribosome receptors have been purified, incorporated into synthetic liposomes, and tested for activity. One such receptor (180 kDa; "p180") has been shown to bind ribosomes with high affinity in such a system when purified to homogeneity. This result has been challenged by data generated in other laboratories, and as a result, doubt has lingered as to the authenticity of p180 as a ribosome receptor. The contribution of the major difference between these studies, the lipid composition of the liposomes used in the in vitro assays, was assessed when identical fractions of rough endoplasmic reticulum-specific membrane proteins were incorporated into liposomes composed of only phosphatidylcholine (as used in other laboratories), a 50:50 mix of phosphatidylcholine and phosphatidylserine (as used in our original studies), or lipids derived from canine pancreatic microsomes (as a physiologically relevant control). The presence of PS was found to be crucial for the incorporation into and ribosome binding activity of p180 in liposomes. These observations are compatible with published studies on the importance of acidic phospholipids in ribosome binding to intact microsomes and reconcile the apparently conflicting in vitro results surrounding the assignment of p180 as a ribosome receptor.
Collapse
Affiliation(s)
- A J Savitz
- Department of Biological Chemistry and the Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California 90024-1737, USA
| | | |
Collapse
|
20
|
Borgese N, Aggujaro D, Carrera P, Pietrini G, Bassetti M. A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes. J Biophys Biochem Cytol 1996; 135:1501-13. [PMID: 8978818 PMCID: PMC2133939 DOI: 10.1083/jcb.135.6.1501] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
N-myristoylation is a cotranslational modification involved in protein-protein interactions as well as in anchoring polypeptides to phospholipid bilayers; however, its role in targeting proteins to specific subcellular compartments has not been clearly defined. The mammalian myristoylated flavoenzyme NADH-cytochrome b5 reductase is integrated into ER and mitochondrial outer membranes via an anchor containing a stretch of 14 uncharged amino acids downstream to the NH2-terminal myristoylate glycine. Since previous studies suggested that the anchoring function could be adequately carried out by the 14 uncharged residues, we investigated a possible role for myristic acid in reductase targeting. The wild type (wt) and a nonmyristoylatable reductase mutant (gly2-->ala) were stably expressed in MDCK cells, and their localization was investigated by immunofluorescence, immuno-EM, and cell fractionation. By all three techniques, the wt protein localized to ER and mitochondria, while the nonmyristoylated mutant was found only on ER membranes. Pulse-chase experiments indicated that this altered steady state distribution was due to the mutant's inability to target to mitochondria, and not to its enhanced instability in that location. Both wt and mutant reductase were resistant to Na2CO3 extraction and partitioned into the detergent phase after treatment of a membrane fraction with Triton X-114, demonstrating that myristic acid is not required for tight anchoring of reductase to membranes. Our results indicate that myristoylated reductase localizes to ER and mitochondria by different mechanisms, and reveal a novel role for myristic acid in protein targeting.
Collapse
Affiliation(s)
- N Borgese
- Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Italy.
| | | | | | | | | |
Collapse
|
21
|
Abstract
The last few years has seen enormous progress in understanding of protein targeting and translocation across biological membranes. Many of the key molecules involved have been identified, isolated, and the corresponding genes cloned, opening up the way for detailed analysis of the structure and function of these molecular machines. It has become clear that the protein translocation machinery of the endoplasmic reticulum is very closely related to that of bacteria, and probably represents an ancient solution to the problem of how to get a protein across a membrane. One of the thylakoid translocation systems looks as if it will also be very similar, and probably represents a pathway inherited from the ancestral endosymbiont. It is interesting that, so far, there is a perfect correlation between thylakoid proteins which are present in photosynthetic prokaryotes and those which use the sec pathway in chloroplasts; conversely, OE16 and 23 which use the delta pH pathway are not found in cyanobacteria. To date, no Sec-related proteins have been found in mitochondria, although these organelles also arose as a result of endosymbiotic events. However, virtually nothing is known about the insertion of mitochondrially encoded proteins into the inner membrane. Is the inner membrane machinery which translocates cytoplasmically synthesized proteins capable of operating in reverse to export proteins from the matrix, or is there a separate system? Alternatively, do membrane proteins encoded by mitochondrial DNA insert independently of accessory proteins? Unlike nuclear-encoded proteins, proteins encoded by mtDNA are not faced with a choice of membrane and, in principle, could simply partition into the inner membrane. The ancestors of mitochondria almost certainly had a Sec system; has this been lost along with many of the proteins once encoded in the endosymbiont genome, or is there still such a system waiting to be discovered? The answer to this question may also shed light on the controversy concerning the sorting of the inter-membrane space proteins cytochrome c1 and cytochrome b2, as the conservative-sorting hypothesis would predict re-export of matrix intermediates via an ancestral (possibly Sec-type) pathway. Whereas the ER and bacterial systems clearly share homologous proteins, the protein import machineries of mitochondria and chloroplasts appear to be analogous rather than homologous. In both cases, import occurs through contact sites and there are separate translocation complexes in each membrane, however, with the exception of some of the chaperone molecules, the individual protein components do not appear to be related. Their similarities may be a case of convergent rather than divergent evolution, and may reflect what appear to be common requirements for translocation, namely unfolding, a receptor, a pore complex and refolding. There are also important differences. Translocation across the mitochondrial inner membrane is absolutely dependent upon delta psi, but no GTP requirement has been identified. In chloroplasts the reverse is the case. The roles of delta psi and GTP, respectively, remain uncertain, but it is tempting to speculate that they may play a role in regulating the import process, perhaps by controlling the assembly of a functional translocation complex. In the case of peroxisomes, much still remains to be learned. Many genes involved in peroxisome biogenesis have been identified but, in most cases, the biochemical function remains to be elucidated. In this respect, understanding of peroxisome biogenesis is at a similar stage to that of the ER 10 years ago. The coming together of genetic and biochemical approaches, as with the other organelles, should provide many of the answers.
Collapse
Affiliation(s)
- A Baker
- Department of Biochemistry, University of Cambridge, UK
| | | | | |
Collapse
|
22
|
Isenman L, Liebow C, Rothman S. Transport of proteins across membranes--a paradigm in transition. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:341-70. [PMID: 8547300 DOI: 10.1016/0304-4157(95)00009-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- L Isenman
- Department of Physiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
23
|
Santolini E, Pacini L, Fipaldini C, Migliaccio G, Monica N. The NS2 protein of hepatitis C virus is a transmembrane polypeptide. J Virol 1995; 69:7461-71. [PMID: 7494252 PMCID: PMC189684 DOI: 10.1128/jvi.69.12.7461-7471.1995] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The NS2 protein of hepatitis C virus (HCV) is released from its polyprotein precursor by two proteolytic cleavages. The N terminus of this protein is separated from the E2/p7 polypeptide by a cleavage thought to be mediated by signal peptidase, whereas the NS2-3 junction located at the C terminus is processed by a viral protease. To characterize the biogenesis of NS2 encoded by the BK strain of HCV, we have defined the minimal region of the polyprotein required for efficient cleavage at the NS2-3 site and analyzed the interaction of the mature polypeptide with the membrane of the endoplasmic reticulum (ER). We have observed that although cleavage can occur in vitro in the absence of microsomal membranes, synthesis of the polyprotein precursor in the presence of membranes greatly increases processing at this site. Furthermore, we show that the membrane dependency for efficient in vitro processing varies among different HCV strains and that host proteins located on the ER membrane, and in particular the signal recognition particle receptor, are required to sustain efficient proteolysis. By means of sedimentation analysis, protease protection assay, and site-directed mutagenesis, we also demonstrate that the NS2 protein derived from processing at the NS2-3 site is a transmembrane polypeptide, with the C terminus translocated in the lumen of the ER and the N terminus located in the cytosol.
Collapse
Affiliation(s)
- E Santolini
- Istituto di Ricerche di Biologia Molecolare, Angeletti, Pomezia, Italy
| | | | | | | | | |
Collapse
|
24
|
Mucci D, Forristal J, Strickland D, Morris R, Fitzgerald D, Saelinger CB. Level of receptor-associated protein moderates cellular susceptibility to pseudomonas exotoxin A. Infect Immun 1995; 63:2912-8. [PMID: 7622212 PMCID: PMC173396 DOI: 10.1128/iai.63.8.2912-2918.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas exotoxin A (PE) enters mammalian cells via a receptor-mediated endocytic pathway. The initial step in this pathway is binding to the multiligand receptor termed the alpha 2-macroglobulin receptor/low-density lipoprotein receptor-related protein (LRP). Binding of toxin, and of the many other ligands that bind to LRP, is blocked by the addition of a 39-kDa receptor-associated protein (RAP). Here we show that approximately 40% of the cell-associated LRP is on the surface of toxin-sensitive mouse LM fibroblasts and thus accessible for toxin internalization. The remainder is located intracellularly, primarily in the Golgi region. Mammalian cells exhibit a wide range of sensitivity to PE. To investigate possible reasons for this, we examined the expression levels of both LRP and RAP. Results from a variety of cell lines indicated that there was a positive correlation between LRP expression and toxin sensitivity. In the absence of LRP, cells were as much as 200-fold more resistant to PE compared with sensitive cells. A second group of resistant cells expressed LRP but had a high level of RAP. Thus, a toxin-resistant phenotype would be expected when cells expressed either low levels of LRP or high levels of LRP in the presence of high levels of RAP. We hypothesize that RAP has a pivotal role in moderating cellular susceptibility to PE.
Collapse
Affiliation(s)
- D Mucci
- Department of Molecular Genetics, University of Cincinnati, College of Medicine, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wanker EE, Sun Y, Savitz AJ, Meyer DI. Functional characterization of the 180-kD ribosome receptor in vivo. J Cell Biol 1995; 130:29-39. [PMID: 7790375 PMCID: PMC2120505 DOI: 10.1083/jcb.130.1.29] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A cDNA encoding the 180-kD canine ribosome receptor (RRp) was cloned and sequenced. The deduced primary structure indicates three distinct domains: an NH2-terminal stretch of 28 uncharged amino acids representing the membrane anchor, a basic region (pI = 10.74) comprising the remainder of the NH2-terminal half and an acidic COOH-terminal half (pI = 4.99). The most striking feature of the amino acid sequence is a 10-amino acid consensus motif, NQGKKAEGAP, repeated 54 times in tandem without interruption in the NH2-terminal positively charged region. We postulate that this repeated sequence represents a ribosome binding domain which mediates the interaction between the ribosome and the ER membrane. To substantiate this hypothesis, recombinant full-length ribosome receptor and two truncated versions of this protein, one lacking the potential ribosome binding domain, and one lacking the COOH terminus, were expressed in Saccharomyces cerevisiae. Morphological and biochemical analyses showed all proteins were targeted to, and oriented correctly in the ER membrane. In vitro ribosome binding assays demonstrated that yeast microsomes containing the full-length canine receptor or one lacking the COOH-terminal domain were able to bind two to four times as many human ribosomes as control membranes lacking a recombinant protein or microsomes containing a receptor lacking the NH2-terminal basic domain. Electron micrographs of these cells revealed that the expression of all receptor constructs led to a proliferation of perinuclear ER membranes known as "karmellae." Strikingly, in those strains which expressed cDNAs encoding a receptor containing the putative ribosome binding domain, the induced ER membranes (examined in situ) were richly studded with ribosomes. In contrast, karmellae resulting from the expression of receptor cDNA lacking the putative ribosome binding domain were uniformly smooth and free of ribosomes. Cell fractionation and biochemical analyses corroborated the morphological characterization. Taken together these data provide further evidence that RRp functions as a ribosome receptor in vitro, provide new evidence indicating its functionality in vivo, and in both cases indicate that the NH2-terminal basic domain is essential for ribosome binding.
Collapse
Affiliation(s)
- E E Wanker
- Department of Biological Chemistry, UCLA School of Medicine 90024, USA
| | | | | | | |
Collapse
|
26
|
Berthold J, Bauer MF, Schneider HC, Klaus C, Dietmeier K, Neupert W, Brunner M. The MIM complex mediates preprotein translocation across the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP driving system. Cell 1995; 81:1085-93. [PMID: 7600576 DOI: 10.1016/s0092-8674(05)80013-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified a complex in mitochondria that functions as a part of the preprotein import machinery of the inner membrane (MIM complex). Two known components, MIM23 and MIM17, and two novel components, MIM33 and MIM14, were found as constituents of this complex. In the presence of a translocating chain, the outer membrane import machinery (MOM complex) and the MIM complex form translocation contact sites. On the matrix side, the MIM complex is associated with the mt-Hsp70-MIM44 system. We propose a structure of the import machinery in which the MIM complex constitutes a proteinaceous channel that accepts preproteins from the MOM complex, facilitates their reversible transmembrane movement, and mediates unidirectional transport by linkage to the ATP-dependent mt-Hsp70-MIM44 system.
Collapse
Affiliation(s)
- J Berthold
- Institut für Physiologische Chemie, Universität München, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Chapter 7 Protein Glycosylation in Yeast. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
28
|
Hannavy K, Rospert S, Schatz G. Protein import into mitochondria: a paradigm for the translocation of polypeptides across membranes. Curr Opin Cell Biol 1993; 5:694-700. [PMID: 8257609 DOI: 10.1016/0955-0674(93)90142-d] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The translocation of proteins across membranes usually requires specific transport systems composed of membrane-bound and soluble components. A combination of biochemical and genetic approaches has led to the identification and preliminary characterization of some of these components.
Collapse
Affiliation(s)
- K Hannavy
- Department of Biochemistry, Biocenter of the University of Basel, Switzerland
| | | | | |
Collapse
|
29
|
Rao NM, Nagaraj R. Interaction of wild-type signal sequences and their charged variants with model and natural membranes. Biochem J 1993; 293 ( Pt 1):43-9. [PMID: 8328971 PMCID: PMC1134318 DOI: 10.1042/bj2930043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The interaction of synthetic peptides corresponding to wild-type signal sequences, and their mutants having charged amino acids in the hydrophobic region, with model and natural membranes has been studied. At high peptide concentrations, i.e. low lipid/peptide ratios, the signal peptides cause release of carboxyfluorescein (CF) from model membranes with lipid compositions corresponding to those of translocation-competent as well as translocation-incompetent membranes. Interestingly, mutant sequences, which were non-functional in vivo, caused considerable release of CF compared with the wild-type sequences. Both wild-type and mutant signal sequences perturb model membranes even at lipid/peptide ratios of 1000:1, as indicated by the activities of phospholipases A2, C and D. These studies indicate that such mutant signals are non-functional not because of their inability to interact with membranes, but due to defective targeting to the membrane. The signal peptides inhibit phospholipase C activity in microsomes, uncouple oxidative phosphorylation in mitochondria and increase K+ efflux from erythrocytes, and one of the mutant sequences is a potent degranulator of the mast cells. Both wild-type and mutant signal sequences have the ability to perturb vesicles of various lipid compositions. With respect to natural membranes, the peptides do not show any bias towards translocation-competent membranes.
Collapse
Affiliation(s)
- N M Rao
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
30
|
Nicchitta CV, Blobel G. Lumenal proteins of the mammalian endoplasmic reticulum are required to complete protein translocation. Cell 1993; 73:989-98. [PMID: 8500184 DOI: 10.1016/0092-8674(93)90276-v] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of the lumenal contents (reticuloplasm) of the endoplasmic reticulum (ER) in protein translocation was determined by in vitro analysis. Depletion of the reticuloplasm from mammalian rough microsomes revealed two distinct stages of the translocation reaction. The first stage, translocation up to and including signal peptide cleavage, was insensitive to the loss of the reticuloplasm, whereas the second stage, net transfer of the nascent chain into the ER lumen, was reticuloplasm dependent. In reticuloplasm-depleted membranes, signal-cleaved and glycosylated translocation intermediates were observed to transit free from the translocation channel to the cis, or cytoplasmic, side of the membrane. This translocation defect was complemented by reconstitution of lumenal proteins into depleted membranes. We propose that lumenal proteins are necessary for unidirectional protein translocation in mammalian ER.
Collapse
Affiliation(s)
- C V Nicchitta
- Laboratory of Cell Biology, Rockefeller University, Howard Hughes Medical Institute, New York, New York 10021-6399
| | | |
Collapse
|
31
|
Abstract
A synthetic mitochondrial presequence has been shown to translocate across pure phospholipid bilayers. The presequence was fluorescently labeled so that its association with membranes could be monitored spectroscopically. In the presence of large unilamellar vesicles, the presequence showed time- and potential-dependent protection from reaction with added trypsin and dithionite. The protection was rapidly reversed by treatment of the vesicles with detergent. If the vesicles contained trypsin, the added presequence became sensitive to digestion by the protease. The results show that a mitochondrial presequence can translocate across phospholipid bilayers that lack a hydrophilic translocation pore.
Collapse
Affiliation(s)
- M Maduke
- Department of Chemistry, University of California, San Diego, La Jolla 92093-0506
| | | |
Collapse
|
32
|
Savitz AJ, Meyer DI. 180-kD ribosome receptor is essential for both ribosome binding and protein translocation. J Cell Biol 1993; 120:853-63. [PMID: 8381785 PMCID: PMC2200074 DOI: 10.1083/jcb.120.4.853] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have previously isolated a 180-kD ribosome receptor (p180) from mammalian rough ER that, when incorporated into liposomes, bound ribosomes with an affinity similar to intact membranes. To directly assess the contribution of p180 to ribosome binding as well as protein translocation, monoclonal antibodies were used to selectively deplete p180 from the detergent extracts of rough ER membranes used in the preparation of translocation-competent proteoliposomes. Proteoliposomes prepared from p180-depleted extracts showed a reduction in ribosome binding to the level of trypsin-inactivated controls as well as a loss in their ability to cotranslationally translocate two different secretory protein precursors. When purified p180 was added back to depleted extracts before proteoliposome formation, both ribosome binding and translocation activity were restored. In addition, the monoclonal antibodies, as well as their Fab' fragments, were able to inhibit ribosome binding and protein translocation when bound to intact rough microsomes. These data provide direct evidence that the 180-kD ribosome receptor is essential for ribosome binding and for the translocation of nascent proteins across the membrane of the rough ER.
Collapse
Affiliation(s)
- A J Savitz
- Department of Biological Chemistry, University of California, Los Angeles School of Medicine
| | | |
Collapse
|
33
|
Brodsky JL, Hamamoto S, Feldheim D, Schekman R. Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles for BiP and cytosolic Hsc70. J Cell Biol 1993; 120:95-102. [PMID: 8416998 PMCID: PMC2119491 DOI: 10.1083/jcb.120.1.95] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We reconstituted prepro-alpha-factor translocation and signal peptide processing using a yeast microsomal detergent soluble fraction formed into vesicles with soybean phospholipids. Reconstituted translocation required ATP, and was deficient when sec63 and kar2 (BiP) mutant cells were used as a source of membranes. Normal translocation was observed with vesicles reconstituted from a mixture of pure wild-type yeast BiP and a soluble fraction of kar2 mutant membranes. Two other heat-shock cognate (hsc) 70 homologs, yeast cytosolic hsc70 (Ssalp) and E. coli dnaK protein did not replace BiP. Conversely, BiP was not active under conditions where translocation into native ER vesicles required cytosolic hsc70. We conclude that cytosolic hsc70 and BiP serve noninterchangeable roles in polypeptide translocation, possibly because distinct, asymmetrically oriented membrane proteins are required to recruit each protein to opposing surfaces of the ER membrane.
Collapse
Affiliation(s)
- J L Brodsky
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
34
|
Klappa P, Zimmermann M, Dierks T, Zimmermann R. Components and mechanisms involved in transport of proteins into the endoplasmic reticulum. Subcell Biochem 1993; 21:17-40. [PMID: 8256266 DOI: 10.1007/978-1-4615-2912-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P Klappa
- Zentrum Biochemie/Abteilung Biochemie II der Universität, Göttingen, Germany
| | | | | | | |
Collapse
|
35
|
Anderson L, Denny J. Protein translocation in the endoplasmic reticulum. Ultraviolet light induces the noncovalent association of nascent peptides with translocon proteins. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35924-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Affiliation(s)
- W W Just
- Institut für Biochemie I, Universität Heidelberg, Germany
| | | |
Collapse
|
37
|
Nunnari J, Walter P. Protein targeting to and translocation across the membrane of the endoplasmic reticulum. Curr Opin Cell Biol 1992; 4:573-80. [PMID: 1419037 DOI: 10.1016/0955-0674(92)90074-m] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several approaches are currently being taken to elucidate the mechanisms and the molecular components responsible for protein targeting to and translocation across the membrane of the endoplasmic reticulum. Two experimental systems dominate the field: a biochemical system derived from mammalian exocrine pancreas, and a combined genetic and biochemical system employing the yeast, Saccharomyces cerevisiae. Results obtained in each of these systems have contributed novel, mostly non-overlapping information. Recently, much effort in the field has been dedicated to identifying membrane proteins that comprise the translocon. Membrane proteins involved in translocation have been identified both in the mammalian system, using a combination of crosslinking and reconstitution approaches, and in S. cerevisiae, by selecting for mutants in the translocation pathway. None of the membrane proteins isolated, however, appears to be homologous between the two experimental systems. In the case of the signal recognition particle, the two systems have converged, which has led to a better understanding of how proteins are targeted to the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- J Nunnari
- University of California, San Francisco
| | | |
Collapse
|
38
|
Abstract
Nopp140 is a nucleolar phosphoprotein of 140 kd that we originally identified and purified as a nuclear localization signal (NLS)-binding protein. Molecular characterization revealed a 10-fold repeated motif of highly conserved acidic serine clusters that contain an abundance of phosphorylation consensus sites for casein kinase II (CK II). Indeed, Nopp140 is one of the most phosphorylated proteins in the cell, and NLS binding was dependent on phosphorylation. Nopp140 was shown to shuttle between the nucleolus and the cytoplasm. Shuttling is likely to proceed on tracks that were revealed by immunoelectron microscopy. These tracks extend from the dense fibrillar component of the nucleolus across the nucleoplasm to some nuclear pore complexes. We suggest that Nopp140 functions as a chaperone for import into and/or export from the nucleolus.
Collapse
Affiliation(s)
- U T Meier
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
39
|
Chaudhuri B, Steube K, Stephan C. The pro-region of the yeast prepro-alpha-factor is essential for membrane translocation of human insulin-like growth factor 1 in vivo. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:793-800. [PMID: 1606961 DOI: 10.1111/j.1432-1033.1992.tb16986.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Four yeast secretion signals, the 19-amino-acid invertase signal sequence, the 17-amino-acid acid-phosphatase signal sequence, and the pre-sequence and prepro-sequence of prepro-alpha-factor have been used to look for the secretion of recombinant human insulin-like growth factor 1 (IGF1) from Saccharomyces cerevisiae. Only the prepro-sequence, often referred to as the alpha-factor leader and consisting of an N-terminal 19-amino-acid pre-sequence or signal sequence attached to a 66-amino-acid pro-region, permits secretion of IGF1. The signal sequences alone do not allow the translocation of IGF1 into the endoplasmic reticulum. This is evident from the fact that IGF1-like molecules, to which the signal sequences are still attached, accumulate intracellularly in the cytosol. Fusion of the pro-region of the alpha-factor leader to the C-terminus of the acid-phosphatase and invertase signal sequences allows IGF1 to be secreted once again. These results reveal the essential role of the pro-region of the alpha-factor leader in the secretion of IGF1 and indicate that it may have a function in guiding a nascent IGF1 polypeptide to a state in which translocation can occur.
Collapse
Affiliation(s)
- B Chaudhuri
- Biotechnology Department, Ciba-Geigy Ltd., Basel, Switzerland
| | | | | |
Collapse
|
40
|
Görlich D, Hartmann E, Prehn S, Rapoport TA. A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 1992; 357:47-52. [PMID: 1315422 DOI: 10.1038/357047a0] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To identify components of the mammalian endoplasmic reticulum involved in the translocation of secretory proteins, crosslinking and reconstitution methods were combined. A multispanning abundant membrane glycoprotein was found which is in proximity to nascent chains early in translocation. In reconstituted proteoliposomes, this protein is stimulatory or required for the translocation of secretory proteins.
Collapse
Affiliation(s)
- D Görlich
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | |
Collapse
|
41
|
Migliaccio G, Nicchitta CV, Blobel G. The signal sequence receptor, unlike the signal recognition particle receptor, is not essential for protein translocation. J Biophys Biochem Cytol 1992; 117:15-25. [PMID: 1313437 PMCID: PMC2289408 DOI: 10.1083/jcb.117.1.15] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Detergent extracts of canine pancreas rough microsomal membranes were depleted of either the signal recognition particle receptor (SR), which mediates the signal recognition particle (SRP)-dependent targeting of the ribosome/nascent chain complex to the membrane, or the signal sequence receptor (SSR), which has been proposed to function as a membrane bound receptor for the newly targeted nascent chain and/or as a component of a multi-protein translocation complex responsible for transfer of the nascent chain across the membrane. Depletion of the two components was performed by chromatography of detergent extracts on immunoaffinity supports. Detergent extracts lacking either SR or SSR were reconstituted and assayed for activity with respect to SR dependent elongation arrest release, nascent chain targeting, ribosome binding, secretory precursor translocation, and membrane protein integration. Depletion of SR resulted in the loss of elongation arrest release activity, nascent chain targeting, secretory protein translocation, and membrane protein integration, although ribosome binding was unaffected. Full activity was restored by addition of immunoaffinity purified SR before reconstitution of the detergent extract. Surprisingly, depletion of SSR was without effect on any of the assayed activities, indicating that SSR is either not required for translocation or is one of a family of functionally redundant components.
Collapse
Affiliation(s)
- G Migliaccio
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York 10021-6399
| | | | | |
Collapse
|
42
|
Lingappa VR. More than just a channel: provocative new features of protein traffic across the ER membrane. Cell 1991; 65:527-30. [PMID: 1709589 DOI: 10.1016/0092-8674(91)90081-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- V R Lingappa
- Department of Physiology, University of California, San Francisco 94143
| |
Collapse
|
43
|
Nicchitta C, Migliaccio G, Blobel G. Reconstitution of secretory protein translocation from detergent-solubilized rough microsomes. Methods Cell Biol 1991; 34:263-85. [PMID: 1943804 DOI: 10.1016/s0091-679x(08)61685-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- C Nicchitta
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|