1
|
Wang N, Ockerman FP, Zhou LY, Grove ML, Alkis T, Barnard J, Bowler RP, Clish CB, Chung S, Drzymalla E, Evans AM, Franceschini N, Gerszten RE, Gillman MG, Hutton SR, Kelly RS, Kooperberg C, Larson MG, Lasky-Su J, Meyers DA, Woodruff PG, Reiner AP, Rich SS, Rotter JI, Silverman EK, Ramachandran VS, Weiss ST, Wong KE, Wood AC, Wu L, Yarden R, Blackwell TW, Smith AV, Chen H, Raffield LM, Yu B. Genetic Architecture and Analysis Practices of Circulating Metabolites in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.23.604849. [PMID: 39211135 PMCID: PMC11361093 DOI: 10.1101/2024.07.23.604849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Circulating metabolite levels partly reflect the state of human health and diseases and can be impacted by genetic determinants. Hundreds of loci associated with circulating metabolites have been identified; however, most findings focus on predominantly European ancestry or single-study analyses. Leveraging the rich metabolomics resources generated by the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program, we harmonized and accessibly cataloged 1,729 circulating metabolites among 25,058 ancestrally diverse samples. We provided a set of reasonable strategies for outlier and imputation handling to process metabolite data. Following the practical analysis framework, we further performed a genome-wide association analysis on 1,135 selected metabolites using whole genome sequencing data from 16,359 individuals passing the quality control filters, and discovered 1,778 independent loci associated with 667 metabolites. Among 108 novel locus-metabolite pairs, we detected not only novel loci within previously implicated metabolite associated genes but also novel genes (such as GAB3 and VSIG4 located in the X chromosome) that have putative roles in metabolic regulation. In the sex-stratified analysis, we revealed 85 independent locus-metabolite pairs with evidence of sexual dimorphism, including well-known metabolic genes such as FADS2 , D2HGDH , SUGP1 , UTG2B17 , strongly supporting the importance of exploring sex difference in the human metabolome. Taken together, our study depicted the genetic contribution to circulating metabolite levels, providing additional insight into the understanding of human health.
Collapse
|
2
|
Rughetti A, Bharti S, Savai R, Barmpoutsi S, Weigert A, Atre R, Siddiqi F, Sharma R, Khabiya R, Hirani N, Baig MS. Imperative role of adaptor proteins in macrophage toll-like receptor signaling pathways. Future Sci OA 2024; 10:2387961. [PMID: 39248050 PMCID: PMC11385170 DOI: 10.1080/20565623.2024.2387961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
Macrophages are integral part of the body's defense against pathogens and serve as vital regulators of inflammation. Adaptor molecules, featuring diverse domains, intricately orchestrate the recruitment and transmission of inflammatory responses through signaling cascades. Key domains involved in macrophage polarization include Toll-like receptors (TLRs), Src Homology2 (SH2) and other small domains, alongside receptor tyrosine kinases, crucial for pathway activation. This review aims to elucidate the enigmatic role of macrophage adaptor molecules in modulating macrophage activation, emphasizing their diverse roles and potential therapeutic and investigative avenues for further exploration.
Collapse
Affiliation(s)
- Aurelia Rughetti
- Laboratory of Tumor Immunology & Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Shreya Bharti
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
| | - Andreas Weigert
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, D-60323, Germany
| | - Rajat Atre
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Faaiza Siddiqi
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH164TJ, UK
| | - Mirza S Baig
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| |
Collapse
|
3
|
Kubagawa H, Mahmoudi Aliabadi P, Al-Qaisi K, Jani PK, Honjo K, Izui S, Radbruch A, Melchers F. Functions of IgM fc receptor (FcµR) related to autoimmunity. Autoimmunity 2024; 57:2323563. [PMID: 38465789 DOI: 10.1080/08916934.2024.2323563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Unlike Fc receptors for switched immunoglobulin (Ig) isotypes, Fc receptor for IgM (FcµR) is selectively expressed by lymphocytes. The ablation of the FcµR gene in mice impairs B cell tolerance as evidenced by concomitant production of autoantibodies of IgM and IgG isotypes. In this essay, we reiterate the autoimmune phenotypes observed in mutant mice, ie IgM homeostasis, dysregulated humoral immune responses including autoantibodies, and Mott cell formation. We also propose the potential phenotypes in individuals with FCMR deficiency and the model for FcµR-mediated regulation of self-reactive B cells.
Collapse
Affiliation(s)
| | | | | | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Kazuhito Honjo
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| |
Collapse
|
4
|
Rodriguez Torres CS, Wicker NB, Puccini de Castro V, Stefinko M, Bennett DC, Bernhardt B, Garcia Montes de Oca M, Jallow S, Flitcroft K, Palalay JJS, Payán Parra OA, Stern YE, Koelle MR, Voisine C, Woods IG, Lo TW, Stern MJ, de la Cova CC. The Caenorhabditis elegans protein SOC-3 permits an alternative mode of signal transduction by the EGL-15 FGF receptor. Dev Biol 2024; 516:183-195. [PMID: 39173814 PMCID: PMC11488645 DOI: 10.1016/j.ydbio.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Fibroblast Growth Factors and their receptors (FGFRs) comprise a cell signaling module that can stimulate signaling by Ras and the kinases Raf, MEK, and ERK to regulate animal development and homeostatic functions. In Caenorhabditis elegans, the sole FGFR ortholog EGL-15 acts with the GRB2 ortholog SEM-5 to promote chemoattraction and migration by the sex myoblasts (SMs) and fluid homeostasis by the hypodermis (Hyp7). Cell-specific differences in EGL-15 signaling were suggested by the phenotypes caused by egl-15(n1457), an allele that removes a region of its C-terminal domain (CTD) known to bind SEM-5. To determine how mutations altered EGL-15 activity in the SMs and Hyp7, we used the kinase reporter ERK-KTR to measure activation of the ERK ortholog MPK-1. Consequences of egl-15(n1457) were cell-specific, resulting in loss of MPK-1 activity in the SMs and elevated activity in Hyp7. Previous studies of Hyp7 showed that loss of the CLR-1 phosphatase causes a fluid homeostasis defect termed "Clear" that is suppressed by reduction of EGL-15 signaling, a phenotype termed "Suppressor of Clear" (Soc). To identify mechanisms that permit EGL-15 signaling in Hyp7, we conducted a genetic screen for Soc mutants in the clr-1; egl-15(n1457) genotype. We report the identification of SOC-3, a protein with putative SEM-5-binding motifs and PH and PTB domains similar to DOK and IRS proteins. In combination with the egl-15(n1457) mutation, loss of either soc-3, the GAB1 ortholog soc-1, or the SHP2 ortholog ptp-2, reduced MPK-1 activation. We generated alleles of soc-3 to test the requirement for the SEM-5-binding motifs, finding that residue Tyr356 is required for function. We propose that EGL-15-mediated SM chemoattraction relies solely on the direct interaction between SEM-5 and the EGL-15 CTD. In Hyp7, EGL-15 signaling uses two mechanisms: the direct SEM-5 binding mechanism; and an alternative, CTD-independent mechanism involving SOC-3, SOC-1, and PTP-2. This work demonstrates that FGF signaling uses distinct, tissue-specific mechanisms in development, and identifies SOC-3 as a potential adaptor that facilitates Ras pathway activation by FGFR.
Collapse
Affiliation(s)
| | - Nicole B Wicker
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | | | - Mariya Stefinko
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | | | | | | | - Sainabou Jallow
- Department of Biology, Ithaca College, Ithaca, NY, 14850, USA
| | - Katelyn Flitcroft
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | | | - Omar A Payán Parra
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | - Yaakov E Stern
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | | | - Cindy Voisine
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | - Ian G Woods
- Department of Biology, Ithaca College, Ithaca, NY, 14850, USA
| | - Te-Wen Lo
- Department of Biology, Ithaca College, Ithaca, NY, 14850, USA
| | - Michael J Stern
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | - Claire C de la Cova
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA.
| |
Collapse
|
5
|
Dickenson RE, Pellon A, Ponde NO, Hepworth O, Daniels Gatward LF, Naglik JR, Moyes DL. EGR1 regulates oral epithelial cell responses to Candida albicans via the EGFR- ERK1/2 pathway. Virulence 2024; 15:2435374. [PMID: 39635778 PMCID: PMC11622614 DOI: 10.1080/21505594.2024.2435374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/11/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
Candida albicans is a fungal pathobiont colonizing mucosal surfaces of the human body, including the oral cavity. Under certain predisposing conditions, C. albicans invades mucosal tissues activating EGFR-MAPK signalling pathways in epithelial cells via the action of its peptide toxin candidalysin. However, our knowledge of the epithelial mechanisms involved during C. albicans colonization is rudimentary. Here, we describe the role of the transcription factor early growth response protein 1 (EGR1) in human oral epithelial cells (OECs) in response to C. albicans. EGR1 expression increases in OECs when exposed to C. albicans independently of fungal viability, morphology, or candidalysin release, suggesting EGR1 is involved in the fundamental recognition of C. albicans, rather than in response to invasion or "pathogenesis." Upregulation of EGR1 is mediated by EGFR via Raf1, ERK1/2, and NF-κB signalling but not PI3K/mTOR signalling. Notably, EGR1 mRNA silencing impacts on anti-C. albicans immunity, reducing GM-CSF, IL-1α and IL-1β release, and increasing IL-6 and IL-8 production. These findings identify an important role for EGR1 in priming epithelial cells to respond to subsequent invasive infection by C. albicans and elucidate the regulation circuit of this transcription factor after contact.
Collapse
Affiliation(s)
- Ruth E. Dickenson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olivia Hepworth
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Lydia F. Daniels Gatward
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| |
Collapse
|
6
|
Heseltine SJ, Billenness GJ, Martin HL, Tiede C, Tang AAS, Foy E, Reddy G, Gibson N, Johnson M, Webb ME, McPherson MJ, Tomlinson DC. Generating and validating renewable affimer protein binding reagents targeting SH2 domains. Sci Rep 2024; 14:28322. [PMID: 39550397 PMCID: PMC11569188 DOI: 10.1038/s41598-024-79357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Despite SH2 domains, being pivotal in protein interactions linked to various diseases like cancer, we lack specific research tools for intracellular assays. Understanding SH2-mediated interactions and creating effective inhibitors requires tools which target individual protein domains. Affimer reagents exhibit promise, yet their potential against the extensive SH2 domain family remains largely unexplored. Our study aimed to bridge this gap by identifying Affimer reagents that selectively bind to 22 out of 41 SH2 domains. These reagents enabled a medium-throughput screening approach resembling siRNA studies, shedding light on their functionality. Notably, select Affimers demonstrated the ability to curtail the nuclear translocation of pERK, with Grb2 being a prominent target. Further analyses revealed that these Grb2-specific Affimer reagents displayed competitive inhibition with impressive metrics: IC50s ranging from 270.9 nM to 1.22 µM, together with low nanomolar binding affinities. Moreover, they exhibited the ability to pull down endogenous Grb2 from cell lysates, illustrating their efficacy in binding the Grb2 SH2 domain. This comprehensive assessment underscores the potential of Affimer reagents as domain-specific inhibitors. Their viability for medium/high-throughput phenotypic screening presents a promising avenue via which to identify and characterize potential drug targets within the SH2 domain family.
Collapse
Affiliation(s)
- Sophie J Heseltine
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | | - Heather L Martin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Anna A S Tang
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Eleanor Foy
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Grace Reddy
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Naomi Gibson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | | - Michael E Webb
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Michael J McPherson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Darren C Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
7
|
Ren H, Lee AA, Lew LJN, DeGrandchamp JB, Groves JT. Positive feedback in Ras activation by full-length SOS arises from autoinhibition release mechanism. Biophys J 2024; 123:3295-3303. [PMID: 39021073 PMCID: PMC11480760 DOI: 10.1016/j.bpj.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/08/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Signaling through the Ras-MAPK pathway can exhibit switch-like activation, which has been attributed to the underlying positive feedback and bimodality in the activation of RasGDP to RasGTP by SOS. SOS contains both catalytic and allosteric Ras binding sites, and a common assumption is that allosteric activation selectively by RasGTP provides the mechanism of positive feedback. However, recent single-molecule studies have revealed that SOS catalytic rates are independent of the nucleotide state of Ras in the allosteric binding site, raising doubt about this as a positive feedback mechanism. Here, we perform detailed kinetic analyses of receptor-mediated recruitment of full-length SOS to the membrane while simultaneously monitoring its catalytic activation of Ras. These results, along with kinetic modeling, expose the autoinhibition release step in SOS, rather than either recruitment or allosteric activation, as the underlying mechanism giving rise to positive feedback in Ras activation.
Collapse
Affiliation(s)
- He Ren
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Albert A Lee
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California
| | - L J Nugent Lew
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | | | - Jay T Groves
- Department of Chemistry, University of California Berkeley, Berkeley, California; Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
8
|
Qi L, Liu S, Fang Q, Qian C, Peng C, Liu Y, Yang P, Wu P, Shan L, Cui Q, Hua Q, Yang S, Ye C, Yang W, Li P, Xu X. Ginsenoside Rg3 Restores Mitochondrial Cardiolipin Homeostasis via GRB2 to Prevent Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403058. [PMID: 39159293 PMCID: PMC11497058 DOI: 10.1002/advs.202403058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Indexed: 08/21/2024]
Abstract
Regulating cardiolipin to maintain mitochondrial homeostasis is a promising strategy for addressing Parkinson's disease (PD). Through a comprehensive screening and validation process involving multiple models, ginsenoside Rg3 (Rg3) as a compound capable of enhancing cardiolipin levels is identified. This augmentation in cardiolipin levels fosters mitochondrial homeostasis by bolstering mitochondrial unfolded protein response, promoting mitophagy, and enhancing mitochondrial oxidative phosphorylation. Consequently, this cascade enhances the survival of tyrosine hydroxylase positive (TH+) dopaminergic neurons, leading to an amelioration in motor performance within PD mouse models. Using limited proteolysis-small-molecule mapping combined with molecular docking analysis, it has confirmed Growth Factor Receptor-Bound Protein 2 (GRB2) as a molecular target for Rg3. Furthermore, these investigations reveal that Rg3 facilitates the interaction between GRB2 and TRKA (Neurotrophic Tyrosine Kinase, Receptor, Type 1), thus promotes EVI1 (Ecotropic Virus Integration Site 1 Protein Homolog) phosphorylation by ERK, subsequently increases CRLS1 (Cardiolipin Synthase 1) gene expression and boosts cardiolipin synthesis. The absence of GRB2 or CRLS1 significantly attenuates the beneficial effects of Rg3 on PD symptoms. Finally, Tenofovir Disoproxil Fumarate (TDF) that also promotes the binding between GRB2 and TRKA is further identified. The identified compounds, Rg3 and TDF, exhibit promising potential for the prevention of PD by bolstering cardiolipin expression and reinstating mitochondrial homeostasis.
Collapse
Affiliation(s)
- Li‐Feng‐Rong Qi
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Shuai Liu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| | - Qiuyuan Fang
- Department of Biophysics and Department of Neurosurgery of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Cheng Qian
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Chao Peng
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research InstituteChinese Academy of ScienceShanghai201210China
- Shanghai Science Research CenterChinese Academy of SciencesShanghai201204China
| | - Yuci Liu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Peng Yang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Ping Wu
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research InstituteChinese Academy of ScienceShanghai201210China
- Shanghai Science Research CenterChinese Academy of SciencesShanghai201204China
| | - Ling Shan
- Dept. Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesMeibergdreef 47Amsterdam1105BAthe Netherlands
| | - Qinghua Cui
- Department of Biomedical InformaticsSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Sciences of the Ministry of EducationCenter for Non‐Coding RNA MedicinePeking University Health Science Center BeijingBeijing100191China
| | - Qian Hua
- School of Life SciencesBeijing University of Chinese MedicineBeijing100029China
| | - Sen Yang
- Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Cunqi Ye
- Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Wei Yang
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| | - Ping Li
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Xiaojun Xu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| |
Collapse
|
9
|
Štefan U, Brázda V, Plavec J, Marušič M. The influence of G-tract and loop length on the topological variability of putative five and six G-quartet DNA structures in the human genome. Int J Biol Macromol 2024; 280:136008. [PMID: 39326605 DOI: 10.1016/j.ijbiomac.2024.136008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Local variation of DNA structure and its dynamic nature play an essential role in the regulation of important biological processes. One of the most prominent noncanonical structures are G-quadruplexes, which form in vivo within guanine-rich regions and have been demonstrated to be involved in the regulation of transcription, translation and telomere maintenance. We provide an analysis of G-quadruplex formation in sequences with five and six guanine residues long G-tracts, which have emerged from the investigation of the gapless human genome and are associated with genes related to cancer and neurodegenerative diseases. We systematically explored the effect of G-tract and loop elongations by means of NMR and CD spectroscopy and polyacrylamide electrophoresis. Despite both types of elongation leading up to structural polymorphism, we successfully determined the topologies of four out of eight examined sequences, one of which contributes to a very scarce selection of currently known intramolecular four G-quartet structures in potassium solutions. We demonstrate that examined sequences are incompatible with five or six G-quartet structures with propeller loops, although the compatibility with other loop types cannot be factored out. Lastly, we propose a novel approach towards specific G-quadruplex targeting that could be implemented in structures with more than four G-quartets.
Collapse
Affiliation(s)
- Urša Štefan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Janez Plavec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; EN-FIST Center of Excellence, SI-1000 Ljubljana, Slovenia
| | - Maja Marušič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
10
|
Lin C, Sniezek CM, McGann CD, Karki R, Giglio RM, Garcia BA, McFaline-Figeroa JL, Schweppe DK. Defining the heterogeneous molecular landscape of lung cancer cell responses to epigenetic inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.592075. [PMID: 38853901 PMCID: PMC11160595 DOI: 10.1101/2024.05.23.592075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Epigenetic inhibitors exhibit powerful antiproliferative and anticancer activities. However, cellular responses to small-molecule epigenetic inhibition are heterogenous and dependent on factors such as the genetic background, metabolic state, and on-/off-target engagement of individual small-molecule compounds. The molecular study of the extent of this heterogeneity often measures changes in a single cell line or using a small number of compounds. To more comprehensively profile the effects of small-molecule perturbations and their influence on these heterogeneous cellular responses, we present a molecular resource based on the quantification of chromatin, proteome, and transcriptome remodeling due to histone deacetylase inhibitors (HDACi) in non-isogenic cell lines. Through quantitative molecular profiling of 10,621 proteins, these data reveal coordinated molecular remodeling of HDACi treated cancer cells. HDACi-regulated proteins differ greatly across cell lines with consistent (JUN, MAP2K3, CDKN1A) and divergent (CCND3, ASF1B, BRD7) cell-state effectors. Together these data provide valuable insight into cell-type driven and heterogeneous responses that must be taken into consideration when monitoring molecular perturbations in culture models.
Collapse
Affiliation(s)
- Chuwei Lin
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | | | | | - Rashmi Karki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ross M. Giglio
- Biomedical Engineer, Columbia University, New York, NY 10027, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Devin K. Schweppe
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Malagrinò F, Puglisi E, Pagano L, Travaglini-Allocatelli C, Toto A. GRB2: A dynamic adaptor protein orchestrating cellular signaling in health and disease. Biochem Biophys Rep 2024; 39:101803. [PMID: 39175664 PMCID: PMC11340617 DOI: 10.1016/j.bbrep.2024.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
GRB2, or Growth Factor Receptor-Bound Protein 2, is a pivotal adaptor protein in intracellular signal transduction pathways, particularly within receptor tyrosine kinase (RTK) signaling cascades. Its crystal structure reveals a modular architecture comprising a single Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains, facilitating dynamic interactions critical for cellular signaling. While SH2 domains recognize phosphorylated tyrosines, SH3 domains bind proline-rich sequences, enabling GRB2 to engage with various downstream effectors. Folding and binding studies of GRB2 in its full-length form and isolated domains highlight a complex interplay between its protein-protein interaction domains on the folding energy landscape and in driving its function. Being at the crosslink of many key molecular pathways in the cell, GRB2 possesses a role in cancer pathogenesis, particularly in mediating the Ras-mitogen activated protein kinase (MAPK) pathway. Thus, pharmacological targeting of GRB2 domains is a promising field in cancer therapy, with efforts focused on disrupting protein-protein interactions. However, the dynamic interplay driving GRB2 function suggests the presence of allosteric sites at the interface between domains that could be targeted to modulate the binding properties of its constituent domains. We propose that the analysis of GRB2 proteins from other species may provide additional insights to make the allosteric pharmacological targeting of GRB2 a more feasible strategy.
Collapse
Affiliation(s)
- Francesca Malagrinò
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze Della Vita e Dell'ambiente, Universita' Dell’Aquila, Piazzale Salvatore Tommasi 1, L'Aquila, Coppito, 67010, Italy
| | - Elena Puglisi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Carlo Travaglini-Allocatelli
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| |
Collapse
|
12
|
Tang AAS, Macdonald A, McPherson MJ, Tomlinson DC. Targeting Grb2 SH3 Domains with Affimer Proteins Provides Novel Insights into Ras Signalling Modulation. Biomolecules 2024; 14:1040. [PMID: 39199427 PMCID: PMC11352564 DOI: 10.3390/biom14081040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Src homology 3 (SH3) domains play a critical role in mediating protein-protein interactions (PPIs) involved in cell proliferation, migration, and the cytoskeleton. Despite their abundance in the human proteome, the functions and molecular interactions of many SH3 domains remain unknown, and this is in part due to the lack of SH3-domain-specific reagents available for their study. Affimer proteins have been developed as affinity reagents targeting a diverse range of targets, including those involved in PPIs. In this study, Affimer proteins were isolated against both the N- and C-terminal SH3 domains (NSH3 and CSH3) of growth-factor-receptor-bound protein 2 (Grb2), an adapter protein that provides a critical link between cell surface receptors and Ras signalling pathways. Targeting the CSH3 alone for the inhibition of PPIs appeared sufficient for curtailing Ras signalling in mammalian cell lines stimulated with human epidermal growth factor (EGF), which conflicts with the notion that the predominant interactions with Ras activating Son of sevenless (SOS) occur via the NSH3 domain. This result supports a model in which allosteric mechanisms involved in Grb2-SOS1 interaction modulate Ras activation.
Collapse
Affiliation(s)
- Anna A. S. Tang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (A.A.S.T.); (A.M.)
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (A.A.S.T.); (A.M.)
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Michael J. McPherson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (A.A.S.T.); (A.M.)
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Darren C. Tomlinson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (A.A.S.T.); (A.M.)
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
13
|
Simon-Szabó L, Lizák B, Sturm G, Somogyi A, Takács I, Németh Z. Molecular Aspects in the Development of Type 2 Diabetes and Possible Preventive and Complementary Therapies. Int J Mol Sci 2024; 25:9113. [PMID: 39201799 PMCID: PMC11354764 DOI: 10.3390/ijms25169113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The incidence of diabetes, including type 2 diabetes (T2DM), is increasing sharply worldwide. To reverse this, more effective approaches in prevention and treatment are needed. In our review, we sought to summarize normal insulin action and the pathways that primarily influence the development of T2DM. Normal insulin action involves mitogenic and metabolic pathways, as both are important in normal metabolic processes, regeneration, etc. However, through excess energy, both can be hyperactive or attenuated/inactive leading to disturbances in the cellular and systemic regulation with the consequence of cellular stress and systemic inflammation. In this review, we detailed the beneficial molecular changes caused by some important components of nutrition and by exercise, which act in the same molecular targets as the developed drugs, and can revert the damaged pathways. Moreover, these induce entire networks of regulatory mechanisms and proteins to restore unbalanced homeostasis, proving their effectiveness as preventive and complementary therapies. These are the main steps for success in prevention and treatment of developed diseases to rid the body of excess energy, both from stored fats and from overnutrition, while facilitating fat burning with adequate, regular exercise in healthy people, and together with necessary drug treatment as required in patients with insulin resistance and T2DM.
Collapse
Affiliation(s)
- Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Beáta Lizák
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői út 78/b, 1082 Budapest, Hungary;
| | - Anikó Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Baross u., 1085 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| | - Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| |
Collapse
|
14
|
Bartošík V, Plucarová J, Laníková A, Janáčková Z, Padrta P, Jansen S, Vařečka V, Gruber T, Feller SM, Žídek L. Structural basis of binding the unique N-terminal domain of microtubule-associated protein 2c to proteins regulating kinases of signaling pathways. J Biol Chem 2024; 300:107551. [PMID: 39002671 PMCID: PMC11367651 DOI: 10.1016/j.jbc.2024.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024] Open
Abstract
Isoforms of microtubule-associated protein 2 (MAP2) differ from their homolog Tau in the sequence and interactions of the N-terminal region. Binding of the N-terminal region of MAP2c (N-MAP2c) to the dimerization/docking domains of the regulatory subunit RIIα of cAMP-dependent protein kinase (RIIDD2) and to the Src-homology domain 2 (SH2) of growth factor receptor-bound protein 2 (Grb2) have been described long time ago. However, the structural features of the complexes remained unknown due to the disordered nature of MAP2. Here, we provide structural description of the complexes. We have solved solution structure of N-MAP2c in complex with RIIDD2, confirming formation of an amphiphilic α-helix of MAP2c upon binding, defining orientation of the α-helix in the complex and showing that its binding register differs from previous predictions. Using chemical shift mapping, we characterized the binding interface of SH2-Grb2 and rat MAP2c phosphorylated by the tyrosine kinase Fyn in their complex and proposed a model explaining differences between SH2-Grb2 complexes with rat MAP2c and phosphopeptides with a Grb2-specific sequence. The results provide the structural basis of a potential role of MAP2 in regulating cAMP-dependent phosphorylation cascade via interactions with RIIDD2 and Ras signaling pathway via interactions with SH2-Grb2.
Collapse
Affiliation(s)
- Viktor Bartošík
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jitka Plucarová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alice Laníková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Janáčková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Padrta
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Séverine Jansen
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vojtěch Vařečka
- Institute of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tobias Gruber
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany; Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Lukáš Žídek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
15
|
Li M, Zhang L, Zhou P, Zhang Z, Yu R, Zhang Y, Wang Y, Guo H, Pan L, Xiao S, Liu X. Porcine deltacoronavirus nucleocapsid protein interacts with the Grb2 through its proline-rich motifs to induce activation of the Raf-MEK-ERK signal pathway and promote virus replication. J Gen Virol 2024; 105. [PMID: 39136113 DOI: 10.1099/jgv.0.002014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV), an enteropathogenic coronavirus, causes severe watery diarrhoea, dehydration and high mortality in piglets, which has the potential for cross-species transmission in recent years. Growth factor receptor-bound protein 2 (Grb2) is a bridging protein that can couple cell surface receptors with intracellular signal transduction events. Here, we investigated the reciprocal regulation between Grb2 and PDCoV. It is found that Grb2 regulates PDCoV infection and promotes IFN-β production through activating Raf/MEK/ERK/STAT3 pathway signalling in PDCoV-infected swine testis cells to suppress viral replication. PDCoV N is capable of interacting with Grb2. The proline-rich motifs in the N- or C-terminal region of PDCoV N were critical for the interaction between PDCoV-N and Grb2. Except for Deltacoronavirus PDCoV N, the Alphacoronavirus PEDV N protein could interact with Grb2 and affect the regulation of PEDV replication, while the N protein of Betacoronavirus PHEV and Gammacoronavirus AIBV could not interact with Grb2. PDCoV N promotes Grb2 degradation by K48- and K63-linked ubiquitin-proteasome pathways. Overexpression of PDCoV N impaired the Grb2-mediated activated effect on the Raf/MEK/ERK/STAT3 signal pathway. Thus, our study reveals a novel mechanism of how host protein Grb2 protein regulates viral replication and how PDCoV N escaped natural immunity by interacting with Grb2.
Collapse
Affiliation(s)
- Mingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Yongguang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| |
Collapse
|
16
|
Bogale DE. The roles of FGFR3 and c-MYC in urothelial bladder cancer. Discov Oncol 2024; 15:295. [PMID: 39031286 PMCID: PMC11264706 DOI: 10.1007/s12672-024-01173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024] Open
Abstract
Bladder cancer is one of the most frequently occurring cancers worldwide. At diagnosis, 75% of urothelial bladder cancer cases have non-muscle invasive bladder cancer while 25% have muscle invasive or metastatic disease. Aberrantly activated fibroblast growth factor receptor (FGFR)-3 has been implicated in the pathogenesis of bladder cancer. Activating mutations of FGFR3 are observed in around 70% of NMIBC cases and ~ 15% of MIBCs. Activated FGFR3 leads to ligand-independent receptor dimerization and activation of downstream signaling pathways that promote cell proliferation and survival. FGFR3 is an important therapeutic target in bladder cancer, and clinical studies have shown the benefit of FGFR inhibitors in a subset of bladder cancer patients. c-MYC is a well-known major driver of carcinogenesis and is one of the most commonly deregulated oncogenes identified in human cancers. Studies have shown that the antitumor effects of FGFR inhibition in FGFR3 dependent bladder cancer cells and other FGFR dependent cancers may be mediated through c-MYC, a key downstream effector of activated FGFR that is involved tumorigenesis. This review will summarize the current general understanding of FGFR signaling and MYC alterations in cancer, and the role of FGFR3 and MYC dysregulation in the pathogenesis of urothelial bladder cancer with the possible therapeutic implications.
Collapse
Affiliation(s)
- Dereje E Bogale
- School of Medicine, Department of Oncology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
17
|
Zhang L, Strange M, Elishaev E, Zaidi S, Modugno F, Radolec M, Edwards RP, Finn OJ, Vlad AM. Characterization of latently infected EBV+ antibody-secreting B cells isolated from ovarian tumors and malignant ascites. Front Immunol 2024; 15:1379175. [PMID: 39086481 PMCID: PMC11288875 DOI: 10.3389/fimmu.2024.1379175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Intra-tumoral B cells mediate a plethora of immune effector mechanisms with key roles in anti-tumor immunity and serve as positive prognostic indicators in a variety of solid tumor types, including epithelial ovarian cancer (EOC). Several aspects of intra-tumoral B cells remain unclear, such as their state of activation, antigenic repertoires, and capacity to mature into plasma cells. Methods B lymphocytes were isolated from primary EOC tissue and malignant ascites and were maintained in cell culture medium. The stably maintained cell lines were profiled with flow cytometry and B cell receptor sequencing. Secreted antibodies were tested with a human proteome array comprising more than 21,000 proteins, followed by ELISA for validation. Originating tumor samples were used for spatial profiling with chip cytometry. Results Antibody-secreting B lymphocytes were isolated from the ovarian tumor microenvironment (TME) of four different EOC patients. The highly clonal cell populations underwent spontaneous immortalization in vitro, were stably maintained in an antibody-secreting state, and showed presence of Epstein-Barr viral (EBV) proteins. All originating tumors had high frequency of tumor-infiltrating B cells, present as lymphoid aggregates, or tertiary lymphoid structures. The antigens recognized by three of the four cell lines are coil-coil domain containing protein 155 (CCDC155), growth factor receptor-bound protein 2 (GRB2), and pyruvate dehydrogenase phosphatase2 (PDP2), respectively. Anti-CCDC155 circulating IgG antibodies were detected in 9 of 20 (45%) of EOC patients' sera. Tissue analyses with multiparameter chip cytometry shows that the antibodies secreted by these novel human B cell lines engage their cognate antigens on tumor cells. Discussion These studies demonstrate that within the tumor-infiltrating lymphocyte population in EOC resides a low frequency population of antibody-secreting B cells that have been naturally exposed to EBV. Once stably maintained, these novel cell lines offer unique opportunities for future studies on intratumor B cell biology and new target antigen recognition, and for studies on EBV latency and/or viral reactivation in the TME of non-EBV related solid tumors such as the EOC.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Mary Strange
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Syed Zaidi
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Mackenzy Radolec
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
- Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Robert P. Edwards
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
- Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Olivera J. Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Anda M. Vlad
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Harders RH, Morthorst TH, Landgrebe LE, Lande AD, Fuglsang MS, Mortensen SB, Feteira-Montero V, Jensen HH, Wesseltoft JB, Olsen A. CED-6/GULP and components of the clathrin-mediated endocytosis machinery act redundantly to correctly display CED-1 on the cell membrane in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae088. [PMID: 38696649 PMCID: PMC11228867 DOI: 10.1093/g3journal/jkae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024]
Abstract
CED-1 (cell death abnormal) is a transmembrane receptor involved in the recognition of "eat-me" signals displayed on the surface of apoptotic cells and thus central for the subsequent engulfment of the cell corpse in Caenorhabditis elegans. The roles of CED-1 in engulfment are well established, as are its downstream effectors. The latter include the adapter protein CED-6/GULP and the ATP-binding cassette family homolog CED-7. However, how CED-1 is maintained on the plasma membrane in the absence of engulfment is currently unknown. Here, we show that CED-6 and CED-7 have a novel role in maintaining CED-1 correctly on the plasma membrane. We propose that the underlying mechanism is via endocytosis as CED-6 and CED-7 act redundantly with clathrin and its adaptor, the Adaptor protein 2 complex, in ensuring correct CED-1 localization. In conclusion, CED-6 and CED-7 impact other cellular processes than engulfment of apoptotic cells.
Collapse
Affiliation(s)
- Rikke Hindsgaul Harders
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Tine H Morthorst
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Line E Landgrebe
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Anna D Lande
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Marie Sikjær Fuglsang
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Stine Bothilde Mortensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Verónica Feteira-Montero
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Helene Halkjær Jensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Jonas Bruhn Wesseltoft
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| |
Collapse
|
19
|
Tardito S, Matis S, Zocchi MR, Benelli R, Poggi A. Epidermal Growth Factor Receptor Targeting in Colorectal Carcinoma: Antibodies and Patient-Derived Organoids as a Smart Model to Study Therapy Resistance. Int J Mol Sci 2024; 25:7131. [PMID: 39000238 PMCID: PMC11241078 DOI: 10.3390/ijms25137131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Therefore, the need for new therapeutic strategies is still a challenge. Surgery and chemotherapy represent the first-line interventions; nevertheless, the prognosis for metastatic CRC (mCRC) patients remains unacceptable. An important step towards targeted therapy came from the inhibition of the epidermal growth factor receptor (EGFR) pathway, by the anti-EGFR antibody, Cetuximab, or by specific tyrosine kinase inhibitors (TKI). Cetuximab, a mouse-human chimeric monoclonal antibody (mAb), binds to the extracellular domain of EGFR thus impairing EGFR-mediated signaling and reducing cell proliferation. TKI can affect the EGFR biochemical pathway at different steps along the signaling cascade. Apart from Cetuximab, other anti-EGFR mAbs have been developed, such as Panitumumab. Both antibodies have been approved for the treatment of KRAS-NRAS wild type mCRC, alone or in combination with chemotherapy. These antibodies display strong differences in activating the host immune system against CRC, due to their different immunoglobulin isotypes. Although anti-EGFR antibodies are efficient, drug resistance occurs with high frequency. Resistant tumor cell populations can either already be present before therapy or develop later by biochemical adaptations or new genomic mutations in the EGFR pathway. Numerous efforts have been made to improve the efficacy of the anti-EGFR mAbs or to find new agents that are able to block downstream EGFR signaling cascade molecules. Indeed, we examined the importance of analyzing the anti-EGFR antibody-drug conjugates (ADC) developed to overcome resistance and/or stimulate the tumor host's immunity against CRC growth. Also, patient-derived CRC organoid cultures represent a useful and feasible in vitro model to study tumor behavior and therapy response. Organoids can reflect tumor genetic heterogeneity found in the tissue of origin, representing a unique tool for personalized medicine. Thus, CRC-derived organoid cultures are a smart model for studying the tumor microenvironment and for the preclinical assay of anti-EGFR drugs.
Collapse
Affiliation(s)
- Samuele Tardito
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC 20010, USA;
| | - Serena Matis
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Maria Raffaella Zocchi
- Department of Immunology, Transplant and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy;
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
20
|
Zhao H, Mao H. ERRFI1 exacerbates hepatic ischemia reperfusion injury by promoting hepatocyte apoptosis and ferroptosis in a GRB2-dependent manner. Mol Med 2024; 30:82. [PMID: 38862918 PMCID: PMC11167874 DOI: 10.1186/s10020-024-00837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Programmed cell death is an important mechanism for the development of hepatic ischemia and reperfusion (IR) injury, and multiple novel forms of programmed cell death are involved in the pathological process of hepatic IR. ERRFI1 is involved in the regulation of cell apoptosis in myocardial IR. However, the function of ERRFI1 in hepatic IR injury and its modulation of programmed cell death remain largely unknown. METHODS Here, we performed functional and molecular mechanism studies in hepatocyte-specific knockout mice and ERRFI1-silenced hepatocytes to investigate the significance of ERRFI1 in hepatic IR injury. The histological severity of livers, enzyme activities, hepatocyte apoptosis and ferroptosis were determined. RESULTS ERRFI1 expression increased in liver tissues from mice with IR injury and hepatocytes under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions. Hepatocyte-specific ERRFI1 knockout alleviated IR-induced liver injury in mice by reducing cell apoptosis and ferroptosis. ERRFI1 knockdown reduced apoptotic and ferroptotic hepatocytes induced by OGD/R. Mechanistically, ERRFI1 interacted with GRB2 to maintain its stability by hindering its proteasomal degradation. Overexpression of GRB2 abrogated the effects of ERRFI1 silencing on hepatocyte apoptosis and ferroptosis. CONCLUSIONS Our results revealed that the ERRFI1-GRB2 interaction and GRB2 stability are essential for ERRFI1-regulated hepatic IR injury, indicating that inhibition of ERRFI1 or blockade of the ERRFI1-GRB2 interaction may be potential therapeutic strategies in response to hepatic IR injury.
Collapse
Affiliation(s)
- Hang Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street Guta District, Jinzhou, 121000, Liaoning, China
| | - Huizi Mao
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street Guta District, Jinzhou, 121000, Liaoning, China.
| |
Collapse
|
21
|
Sayeesh PM, Iguchi M, Inomata K, Ikeya T, Ito Y. Structure and Dynamics of Drk-SH2 Domain and Its Site-Specific Interaction with Sev Receptor Tyrosine Kinase. Int J Mol Sci 2024; 25:6386. [PMID: 38928093 PMCID: PMC11203457 DOI: 10.3390/ijms25126386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The Drosophila downstream receptor kinase (Drk), a homologue of human GRB2, participates in the signal transduction from the extracellular to the intracellular environment. Drk receives signals through the interaction of its Src homology 2 (SH2) domain with the phosphorylated tyrosine residue in the receptor tyrosine kinases (RTKs). Here, we present the solution NMR structure of the SH2 domain of Drk (Drk-SH2), which was determined in the presence of a phosphotyrosine (pY)-containing peptide derived from a receptor tyrosine kinase, Sevenless (Sev). The solution structure of Drk-SH2 possess a common SH2 domain architecture, consisting of three β strands imposed between two α helices. Additionally, we interpret the site-specific interactions of the Drk-SH2 domain with the pY-containing peptide through NMR titration experiments. The dynamics of Drk-SH2 were also analysed through NMR-relaxation experiments as well as the molecular dynamic simulation. The docking simulations of the pY-containing peptide onto the protein surface of Drk-SH2 provided the orientation of the peptide, which showed a good agreement with the analysis of the SH2 domain of GRB2.
Collapse
Affiliation(s)
| | | | | | - Teppei Ikeya
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (P.M.S.); (M.I.); (K.I.)
| | - Yutaka Ito
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (P.M.S.); (M.I.); (K.I.)
| |
Collapse
|
22
|
Ball NJ, Barnett SFH, Goult BT. Mechanically operated signalling scaffolds. Biochem Soc Trans 2024; 52:517-527. [PMID: 38572868 PMCID: PMC11088903 DOI: 10.1042/bst20221194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Cellular signalling is a complex process and involves cascades of enzymes that, in response to a specific signal, give rise to exact cellular responses. Signalling scaffold proteins organise components of these signalling pathways in space and time to co-ordinate signalling outputs. In this review we introduce a new class of mechanically operated signalling scaffolds that are built into the cytoskeletal architecture of the cell. These proteins contain force-dependent binary switch domains that integrate chemical and mechanical signals to introduce quantised positional changes to ligands and persistent alterations in cytoskeletal architecture providing mechanomemory capabilities. We focus on the concept of spatial organisation, and how the cell organises signalling molecules at the plasma membrane in response to specific signals to create order and distinct signalling outputs. The dynamic positioning of molecules using binary switches adds an additional layer of complexity to the idea of scaffolding. The switches can spatiotemporally organise enzymes and substrates dynamically, with the introduction of ∼50 nm quantised steps in distance between them as the switch patterns change. Together these different types of signalling scaffolds and the proteins engaging them, provide a way for an ordering of molecules that extends beyond current views of the cell.
Collapse
Affiliation(s)
- Neil J. Ball
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | | | - Benjamin T. Goult
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| |
Collapse
|
23
|
Di Felice M, Pagano L, Pennacchietti V, Diop A, Pietrangeli P, Marcocci L, Di Matteo S, Malagrinò F, Toto A, Gianni S. The binding selectivity of the C-terminal SH3 domain of Grb2, but not its folding pathway, is dictated by its contiguous SH2 domain. J Biol Chem 2024; 300:107129. [PMID: 38432639 PMCID: PMC10979101 DOI: 10.1016/j.jbc.2024.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
The adaptor protein Grb2, or growth factor receptor-bound protein 2, possesses a pivotal role in the transmission of fundamental molecular signals in the cell. Despite lacking enzymatic activity, Grb2 functions as a dynamic assembly platform, orchestrating intracellular signals through its modular structure. This study delves into the energetic communication of Grb2 domains, focusing on the folding and binding properties of the C-SH3 domain linked to its neighboring SH2 domain. Surprisingly, while the folding and stability of C-SH3 remain robust and unaffected by SH2 presence, significant differences emerge in the binding properties when considered within the tandem context compared with isolated C-SH3. Through a double mutant cycle analysis, we highlighted a subset of residues, located at the interface with the SH2 domain and far from the binding site, finely regulating the binding of a peptide mimicking a physiological ligand of the C-SH3 domain. Our results have mechanistic implications about the mechanisms of specificity of the C-SH3 domain, indicating that the presence of the SH2 domain optimizes binding to its physiological target, and emphasizing the general importance of considering supramodular multidomain protein structures to understand the functional intricacies of protein-protein interaction domains.
Collapse
Affiliation(s)
- Mariana Di Felice
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Awa Diop
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Paola Pietrangeli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Lucia Marcocci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Sara Di Matteo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesca Malagrinò
- Dipartimento di Medicina clinica, sanità pubblica, scienze della vita e dell'ambiente, Università dell'Aquila, L'Aquila, Coppito, Italy.
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
24
|
Ye Z, Xu S, Shi Y, Cheng X, Zhang Y, Roy S, Namjoshi S, Longo MA, Link TM, Schlacher K, Peng G, Yu D, Wang B, Tainer JA, Ahmed Z. GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer. Nat Commun 2024; 15:2132. [PMID: 38459011 PMCID: PMC10923831 DOI: 10.1038/s41467-024-46283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a cytoplasmic adapter for tyrosine kinase signaling and a nuclear adapter for homology-directed-DNA repair. Here we find nuclear GRB2 protects DNA at stalled replication forks from MRE11-mediated degradation in the BRCA2 replication fork protection axis. Mechanistically, GRB2 binds and inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks. In GRB2-depleted cells, PARP inhibitor (PARPi) treatment releases DNA fragments from stalled forks into the cytoplasm that activate the cGAS-STING pathway to trigger pro-inflammatory cytokine production. Moreover in a syngeneic mouse metastatic ovarian cancer model, GRB2 depletion in the context of PARPi treatment reduced tumor burden and enabled high survival consistent with immune suppression of cancer growth. Collective findings unveil GRB2 function and mechanism for fork protection in the BRCA2-RAD51-MRE11 axis and suggest GRB2 as a potential therapeutic target and an enabling predictive biomarker for patient selection for PARPi and immunotherapy combination.
Collapse
Affiliation(s)
- Zu Ye
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Shengfeng Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xueqian Cheng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Zhang
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sunetra Roy
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarita Namjoshi
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Longo
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Todd M Link
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katharina Schlacher
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dihua Yu
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Tainer
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Zamal Ahmed
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Wang D, Liu G, Meng Y, Chen H, Ye Z, Jing J. The Configuration of GRB2 in Protein Interaction and Signal Transduction. Biomolecules 2024; 14:259. [PMID: 38540680 PMCID: PMC10968029 DOI: 10.3390/biom14030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 07/02/2024] Open
Abstract
Growth-factor-receptor-binding protein 2 (GRB2) is a non-enzymatic adaptor protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression. GRB2 binds to numerous target molecules, thereby modulating a complex cell signaling network with diverse functions. The structural characteristics of GRB2 are essential for its functionality, as its multiple domains and interaction mechanisms underpin its role in cellular biology. The typical signaling pathway involving GRB2 is initiated by the ligand stimulation to its receptor tyrosine kinases (RTKs). The activation of RTKs leads to the recruitment of GRB2 through its SH2 domain to the phosphorylated tyrosine residues on the receptor. GRB2, in turn, binds to the Son of Sevenless (SOS) protein through its SH3 domain. This binding facilitates the activation of Ras, a small GTPase, which triggers a cascade of downstream signaling events, ultimately leading to cell proliferation, survival, and differentiation. Further research and exploration into the structure and function of GRB2 hold great potential for providing novel insights and strategies to enhance medical approaches for related diseases. In this review, we provide an outline of the proteins that engage with domains of GRB2, along with the function of different GRB2 domains in governing cellular signaling pathways. This furnishes essential points of current studies for the forthcoming advancement of therapeutic medications aimed at GRB2.
Collapse
Affiliation(s)
- Dingyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Guoxia Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- School of Life Science, Tianjin University, Tianjin 200072, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Hongjie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zu Ye
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| |
Collapse
|
26
|
Murthy MHS, Jasbi P, Lowe W, Kumar L, Olaosebikan M, Roger L, Yang J, Lewinski N, Daniels N, Cowen L, Klein-Seetharaman J. Insulin signaling and pharmacology in humans and in corals. PeerJ 2024; 12:e16804. [PMID: 38313028 PMCID: PMC10838073 DOI: 10.7717/peerj.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Once thought to be a unique capability of the Langerhans islets in the pancreas of mammals, insulin (INS) signaling is now recognized as an evolutionarily ancient function going back to prokaryotes. INS is ubiquitously present not only in humans but also in unicellular eukaryotes, fungi, worms, and Drosophila. Remote homologue identification also supports the presence of INS and INS receptor in corals where the availability of glucose is largely dependent on the photosynthetic activity of the symbiotic algae. The cnidarian animal host of corals operates together with a 20,000-sized microbiome, in direct analogy to the human gut microbiome. In humans, aberrant INS signaling is the hallmark of metabolic disease, and is thought to play a major role in aging, and age-related diseases, such as Alzheimer's disease. We here would like to argue that a broader view of INS beyond its human homeostasis function may help us understand other organisms, and in turn, studying those non-model organisms may enable a novel view of the human INS signaling system. To this end, we here review INS signaling from a new angle, by drawing analogies between humans and corals at the molecular level.
Collapse
Affiliation(s)
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | - Whitney Lowe
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | - Lokender Kumar
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | | | - Liza Roger
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- School of Ocean Futures, Arizona State University, Tempe, AZ, United States of America
| | - Jinkyu Yang
- Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, USA
| | - Nastassja Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Noah Daniels
- Department of Computer Science, University of Rhode Island, Kingston, RI, USA
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Judith Klein-Seetharaman
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
27
|
Montero-Vergara J, Plachetta K, Kinch L, Bernhardt S, Kashyap K, Levine B, Thukral L, Vetter M, Thomssen C, Wiemann S, Peña-Llopis S, Jendrossek V, Vega-Rubin-de-Celis S. GRB2 is a BECN1 interacting protein that regulates autophagy. Cell Death Dis 2024; 15:14. [PMID: 38182563 PMCID: PMC10770341 DOI: 10.1038/s41419-023-06387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
GRB2 is an adaptor protein of HER2 (and several other tyrosine kinases), which we identified as a novel BECN1 (Beclin 1) interacting partner. GRB2 co-immunoprecipitated with BECN1 in several breast cancer cell lines and regulates autophagy through a mechanism involving the modulation of the class III PI3Kinase VPS34 activity. In ovo studies in a CAM (Chicken Chorioallantoic Membrane) model indicated that GRB2 knockdown, as well as overexpression of GRB2 loss-of-function mutants (Y52A and S86A-R88A) compromised tumor growth. These differences in tumor growth correlated with differential autophagy activity, indicating that autophagy effects might be related to the effects on tumorigenesis. Our data highlight a novel function of GRB2 as a BECN1 binding protein and a regulator of autophagy.
Collapse
Affiliation(s)
- Jetsy Montero-Vergara
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Virchowstrasse 173, D-45122, Essen, Germany
| | - Kira Plachetta
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Virchowstrasse 173, D-45122, Essen, Germany
| | - Lisa Kinch
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Stephan Bernhardt
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Kriti Kashyap
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, Delhi, 110025, India
| | - Beth Levine
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Martina Vetter
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, D-06120, Halle (Saale), Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, D-06120, Halle (Saale), Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Samuel Peña-Llopis
- Translational Genomics. Department of Ophthalmology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Virchowstrasse 173, D-45122, Essen, Germany
| | - Silvia Vega-Rubin-de-Celis
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Virchowstrasse 173, D-45122, Essen, Germany.
| |
Collapse
|
28
|
Bibas M. Plasmablastic Lymphoma. A State-of-the-Art Review: Part 1-Epidemiology, Pathogenesis, Clinicopathologic Characteristics, Differential Diagnosis, Prognostic Factors, and Special Populations. Mediterr J Hematol Infect Dis 2024; 16:e2024007. [PMID: 38223486 PMCID: PMC10786126 DOI: 10.4084/mjhid.2024.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
This two-part review aims to present a current and comprehensive understanding of the diagnosis and management of plasmablastic lymphoma. The first section, as presented in this paper, reviews epidemiology, etiology, clinicopathological characteristics, differential diagnosis, prognostic variables, and the impact of plasmablastic lymphoma on specific populations. Plasmablastic lymphoma (PBL) is a rare and aggressive form of lymphoma. Previous and modern studies have demonstrated a significant association between the human immunodeficiency virus (HIV) and the development of the disease. The limited occurrence of PBL contributes to a need for a more comprehensive understanding of the molecular mechanisms involved in its etiology. Consequently, the diagnostic procedure for PBL poses a significant difficulty. Among the group of CD20-negative large B-cell lymphomas, PBL can be correctly diagnosed by identifying its exact clinical characteristics, anatomical location, and morphological characteristics. PBL cells do not express CD20 or PAX5 but possess plasmacytic differentiation markers such as CD38, CD138, MUM1/IRF4, Blimp1, and XBP1. PBL must be distinguished from other B-cell malignancies that lack the CD20 marker, including primary effusion lymphoma, anaplastic lymphoma kinase-positive large B-cell lymphoma, and large B-cell lymphoma (LBCL). This condition is frequently associated with infections caused by the Epstein-Barr virus and genetic alterations involving the MYC gene. Despite advances in our comprehension of this disease, the prognosis remains dismal, resulting in a low overall survival rate, although recent reports suggest an apparent tendency towards substantial improvement.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.S.S. Rome, Italy
| |
Collapse
|
29
|
de Jesus VHF, Mathias-Machado MC, de Farias JPF, Aruquipa MPS, Jácome AA, Peixoto RD. Targeting KRAS in Pancreatic Ductal Adenocarcinoma: The Long Road to Cure. Cancers (Basel) 2023; 15:5015. [PMID: 37894382 PMCID: PMC10605759 DOI: 10.3390/cancers15205015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of cancer-related mortality, and it is expected to play an even bigger part in cancer burden in the years to come. Despite concerted efforts from scientists and physicians, patients have experienced little improvement in survival over the past decades, possibly because of the non-specific nature of the tested treatment modalities. Recently, the discovery of potentially targetable molecular alterations has paved the way for the personalized treatment of PDAC. Indeed, the central piece in the molecular framework of PDAC is starting to be unveiled. KRAS mutations are seen in 90% of PDACs, and multiple studies have demonstrated their pivotal role in pancreatic carcinogenesis. Recent investigations have shed light on the differences in prognosis as well as therapeutic implications of the different KRAS mutations and disentangled the relationship between KRAS and effectors of downstream and parallel signaling pathways. Additionally, the recognition of other mechanisms involving KRAS-mediated pathogenesis, such as KRAS dosing and allelic imbalance, has contributed to broadening the current knowledge regarding this molecular alteration. Finally, KRAS G12C inhibitors have been recently tested in patients with pancreatic cancer with relative success, and inhibitors of KRAS harboring other mutations are under clinical development. These drugs currently represent a true hope for a meaningful leap forward in this dreadful disease.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre A. Jácome
- Department of Gastrointestinal Medical Oncology, Oncoclínicas, Belo Horizonte 30360-680, Brazil
| | | |
Collapse
|
30
|
Androutsopoulos G, Styliara I, Zarogianni E, Lazurko N, Valasoulis G, Michail G, Adonakis G. The ErbB Signaling Network and Its Potential Role in Endometrial Cancer. EPIGENOMES 2023; 7:24. [PMID: 37873809 PMCID: PMC10594534 DOI: 10.3390/epigenomes7040024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Endometrial cancer (EC) is the second most common malignancy of the female reproductive system worldwide. The updated EC classification emphasizes the significant role of various signaling pathways such as PIK3CA-PIK3R1-PTEN and RTK/RAS/β-catenin in EC pathogenesis. Some of these pathways are part of the EGF system signaling network, which becomes hyperactivated by various mechanisms and participates in cancer pathogenesis. In EC, the expression of ErbB receptors is significantly different, compared with the premenopausal and postmenopausal endometrium, mainly because of the increased transcriptional activity of ErbB encoding genes in EC cells. Moreover, there are some differences in ErbB-2 receptor profile among EC subgroups that could be explained by the alterations in pathophysiology and clinical behavior of various EC histologic subtypes. The fact that ErbB-2 receptor expression is more common in aggressive EC histologic subtypes (papillary serous and clear cell) could indicate a future role of ErbB-targeted therapies in well-defined EC subgroups with overexpression of ErbB receptors.
Collapse
Affiliation(s)
- Georgios Androutsopoulos
- Gynaecological Oncology Unit, Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Ioanna Styliara
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Evgenia Zarogianni
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Nadia Lazurko
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - George Valasoulis
- Department of Obstetrics and Gynaecology, Medical School, University of Thessaly, 41334 Larisa, Greece;
- Hellenic National Public Health Organization—ECDC, 15123 Athens, Greece
| | - Georgios Michail
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Georgios Adonakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| |
Collapse
|
31
|
Sayeesh PM, Iguchi M, Suemoto Y, Inoue J, Inomata K, Ikeya T, Ito Y. Interactions of the N- and C-Terminal SH3 Domains of Drosophila Drk with the Proline-Rich Peptides from Sos and Dos. Int J Mol Sci 2023; 24:14135. [PMID: 37762438 PMCID: PMC10532153 DOI: 10.3390/ijms241814135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Drk, a homologue of human GRB2 in Drosophila, receives signals from outside the cells through the interaction of its SH2 domain with the phospho-tyrosine residues in the intracellular regions of receptor tyrosine kinases (RTKs) such as Sevenless, and transduces the signals downstream through the association of its N- and C-terminal SH3 domains (Drk-NSH3 and Drk-CSH3, respectively) with proline-rich motifs (PRMs) in Son of Sevenless (Sos) or Daughter of Sevenless (Dos). Isolated Drk-NSH3 exhibits a conformational equilibrium between the folded and unfolded states, while Drk-CSH3 adopts only a folded confirmation. Drk interacts with PRMs of the PxxPxR motif in Sos and the PxxxRxxKP motif in Dos. Our previous study has shown that Drk-CSH3 can bind to Sos, but the interaction between Drk-NSH3 and Dos has not been investigated. To assess the affinities of both SH3 domains towards Sos and Dos, we conducted NMR titration experiments using peptides derived from Sos and Dos. Sos-S1 binds to Drk-NSH3 with the highest affinity, strongly suggesting that the Drk-Sos multivalent interaction is initiated by the binding of Sos-S1 and NSH3. Our results also revealed that the two Sos-derived PRMs clearly favour NSH3 for binding, whereas the two Dos-derived PRMs show almost similar affinity for NSH3 and CSH3. We have also performed docking simulations based on the chemical shift perturbations caused by the addition of Sos- and Dos-derived peptides. Finally, we discussed the various modes in the interactions of Drk with Sos/Dos.
Collapse
Grants
- JPMJCR13M3, JPMJCR21E5 Japan Science and Technology Agency
- JP15K06979, JP19H05645, JP15H01645, JP16H00847, JP17H05887, JP19H05773, JP26102538, JP25120003, JP16H00779, JP21K06114 Japan Society for the Promotion of Science
- Shimadzu foundation Shimadzu foundation
- the Precise Measurement Technology Promotion Foundation the Precise Measurement Technology Promotion Foundation
Collapse
Affiliation(s)
| | | | | | | | | | - Teppei Ikeya
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0373, Japan; (P.M.S.); (M.I.); (J.I.); (K.I.)
| | - Yutaka Ito
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0373, Japan; (P.M.S.); (M.I.); (J.I.); (K.I.)
| |
Collapse
|
32
|
Huang SKH, Bueno PRP, Garcia PJB, Lee MJ, De Castro-Cruz KA, Leron RB, Tsai PW. Antioxidant, Anti-Inflammatory and Antiproliferative Effects of Osmanthus fragrans (Thunb.) Lour. Flower Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3168. [PMID: 37687413 PMCID: PMC10489841 DOI: 10.3390/plants12173168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Osmanthus fragrans (Thunb.) Lour. flowers (OF-F) have been traditionally consumed as a functional food and utilized as folk medicine. This study evaluated the antioxidant, anti-inflammatory and cytotoxic effects of OF-F extracts on prostate cancer cells (DU-145) and determined possible protein-ligand interactions of its compounds in silico. The crude OF-F extracts-water (W) and ethanol (E) were tested for phytochemical screening, antioxidant, anti-inflammatory, and anti-cancer. Network and molecular docking analyses of chemical markers were executed to establish their application for anticancer drug development. OF-F-E possessed higher total polyphenols (233.360 ± 3.613 g/kg) and tannin (93.350 ± 1.003 g/kg) contents than OF-F-W. In addition, OF-F-E extract demonstrated effective DPPH scavenging activity (IC50 = 0.173 ± 0.004 kg/L) and contained a high FRAP value (830.620 ± 6.843 g Trolox/kg). In cell culture experiments, OF-F-E significantly reduced NO levels and inhibited cell proliferation of RAW-264.7 and DU-145 cell lines, respectively. Network analysis revealed O. fragrans (Thunb.) Lour. metabolites could affect thirteen molecular functions and thirteen biological processes in four cellular components. These metabolites inhibited key proteins of DU-145 prostate cancer using molecular docking with rutin owning the highest binding affinity with PIKR31 and AR. Hence, this study offered a new rationale for O. fragrans (Thunb.) Lour. metabolites as a medicinal herb for anticancer drug development.
Collapse
Affiliation(s)
- Steven Kuan-Hua Huang
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 711, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Paolo Robert P. Bueno
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Metro Manila 1000, Philippines;
- School of Medicine, The Manila Times College of Subic, Zambales 2222, Philippines
- Department of Chemistry, College of Science, Adamson University, Metro Manila 1000, Philippines
| | - Patrick Jay B. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
- School of Graduate Studies, Mapúa University, Metro Manila 1002, Philippines
| | - Mon-Juan Lee
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
| | - Kathlia A. De Castro-Cruz
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Rhoda B. Leron
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines; (P.J.B.G.); (K.A.D.C.-C.); (R.B.L.)
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan; (S.K.-H.H.); (M.-J.L.)
| |
Collapse
|
33
|
Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg Chem 2023; 138:106680. [PMID: 37336103 DOI: 10.1016/j.bioorg.2023.106680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
34
|
Zhang I, Rufa DA, Pulido I, Henry MM, Rosen LE, Hauser K, Singh S, Chodera JD. Identifying and Overcoming the Sampling Challenges in Relative Binding Free Energy Calculations of a Model Protein:Protein Complex. J Chem Theory Comput 2023; 19:4863-4882. [PMID: 37450482 PMCID: PMC11219094 DOI: 10.1021/acs.jctc.3c00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Relative alchemical binding free energy calculations are routinely used in drug discovery projects to optimize the affinity of small molecules for their drug targets. Alchemical methods can also be used to estimate the impact of amino acid mutations on protein:protein binding affinities, but these calculations can involve sampling challenges due to the complex networks of protein and water interactions frequently present in protein:protein interfaces. We investigate these challenges by extending a graphics processing unit (GPU)-accelerated open-source relative free energy calculation package (Perses) to predict the impact of amino acid mutations on protein:protein binding. Using the well-characterized model system barnase:barstar, we describe analyses for identifying and characterizing sampling problems in protein:protein relative free energy calculations. We find that mutations with sampling problems often involve charge-changes, and inadequate sampling can be attributed to slow degrees of freedom that are mutation-specific. We also explore the accuracy and efficiency of current state-of-the-art approaches─alchemical replica exchange and alchemical replica exchange with solute tempering─for overcoming relevant sampling problems. By employing sufficiently long simulations, we achieve accurate predictions (RMSE 1.61, 95% CI: [1.12, 2.11] kcal/mol), with 86% of estimates within 1 kcal/mol of the experimentally determined relative binding free energies and 100% of predictions correctly classifying the sign of the changes in binding free energies. Ultimately, we provide a model workflow for applying protein mutation free energy calculations to protein:protein complexes, and importantly, catalog the sampling challenges associated with these types of alchemical transformations. Our free open-source package (Perses) is based on OpenMM and is available at https://github.com/choderalab/perses.
Collapse
Affiliation(s)
- Ivy Zhang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Dominic A. Rufa
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Iván Pulido
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Michael M. Henry
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | | | | | - Sukrit Singh
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - John D. Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
35
|
Leonard TA, Loose M, Martens S. The membrane surface as a platform that organizes cellular and biochemical processes. Dev Cell 2023; 58:1315-1332. [PMID: 37419118 DOI: 10.1016/j.devcel.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them.
Collapse
Affiliation(s)
- Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
36
|
Clark JF, Soriano P. FRS2-independent GRB2 interaction with FGFR2 is not required for embryonic development. Biol Open 2023; 12:bio059942. [PMID: 37421147 PMCID: PMC10399203 DOI: 10.1242/bio.059942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
FGF activation is known to engage canonical signals, including ERK/MAPK and PI3K/AKT, through various effectors including FRS2 and GRB2. Fgfr2FCPG/FCPG mutants that abrogate canonical intracellular signaling exhibit a range of mild phenotypes but are viable, in contrast to embryonic lethal Fgfr2-/- mutants. GRB2 has been reported to interact with FGFR2 through a non-traditional mechanism, by binding to the C-terminus of FGFR2 independently of FRS2 recruitment. To investigate whether this interaction provides functionality beyond canonical signaling, we generated mutant mice harboring a C-terminal truncation (T). We found that Fgfr2T/T mice are viable and have no distinguishable phenotype, indicating that GRB2 binding to the C-terminal end of FGFR2 is not required for development or adult homeostasis. We further introduced the T mutation on the sensitized FCPG background but found that Fgfr2FCPGT/FCPGT mutants did not exhibit significantly more severe phenotypes. We therefore conclude that, although GRB2 can bind to FGFR2 independently of FRS2, this binding does not have a critical role in development or homeostasis.
Collapse
Affiliation(s)
- James F. Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
37
|
Zhang I, Rufa DA, Pulido I, Henry MM, Rosen LE, Hauser K, Singh S, Chodera JD. Identifying and overcoming the sampling challenges in relative binding free energy calculations of a model protein:protein complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.530278. [PMID: 36945557 PMCID: PMC10028896 DOI: 10.1101/2023.03.07.530278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Relative alchemical binding free energy calculations are routinely used in drug discovery projects to optimize the affinity of small molecules for their drug targets. Alchemical methods can also be used to estimate the impact of amino acid mutations on protein:protein binding affinities, but these calculations can involve sampling challenges due to the complex networks of protein and water interactions frequently present in protein:protein interfaces. We investigate these challenges by extending a GPU-accelerated open-source relative free energy calculation package (Perses) to predict the impact of amino acid mutations on protein:protein binding. Using the well-characterized model system barnase:barstar, we describe analyses for identifying and characterizing sampling problems in protein:protein relative free energy calculations. We find that mutations with sampling problems often involve charge-changes, and inadequate sampling can be attributed to slow degrees of freedom that are mutation-specific. We also explore the accuracy and efficiency of current state-of-the-art approaches-alchemical replica exchange and alchemical replica exchange with solute tempering-for overcoming relevant sampling problems. By employing sufficiently long simulations, we achieve accurate predictions (RMSE 1.61, 95% CI: [1.12, 2.11] kcal/mol), with 86% of estimates within 1 kcal/mol of the experimentally-determined relative binding free energies and 100% of predictions correctly classifying the sign of the changes in binding free energies. Ultimately, we provide a model workflow for applying protein mutation free energy calculations to protein:protein complexes, and importantly, catalog the sampling challenges associated with these types of alchemical transformations. Our free open-source package (Perses) is based on OpenMM and available at https://github.com/choderalab/perses .
Collapse
Affiliation(s)
- Ivy Zhang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Dominic A. Rufa
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Iván Pulido
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Michael M. Henry
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | | | | | - Sukrit Singh
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - John D. Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
38
|
Scalia P, Williams SJ, Suma A, Carnevale V. The DTX Protein Family: An Emerging Set of E3 Ubiquitin Ligases in Cancer. Cells 2023; 12:1680. [PMID: 37443713 PMCID: PMC10340142 DOI: 10.3390/cells12131680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Until recently, Deltex (DTX) proteins have been considered putative E3 ligases, based on the presence of an E3 RING domain in their protein coding sequence. The human DTX family includes DTX1, DTX2, DTX3, DTX3L and DTX4. Despite the fact that our knowledge of this class of E3-ubiquitin ligases is still at an early stage, our understanding of their role in oncogenesis is beginning to unfold. In fact, recently published studies allow us to define specific biological scenarios and further consolidate evidence-based working hypotheses. According to the current evidence, all DTX family members are involved in the regulation of Notch signaling, suggesting a phylogenetically conserved role in the regulation of this pathway. Indeed, additional evidence reveals a wider involvement of these proteins in other signaling complexes and cancer-promoting mechanisms beyond NOTCH signaling. DTX3, in particular, had been known to express two isoform variants (DTX3a and DTX3b). The recent identification and cloning of a third isoform variant in cancer (DTX3c), and its specific involvement in EphB4 degradation in cancer cells, sheds further light on this group of proteins and their specific role in cancer. Herein, we review the cumulative knowledge of this family of E3 Ubiquitin ligases with a specific focus on the potential oncogenic role of DTX isoforms in light of the rapidly expanding findings regarding this protein family's cellular targets and regulated signaling pathways. Furthermore, using a comparative and bioinformatic approach, we here disclose a new putative motif of a member of this family which may help in understanding the biological and contextual differences between the members of these proteins.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Stephen J. Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Suma
- Institute of Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Vincenzo Carnevale
- Institute of Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
39
|
Stainthorp AK, Lin CC, Wang D, Medhi R, Ahmed Z, Suen KM, Miska EA, Whitehouse A, Ladbury JE. Regulation of microRNA expression by the adaptor protein GRB2. Sci Rep 2023; 13:9784. [PMID: 37328606 PMCID: PMC10276003 DOI: 10.1038/s41598-023-36996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023] Open
Abstract
Protein interactions with the microRNA (miRNA)-mediated gene silencing protein Argonaute 2 (AGO2) control miRNA expression. miRNA biogenesis starts with the production of precursor transcripts and culminates with the loading of mature miRNA onto AGO2 by DICER1. Here we reveal an additional component to the regulatory mechanism for miRNA biogenesis involving the adaptor protein, growth factor receptor-bound protein 2 (GRB2). The N-terminal SH3 domain of GRB2 is recruited to the PAZ domain of AGO2 forming a ternary complex containing GRB2, AGO2 and DICER1. Using small-RNA sequencing we identified two groups of miRNAs which are regulated by the binding of GRB2. First, mature and precursor transcripts of mir-17~92 and mir-221 miRNAs are enhanced. Second, mature, but not precursor, let-7 family miRNAs are diminished suggesting that GRB2 directly affects loading of these miRNAs. Notably, the resulting loss of let-7 augments expression of oncogenic targets such as RAS. Thus, a new role for GRB2 is established with implications for cancer pathogenesis through regulation of miRNA biogenesis and oncogene expression.
Collapse
Affiliation(s)
- Amy K Stainthorp
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Chi-Chuan Lin
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Ragini Medhi
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kin Man Suen
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric A Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
40
|
Nocka LM, Eisen TJ, Iavarone AT, Groves JT, Kuriyan J. Stimulation of the catalytic activity of the tyrosine kinase Btk by the adaptor protein Grb2. eLife 2023; 12:e82676. [PMID: 37159508 PMCID: PMC10132808 DOI: 10.7554/elife.82676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023] Open
Abstract
The Tec-family kinase Btk contains a lipid-binding Pleckstrin homology and Tec homology (PH-TH) module connected by a proline-rich linker to a 'Src module', an SH3-SH2-kinase unit also found in Src-family kinases and Abl. We showed previously that Btk is activated by PH-TH dimerization, which is triggered on membranes by the phosphatidyl inositol phosphate PIP3, or in solution by inositol hexakisphosphate (IP6) (Wang et al., 2015, https://doi.org/10.7554/eLife.06074). We now report that the ubiquitous adaptor protein growth-factor-receptor-bound protein 2 (Grb2) binds to and substantially increases the activity of PIP3-bound Btk on membranes. Using reconstitution on supported-lipid bilayers, we find that Grb2 can be recruited to membrane-bound Btk through interaction with the proline-rich linker in Btk. This interaction requires intact Grb2, containing both SH3 domains and the SH2 domain, but does not require that the SH2 domain be able to bind phosphorylated tyrosine residues - thus Grb2 bound to Btk is free to interact with scaffold proteins via the SH2 domain. We show that the Grb2-Btk interaction recruits Btk to scaffold-mediated signaling clusters in reconstituted membranes. Our findings indicate that PIP3-mediated dimerization of Btk does not fully activate Btk, and that Btk adopts an autoinhibited state at the membrane that is released by Grb2.
Collapse
Affiliation(s)
- Laura M Nocka
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Timothy J Eisen
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- College of Chemistry Mass Spectrometry Facility, University of California, BerkeleyBerkeleyUnited States
| | - Jay T Groves
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Institute for Digital Molecular Analytics and Science, Nanyang Technological UniversitySingaporeSingapore
| | - John Kuriyan
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
41
|
Harwood SJ, Smith CR, Lawson JD, Ketcham JM. Selected Approaches to Disrupting Protein-Protein Interactions within the MAPK/RAS Pathway. Int J Mol Sci 2023; 24:ijms24087373. [PMID: 37108538 PMCID: PMC10139024 DOI: 10.3390/ijms24087373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Within the MAPK/RAS pathway, there exists a plethora of protein-protein interactions (PPIs). For many years, scientists have focused efforts on drugging KRAS and its effectors in hopes to provide much needed therapies for patients with KRAS-mutant driven cancers. In this review, we focus on recent strategies to inhibit RAS-signaling via disrupting PPIs associated with SOS1, RAF, PDEδ, Grb2, and RAS.
Collapse
Affiliation(s)
| | | | - J David Lawson
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| | - John M Ketcham
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| |
Collapse
|
42
|
Dickenson RE, Pellon A, Ponde NO, Hepworth O, Daniels Gatward LF, Naglik JR, Moyes DL. EGR1 regulates oral epithelial cell responses to Candida albicans via the EGFR- ERK1/2 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535186. [PMID: 37066428 PMCID: PMC10103955 DOI: 10.1101/2023.03.31.535186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Candida albicans is a fungal pathobiont colonising mucosal surfaces of the human body, including the oral cavity. Under certain predisposing conditions, C. albicans invades mucosal tissues activating EGFR-MAPK signalling pathways in epithelial cells via the action of its peptide toxin candidalysin. However, our knowledge of the epithelial mechanisms involved during C. albicans colonisation is rudimentary. Here, we describe the role of the transcription factor early growth response protein 1 (EGR1) in human oral epithelial cells (OECs) in response to C. albicans. EGR1 expression increases in OECs when exposed to C. albicans independently of fungal viability, morphology, or candidalysin release, suggesting EGR1 is involved in the fundamental recognition of C. albicans, rather than in response to invasion or 'pathogenesis'. Upregulation of EGR1 is mediated by EGFR via Raf1, ERK1/2 and NF-κB signalling but not PI3K/mTOR signalling. Notably, EGR1 mRNA silencing impacts on anti-C. albicans immunity, reducing GM-CSF, IL-1α and IL-1β release, and increasing IL-6 and IL-8 production. These findings identify an important role for EGR1 in priming epithelial cells to respond to subsequent invasive infection by C. albicans and elucidate the regulation circuit of this transcription factor after contact.
Collapse
Affiliation(s)
- Ruth E Dickenson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Nicole O Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
- Now at Department of Medicine, University of Pittsburgh, USA
| | - Olivia Hepworth
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Lydia F Daniels Gatward
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
43
|
Koretzky GA. Building on the Past, Meeting the Moment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:849-854. [PMID: 36947823 DOI: 10.4049/jimmunol.2390003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Affiliation(s)
- Gary A Koretzky
- Department of Internal Medicine, Weill Cornell Medicine, New York, NY
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY
| |
Collapse
|
44
|
Clark JF, Soriano P. FRS2-independent GRB2 interaction with FGFR2 is not required for embryonic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.534012. [PMID: 36993499 PMCID: PMC10055321 DOI: 10.1101/2023.03.23.534012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
FGF activation is known to engage canonical signals, including ERK/MAPK and PI3K/AKT, through various effectors including FRS2 and GRB2. Fgfr2 FCPG/FCPG mutants that abrogate canonical intracellular signaling exhibit a range of mild phenotypes but are viable in contrast to embryonic lethal Fgfr2 -/- mutants. GRB2 has been reported to interact with FGFR2 through a non-traditional mechanism, by binding to the C-terminus of FGFR2 independently of FRS2 recruitment. To investigate if this interaction provides functionality beyond canonical signaling, we generated mutant mice harboring a C-terminal truncation (T). We found that Fgfr2 T/T mice are viable and have no distinguishable phenotype, indicating that GRB2 binding to the C-terminal end of FGFR2 is not required for development or adult homeostasis. We further introduced the T mutation on the sensitized FCPG background but found that Fgfr2 FCPGT/FCPGT mutants did not exhibit significantly more severe phenotypes. We therefore conclude that, while GRB2 can bind to FGFR2 independently of FRS2, this binding does not have a critical role in development or homeostasis.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
45
|
Sandouk A, Xu Z, Baruah S, Tremblay M, Hopkins JB, Chakravarthy S, Gakhar L, Schnicker NJ, Houtman JCD. GRB2 dimerization mediated by SH2 domain-swapping is critical for T cell signaling and cytokine production. Sci Rep 2023; 13:3505. [PMID: 36864087 PMCID: PMC9981690 DOI: 10.1038/s41598-023-30562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.
Collapse
Affiliation(s)
- Aline Sandouk
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Sankar Baruah
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikaela Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
46
|
Peptides That Block RAS-p21 Protein-Induced Cell Transformation. Biomedicines 2023; 11:biomedicines11020471. [PMID: 36831007 PMCID: PMC9953342 DOI: 10.3390/biomedicines11020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
This is a review of approaches to the design of peptides and small molecules that selectively block the oncogenic RAS-p21 protein in ras-induced cancers. Single amino acid substitutions in this protein, at critical positions such as at Gly 12 and Gln 61, cause the protein to become oncogenic. These mutant proteins cause over 90 percent of pancreatic cancers, 40-50 percent of colon cancers and about one third of non-small cell cancers of the lung (NSCCL). RAS-p21 is a G-protein that becomes activated when it exchanges GDP for GTP. Several promising approaches have been developed that target mutant (oncogenic) RAS-p21 proteins in these different cancers. These approaches comprise: molecular simulations of mutant and wild-type proteins to identify effector domains, for which peptides can be made that selectively inhibit the oncogenic protein that include PNC-1 (ras residues 115-126), PNC-2 (ras residues 96-110) and PNC7 (ras residues 35-47); the use of contiguous RAS-p21 peptide sequences that can block ras signaling; cyclic peptides from large peptide libraries and small molecule libraries that can be identified in high throughput assays that can selectively stabilize inactive forms of RAS-p21; informatic approaches to discover peptides and small molecules that dock to specific domains of RAS-p21 that can block mitogenic signal transduction by oncogenic RAS-p21; and the use of cell-penetrating peptides (CPPs) that are attached to the variable domains of the anti-RAS-p21 inactivating monoclonal antibody, Y13 259, that selectively enters oncogenic RAS-p21-containing cancer cells, causing these cells to undergo apoptosis. Several new anti-oncogenic RAS-p21 agents, i.e., Amgen's AMG510 and Mirati Therapeutics' MRTX849, polycyclic aromatic compounds, have recently been FDA-approved and are already being used clinically to treat RAS-p21-induced NSCCL and colorectal carcinomas. These new drugs target the inactive form of RAS-p21 bound to GDP with G12C substitution at the critical Gly 12 residue by binding to a groove bordered by specific domains in this mutant protein into which these compounds insert, resulting in the stabilization of the inactive GDP-bound form of RAS-p21. Other peptides and small molecules have been discovered that block the G12D-RAS-p21 oncogenic protein. These agents can treat specific mutant protein-induced cancers and are excellent examples of personalized medicine. However, many oncogenic RAS-p21-induced tumors are caused by other mutations at positions 12, 13 and 61, requiring other, more general anti-oncogenic agents that are being provided using alternate methods.
Collapse
|
47
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
48
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y, Giordano A. Cell cycle control by the insulin-like growth factor signal: at the crossroad between cell growth and mitotic regulation. Cell Cycle 2023; 22:1-37. [PMID: 36005738 PMCID: PMC9769454 DOI: 10.1080/15384101.2022.2108117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In proliferating cells and tissues a number of checkpoints (G1/S and G2/M) preceding cell division (M-phase) require the signal provided by growth factors present in serum. IGFs (I and II) have been demonstrated to constitute key intrinsic components of the peptidic active fraction of mammalian serum. In vivo genetic ablation studies have shown that the cellular signal triggered by the IGFs through their cellular receptors represents a non-replaceable requirement for cell growth and cell cycle progression. Retroactive and current evaluation of published literature sheds light on the intracellular circuitry activated by these factors providing us with a better picture of the pleiotropic mechanistic actions by which IGFs regulate both cell size and mitogenesis under developmental growth as well as in malignant proliferation. The present work aims to summarize the cumulative knowledge learned from the IGF ligands/receptors and their intracellular signaling transducers towards control of cell size and cell-cycle with particular focus to their actionable circuits in human cancer. Furthermore, we bring novel perspectives on key functional discriminants of the IGF growth-mitogenic pathway allowing re-evaluation on some of its signal components based upon established evidences.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states,CONTACT Pierluigi Scalia ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA9102, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Antonio Giordano
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,School of Medical Biotechnology, University of Siena, Italy
| |
Collapse
|
49
|
Frontzek F, Hailfinger S, Lenz G. Plasmablastic lymphoma: from genetics to treatment. Leuk Lymphoma 2022; 64:799-807. [PMID: 36577021 DOI: 10.1080/10428194.2022.2162341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasmablastic lymphoma (PBL) represents a rare distinct lymphoma entity with plasmablastic morphology and plasmacytic immunophenotype that is characterized by an aggressive clinical course. Standard chemotherapeutic regimens often remain insufficient to cure affected patients. Recently, comprehensive molecular analyses of large cohorts of primary PBL samples have revealed the mutational landscape as well as the pattern of copy number alterations of this rare lymphoma subtype. Identification of recurrent aberrations affecting the JAK-STAT, RAS-RAF, NOTCH, IRF4, and MYC signaling pathways drive the molecular pathogenesis of PBL and hold great potential for novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fabian Frontzek
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Stephan Hailfinger
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
50
|
Kong Q, Ke M, Weng Y, Qin Y, He A, Li P, Cai Z, Tian R. Dynamic Phosphotyrosine-Dependent Signaling Profiling in Living Cells by Two-Dimensional Proximity Proteomics. J Proteome Res 2022; 21:2727-2735. [DOI: 10.1021/acs.jproteome.2c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Kong
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong SAR, China
| | - Mi Ke
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Yicheng Weng
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Yunqiu Qin
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - An He
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Pengfei Li
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong SAR, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|