1
|
Maeno A, Koita R, Nakazawa H, Fujii R, Yamada K, Oikawa S, Tani T, Ishizaka M, Satoh K, Ishizu A, Sugawara T, Adachi U, Kikuchi M, Iwanami N, Matsuda M, Kawamura A. The Hox code responsible for the patterning of the anterior vertebrae in zebrafish. Development 2024; 151:dev202854. [PMID: 38940461 DOI: 10.1242/dev.202854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The vertebral column is a characteristic structure of vertebrates. Genetic studies in mice have shown that Hox-mediated patterning plays a key role in specifying discrete anatomical regions of the vertebral column. Expression pattern analyses in several vertebrate embryos have provided correlative evidence that the anterior boundaries of Hox expression coincide with distinct anatomical vertebrae. However, because functional analyses have been limited to mice, it remains unclear which Hox genes actually function in vertebral patterning in other vertebrates. In this study, various zebrafish Hox mutants were generated for loss-of-function phenotypic analysis to functionally decipher the Hox code responsible for the zebrafish anterior vertebrae between the occipital and thoracic vertebrae. We found that Hox genes in HoxB- and HoxC-related clusters participate in regulating the morphology of the zebrafish anterior vertebrae. In addition, medaka hoxc6a was found to be responsible for anterior vertebral identity, as in zebrafish. Based on phenotypic similarities with Hoxc6 knockout mice, our results suggest that the Hox patterning system, including at least Hoxc6, may have been functionally established in the vertebral patterning of the common ancestor of ray-finned and lobe-finned fishes.
Collapse
Affiliation(s)
- Akiteru Maeno
- Cell Architecture Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Rina Koita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Hidemichi Nakazawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Renka Fujii
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Sae Oikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Taisei Tani
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Mizuki Ishizaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Koumi Satoh
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Atsuki Ishizu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Takumi Sugawara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Urara Adachi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Morimichi Kikuchi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya 321-8505, Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya 321-8505, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
2
|
Adachi U, Koita R, Seto A, Maeno A, Ishizu A, Oikawa S, Tani T, Ishizaka M, Yamada K, Satoh K, Nakazawa H, Furudate H, Kawakami K, Iwanami N, Matsuda M, Kawamura A. Teleost Hox code defines regional identities competent for the formation of dorsal and anal fins. Proc Natl Acad Sci U S A 2024; 121:e2403809121. [PMID: 38861596 PMCID: PMC11194558 DOI: 10.1073/pnas.2403809121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
The dorsal and anal fins can vary widely in position and length along the anterior-posterior axis in teleost fishes. However, the molecular mechanisms underlying the diversification of these fins remain unknown. Here, we used genetic approaches in zebrafish and medaka, in which the relative positions of the dorsal and anal fins are opposite, to demonstrate the crucial role of hox genes in the patterning of the teleost posterior body, including the dorsal and anal fins. By the CRISPR-Cas9-induced frameshift mutations and positional cloning of spontaneous dorsalfinless medaka, we show that various hox mutants exhibit the absence of dorsal or anal fins, or a stepwise posterior extension of these fins, with vertebral abnormalities. Our results indicate that multiple hox genes, primarily from hoxc-related clusters, encompass the regions responsible for the dorsal and anal fin formation along the anterior-posterior axis. These results further suggest that shifts in the anterior boundaries of hox expression which vary among fish species, lead to diversification in the position and size of the dorsal and anal fins, similar to how modulations in Hox expression can alter the number of anatomically distinct vertebrae in tetrapods. Furthermore, we show that hox genes responsible for dorsal fin formation are different between zebrafish and medaka. Our results suggest that a novel mechanism has occurred during teleost evolution, in which the gene network responsible for fin formation might have switched to the regulation downstream of other hox genes, leading to the remarkable diversity in the dorsal fin position.
Collapse
Affiliation(s)
- Urara Adachi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Rina Koita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Akira Seto
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya321-8505, Japan
| | - Akiteru Maeno
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
| | - Atsuki Ishizu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Sae Oikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Taisei Tani
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Mizuki Ishizaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Koumi Satoh
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Hidemichi Nakazawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Hiroyuki Furudate
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya321-8505, Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya321-8505, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| |
Collapse
|
3
|
Yang Q, Liu H, Xi Y, Lu Y, Han X, He X, Qi J, Zhu Y, He H, Wang J, Hu J, Li L. Genome-wide association study for bone quality of ducks during the laying period. Poult Sci 2024; 103:103575. [PMID: 38447311 PMCID: PMC11067773 DOI: 10.1016/j.psj.2024.103575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
The cage-rearing model of the modern poultry industry makes the bones of birds, especially egg-laying birds, more vulnerable to fracture, which poses serious damage to the health of birds. Research confirms that genetic material plays an important role in regulating bone growth, development, and remodeling. However, the genetic architecture underlying bone traits is not well understood. The objectives of this study are to identify valuable genes and genetic markers through a genome-wide association study (GWAS) for breeding to improve the duck bone quality. First, we quantified the tibia and femur quality traits of 260 laying ducks. Based on GWAS, a total of 75 SNP loci significantly associated with bone quality traits were identified, and 67 potential candidate genes were annotated. According to gene function analysis, genes P4HA2, WNT3A, and BST1 et al may influence bone quality by regulating bone cell activity, calcium and phosphate metabolism, or bone collagen maturation and cross-linking. Meanwhile, combined with the transcriptome results, we found that HOXB cluster genes are also important in bone growth and development. Therefore, our findings were helpful in further understanding the genetic architecture of the duck bone quality and provided a worthy theoretical basis and technological support to improve duck bone quality by breeding.
Collapse
Affiliation(s)
- Qinglan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Yang Xi
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Xu Han
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Xinxin He
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Jingjing Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Yuanchun Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Hua He
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Jiwen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China.
| |
Collapse
|
4
|
Bruet E, Amarante-Silva D, Gorojankina T, Creuzet S. The Emerging Roles of the Cephalic Neural Crest in Brain Development and Developmental Encephalopathies. Int J Mol Sci 2023; 24:9844. [PMID: 37372994 DOI: 10.3390/ijms24129844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The neural crest, a unique cell population originating from the primitive neural field, has a multi-systemic and structural contribution to vertebrate development. At the cephalic level, the neural crest generates most of the skeletal tissues encasing the developing forebrain and provides the prosencephalon with functional vasculature and meninges. Over the last decade, we have demonstrated that the cephalic neural crest (CNC) exerts an autonomous and prominent control on the development of the forebrain and sense organs. The present paper reviews the primary mechanisms by which CNC can orchestrate vertebrate encephalization. Demonstrating the role of the CNC as an exogenous source of patterning for the forebrain provides a novel conceptual framework with profound implications for understanding neurodevelopment. From a biomedical standpoint, these data suggest that the spectrum of neurocristopathies is broader than expected and that some neurological disorders may stem from CNC dysfunctions.
Collapse
Affiliation(s)
- Emmanuel Bruet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Diego Amarante-Silva
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Tatiana Gorojankina
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Sophie Creuzet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| |
Collapse
|
5
|
Chen CH, Behringer RR. Transgenic human HOXB1-9 directs anterior-posterior axial skeleton pattern in Hoxb1-9 deficient mice. Differentiation 2022; 127:1-11. [DOI: 10.1016/j.diff.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
6
|
Mitchel K, Bergmann JM, Brent AE, Finkelstein TM, Schindler KA, Holzman MA, Jeannotte L, Mansfield JH. Hoxa5 Activity Across the Lateral Somitic Frontier Regulates Development of the Mouse Sternum. Front Cell Dev Biol 2022; 10:806545. [PMID: 35557949 PMCID: PMC9086245 DOI: 10.3389/fcell.2022.806545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The skeletal system derives from multiple embryonic sources whose derivatives must develop in coordination to produce an integrated whole. In particular, interactions across the lateral somitic frontier, where derivatives of the somites and lateral plate mesoderm come into contact, are important for proper development. Many questions remain about genetic control of this coordination, and embryological information is incomplete for some structures that incorporate the frontier, including the sternum. Hox genes act in both tissues as regulators of skeletal pattern. Here, we used conditional deletion to characterize the tissue-specific contributions of Hoxa5 to skeletal patterning. We found that most aspects of the Hoxa5 skeletal phenotype are attributable to its activity in one or the other tissue, indicating largely additive roles. However, multiple roles are identified at the junction of the T1 ribs and the anterior portion of the sternum, or presternum. The embryology of the presternum has not been well described in mouse. We present a model for presternum development, and show that it arises from multiple, paired LPM-derived primordia. We show evidence that HOXA5 expression marks the embryonic precursor of a recently identified lateral presternum structure that is variably present in therians.
Collapse
Affiliation(s)
- Kira Mitchel
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
| | - Jenna M. Bergmann
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
| | - Ava E. Brent
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
- *Correspondence: Ava E. Brent, ; Jennifer H. Mansfield,
| | - Tova M. Finkelstein
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
| | - Kyra A. Schindler
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
| | - Miriam A. Holzman
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec‐Université, Laval (Oncology Axis), Québec, QC, Canada
| | - Jennifer H. Mansfield
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
- *Correspondence: Ava E. Brent, ; Jennifer H. Mansfield,
| |
Collapse
|
7
|
Embryonic Development of the Avian Sternum and Its Morphological Adaptations for Optimizing Locomotion. DIVERSITY 2021. [DOI: 10.3390/d13100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sternum is part of the forelimb appendicular skeleton found in most terrestrial vertebrates and has become adapted across tetrapods for distinctive modes of locomotion. We review the regulatory mechanisms underlying sternum and forelimb development and discuss the possible gene expression modulation that could be responsible for the sternal adaptations and associated reduction in the forelimb programme found in flightless birds. In three phylogenetically divergent vertebrate lineages that all undertake powered flight, a ventral extension of the sternum, named the keel, has evolved independently, most strikingly in volant birds. In flightless birds, however, the sternal keel is absent, and the sternum is flattened. We review studies in a variety of species that have analysed adaptations in sterna morphology that are related to the animal’s mode of locomotion on land, in the sky and in water.
Collapse
|
8
|
The Hox protein conundrum: The "specifics" of DNA binding for Hox proteins and their partners. Dev Biol 2021; 477:284-292. [PMID: 34102167 PMCID: PMC8846413 DOI: 10.1016/j.ydbio.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
Homeotic genes (Hox genes) are homeodomain-transcription factors involved in conferring segmental identity along the anterior-posterior body axis. Molecular characterization of HOX protein function raises some interesting questions regarding the source of the binding specificity of the HOX proteins. How do HOX proteins regulate common and unique target specificity across space and time? This review attempts to summarize and interpret findings in this area, largely focused on results from in vitro and in vivo studies in Drosophila and mouse systems. Recent studies related to HOX protein binding specificity compel us to reconsider some of our current models for transcription factor-DNA interactions. It is crucial to study transcription factor binding by incorporating components of more complex, multi-protein interactions in concert with small changes in binding motifs that can significantly impact DNA binding specificity and subsequent alterations in gene expression. To incorporate the multiple elements that can determine HOX protein binding specificity, we propose a more integrative Cooperative Binding model.
Collapse
|
9
|
AdipoR agonist increases insulin sensitivity and exercise endurance in AdipoR-humanized mice. Commun Biol 2021; 4:45. [PMID: 33420419 PMCID: PMC7794315 DOI: 10.1038/s42003-020-01579-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
Adiponectin receptors, AdipoR1 and AdipoR2 exert anti-diabetic effects. Although muscle-specific disruption of AdipoR1 has been shown to result in decreased insulin sensitivity and decreased exercise endurance, it remains to be determined whether upregulation of AdipoR1 could reverse them in obese diabetic mice. Here, we show that muscle-specific expression of human AdipoR1 increased expression levels of genes involved in mitochondrial biogenesis and oxidative stress-detoxification to almost the same extents as treadmill exercise, and concomitantly increased insulin sensitivity and exercise endurance in obese diabetic mice. Moreover, we created AdipoR-humanized mice which express human AdipoR1 in muscle of AdipoR1·R2 double-knockout mice. Most importantly, the small-molecule AdipoR agonist AdipoRon could exert its beneficial effects in muscle via human AdipoR, and increased insulin sensitivity and exercise endurance in AdipoR-humanized mice. This study suggests that expression of human AdipoR1 in skeletal muscle could be exercise-mimetics, and that AdipoRon could exert its beneficial effects via human AdipoR1. Masato Iwabu and Miki Okada-Iwabu et al. investigate whether diabetic phenotypes associated with disruption of the adiponectin receptor (AdipoR1) can be reversed in diabetic mice by upregulation of the receptor. They show that overexpressing human AdipoR1 in the muscles of diabetic mice increased insulin sensitivity and exercise endurance, suggesting a possible route for future clinical therapies.
Collapse
|
10
|
Complete sternal cleft treatment in a low birth weight patient. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 28:684-687. [PMID: 33403144 PMCID: PMC7759050 DOI: 10.5606/tgkdc.dergisi.2020.19822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/18/2020] [Indexed: 12/04/2022]
Abstract
A complete sternal cleft is a very rare congenital anomaly causing severe respiratory compromise. Surgical reconstruction options are limited, particularly in low birth weight newborns. Herein, we report a case of low birth weight premature newborn with a complete sternal cleft and its surgical treatment.
Collapse
|
11
|
Maddin HC, Piekarski N, Reisz RR, Hanken J. Development and evolution of the tetrapod skull-neck boundary. Biol Rev Camb Philos Soc 2020; 95:573-591. [PMID: 31912655 PMCID: PMC7318664 DOI: 10.1111/brv.12578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/26/2022]
Abstract
The origin and evolution of the vertebrate skull have been topics of intense study for more than two centuries. Whereas early theories of skull origin, such as the influential vertebral theory, have been largely refuted with respect to the anterior (pre-otic) region of the skull, the posterior (post-otic) region is known to be derived from the anteriormost paraxial segments, i.e. the somites. Here we review the morphology and development of the occiput in both living and extinct tetrapods, taking into account revised knowledge of skull development by augmenting historical accounts with recent data. When occipital composition is evaluated relative to its position along the neural axis, and specifically to the hypoglossal nerve complex, much of the apparent interspecific variation in the location of the skull-neck boundary stabilizes in a phylogenetically informative way. Based on this criterion, three distinct conditions are identified in (i) frogs, (ii) salamanders and caecilians, and (iii) amniotes. The position of the posteriormost occipital segment relative to the hypoglossal nerve is key to understanding the evolution of the posterior limit of the skull. By using cranial foramina as osteological proxies of the hypoglossal nerve, a survey of fossil taxa reveals the amniote condition to be present at the base of Tetrapoda. This result challenges traditional theories of cranial evolution, which posit translocation of the occiput to a more posterior location in amniotes relative to lissamphibians (frogs, salamanders, caecilians), and instead supports the largely overlooked hypothesis that the reduced occiput in lissamphibians is secondarily derived. Recent advances in our understanding of the genetic basis of axial patterning and its regulation in amniotes support the hypothesis that the lissamphibian occipital form may have arisen as the product of a homeotic shift in segment fate from an amniote-like condition.
Collapse
Affiliation(s)
- Hillary C. Maddin
- Museum of Comparative ZoologyHarvard University, 26 Oxford StreetCambridgeMA02138U.S.A.
- Department of Earth SciencesCarleton University, 1125 Colonel By DriveOttawaOntarioK1S 5B6Canada
| | - Nadine Piekarski
- Museum of Comparative ZoologyHarvard University, 26 Oxford StreetCambridgeMA02138U.S.A.
| | - Robert R. Reisz
- Department of BiologyUniversity of Toronto Mississauga3359 Mississauga Road, MississaugaOntarioL5L 1C6Canada
| | - James Hanken
- Museum of Comparative ZoologyHarvard University, 26 Oxford StreetCambridgeMA02138U.S.A.
| |
Collapse
|
12
|
Cdx2 Animal Models Reveal Developmental Origins of Cancers. Genes (Basel) 2019; 10:genes10110928. [PMID: 31739541 PMCID: PMC6895827 DOI: 10.3390/genes10110928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
The Cdx2 homeobox gene is important in assigning positional identity during the finely orchestrated process of embryogenesis. In adults, regenerative responses to tissues damage can require a replay of these same developmental pathways. Errors in reassigning positional identity during regeneration can cause metaplasias-normal tissue arising in an abnormal location-and this in turn, is a well-recognized cancer risk factor. In animal models, a gain of Cdx2 function can elicit a posterior shift in tissue identity, modeling intestinal-type metaplasias of the esophagus (Barrett's esophagus) and stomach. Conversely, loss of Cdx2 function can elicit an anterior shift in tissue identity, inducing serrated-type lesions expressing gastric markers in the colon. These metaplasias are major risk factors for the later development of esophageal, stomach and colon cancer. Leukemia, another cancer in which Cdx2 is ectopically expressed, may have mechanistic parallels with epithelial cancers in terms of stress-induced reprogramming. This review will address how animal models have refined our understanding of the role of Cdx2 in these common human cancers.
Collapse
|
13
|
Weber LA, Phillips H. Congenital cleft sternum with diaphragmatic hernia and radial hemimelia in a kitten. VETERINARY RECORD CASE REPORTS 2019. [DOI: 10.1136/vetreccr-2017-000472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Lindsey Anne Weber
- Department of Veterinary Clinical MedicineUniversity of IllinoisUrbanaIllinoisUSA
| | - Heidi Phillips
- Veterinary Clinical MedicineUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
14
|
Lian G, Kanaujia S, Wong T, Sheen V. FilaminA and Formin2 regulate skeletal, muscular, and intestinal formation through mesenchymal progenitor proliferation. PLoS One 2017; 12:e0189285. [PMID: 29240780 PMCID: PMC5730144 DOI: 10.1371/journal.pone.0189285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/23/2017] [Indexed: 11/29/2022] Open
Abstract
The effects of actin dependent molecular mechanisms in coordinating cellular proliferation, migration and differentiation during embryogenesis are not well-understood. We have previously shown that actin-binding Filamin A (FlnA) and actin-nucleating Formin 2 (Fmn2) influence the development of the brain causing microcephaly in mice. In this study, we broaden this phenotype to explore the effects of these two proteins in the development of extra-CNS organ systems, including the gut, muscle, and skeleton. We observed defects in rib and sternum midline closure leading to thoracoabdominal schisis in FlnA+Fmn2 knockout mice, reminiscent of the pentalogy of Cantrell syndrome. These mice exhibit shortened guts, as well as thinned thoracic muscle mass. Immunostaining showed these changes are partially caused by a decrease in the number of presumptive mesenchymal proliferating cells with loss of either FlnA or FlnA+Fmn2. This proliferation defect appears to be in part due to delayed differentiation in these regions. While both FlnA and FlnA+Fmn2 mice show reduced cell death relative to WT control, increased caspase staining was seen in the double null relative to FlnA null suggesting that this could also contribute to the FlnA+Fmn2 phenotype. Therefore FlnA and Fmn2 are likely essential to cell proliferation, differentiation and cell death in a variety of tissues and organs, further reiterating the importance of vesicle trafficking in regulation of development.
Collapse
Affiliation(s)
- Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| | - Sneha Kanaujia
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| | - Timothy Wong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| | - Volney Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Böhmer C. Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida. ZOOLOGICAL LETTERS 2017; 3:8. [PMID: 28630745 PMCID: PMC5469011 DOI: 10.1186/s40851-017-0069-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/16/2017] [Indexed: 03/27/2024]
Abstract
BACKGROUND The importance of the cervical vertebrae as part of the skull-neck system in facilitating the success and diversity of tetrapods is clear. The reconstruction of its evolution, however, is problematic because of the variation in the number of vertebrae, making it difficult to identify homologous elements. Quantification of the morphological differentiation in the neck of diverse archosaurs established homologous units of vertebrae (i.e. modules) resulting from Hox gene expression patterns within the cervical vertebral column. The present study aims to investigate the modularity of the cervical vertebral column in the mouse and to reveal the genetic patterns and changes underlying the evolution of the neck of modern mammals and their extinct relatives. In contrast to modern mammals, non-mammalian synapsids are characterized by a variable cervical count, the presence of free cervical ribs and the presence of a separate CV1 centrum. How might these evolutionary modifications be associated with changes in the Hox code? RESULTS In combination with up-to-date information on cervical Hox gene expression including description of the vertebral phenotype of Hox knock-out mutants, the 3D landmark-based geometric morphometric approach demonstrates a correlation between Hox code and vertebral morphology in the mouse. There is evidence that the modularity of the neck of the mouse had already been established in the last common ancestor of mammals, but differed from that of non-mammalian synapsids. The differences that likely occurred during the evolution of synapsids include an anterior shift in HoxA-5 expression in relation to the reduction of cervical ribs and an anterior shift in HoxD-4 expression linked to the development of the highly differentiated atlas-axis complex, whereas the remaining Hox genes may have displayed a pattern similar to that in mammals on the basis of the high level of conservatism in the axial skeleton of this lineage. CONCLUSION Thus, the mouse Hox code provides a model for understanding the evolutionary mechanisms responsible for the great morphological adaptability of the cervical vertebral column in Synapsida. However, more studies in non-model organisms are required to further elucidate the evolutionary role of Hox genes in axial patterning of the unique mammalian body plan.
Collapse
Affiliation(s)
- Christine Böhmer
- UMR 7179 CNRS/MNHN, Muséum National d’Histoire Naturelle, 57 rue Cuvier CP-55, Paris, France
| |
Collapse
|
16
|
Nemeschkal HL. MORPHOMETRIC CORRELATION PATTERNS OF ADULT BIRDS (FRINGILLIDAE: PASSERIFORMES AND COLUMBIFORMES) MIRROR THE EXPRESSION OF DEVELOPMENTAL CONTROL GENES. Evolution 2017; 53:899-918. [DOI: 10.1111/j.1558-5646.1999.tb05384.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/1998] [Accepted: 12/22/1998] [Indexed: 11/27/2022]
Affiliation(s)
- Hans L. Nemeschkal
- Institute of Zoology, University of Vienna, Austria; Althanstrasse 14 A-1090 Vienna Austria
| |
Collapse
|
17
|
Selection on different genes with equivalent functions: the convergence story told by Hox genes along the evolution of aquatic mammalian lineages. BMC Evol Biol 2016; 16:113. [PMID: 27209096 PMCID: PMC4875654 DOI: 10.1186/s12862-016-0682-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/10/2016] [Indexed: 11/24/2022] Open
Abstract
Background Convergent evolution has been a challenging topic for decades, being cetaceans, pinnipeds and sirenians textbook examples of three independent origins of equivalent phenotypes. These mammalian lineages acquired similar anatomical features correlated to an aquatic life, and remarkably differ from their terrestrial counterparts. Whether their molecular evolutionary history also involved similar genetic mechanisms underlying such morphological convergence nevertheless remained unknown. To test for the existence of convergent molecular signatures, we studied the molecular evolution of Hox genes in these three aquatic mammalian lineages, comparing their patterns to terrestrial mammals. Hox genes are transcription factors that play a pivotal role in specifying embryonic regional identity of nearly any bilateral animal, and are recognized major agents for diversification of body plans. Results We detected few signatures of positive selection on Hox genes across the three aquatic mammalian lineages and verified that purifying selection prevails in these sequences, as expected for pleiotropic genes. Genes found as being positively selected differ across the aquatic mammalian lineages, but we identified a substantial overlap of their developmental functions. Such pattern likely resides on the duplication history of Hox genes, which probably provided different possible evolutionary routes for achieving the same phenotypic solution. Conclusions Our results indicate that convergence occurred at a functional level of Hox genes along three independent origins of aquatic mammals. This conclusion reinforces the idea that different changes in developmental genes may lead to similar phenotypes, probably due to the redundancy provided by the participation of Hox paralogous genes in several developmental functions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0682-4) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Kothari P, Gupta A, Patil PS, Kekre G, Kamble R, Dikshit KV. Complete sternal cleft - A rare congenital malformation and its repair in a 3-month-old boy: A case report. J Indian Assoc Pediatr Surg 2016; 21:78-80. [PMID: 27046980 PMCID: PMC4790134 DOI: 10.4103/0971-9261.176961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Complete midline sternal cleft is a rare congenital anomaly resulting from failed midline ventral fusion of the sternal bars. Very few cases of complete sternal cleft have been described in literature. We present a case of complete sternal cleft in a 3-month-old child. The patient underwent primary closure of the defect using stainless steel wires.
Collapse
Affiliation(s)
- Paras Kothari
- Department of Paediatric Surgery, Lokmanya Tilak Municipal General Hospital, Mumbai, Maharashtra, India
| | - Abhaya Gupta
- Department of Paediatric Surgery, Lokmanya Tilak Municipal General Hospital, Mumbai, Maharashtra, India
| | - Prashant S Patil
- Department of Paediatric Surgery, Lokmanya Tilak Municipal General Hospital, Mumbai, Maharashtra, India
| | - Geeta Kekre
- Department of Paediatric Surgery, Lokmanya Tilak Municipal General Hospital, Mumbai, Maharashtra, India
| | - Ravi Kamble
- Department of Paediatric Surgery, Lokmanya Tilak Municipal General Hospital, Mumbai, Maharashtra, India
| | - Kiran Vishesh Dikshit
- Department of Paediatric Surgery, Lokmanya Tilak Municipal General Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
19
|
West DB, Engelhard EK, Adkisson M, Nava AJ, Kirov JV, Cipollone A, Willis B, Rapp J, de Jong PJ, Lloyd KC. Transcriptome Analysis of Targeted Mouse Mutations Reveals the Topography of Local Changes in Gene Expression. PLoS Genet 2016; 12:e1005691. [PMID: 26839965 PMCID: PMC4739719 DOI: 10.1371/journal.pgen.1005691] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/30/2015] [Indexed: 01/21/2023] Open
Abstract
The unintended consequences of gene targeting in mouse models have not been thoroughly studied and a more systematic analysis is needed to understand the frequency and characteristics of off-target effects. Using RNA-seq, we evaluated targeted and neighboring gene expression in tissues from 44 homozygous mutants compared with C57BL/6N control mice. Two allele types were evaluated: 15 targeted trap mutations (TRAP); and 29 deletion alleles (DEL), usually a deletion between the translational start and the 3' UTR. Both targeting strategies insert a bacterial beta-galactosidase reporter (LacZ) and a neomycin resistance selection cassette. Evaluating transcription of genes in +/- 500 kb of flanking DNA around the targeted gene, we found up-regulated genes more frequently around DEL compared with TRAP alleles, however the frequency of alleles with local down-regulated genes flanking DEL and TRAP targets was similar. Down-regulated genes around both DEL and TRAP targets were found at a higher frequency than expected from a genome-wide survey. However, only around DEL targets were up-regulated genes found with a significantly higher frequency compared with genome-wide sampling. Transcriptome analysis confirms targeting in 97% of DEL alleles, but in only 47% of TRAP alleles probably due to non-functional splice variants, and some splicing around the gene trap. Local effects on gene expression are likely due to a number of factors including compensatory regulation, loss or disruption of intragenic regulatory elements, the exogenous promoter in the neo selection cassette, removal of insulating DNA in the DEL mutants, and local silencing due to disruption of normal chromatin organization or presence of exogenous DNA. An understanding of local position effects is important for understanding and interpreting any phenotype attributed to targeted gene mutations, or to spontaneous indels.
Collapse
Affiliation(s)
- David B. West
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
- * E-mail:
| | - Eric K. Engelhard
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Michael Adkisson
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - A. J. Nava
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Julia V. Kirov
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Andreanna Cipollone
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Brandon Willis
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Jared Rapp
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Pieter J. de Jong
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, California, United States of America
| | - Kent C. Lloyd
- Mouse Biology Program, University of California, Davis, California, United States of America
| |
Collapse
|
20
|
Kappen C. Developmental Patterning as a Quantitative Trait: Genetic Modulation of the Hoxb6 Mutant Skeletal Phenotype. PLoS One 2016; 11:e0146019. [PMID: 26800342 PMCID: PMC4723086 DOI: 10.1371/journal.pone.0146019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/12/2015] [Indexed: 11/24/2022] Open
Abstract
The process of patterning along the anterior-posterior axis in vertebrates is highly conserved. The function of Hox genes in the axis patterning process is particularly well documented for bone development in the vertebral column and the limbs. We here show that Hoxb6, in skeletal elements at the cervico-thoracic junction, controls multiple independent aspects of skeletal pattern, implicating discrete developmental pathways as substrates for this transcription factor. In addition, we demonstrate that Hoxb6 function is subject to modulation by genetic factors. These results establish Hox-controlled skeletal pattern as a quantitative trait modulated by gene-gene interactions, and provide evidence that distinct modifiers influence the function of conserved developmental genes in fundamental patterning processes.
Collapse
Affiliation(s)
- Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, Louisiana, 70808, United States of America
- * E-mail:
| |
Collapse
|
21
|
Du H, Taylor HS. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility. Cold Spring Harb Perspect Med 2015; 6:a023002. [PMID: 26552702 DOI: 10.1101/cshperspect.a023002] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
HOX genes convey positional identity that leads to the proper partitioning and adult identity of the female reproductive track. Abnormalities in reproductive tract development can be caused by HOX gene mutations or altered HOX gene expression. Diethylstilbestrol (DES) and other endocrine disruptors cause Müllerian defects by changing HOX gene expression. HOX genes are also essential regulators of adult endometrial development. Regulated HOXA10 and HOXA11 expression is necessary for endometrial receptivity; decreased HOXA10 or HOXA11 expression leads to decreased implantation rates. Alternation of HOXA10 and HOXA11 expression has been identified as a mechanism of the decreased implantation associated with endometriosis, polycystic ovarian syndrome, leiomyoma, polyps, adenomyosis, and hydrosalpinx. Alteration of HOX gene expression causes both uterine developmental abnormalities and impaired adult endometrial development that prevent implantation and lead to female infertility.
Collapse
Affiliation(s)
- Hongling Du
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
22
|
Adissu HA, Medhanie GA, Morikawa L, White JK, Newbigging S, McKerlie C. Right Ventricular Epicardial Fibrosis in Mice With Sternal Segment Dislocation. Vet Pathol 2015; 52:967-76. [PMID: 25281652 PMCID: PMC4469621 DOI: 10.1177/0300985814552108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report coincident sternal segment dislocation and focally extensive right ventricular epicardial fibrosis observed during routine histopathology evaluation of C57BL/6N mice as part of a high throughput phenotyping screen conducted between 4 and 16 weeks of age. This retrospective case series study was conducted to determine whether cardiac fibrosis was a pathological consequence of sternal segment dislocation. We identified sternal segment dislocation in 51 of the total 1103 mice (4.6%) analyzed at 16 weeks of age. Males were more frequently affected. In all cases but 2, the dislocation occurred at the fourth intersternebral joint. In 42 of the 51 cases (82.4%), the dislocation was encased by regenerative cartilaginous callus that protruded internally into the thoracic cavity (intrathoracic callus) and/or externally to the outer aspect of the sternum (extrathoracic callus). Displacement of dislocated ends of the sternum into the thoracic cavity was present in 19 of 51 cases (36.5%). Coincident minimal or mild right ventricular epicardial and subepicardial fibrosis was observed in 22 of the 51 cases (43%) but was not observed in any of the mice in the absence of sternal segment dislocation. Our data suggest that right ventricular fibrosis was likely caused by direct injury of the right ventricle by the dislocated ends of the sternum and/or by intrathoracic callus that develops post dislocation. Potential pathogenesis for the sternal and cardiac lesions and their implication for the interpretation of phenotypes in mouse models of cardiopulmonary and skeletal disease are discussed.
Collapse
Affiliation(s)
- H A Adissu
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, ON, Canada Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - G A Medhanie
- Population Medicine, University of Guelph, Ontario Veterinary College, Guelph, ON, Canada
| | - L Morikawa
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, ON, Canada Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - J K White
- Mouse Genetics Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - S Newbigging
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, ON, Canada Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - C McKerlie
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, ON, Canada Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
24
|
Systematic targeted gene deletion using the gene-synthesis method in fission yeast. J Microbiol Methods 2014; 106:72-77. [DOI: 10.1016/j.mimet.2014.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 11/24/2022]
|
25
|
J AR, G M, K M, P R. Closing the cleft over a throbbing heart: neonatal sternal cleft. BMJ Case Rep 2014; 2014:bcr-2014-204529. [PMID: 25100810 DOI: 10.1136/bcr-2014-204529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Sternal cleft is a rare anomaly comprising 0.5% of chest wall malformations. We present a case of a neonate with a 'V'-shaped upper partial sternal cleft at birth. A hyperpigmented cutaneous nevi was present over the cleft. Primary approximation and closure of the defect was performed at 1 week of life. We discuss the presentation and management, and review the literature.
Collapse
Affiliation(s)
- Ashok Raja J
- Department of Neonatology, ICH & RC, Madurai, Tamil Nadu, India
| | | | | | | |
Collapse
|
26
|
Schwarzkopf I, Bavegems VCA, Vandekerckhove PMFP, Melis SM, Cornillie P, de Rooster H. Surgical Repair of a Congenital Sternal Cleft in a Cat. Vet Surg 2014; 43:623-9. [DOI: 10.1111/j.1532-950x.2014.12226.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 03/17/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - Valerie C. A. Bavegems
- Department of Small Animal Medicine and Clinical Biology; Ghent University; Merelbeke Belgium
| | | | - Sanne M. Melis
- Department of Small Animal Medicine and Clinical Biology; Ghent University; Merelbeke Belgium
| | - Pieter Cornillie
- Department of Morphology, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Hilde de Rooster
- Department of Small Animal Medicine and Clinical Biology; Ghent University; Merelbeke Belgium
| |
Collapse
|
27
|
Abstract
The Hox genes are an evolutionarily conserved family of genes, which encode a class of important transcription factors that function in numerous developmental processes. Following their initial discovery, a substantial amount of information has been gained regarding the roles Hox genes play in various physiologic and pathologic processes. These processes range from a central role in anterior-posterior patterning of the developing embryo to roles in oncogenesis that are yet to be fully elucidated. In vertebrates there are a total of 39 Hox genes divided into 4 separate clusters. Of these, mutations in 10 Hox genes have been found to cause human disorders with significant variation in their inheritance patterns, penetrance, expressivity and mechanism of pathogenesis. This review aims to describe the various phenotypes caused by germline mutation in these 10 Hox genes that cause a human phenotype, with specific emphasis paid to the genotypic and phenotypic differences between allelic disorders. As clinical whole exome and genome sequencing is increasingly utilized in the future, we predict that additional Hox gene mutations will likely be identified to cause distinct human phenotypes. As the known human phenotypes closely resemble gene-specific murine models, we also review the homozygous loss-of-function mouse phenotypes for the 29 Hox genes without a known human disease. This review will aid clinicians in identifying and caring for patients affected with a known Hox gene disorder and help recognize the potential for novel mutations in patients with phenotypes informed by mouse knockout studies.
Collapse
Affiliation(s)
- Shane C Quinonez
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA.
| | - Jeffrey W Innis
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA; University of Michigan, Department of Human Genetics, 1241 E. Catherine, 4909 Buhl Building, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
28
|
Amali AA, Sie L, Winkler C, Featherstone M. Zebrafish hoxd4a acts upstream of meis1.1 to direct vasculogenesis, angiogenesis and hematopoiesis. PLoS One 2013; 8:e58857. [PMID: 23554940 PMCID: PMC3598951 DOI: 10.1371/journal.pone.0058857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 02/08/2013] [Indexed: 01/22/2023] Open
Abstract
Mice lacking the 4th-group paralog Hoxd4 display malformations of the anterior vertebral column, but are viable and fertile. Here, we report that zebrafish embryos having decreased function of the orthologous hoxd4a gene manifest striking perturbations in vasculogenesis, angiogenesis and primitive and definitive hematopoiesis. These defects are preceded by reduced expression of the hemangioblast markers scl1, lmo2 and fli1 within the posterior lateral plate mesoderm (PLM) at 13 hours post fertilization (hpf). Epistasis analysis revealed that hoxd4a acts upstream of meis1.1 but downstream of cdx4 as early as the shield stage in ventral-most mesoderm fated to give rise to hemangioblasts, leading us to propose that loss of hoxd4a function disrupts hemangioblast specification. These findings place hoxd4a high in a genetic hierarchy directing hemangioblast formation downstream of cdx1/cdx4 and upstream of meis1.1. An additional consequence of impaired hoxd4a and meis1.1 expression is the deregulation of multiple Hox genes implicated in vasculogenesis and hematopoiesis which may further contribute to the defects described here. Our results add to evidence implicating key roles for Hox genes in their initial phase of expression early in gastrulation.
Collapse
Affiliation(s)
| | - Lawrence Sie
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Mark Featherstone
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
29
|
Hirasawa T, Kuratani S. A new scenario of the evolutionary derivation of the mammalian diaphragm from shoulder muscles. J Anat 2013; 222:504-17. [PMID: 23448284 PMCID: PMC3633340 DOI: 10.1111/joa.12037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 12/30/2022] Open
Abstract
The evolutionary origin of the diaphragm remains unclear, due to the lack of a comparable structure in other extant taxa. However, recent researches into the developmental mechanism of this structure have yielded new insights into its origin. Here we summarize current understanding regarding the development of the diaphragm, and present a possible scenario for the evolutionary acquisition of this uniquely mammalian structure. Recent developmental analyses indicate that the diaphragm and forelimb muscles are derived from a shared cell population during embryonic development. Therefore, the embryonic positions of forelimb muscle progenitors, which correspond to the position of the brachial plexus, likely played an important role in the evolution of the diaphragm. We surveyed the literature to reexamine the position of the brachial plexus among living amniotes and confirmed that the cervico-thoracic transition in ribs reflects the brachial plexus position. Using this osteological correlate, we concluded that the anterior borders of the brachial plexuses in the stem synapsids were positioned at the level of the fourth spinal nerve, suggesting that the forelimb buds were laid in close proximity of the infrahyoid muscles. The topology of the phrenic and suprascapular nerves of mammals is similar to that of subscapular and supracoracoid nerves, respectively, of the other amniotes, suggesting that the diaphragm evolved from a muscle positioned medial to the pectoral girdle (cf. subscapular muscle). We hypothesize that the diaphragm was acquired in two steps: first, forelimb muscle cells were incorporated into tissues to form a primitive diaphragm in the stem synapsid grade, and second, the diaphragm in cynodonts became entrapped in the region controlled by pulmonary development.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan.
| | | |
Collapse
|
30
|
The positional identity of mouse ES cell-generated neurons is affected by BMP signaling. Cell Mol Life Sci 2012; 70:1095-111. [PMID: 23069989 PMCID: PMC3578729 DOI: 10.1007/s00018-012-1182-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 01/10/2023]
Abstract
We investigated the effects of bone morphogenetic proteins (BMPs) in determining the positional identity of neurons generated in vitro from mouse embryonic stem cells (ESCs), an aspect that has been neglected thus far. Classical embryological studies in lower vertebrates indicate that BMPs inhibit the default fate of pluripotent embryonic cells, which is both neural and anterior. Moreover, mammalian ESCs generate neurons more efficiently when cultured in a minimal medium containing BMP inhibitors. In this paper, we show that mouse ESCs produce, secrete, and respond to BMPs during in vitro neural differentiation. After neuralization in a minimal medium, differentiated ESCs show a gene expression profile consistent with a midbrain identity, as evaluated by the analysis of a number of markers of anterior-posterior and dorsoventral identity. We found that BMPs endogenously produced during neural differentiation mainly act by inhibiting the expression of a telencephalic gene profile, which was revealed by the treatment with Noggin or with other BMP inhibitors. To better characterize the effect of BMPs on positional fate, we compared the global gene expression profiles of differentiated ESCs with those of embryonic forebrain, midbrain, and hindbrain. Both Noggin and retinoic acid (RA) support neuronal differentiation of ESCs, but they show different effects on their positional identity: whereas RA supports the typical gene expression profile of hindbrain neurons, Noggin induces a profile characteristic of dorsal telencephalic neurons. Our findings show that endogenously produced BMPs affect the positional identity of the neurons that ESCs spontaneously generate when differentiating in vitro in a minimal medium. The data also support the existence of an intrinsic program of neuronal differentiation with dorsal telencephalic identity. Our method of ESC neuralization allows for fast differentiation of neural cells via the same signals found during in vivo embryonic development and for the acquisition of cortical identity by the inhibition of BMP alone.
Collapse
|
31
|
Minguillon C, Nishimoto S, Wood S, Vendrell E, Gibson-Brown JJ, Logan MPO. Hox genes regulate the onset of Tbx5 expression in the forelimb. Development 2012; 139:3180-8. [PMID: 22872086 DOI: 10.1242/dev.084814] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tbx4 and Tbx5 are two closely related T-box genes that encode transcription factors expressed in the prospective hindlimb and forelimb territories, respectively, of all jawed vertebrates. Despite their striking limb type-restricted expression pattern, we have shown that these genes do not participate in the acquisition of limb type-specific morphologies. Instead, Tbx4 and Tbx5 play similar roles in the initiation of hindlimb and forelimb outgrowth, respectively. We hypothesized that different combinations of Hox proteins expressed in different rostral and caudal domains of the lateral plate mesoderm, where limb induction occurs, might be involved in regulating the limb type-restricted expression of Tbx4 and Tbx5 and in the later determination of limb type-specific morphologies. Here, we identify the minimal regulatory element sufficient for the earliest forelimb-restricted expression of the mouse Tbx5 gene and show that this sequence is Hox responsive. Our results support a mechanism in which Hox genes act upstream of Tbx5 to control the axial position of forelimb formation.
Collapse
Affiliation(s)
- Carolina Minguillon
- Division of Developmental Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Ayadi A, Birling MC, Bottomley J, Bussell J, Fuchs H, Fray M, Gailus-Durner V, Greenaway S, Houghton R, Karp N, Leblanc S, Lengger C, Maier H, Mallon AM, Marschall S, Melvin D, Morgan H, Pavlovic G, Ryder E, Skarnes WC, Selloum M, Ramirez-Solis R, Sorg T, Teboul L, Vasseur L, Walling A, Weaver T, Wells S, White JK, Bradley A, Adams DJ, Steel KP, Hrabě de Angelis M, Brown SD, Herault Y. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome 2012; 23:600-10. [PMID: 22961258 PMCID: PMC3463797 DOI: 10.1007/s00335-012-9418-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 07/23/2012] [Indexed: 12/17/2022]
Abstract
Two large-scale phenotyping efforts, the European Mouse Disease Clinic (EUMODIC) and the Wellcome Trust Sanger Institute Mouse Genetics Project (SANGER-MGP), started during the late 2000s with the aim to deliver a comprehensive assessment of phenotypes or to screen for robust indicators of diseases in mouse mutants. They both took advantage of available mouse mutant lines but predominantly of the embryonic stem (ES) cells resources derived from the European Conditional Mouse Mutagenesis programme (EUCOMM) and the Knockout Mouse Project (KOMP) to produce and study 799 mouse models that were systematically analysed with a comprehensive set of physiological and behavioural paradigms. They captured more than 400 variables and an additional panel of metadata describing the conditions of the tests. All the data are now available through EuroPhenome database (www.europhenome.org) and the WTSI mouse portal (http://www.sanger.ac.uk/mouseportal/), and the corresponding mouse lines are available through the European Mouse Mutant Archive (EMMA), the International Knockout Mouse Consortium (IKMC), or the Knockout Mouse Project (KOMP) Repository. Overall conclusions from both studies converged, with at least one phenotype scored in at least 80% of the mutant lines. In addition, 57% of the lines were viable, 13% subviable, 30% embryonic lethal, and 7% displayed fertility impairments. These efforts provide an important underpinning for a future global programme that will undertake the complete functional annotation of the mammalian genome in the mouse model.
Collapse
Affiliation(s)
- Abdel Ayadi
- Institut Clinique de la Souris, PHENOMIN, IGBMC/ICS-MCI, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Barak H, Preger-Ben Noon E, Reshef R. Comparative spatiotemporal analysis of Hox gene expression in early stages of intermediate mesoderm formation. Dev Dyn 2012; 241:1637-49. [PMID: 22930565 DOI: 10.1002/dvdy.23853] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Hox genes are key players in AP patterning of the vertebrate body plan and are necessary for organogenesis. Several studies provide evidence for the role Hox genes play during kidney development and especially regarding metanephros initiation and formation. However, the role Hox genes play during early stages of kidney development is largely unknown. A recent study in our lab revealed the role Hoxb4 plays in conferring the competence of intermediate mesodermal cells to respond to kidney inductive signals and express early kidney regulators. RESULTS As a first step in understanding the role Hox genes play in setting the formation of the pronephros morphogenetic field and the expression of early regulators of kidney development, we studied in detail the expression pattern of 10 Hox genes in relation to the 6th somite axial level, the anterior sharp border of the kidney field. Despite the idea of spatial co-linearity as exemplified in the Hox gene expression pattern in late developmental stages, a very dynamic spatio-temporal expression of these genes was found in early stages. CONCLUSIONS Since mesodermal patterning occurs at gastrula stages, the relevance of a "Hox code" at early stages is questioned in this study.
Collapse
Affiliation(s)
- Hila Barak
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
34
|
Ramírez-Solis R, Ryder E, Houghton R, White JK, Bottomley J. Large-scale mouse knockouts and phenotypes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:547-63. [PMID: 22899600 DOI: 10.1002/wsbm.1183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Standardized phenotypic analysis of mutant forms of every gene in the mouse genome will provide fundamental insights into mammalian gene function and advance human and animal health. The availability of the human and mouse genome sequences, the development of embryonic stem cell mutagenesis technology, the standardization of phenotypic analysis pipelines, and the paradigm-shifting industrialization of these processes have made this a realistic and achievable goal. The size of this enterprise will require global coordination to ensure economies of scale in both the generation and primary phenotypic analysis of the mutant strains, and to minimize unnecessary duplication of effort. To provide more depth to the functional annotation of the genome, effective mechanisms will also need to be developed to disseminate the information and resources produced to the wider community. Better models of disease, potential new drug targets with novel mechanisms of action, and completely unsuspected genotype-phenotype relationships covering broad aspects of biology will become apparent. To reach these goals, solutions to challenges in mouse production and distribution, as well as development of novel, ever more powerful phenotypic analysis modalities will be necessary. It is a challenging and exciting time to work in mouse genetics.
Collapse
|
35
|
Estrada KD, Retting KN, Chin AM, Lyons KM. Smad6 is essential to limit BMP signaling during cartilage development. J Bone Miner Res 2011; 26:2498-510. [PMID: 21681813 PMCID: PMC3183270 DOI: 10.1002/jbmr.443] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone morphogenetic protein (BMP) signaling pathways regulate multiple aspects of endochondral bone formation. The importance of extracellular antagonists as regulators of BMP signaling has been defined. In vitro studies reveal that the intracellular regulators, inhibitory Smads 6 and 7, can regulate BMP-mediated effects on chondrocytes. Although in vivo studies in which inhibitory Smads were overexpressed in cartilage have shown that inhibitory Smads have the potential to limit BMP signaling in vivo, the physiological relevance of inhibitory Smad activity in skeletal tissues is unknown. In this study, we have determined the role of Smad6 in endochondral bone formation. Loss of Smad6 in mice leads to defects in both axial and appendicular skeletal development. Specifically, Smad6-/- mice exhibit a posterior transformation of the seventh cervical vertebra, bilateral ossification centers in lumbar vertebrae, and bifid sternebrae due to incomplete sternal band fusion. Histological analysis of appendicular bones revealed delayed onset of hypertrophic differentiation and mineralization at midgestation in Smad6-/- mice. By late gestation, however, an expanded hypertrophic zone, associated with an increased pool of proliferating cells undergoing hypertrophy, was evident in Smad6 mutant growth plates. The mutant phenotype is attributed, at least in part, to increased BMP responsiveness in Smad6-deficient chondrocytes. Overall, our results show that Smad6 is required to limit BMP signaling during endochondral bone formation.
Collapse
Affiliation(s)
- Kristine D Estrada
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
36
|
Breaking evolutionary and pleiotropic constraints in mammals: On sloths, manatees and homeotic mutations. EvoDevo 2011; 2:11. [PMID: 21548920 PMCID: PMC3120709 DOI: 10.1186/2041-9139-2-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 05/06/2011] [Indexed: 01/25/2023] Open
Abstract
Background Mammals as a rule have seven cervical vertebrae, except for sloths and manatees. Bateson proposed that the change in the number of cervical vertebrae in sloths is due to homeotic transformations. A recent hypothesis proposes that the number of cervical vertebrae in sloths is unchanged and that instead the derived pattern is due to abnormal primaxial/abaxial patterning. Results We test the detailed predictions derived from both hypotheses for the skeletal patterns in sloths and manatees for both hypotheses. We find strong support for Bateson's homeosis hypothesis. The observed vertebral and rib patterns cannot be explained by changes in primaxial/abaxial patterning. Vertebral patterns in sloths and manatees are similar to those in mice and humans with abnormal numbers of cervical vertebrae: incomplete and asymmetric homeotic transformations are common and associated with skeletal abnormalities. In sloths the homeotic vertebral shift involves a large part of the vertebral column. As such, similarity is greatest with mice mutant for genes upstream of Hox. Conclusions We found no skeletal abnormalities in specimens of sister taxa with a normal number of cervical vertebrae. However, we always found such abnormalities in conspecifics with an abnormal number, as in many of the investigated dugongs. These findings strongly support the hypothesis that the evolutionary constraints on changes of the number of cervical vertebrae in mammals is due to deleterious pleitropic effects. We hypothesize that in sloths and manatees low metabolic and activity rates severely reduce the usual stabilizing selection, allowing the breaking of the pleiotropic constraints. This probably also applies to dugongs, although to a lesser extent.
Collapse
|
37
|
Mansfield JH, Abzhanov A. Hox expression in the American alligator and evolution of archosaurian axial patterning. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 314:629-44. [PMID: 20623505 DOI: 10.1002/jez.b.21364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avian body plan has undergone many modifications, most associated with adaptation to flight and bipedal walking. Some of these modifications may be owing to avian-specific changes in the embryonic Hox expression code. Here, we have examined Hox expression in alligator, the closest living relative of birds, and an archosaur with a more conservative body plan. Two differences in Hox expression between chick, alligator, and other tetrapods correlate with aspects of alligator or bird-specific skeletal morphology. First, absence of a thoracic subdomain of Hoxc-8 expression in alligator correlates with morphological adaptations in crocodilian thoracic segments. Second, Hoxa-5, a gene required to pattern the cervical-thoracic transition, shows unique patterns of expression in chick, alligator, and mouse, correlating with species-specific morphological patterning of this region. Given that cervical vertebral morphologies evolved independently in the bird and mammalian lineages, the underlying developmental mechanisms, including refinement of Hox expression domains, may be distinct.
Collapse
Affiliation(s)
- Jennifer H Mansfield
- Department of Biological Sciences, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| | | |
Collapse
|
38
|
Abstract
A sternal cleft is a rare congenital and developmental disorder. In general, this disorder is associated with skeletal and extraskeletal abnormalities (eg, Cantrell syndrome), but isolated sternal clefts have also been reported. A sternal cleft with pectus excavatum is a rare congenital abnormality. We present a complete sternal cleft with right-sided clavicular hypoplasia and pectus excavatum in a 31-year-old female patient.
Collapse
|
39
|
Pardo M, Lang B, Yu L, Prosser H, Bradley A, Babu MM, Choudhary J. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 2010; 6:382-95. [PMID: 20362542 PMCID: PMC2860244 DOI: 10.1016/j.stem.2010.03.004] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 12/03/2022]
Abstract
The transcription factor Oct4 is key in embryonic stem cell identity and reprogramming. Insight into its partners should illuminate how the pluripotent state is established and regulated. Here, we identify a considerably expanded set of Oct4-binding proteins in mouse embryonic stem cells. We find that Oct4 associates with a varied set of proteins including regulators of gene expression and modulators of Oct4 function. Half of its partners are transcriptionally regulated by Oct4 itself or other stem cell transcription factors, whereas one-third display a significant change in expression upon cell differentiation. The majority of Oct4-associated proteins studied to date show an early lethal phenotype when mutated. A fraction of the human orthologs is associated with inherited developmental disorders or causative of cancer. The Oct4 interactome provides a resource for dissecting mechanisms of Oct4 function, enlightening the basis of pluripotency and development, and identifying potential additional reprogramming factors.
Collapse
Affiliation(s)
- Mercedes Pardo
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
- Corresponding author
| | - Benjamin Lang
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Haydn Prosser
- Mouse Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Allan Bradley
- Mouse Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jyoti Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
- Corresponding author
| |
Collapse
|
40
|
Jud C, Hayoz A, Albrecht U. High amplitude phase resetting in rev-erbalpha/per1 double mutant mice. PLoS One 2010; 5. [PMID: 20824053 PMCID: PMC2932729 DOI: 10.1371/journal.pone.0012540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/11/2010] [Indexed: 11/18/2022] Open
Abstract
Over time, organisms developed various strategies to adapt to their environment. Circadian clocks are thought to have evolved to adjust to the predictable rhythms of the light-dark cycle caused by the rotation of the Earth around its own axis. The rhythms these clocks generate persist even in the absence of environmental cues with a period of about 24 hours. To tick in time, they continuously synchronize themselves to the prevailing photoperiod by appropriate phase shifts. In this study, we disrupted two molecular components of the mammalian circadian oscillator, Rev-Erbalpha and Period1 (Per1). We found that mice lacking these genes displayed robust circadian rhythms with significantly shorter periods under constant darkness conditions. Strikingly, they showed high amplitude resetting in response to a brief light pulse at the end of their subjective night phase, which is rare in mammals. Surprisingly, Cry1, a clock component not inducible by light in mammals, became slightly inducible in these mice. Taken together, Rev-Erbalpha and Per1 may be part of a mechanism preventing drastic phase shifts in mammals.
Collapse
Affiliation(s)
- Corinne Jud
- Department of Medicine, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Antoinette Hayoz
- Department of Medicine, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Medicine, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
41
|
Beurdeley M, Gauthier T, Bedu A, Fourcade L. [Sternal cleft: repair during the neonatal period]. Arch Pediatr 2010; 17:1477-9. [PMID: 20739150 DOI: 10.1016/j.arcped.2010.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/16/2010] [Indexed: 11/16/2022]
Abstract
Sternal cleft is a rare congenital abnormality. We report on a neonatal case of sternal cleft with median raphe with a follow-up of 3 years. We review the advantages of surgical repair in the neonatal period because the flexibility of the chest wall is maximal and compression of underlying structures is minimal.
Collapse
Affiliation(s)
- M Beurdeley
- Service de chirurgie pédiatrique, hôpital mère-enfant, CHU Dupuytren, 8, avenue Dominique-Larrey, 87042 Limoges, France.
| | | | | | | |
Collapse
|
42
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
43
|
Abstract
Möbius sequence is a rare congenital disorder defined by partial or complete agenesis of the 6th and 7th cranial nerves, which control eye movement and facial expression. The etiology is unclear but genetic and teratogenic factors are thought to be involved. Ischemia affecting the cranial nerve nuclei is a possible pathomechanism of Möbius sequence. Most cases of Möbius sequence are sporadic but some familial cases are also known. The inheritance patterns of Möbius sequence are heterogeneous and can be autosomal recessive, autosomal dominant or even X-linked. Some candidate regions and candidate genes have been described but no causative gene has yet been confirmed.
Collapse
|
44
|
Jadhav V, Rao S, D'Cruz A. Autologous repair of isolated complete sternal cleft in an adolescent. J Pediatr Surg 2009; 44:2414-6. [PMID: 20006040 DOI: 10.1016/j.jpedsurg.2009.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/12/2009] [Accepted: 09/18/2009] [Indexed: 11/19/2022]
Abstract
Isolated sternal clefts are rare congenital anomalies. Complete clefts are rarer still with only 23 cases being reported. We present an adolescent girl with a complete sternal cleft. The cleft was treated with autologous anterior perichondrial flaps and pectoralis advancement flaps.
Collapse
Affiliation(s)
- Vinay Jadhav
- Department of Pediatric Surgery, Narayana Hrudayalaya, Anekal Taluk, Bangalore 560099, India
| | | | | |
Collapse
|
45
|
Iacovino M, Hernandez C, Xu Z, Bajwa G, Prather M, Kyba M. A conserved role for Hox paralog group 4 in regulation of hematopoietic progenitors. Stem Cells Dev 2009; 18:783-92. [PMID: 18808325 DOI: 10.1089/scd.2008.0227] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regulatory circuits that control stem cell fate decisions can be identified and understood by manipulating individual regulatory elements genetically. While impractical in the rare somatic stem cells of primary tissue, this approach is feasible in embryonic stem cells differentiated in vitro into the somatic stem cell type of interest. We present an improved highly efficient targeting system allowing genes to be integrated into a predetermined, doxycycline-inducible locus, and corresponding inducible embryonic stem cell lines to be generated rapidly. We apply this system to evaluate a key hematopoietic progenitor cell regulatory element, HoxB4, and its mammalian paralogs, whose effects have not yet been tested in this context. We show that all Hox paralog group 4 members, A4, B4, C4, and D4, have similar effects on hematopoietic stem and progenitor self-renewal in vitro, and thus classify Hox paralog group 4 as promoting self-renewal. Each paralog group 4 member both promotes proliferation and inhibits differentiation, enabling the exponential expansion of hematopoietic progenitors from the c-kit(+)/CD41(+) cell fraction of day 6 murine embryoid bodies. By evaluating a set of deletion mutants we show that sequences in addition to the homeodomain and hexapeptide motif are required for this activity. These results highlight the utility of this expression system to perform functional and structural analyses of genetic regulators of cell fate decisions.
Collapse
Affiliation(s)
- Michelina Iacovino
- Department of Pediatrics and Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
46
|
Preger-Ben Noon E, Barak H, Guttmann-Raviv N, Reshef R. Interplay between activin and Hox genes determines the formation of the kidney morphogenetic field. Development 2009; 136:1995-2004. [PMID: 19439491 PMCID: PMC2685723 DOI: 10.1242/dev.035592] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2009] [Indexed: 12/29/2022]
Abstract
The kidney develops in a specific position along the anterior-posterior axis. All vertebrate kidney tissues are derived from the intermediate mesoderm (IM), and early kidney genes such as Lim1 and Pax2 are expressed in amniotes posterior to the sixth somite axial level. IM cells anterior to this level do not express kidney genes owing to changes in their competence to respond to kidney-inductive signals present along the entire axis. We aimed to understand the molecular mechanisms governing the loss of competence of anterior IM cells and the formation of the anterior border of the kidney morphogenetic field. We identified the dorsal neural tube as the potential kidney-inductive tissue and showed that activin, a secreted morphogen, is necessary but insufficient for Lim1 induction and establishment of the kidney field. Activin or activin-like and BMP signaling cascades are activated along the entire axis, including in anterior non-kidney IM, suggesting that competence to respond to these signals involves downstream or other components. Detailed expression pattern analysis of Hox genes during early chick development revealed that paralogous group four genes share the same anterior border as the kidney genes. Ectopic expression of Hoxb4 in anterior non-kidney IM, either by retinoic acid (RA) administration or plasmid-mediated overexpression, resulted in ectopic kidney gene expression. The anterior expansion of Lim1 expression was restrained when Hoxb4 was co-expressed with a truncated form of activin receptor. We suggest a model in which the competence of IM cells to respond to TGFbeta signaling and express kidney genes is driven by RA and mediated by Hoxb4.
Collapse
Affiliation(s)
- Ella Preger-Ben Noon
- Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
47
|
Thébault N, Le Guern H, Le Fiblec B, Ferry M, Odent S. Prenatal diagnosis of a complete sternal cleft in a child with PHACES syndrome-a case report. Prenat Diagn 2009; 29:179-81. [DOI: 10.1002/pd.2117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Minoux M, Antonarakis GS, Kmita M, Duboule D, Rijli FM. Rostral and caudal pharyngeal arches share a common neural crest ground pattern. Development 2009; 136:637-45. [PMID: 19168678 PMCID: PMC4482666 DOI: 10.1242/dev.028621] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vertebrates, face and throat structures, such as jaw, hyoid and thyroid cartilages develop from a rostrocaudal metameric series of pharyngeal arches, colonized by cranial neural crest cells (NCCs). Colinear Hox gene expression patterns underlie arch specific morphologies, with the exception of the first (mandibular) arch, which is devoid of any Hox gene activity. We have previously shown that the first and second (hyoid) arches share a common, Hox-free, patterning program. However, whether or not more posterior pharyngeal arch neural crest derivatives are also patterned on the top of the same ground-state remained an unanswered question. Here, we show that the simultaneous inactivation of all Hoxa cluster genes in NCCs leads to multiple jaw and first arch-like structures, partially replacing second, third and fourth arch derivatives, suggesting that rostral and caudal arches share the same mandibular arch-like ground patterning program. The additional inactivation of the Hoxd cluster did not significantly enhance such a homeotic phenotype, thus indicating a preponderant role of Hoxa genes in patterning skeletogenic NCCs. Moreover, we found that Hoxa2 and Hoxa3 act synergistically to pattern third and fourth arch derivatives. These results provide insights into how facial and throat structures are assembled during development, and have implications for the evolution of the pharyngeal region of the vertebrate head.
Collapse
Affiliation(s)
- Maryline Minoux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, Strasbourg, France
| | - Gregory S. Antonarakis
- Department of Zoology and Animal Biology and National Research Centre Frontiers in Genetics, University of Geneva, Switzerland
| | - Marie Kmita
- Department of Zoology and Animal Biology and National Research Centre Frontiers in Genetics, University of Geneva, Switzerland
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, H2W1R7, Montréal Quebec, Canada
| | - Denis Duboule
- Department of Zoology and Animal Biology and National Research Centre Frontiers in Genetics, University of Geneva, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, Switzerland
| | - Filippo M. Rijli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, Strasbourg, France
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
49
|
Ackema KB, Charité J. Mesenchymal stem cells from different organs are characterized by distinct topographic Hox codes. Stem Cells Dev 2008; 17:979-91. [PMID: 18533811 DOI: 10.1089/scd.2007.0220] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stem cells (MSC) are multipotent cells found as part of the stromal compartment of the bone marrow and in many other organs. They can be identified in vitro as CFU-F (colony forming unit-fibroblast) based on their ability to form adherent colonies of fibroblast-like cells in culture. MSC expanded in vitro retain characteristics appropriate to their tissue of origin. This is reflected in their propensity for differentiating towards specific lineages, and their capacity to generate, upon retransplantation in vivo, a stroma supporting typical lineages of hematopoietic cells. Hox genes encode master regulators of regional specification and organ development in the embryo and are widely expressed in the adult. We investigated whether they could be involved in determining tissue-specific properties of MSC. Hox gene expression profiles of individual CFU-F colonies derived from various organs and anatomical locations were generated, and the relatedness between these profiles was determined using hierarchical cluster analysis. This revealed that CFU-F have characteristic Hox expression signatures that are heterogeneous but highly specific for their anatomical origin. The topographic specificity of these Hox codes is maintained during differentiation, suggesting that they are an intrinsic property of MSC. Analysis of Hox codes of CFU-F from vertebral bone marrow suggests that MSC originate over a large part of the anterioposterior axis, but may not originate from prevertebral mesenchyme. These data are consistent with a role for Hox proteins in specifying cellular identity of MSC.
Collapse
Affiliation(s)
- Karin B Ackema
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
50
|
Volpe MV, Wang KTW, Nielsen HC, Chinoy MR. Unique spatial and cellular expression patterns of Hoxa5, Hoxb4, and Hoxb6 proteins in normal developing murine lung are modified in pulmonary hypoplasia. ACTA ACUST UNITED AC 2008; 82:571-84. [PMID: 18553509 DOI: 10.1002/bdra.20481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hox transcription factors modulate signaling pathways controlling organ morphogenesis and maintain cell fate and differentiation in adults. Retinoid signaling, key in regulating Hox expression, is altered in pulmonary hypoplasia. Information on pattern-specific expression of Hox proteins in normal lung development and in pulmonary hypoplasia is minimal. Our objective was to determine how pulmonary hypoplasia alters temporal, spatial, and cellular expression of Hoxa5, Hoxb4, and Hoxb6 proteins compared to normal lung development. METHODS Temporal, spatial, and cellular Hoxa5, Hoxb4, and Hoxb6 expression was studied in normal (untreated) and nitrofen-induced hypoplastic (NT-PH) lungs from gestational day 13.5, 16, and 19 fetuses and neonates using Western blot and immunohistochemistry. RESULTS Modification of protein levels and spatial and cellular Hox expression patterns in NT-PH lungs was consistent with delayed lung development. Distinct protein isoforms were detected for each Hox protein. Expression levels of the Hoxa5 and Hoxb6 protein isoforms changed with development and were altered further in NT-PH lungs. Compared to normal lungs, GD19 and neonatal NT-PH lungs had decreased Hoxb6 and increased Hoxa5 and Hoxb4. Hoxa5 cellular localization changed from mesenchyme to epithelia earlier in normal lungs. Hoxb4 was expressed in mesenchyme and epithelial cells throughout development. Hoxb6 remained mainly in mesenchymal cells around distal airways. CONCLUSIONS Unique spatial and cellular expression of Hoxa5, Hoxb4, and Hoxb6 participates in branching morphogenesis and terminal sac formation. Altered Hox protein temporal and cellular balance of expression either contributes to pulmonary hypoplasia or functions as a compensatory mechanism attempting to correct abnormal lung development and maturation in this condition.
Collapse
Affiliation(s)
- MaryAnn Vitoria Volpe
- Div. of Newborn Medicine, Department of Pediatrics, Tufts Medical Center, Boston, Massachusetts 02111, USA.
| | | | | | | |
Collapse
|