1
|
Minguet S, Maus MV, Schamel WW. From TCR fundamental research to innovative chimeric antigen receptor design. Nat Rev Immunol 2024:10.1038/s41577-024-01093-7. [PMID: 39433885 DOI: 10.1038/s41577-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have transformed the treatment of haematological cancers. CARs combine the tumour-antigen-binding function of antibodies with the signalling functions of the T cell receptor (TCR) ζ chain and co-stimulatory receptors. The resulting constructs aim to mimic the TCR-based and co-receptor-based activation of T cells. Although these have been successful for some types of cancer, new CAR formats are needed, to limit side effects and broaden their use to solid cancers. Insights into the mechanisms of TCR signalling, including the identification of signalling motifs that are not present in the TCR ζ chain and mechanistic insights in TCR activation, have enabled the development of CAR formats that outcompete the current CARs in preclinical mouse models and clinical trials. In this Perspective, we explore the mechanistic rationale behind new CAR designs.
Collapse
Affiliation(s)
- Susana Minguet
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Department of Synthetic Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marcela V Maus
- Cellular Immunotherapy Program and Krantz Family Center for Cancer Research, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfgang W Schamel
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Kesler KW, Abuelo A. Zinc about it - zinc and calf immunity. Front Immunol 2024; 15:1387950. [PMID: 38799472 PMCID: PMC11116585 DOI: 10.3389/fimmu.2024.1387950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Micronutrients, such as vitamins and trace minerals, are critical for supporting growth, performance, health and maintaining redox balance. Zinc (Zn), an essential micronutrient, aids the functioning of innate and adaptive immune cells. This scoping review aims to assemble and evaluate the evidence available for the role of Zn within calf immunity. Relevant literature was identified within Web of Science, PubMed, and CABI using search terms specific to the major innate and adaptive immune cell populations. There was no evidence that Zn supplementation altered neutrophil, natural killer cell, or T-cell functions. However, there was limited evidence to support Zn supplementation with reduced monocyte numbers, but there was no evidence to associate the monocytopenia with improvements in monocyte function. There is moderate evidence to suggest that Zn supplementation was beneficial for maintaining epithelial barriers of integumental and mucosal surfaces. The evidence supports supplementation above the current industry recommendations for improving immunoglobulin (Ig) production, with the strongest results being observed for IgG and IgM. Moreover, Zn supplementation was associated with reduced proinflammatory cytokine production, which may reduce inflammation-associated hypophagia and warrants further investigation. Furthermore, Zn reduced the duration of clinical signs in animals facing respiratory disease and diarrhea. However, consensus is needed about the optimal dose, route, and Zn formulation most appropriate for supporting immunity. In conclusion, while the literature supports that Zn could enhance calf immunity, there is insufficient evidence to adequately determine the extent to which Zn impacts innate immune cell and T-cell functions. Determination of the immune cell functions susceptible to modification by Zn supplementation is an important knowledge gap for enhancing the understanding of Zn and calf immunity.
Collapse
Affiliation(s)
| | - Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Petralia F, Ma W, Yaron TM, Caruso FP, Tignor N, Wang JM, Charytonowicz D, Johnson JL, Huntsman EM, Marino GB, Calinawan A, Evangelista JE, Selvan ME, Chowdhury S, Rykunov D, Krek A, Song X, Turhan B, Christianson KE, Lewis DA, Deng EZ, Clarke DJB, Whiteaker JR, Kennedy JJ, Zhao L, Segura RL, Batra H, Raso MG, Parra ER, Soundararajan R, Tang X, Li Y, Yi X, Satpathy S, Wang Y, Wiznerowicz M, González-Robles TJ, Iavarone A, Gosline SJC, Reva B, Robles AI, Nesvizhskii AI, Mani DR, Gillette MA, Klein RJ, Cieslik M, Zhang B, Paulovich AG, Sebra R, Gümüş ZH, Hostetter G, Fenyö D, Omenn GS, Cantley LC, Ma'ayan A, Lazar AJ, Ceccarelli M, Wang P. Pan-cancer proteogenomics characterization of tumor immunity. Cell 2024; 187:1255-1277.e27. [PMID: 38359819 PMCID: PMC10988632 DOI: 10.1016/j.cell.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/29/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.
Collapse
Affiliation(s)
- Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Francesca Pia Caruso
- BIOGEM Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy; Department of Electrical Engineering and Information Technologies, University of Naples "Federico II", Naples, Italy
| | - Nicole Tignor
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua M Wang
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John Erol Evangelista
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaoyu Song
- Institute for Healthcare Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Berk Turhan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen E Christianson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David A Lewis
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eden Z Deng
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey R Whiteaker
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jacob J Kennedy
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lei Zhao
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Rossana Lazcano Segura
- Departments of Pathology & Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Ying Wang
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maciej Wiznerowicz
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland; Department of Oncology, Heliodor Swiecicki Clinical Hospital, 60-203 Poznań, Poland
| | - Tania J González-Robles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Antonio Iavarone
- Department of Neurological Surgery, Department of Biochemistry, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Alexey I Nesvizhskii
- Departments of Pathology and Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marcin Cieslik
- Departments of Pathology and Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda G Paulovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - David Fenyö
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, & Environmental Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
4
|
Affiliation(s)
- Zeguo Zhao
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Tousley AM, Rotiroti MC, Labanieh L, Rysavy LW, Kim WJ, Lareau C, Sotillo E, Weber EW, Rietberg SP, Dalton GN, Yin Y, Klysz D, Xu P, de la Serna EL, Dunn AR, Satpathy AT, Mackall CL, Majzner RG. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature 2023; 615:507-516. [PMID: 36890224 PMCID: PMC10564584 DOI: 10.1038/s41586-023-05778-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
Although chimeric antigen receptor (CAR) T cells have altered the treatment landscape for B cell malignancies, the risk of on-target, off-tumour toxicity has hampered their development for solid tumours because most target antigens are shared with normal cells1,2. Researchers have attempted to apply Boolean-logic gating to CAR T cells to prevent toxicity3-5; however, a truly safe and effective logic-gated CAR has remained elusive6. Here we describe an approach to CAR engineering in which we replace traditional CD3ζ domains with intracellular proximal T cell signalling molecules. We show that certain proximal signalling CARs, such as a ZAP-70 CAR, can activate T cells and eradicate tumours in vivo while bypassing upstream signalling proteins, including CD3ζ. The primary role of ZAP-70 is to phosphorylate LAT and SLP-76, which form a scaffold for signal propagation. We exploited the cooperative role of LAT and SLP-76 to engineer logic-gated intracellular network (LINK) CAR, a rapid and reversible Boolean-logic AND-gated CAR T cell platform that outperforms other systems in both efficacy and prevention of on-target, off-tumour toxicity. LINK CAR will expand the range of molecules that can be targeted with CAR T cells, and will enable these powerful therapeutic agents to be used for solid tumours and diverse diseases such as autoimmunity7 and fibrosis8. In addition, this work shows that the internal signalling machinery of cells can be repurposed into surface receptors, which could open new avenues for cellular engineering.
Collapse
Affiliation(s)
- Aidan M Tousley
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Lea Wenting Rysavy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Won-Ju Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Caleb Lareau
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Evan W Weber
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Skyler P Rietberg
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Yajie Yin
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dorota Klysz
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Peng Xu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Ansuman T Satpathy
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Zabel M, Tauber PA, Pickl WF. The making and function of CAR cells. Immunol Lett 2019; 212:53-69. [PMID: 31181279 PMCID: PMC7058416 DOI: 10.1016/j.imlet.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022]
Abstract
Genetically engineered T cells expressing chimeric antigen receptors (CAR) present a new treatment option for patients with cancer. Recent clinical trials of B cell leukemia have demonstrated a response rate of up to 90%. However, CAR cell therapy is frequently accompanied by severe side effects such as cytokine release syndrome and the development of target cell resistance. Consequently, further optimization of CARs to obtain greater long-term efficacy and increased safety is urgently needed. Here we high-light the various efforts of adjusting the intracellular signaling domains of CARs to these major requirements to eventually obtain high-level target cell cytotoxicity paralleled by the establishment of longevity of the CAR expressing cell types to guarantee for extended tumor surveillance over prolonged periods of time. We are convinced that it will be crucial to identify the molecular pathways and signaling requirements utilized by such ‘efficient CARs’ in order to provide a rational basis for their further hypothesis-based improvement. Furthermore, we here discuss timely attempts of how to: i) control ‘on-tumor off-target’ effects; ii) introduce Signal 3 (cytokine responsiveness of CAR cells) as an important building-block into the CAR concept; iii) most efficiently eliminate CAR cells once full remission has been obtained. We also argue that universal systems for the variable and pharmacokinetically-controlled attachment of extracellular ligand recognition domains of choice along with the establishment of ‘off-the-shelf’ cell preparations with suitability for all patients in need of a highly-potent cellular therapy may become future mainstays of CAR cell therapy. Such therapies would have the attraction to work independent of the patients’ histo-compatibility make-up and the availability of functionally intact patient’s cells. Finally, we summarize the evidence that CAR cells may obtain a prominent place in the treatment of non-malignant and auto-reactive T and B lymphocyte expansions in the near future, e.g., for the alleviation of autoimmune diseases and allergies. After the introduction of red blood cell transfusions, which were made possible by the landmark discoveries of the ABO blood groups by Karl Landsteiner, and the establishment of bone marrow transplantation by E. Donnall Thomas to exchange the entire hematopoietic system of a patient suffering from leukemia, the introduction of patient-tailored cytotoxic cellular populations to eradicate malignant cell populations in vivo pioneered by Carl H. June, represents the third major and broadly applicable milestone in the development of human cellular therapies within the rapidly developing field of applied biomedical research of the last one hundred years.
Collapse
Affiliation(s)
- Maja Zabel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter A Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Oldham RAA, Medin JA. Practical considerations for chimeric antigen receptor design and delivery. Expert Opin Biol Ther 2017; 17:961-978. [DOI: 10.1080/14712598.2017.1339687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Robyn A. A. Oldham
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jeffrey A. Medin
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, USA
- The Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Che DL, Duan L, Zhang K, Cui B. The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells. ACS Synth Biol 2015; 4:1124-35. [PMID: 25985220 DOI: 10.1021/acssynbio.5b00048] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photoreceptor cryptochrome 2 (CRY2) has become a powerful optogenetic tool that allows light-inducible manipulation of various signaling pathways and cellular processes in mammalian cells with high spatiotemporal precision and ease of application. However, it has also been shown that the behavior of CRY2 under blue light is complex, as the photoexcited CRY2 can both undergo homo-oligomerization and heterodimerization by binding to its dimerization partner CIB1. To better understand the light-induced CRY2 activities in mammalian cells, this article systematically characterizes CRY2 homo-oligomerization in different cellular compartments, as well as how CRY2 homo-oligomerization and heterodimerization activities affect each other. Quantitative analysis reveals that membrane-bound CRY2 has drastically enhanced oligomerization activity compared to that of its cytoplasmic form. While CRY2 homo-oligomerization and CRY2-CIB1 heterodimerization could happen concomitantly, the presence of certain CIB1 fusion proteins can suppress CRY2 homo-oligomerization. However, the homo-oligomerization of cytoplasmic CRY2 can be significantly intensified by its recruitment to the membrane via interaction with the membrane-bound CIB1. These results contribute to the understanding of the light-inducible CRY2-CRY2 and CRY2-CIB1 interaction systems and can be used as a guide to establish new strategies utilizing the dual optogenetic characteristics of CRY2 to probe cellular processes.
Collapse
Affiliation(s)
- Daphne L. Che
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Liting Duan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kai Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Schlums H, Cichocki F, Tesi B, Theorell J, Beziat V, Holmes TD, Han H, Chiang SCC, Foley B, Mattsson K, Larsson S, Schaffer M, Malmberg KJ, Ljunggren HG, Miller JS, Bryceson YT. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 2015; 42:443-56. [PMID: 25786176 DOI: 10.1016/j.immuni.2015.02.008] [Citation(s) in RCA: 566] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/31/2014] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hypermethylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets.
Collapse
Affiliation(s)
- Heinrich Schlums
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Frank Cichocki
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden; Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Bianca Tesi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 17164 Stockholm, Sweden; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, 14186 Stockholm, Sweden
| | - Jakob Theorell
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Vivien Beziat
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Tim D Holmes
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Hongya Han
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Samuel C C Chiang
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Bree Foley
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Kristin Mattsson
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Stella Larsson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Marie Schaffer
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Karl-Johan Malmberg
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden; K.G. Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0310 Oslo, Norway; Department of Immunology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Hans-Gustaf Ljunggren
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Yenan T Bryceson
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, 5021 Bergen, Norway.
| |
Collapse
|
10
|
An optimized optogenetic clustering tool for probing protein interaction and function. Nat Commun 2014; 5:4925. [PMID: 25233328 PMCID: PMC4170572 DOI: 10.1038/ncomms5925] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/06/2014] [Indexed: 12/24/2022] Open
Abstract
The Arabidopsis photoreceptor cryptochrome 2 (CRY2) was previously used as an optogenetic module, allowing spatiotemporal control of cellular processes with light. Here we report the development of a new CRY2-derived optogenetic module, 'CRY2olig', which induces rapid, robust, and reversible protein oligomerization in response to light. Using this module, we developed a novel protein interaction assay, Light-Induced Co-clustering, that can be used to interrogate protein interaction dynamics in live cells. In addition to use probing protein interactions, CRY2olig can also be used to induce and reversibly control diverse cellular processes with spatial and temporal resolution. Here we demonstrate disrupting clathrin-mediated endocytosis and promoting Arp2/3-mediated actin polymerization with light. These new CRY2-based approaches expand the growing arsenal of optogenetic strategies to probe cellular function.
Collapse
|
11
|
Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, Bogdan S, Rosen MK. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 2014; 156:195-207. [PMID: 24439376 DOI: 10.1016/j.cell.2013.11.048] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/06/2013] [Accepted: 11/25/2013] [Indexed: 02/02/2023]
Abstract
The WAVE regulatory complex (WRC) controls actin cytoskeletal dynamics throughout the cell by stimulating the actin-nucleating activity of the Arp2/3 complex at distinct membrane sites. However, the factors that recruit the WRC to specific locations remain poorly understood. Here, we have identified a large family of potential WRC ligands, consisting of ∼120 diverse membrane proteins, including protocadherins, ROBOs, netrin receptors, neuroligins, GPCRs, and channels. Structural, biochemical, and cellular studies reveal that a sequence motif that defines these ligands binds to a highly conserved interaction surface of the WRC formed by the Sra and Abi subunits. Mutating this binding surface in flies resulted in defects in actin cytoskeletal organization and egg morphology during oogenesis, leading to female sterility. Our findings directly link diverse membrane proteins to the WRC and actin cytoskeleton and have broad physiological and pathological ramifications in metazoans.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Klaus Brinkmann
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany
| | - Zhucheng Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chi W Pak
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yuxing Liao
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shuoyong Shi
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lisa Henry
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nick V Grishin
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany.
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Zou W, Croke M, Fukunaga T, Broekelmann TJ, Mecham RP, Teitelbaum SL. Zap70 inhibits Syk-mediated osteoclast function. J Cell Biochem 2013; 114:1871-8. [PMID: 23494777 DOI: 10.1002/jcb.24531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 02/27/2013] [Indexed: 02/04/2023]
Abstract
The αvβ3 integrin stimulates the resorptive capacity of the differentiated osteoclast (OC) by organizing its cytoskeleton via the tyrosine kinase, Syk. Thus, Syk-deficient OCs fails to spread or form actin rings, in vitro and in vivo. The Syk family of tyrosine kinases consists of Syk itself and Zap70 which are expressed by different cell types. Because of their structural similarity, and its compensatory properties in other cells, we asked if Zap70 can substitute for absence of Syk in OCs. While expression of Syk, as expected, normalizes the cytoskeletal abnormalities of Syk(-/-) OCs, Zap70 fails do so. In keeping with this observation, Syk, but not Zap70, rescues αvβ3 integrin-induced SLP76 phosphorylation in Syk(-/-) OCs. Furthermore the kinase sequence of Syk partially rescues the Syk(-/-) phenotype but full normalization also requires its SH2 domains. Surprisingly, expression of Zap70 inhibits WT OC spreading, actin ring formation and bone resorptive activity, but not differentiation. In keeping with arrested cytoskeletal organization, Zap70 blocks integrin-activated endogenous Syk and Vav3, SLP76 phosphorylation. Such inhibition requires Zap70 kinase activity, as it is abolished by mutation of the Zap70 kinase domain. Thus, while the kinase domain of Syk is uniquely required for OC function that of Zap70 inhibits it.
Collapse
Affiliation(s)
- Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
13
|
Boada-Romero E, Letek M, Fleischer A, Pallauf K, Ramón-Barros C, Pimentel-Muiños FX. TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J 2013; 32:566-82. [PMID: 23376921 DOI: 10.1038/emboj.2013.8] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 12/21/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo selection are poorly understood. Here we describe a molecular mechanism that can target conventional endosomes for autophagic degradation. We show that the human transmembrane protein TMEM59 contains a minimal 19-amino-acid peptide in its intracellular domain that promotes LC3 labelling and lysosomal targeting of its own endosomal compartment. Interestingly, this peptide defines a novel protein motif that mediates interaction with the WD-repeat domain of ATG16L1, thus providing a mechanistic basis for the activity. The motif is represented with the same ATG16L1-binding ability in other molecules, suggesting a more general relevance. We propose that this motif may play an important role in targeting specific membranous compartments for autophagic degradation, and therefore it may facilitate the search for adaptor proteins that promote selective autophagy by engaging ATG16L1. Endogenous TMEM59 interacts with ATG16L1 and mediates autophagy in response to Staphylococcus aureus infection.
Collapse
Affiliation(s)
- Emilio Boada-Romero
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Proust R, Bertoglio J, Gesbert F. The adaptor protein SAP directly associates with CD3ζ chain and regulates T cell receptor signaling. PLoS One 2012; 7:e43200. [PMID: 22912825 PMCID: PMC3418226 DOI: 10.1371/journal.pone.0043200] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/18/2012] [Indexed: 11/25/2022] Open
Abstract
Mutations altering the gene encoding the SLAM associated protein (SAP) are responsible for the X-linked lymphoproliferative disease or XLP1. Its absence is correlated with a defective NKT cells development, a decrease in B cell functions and a reduced T cells and NK cells cytotoxic activities, thus leading to an immunodeficiency syndrome. SAP is a small 128 amino-acid long protein that is almost exclusively composed of an SH2 domain. It has been shown to interact with the CD150/SLAM family of receptors, and in a non-canonical manner with SH3 containing proteins such as Fyn, βPIX, PKCθ and Nck1. It would thus play the role of a minimal adaptor protein. It has been shown that SAP plays an important function in the activation of T cells through its interaction with the SLAM family of receptors. Therefore SAP defective T cells display a reduced activation of signaling events downstream of the TCR-CD3 complex triggering. In the present work, we evidence that SAP is a direct interactor of the CD3ζ chain. This direct interaction occurs through the first ITAM of CD3ζ, proximal to the membrane. Additionally, we show that, in the context of the TCR-CD3 signaling, an Sh-RNA mediated silencing of SAP is responsible for a decrease of several canonical T cell signaling pathways including Erk, Akt and PLCγ1 and to a reduced induction of IL-2 and IL-4 mRNA. Altogether, we show that SAP plays a central function in the T cell activation processes through a direct association with the CD3 complex.
Collapse
Affiliation(s)
- Richard Proust
- Institut National de la Santé Et de la Recherche Médicale UMR-S1004, Université Paris-Sud, Hopital Paul Brousse, Villejuif, France
| | - Jacques Bertoglio
- Institut National de la Santé Et de la Recherche Médicale UMR-S749, Institut Gustave Roussy, Villejuif, France
| | - Franck Gesbert
- Institut National de la Santé Et de la Recherche Médicale UMR-S1004, Université Paris-Sud, Hopital Paul Brousse, Villejuif, France
- * E-mail:
| |
Collapse
|
15
|
Königsberger S, Prodöhl J, Stegner D, Weis V, Andreas M, Stehling M, Schumacher T, Böhmer R, Thielmann I, van Eeuwijk JMM, Nieswandt B, Kiefer F. Altered BCR signalling quality predisposes to autoimmune disease and a pre-diabetic state. EMBO J 2012; 31:3363-74. [PMID: 22728826 PMCID: PMC3411075 DOI: 10.1038/emboj.2012.169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/18/2012] [Indexed: 12/31/2022] Open
Abstract
The spleen tyrosine kinase family members Syk and Zap-70 are pivotal signal transducers downstream of antigen receptors and exhibit overlapping expression patterns at early lymphocytic developmental stages. To assess their differential kinase fitness in vivo, we generated mice, which carry a Zap-70 cDNA knock-in controlled by intrinsic Syk promoter elements that disrupts wild-type Syk expression. Kinase replacement severely compromised Erk1/2-mediated survival and proper selection of developing B cells at central and peripheral checkpoints, demonstrating critical dependence on BCR signalling quality. Furthermore, ITAM- and hemITAM-mediated activation of platelets and neutrophils was completely blunted, while surprisingly FcγR-mediated phagocytosis in macrophages was retained. The alteration in BCR signalling quality resulted in preferential development and survival of marginal zone B cells and prominent autoreactivity, causing the generation of anti-insulin antibodies and age-related glomerulonephritis. Development of concomitant fasting glucose intolerance in knock-in mice highlights aberrant B cell selection as a potential risk factor for type 1 diabetes, and suggests altered BCR signalling as a mechanism to cause biased cellular and Ig repertoire selection, ultimately contributing to B cell-mediated autoimmune predisposition.
Collapse
Affiliation(s)
- Sebastian Königsberger
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jan Prodöhl
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - David Stegner
- DFG Research Center for Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Vanessa Weis
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Andreas
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Theresa Schumacher
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ruben Böhmer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ina Thielmann
- DFG Research Center for Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Judith M M van Eeuwijk
- DFG Research Center for Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- DFG Research Center for Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
16
|
Wang X, Hao J, Metzger DL, Ao Z, Chen L, Ou D, Verchere CB, Mui A, Warnock GL. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation. PLoS One 2012; 7:e28232. [PMID: 22238573 PMCID: PMC3251556 DOI: 10.1371/journal.pone.0028232] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/04/2011] [Indexed: 11/18/2022] Open
Abstract
B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+) T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR)/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK) are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Jianqiang Hao
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Daniel L. Metzger
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ziliang Ao
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dawei Ou
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - C. Bruce Verchere
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Alice Mui
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Garth L. Warnock
- Department of Surgery, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
17
|
Abstract
B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+) T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR)/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK) are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK.
Collapse
|
18
|
James JR, McColl J, Oliveira MI, Dunne PD, Huang E, Jansson A, Nilsson P, Sleep DL, Gonçalves CM, Morgan SH, Felce JH, Mahen R, Fernandes RA, Carmo AM, Klenerman D, Davis SJ. The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. J Biol Chem 2011; 286:31993-2001. [PMID: 21757710 PMCID: PMC3173209 DOI: 10.1074/jbc.m111.219212] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Understanding the component stoichiometry of the T cell antigen receptor (TCR) triggering apparatus is essential for building realistic models of signal initiation. Recent studies suggesting that the TCR and other signaling-associated proteins are preclustered on resting T cells relied on measurements of the behavior of membrane proteins at interfaces with functionalized glass surfaces. Using fluorescence recovery after photobleaching, we show that, compared with the apical surface, the mobility of TCRs is significantly reduced at Jurkat T cell/glass interfaces, in a signaling-sensitive manner. Using two biophysical approaches that mitigate these effects, bioluminescence resonance energy transfer and two-color coincidence detection microscopy, we show that, within the uncertainty of the methods, the membrane components of the TCR triggering apparatus, i.e. the TCR complex, MHC molecules, CD4/Lck and CD45, are exclusively monovalent or monomeric in human T cell lines, implying that TCR triggering depends only on the kinetics of TCR/pMHC interactions. These analyses also showed that constraining proteins to two dimensions at the cell surface greatly enhances random interactions versus those between the membrane and the cytoplasm. Simulations of TCR-pMHC complex formation based on these findings suggest how unclustered TCR triggering-associated proteins might nevertheless be capable of generating complex signaling outputs via the differential recruitment of cytosolic effectors to the cell membrane.
Collapse
Affiliation(s)
- John R James
- Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Casey SC, Nelson EL, Turco GM, Janes MR, Fruman DA, Blumberg B. B-1 cell lymphoma in mice lacking the steroid and xenobiotic receptor, SXR. Mol Endocrinol 2011; 25:933-43. [PMID: 21436254 DOI: 10.1210/me.2010-0486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The steroid and xenobiotic receptor (SXR) is a broad-specificity nuclear hormone receptor that is highly expressed in the liver and intestine, where its primary function is to regulate drug and xenobiotic metabolism. SXR is expressed at lower levels in other tissues, where little is known about its physiological functions. We previously linked SXR with immunity and inflammation by showing that SXR antagonizes the activity of nuclear factor (NF)-κB in vitro and in vivo. SXR(-/-) mice demonstrate aberrantly high NF-κB activity and overexpression of NF-κB target genes. Here we show that SXR(-/-) mice develop B cell lymphoma in an age-dependent manner. SXR(-/-) mice develop multiple hyperplastic lymphoid foci composed of B-1a cells in the intestine, spleen, lymph nodes, peritoneal cavity, and blood. In all circumstances, these lymphocytes possess cell surface and molecular characteristics of either chronic lymphocytic leukemia or non-Hodgkin's lymphoma originating from B-1 lymphocytes. These results demonstrate a novel and unsuspected role for SXR signaling in the B-1 cell compartment, establish SXR as a tumor suppressor in B-1 cells, and may provide a link between metabolism of xenobiotic compounds and lymphomagenesis.
Collapse
Affiliation(s)
- Stephanie C Casey
- Developmental and Cell Biology, University of California, Irvine, California 92697-2300, USA
| | | | | | | | | | | |
Collapse
|
20
|
Differential requirements for CD45 in NK-cell function reveal distinct roles for Syk-family kinases. Blood 2011; 117:3087-95. [PMID: 21245479 DOI: 10.1182/blood-2010-06-292219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The protein tyrosine phosphatase CD45 is an important regulator of Src-family kinase activity. We found that in the absence of CD45, natural killer (NK) cells are defective in protecting the host from mouse cytomegalovirus infection. We show that although CD45 is necessary for all immunoreceptor tyrosine-based activation motif (ITAM)-specific NK-cell functions and processes such as degranulation, cytokine production, and expansion during viral infection, the impact of CD45 deficiency on ITAM signaling differs depending on the downstream function. CD45-deficient NK cells are normal in their response to inflammatory cytokines when administered ex vivo and in the context of viral infection. Syk and ζ chain-associated protein kinase 70 (Zap70) are thought to play redundant roles in transmitting ITAM signals in NK cells. We show that Syk, but not Zap70, controls the remaining CD45-independent, ITAM-specific NK-cell functions, demonstrating a functional difference between these 2 Syk-kinase family members in primary NK cells.
Collapse
|
21
|
Rigby S, Huang Y, Streubel B, Chott A, Du MQ, Turner SD, Bacon CM. The lymphoma-associated fusion tyrosine kinase ITK-SYK requires pleckstrin homology domain-mediated membrane localization for activation and cellular transformation. J Biol Chem 2009; 284:26871-81. [PMID: 19535334 DOI: 10.1074/jbc.m109.034272] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
ITK-SYK, a novel fusion tyrosine kinase (FTK) resulting from a recurrent t(5;9)(q33;q22), was recently identified in a poorly understood subset of peripheral T-cell lymphomas. However, the biochemical and functional properties of ITK-SYK are unknown. Here we demonstrate that ITK-SYK is a catalytically active tyrosine kinase that is sensitive to an established inhibitor of SYK. The expression of ITK-SYK, but not SYK, transformed NIH3T3 cells, inducing loss of contact inhibition and formation of anchorage-independent colonies in soft agar, in a kinase activity-dependent manner. ITK-SYK is unusual among FTKs in having an N-terminal phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology (PH) domain. Introduction of a well characterized loss-of-function mutation (R29C) into the PH domain of ITK-SYK inhibited its phosphorylation, markedly reduced its catalytic activity, and abrogated its ability to activate the ERK signaling pathway and to transform NIH3T3 cells. Although ITK-SYK was membrane-associated, ITK-SYK-R29C was not. However, each of these properties could be recovered by retargeting ITK-SYK-R29C back to the plasma membrane by the addition of an N-terminal myristylation sequence. Consistent with a model in which ITK-SYK requires PH domain-mediated binding to phosphatidylinositol 3,4,5-trisphosphate generated by phosphatidylinositol 3-kinase (PI3K), ITK-SYK activity was reduced by pharmacological inhibition of PI3K and increased by co-expression with a constitutively active form of PI3K. Together, these findings identify ITK-SYK as an active, transforming FTK dependent upon PH domain-mediated membrane localization, identify a novel mechanism for activation of an oncogenic FTK, and suggest ITK-SYK as a rational therapeutic target for t(5;9)(q33;q22)-positive lymphomas.
Collapse
Affiliation(s)
- Sue Rigby
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Chini CC, Leibson PJ. Signal transduction during natural killer cell activation. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 9:Unit 9.16. [PMID: 18770753 DOI: 10.1002/0471142956.cy0916s14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding of transmembrane signaling during NK-cell activation has greatly expanded during the past few years. The discovery and characterization of novel triggering and inhibitory receptors have revealed the complexity of these processes. This unit focuses on receptor-initiated signaling pathways that modulate NK functions. Establishing the roles of different signaling pathways in NK cells is a crucial step in the design of therapeutic approaches for selective enhancement or suppression of NK-cell activation.
Collapse
Affiliation(s)
- C C Chini
- Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | |
Collapse
|
24
|
Xu T, Chen L, Shang X, Cui L, Luo J, Chen C, Ba X, Zeng X. Critical role of Lck in L-selectin signaling induced by sulfatides engagement. J Leukoc Biol 2008; 84:1192-201. [PMID: 18653462 DOI: 10.1189/jlb.0208084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recruitment of leukocytes onto inflamed tissues is an important physiological event, in which L-selectin plays an essential role in initial leukocyte capture and at the same time, triggers cell signaling. Lck is a member of the Src family of protein tyrosine kinases and is critical for T cell activation triggered by receptor ligation. Here, we demonstrated that Lck was associated directly with and phosphorylated the L-selectin cytoplasmic tail upon L-selectin engagement with sulfatides. Through the direct interaction with ZAP-70 and c-Abl via its Src homology 2 (SH2) and SH3 domains, Lck organized a signaling complex at the cytoplasmic tail of L-selectin. In the cells with Lck knockdown by small interfering RNA treatment, L-selectin signaling was suppressed dramatically, as indicated by reduced phosphorylation of c-Abl and ZAP-70. Re-expression of wild-type or constitutively active but not kinase-dead murine Lck rescued the phosphorylation completely, but the SH2 domain mutant or the SH3/SH2 double mutant of murine Lck had no effect. These results suggest that Lck plays a critical role in L-selectin signaling upon sulfatides stimulation.
Collapse
Affiliation(s)
- Ting Xu
- Northeast Normal University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chini CC, Leibson PJ. Signal transduction during natural killer cell activation. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 11:Unit 11.9B. [PMID: 18432709 DOI: 10.1002/0471142735.im1109bs35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Natural killer (NK) cells are a subpopulation of lymphocytes that can mediate cytotoxicity of certain tumor cells, virus-infected cells, and normal cells. In addition to their cytotoxic potential, NK cells secrete a variety of cytokines and chemokines that can modulate the function, growth, and differentiation of other immune cells. These different responses are initiated by the interaction of specific NK surface receptors with defined soluble or cell-associated ligands. There are several different types of receptors on the NK cell surface including "triggering" receptors, adhesion molecules, cytokine receptors, and MHC-recognizing killer-cell inhibitory receptors. The functional response of an NK cell is the result of the integration of signals transduced by these different types of receptors. Some of these signaling pathways are similar to other lymphoid cells, but there are also unique features employed by NK cells. This overview focuses on receptor-initiated signaling pathways that modulate NK functions.
Collapse
Affiliation(s)
- C C Chini
- Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | |
Collapse
|
26
|
Kulathu Y, Hobeika E, Turchinovich G, Reth M. The kinase Syk as an adaptor controlling sustained calcium signalling and B-cell development. EMBO J 2008; 27:1333-44. [PMID: 18369315 DOI: 10.1038/emboj.2008.62] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 03/03/2008] [Indexed: 12/13/2022] Open
Abstract
Upon B-cell antigen receptor (BCR) activation, the protein tyrosine kinase Syk phosphorylates the adaptor protein SH2 domain-containing leukocyte protein of 65 kDa (SLP-65), thus coupling the BCR to diverse signalling pathways. Here, we report that SLP-65 is not only a downstream target and substrate of Syk but also a direct binding-partner and activator of this kinase. This positive feedback is mediated by the binding of the SH2 domain of SLP-65 to an autophosphorylated tyrosine of Syk. The mutant B cells that cannot form the Syk/SLP-65 complex are defective in BCR-induced extracellular signal-regulated kinase, nuclear factor kappa B and nuclear factor of activated T cells, but not Akt activation, and are blocked in B-cell development. Furthermore, we show that formation of the Syk/SLP-65 complex is required for sustained Ca(2+) responses in activated B cells. We suggest that after activation and internalization of the BCR, Syk remains active as part of a membrane-bound Syk/SLP-65 complex controlling sustained signalling and calcium influx.
Collapse
Affiliation(s)
- Yogesh Kulathu
- Faculty of Biology, Max-Planck Institute for Immunobiology, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
27
|
Bohne F, Chmielewski M, Ebert G, Wiegmann K, Kürschner T, Schulze A, Urban S, Krönke M, Abken H, Protzer U. T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes. Gastroenterology 2008; 134:239-47. [PMID: 18166356 DOI: 10.1053/j.gastro.2007.11.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 10/11/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The final goal in hepatitis B therapy is eradication of the hepatitis B virus (HBV) replication template, the so-called covalently closed circular DNA (cccDNA). Current antiviral treatment of chronic hepatitis B depends on interferon alpha or nucleoside analogues inhibiting the viral reverse transcriptase. Despite treatment, cccDNA mostly persists in the host cell nucleus, continues to produce hepatitis B surface antigen (HBsAg), and causes relapsing disease. We therefore aimed at eliminating persistently infected hepatocytes carrying HBV cccDNA by redirecting cytolytic T cells toward HBsAg-producing cells. METHODS We designed chimeric T-cell receptors directed against HBV surface proteins present on HBV-infected cells and used them to graft primary human T cells with antibody-like specificity. The receptors were composed of a single chain antibody fragment directed against HBV S or L protein fused to intracellular signalling domains of CD3xi and the costimulatory CD28 molecule. RESULTS Our results show that these chimeric receptors, when retrovirally delivered and expressed on the cell surface, enable primary human T cells to recognize HBsAg-positive hepatocytes, release interferon gamma and interleukin 2, and, most importantly, lyse HBV replicating cells. When coincubated with HBV-infected primary human hepatocytes, these engineered, antigen-specific T cells selectively eliminated HBV-infected and thus cccDNA-positive target cells. CONCLUSIONS Elimination of HBV cccDNA-positive hepatocytes following antiviral therapy is a major therapeutic goal in chronic hepatitis B, and adoptive transfer of grafted T cells provides a promising novel therapeutic approach. However, T-cell therapy may also cause liver damage and therefore needs further preclinical evaluation.
Collapse
Affiliation(s)
- Felix Bohne
- Molecular Infectiology, University Hospital Cologne, Koeln, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gilbert C, Barat C, Cantin R, Tremblay MJ. Involvement of Src and Syk Tyrosine Kinases in HIV-1 Transfer from Dendritic Cells to CD4+T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:2862-71. [PMID: 17312130 DOI: 10.4049/jimmunol.178.5.2862] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are considered as key mediators of the early events in HIV-1 infection at mucosal sites. Although several aspects of the complex interactions between DCs and HIV-1 have been elucidated, there are still basic questions that remain to be answered about DCs/HIV-1 interplay. In this study, we examined the contribution of nonreceptor TKs in the known ability of DCs to efficiently transfer HIV-1 to CD4(+) T cells in trans. Experiments performed with specific inhibitors of Src and Syk family members indicate that these tyrosine kinases (TKs) are participating to HIV-1 transfer from immature monocyte-derived DCs (IM-MDDCs) to autologous CD4(+) T cells. Experiments with IM-MDDCs transfected with small interfering RNAs targeting Lyn and Syk confirmed the importance of these nonreceptor TKs in HIV-1 transmission. The Src- and Syk-mediated effect on virus transfer was linked with infection of IM-MDDCs in cis-as monitored by quantifying integrated viral DNA and de novo virus production. The process of HIV-1 transmission from IM-MDDCs to CD4(+) T cells was unaffected following treatment with protein kinase C and protein kinase A inhibitors. These data suggest that Src and Syk TKs play a functional role in productive HIV-1 infection of IM-MDDCs. Additional work is needed to facilitate our comprehension of the various mechanisms underlying the exact contribution of Src and Syk TKs to this phenomenon.
Collapse
Affiliation(s)
- Caroline Gilbert
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Quebec, Canada
| | | | | | | |
Collapse
|
29
|
Crespo M, Villamor N, Giné E, Muntañola A, Colomer D, Marafioti T, Jones M, Camós M, Campo E, Montserrat E, Bosch F. ZAP-70 expression in normal pro/pre B cells, mature B cells, and in B-cell acute lymphoblastic leukemia. Clin Cancer Res 2006; 12:726-34. [PMID: 16467082 DOI: 10.1158/1078-0432.ccr-05-1531] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The ZAP-70 gene is normally expressed in T and natural killer cells, where it is required for the T-cell receptor (TCR) signaling. More recently, it has been described that ZAP-70 contributes to the B-cell development at early stages of B-cell differentiation in mice. The purpose was to investigate the presence of ZAP-70 in normal pro/pre B cells and mature B cells and in tumoral cells from B-acute lymphoblastic leukemias (B-ALL). EXPERIMENTAL DESIGN ZAP-70 expression was ascertained by flow cytometry, immunofluorescence, Western blot, and quantitative reverse transcription-PCR. Analysis of ZAP-70 and other signaling proteins of the pre-TCR/TCR was done by Western blot. RESULTS ZAP-70 was expressed in pro/pre B cells but not in normal mature B cells derived from bone marrow, peripheral blood, or tonsil. Among tumoral cells, ZAP-70 was expressed in 56% of B-ALLs with pro/pre B-cell phenotype and in 4 of 6 Burkitt/ALL lymphomas. In B-ALL cells, expression of CD38 protein correlated with ZAP-70 expression (P = 0.05). Mutational analysis of the ZAP-70 gene revealed the absence of mutations in cases lacking ZAP-70 expression. Moreover, other elements of the pre-TCR/TCR signaling pathway, like LAT and Lck, were also found in B-ALL cells. CONCLUSIONS Among normal B-cell subsets, ZAP-70 was found expressed in normal pro/pre B cells but not in a significant proportion of normal B cells with mature phenotype. Moreover, the presence of ZAP-70 in B-ALLs probably reflects their cellular origin. The lack of ZAP-70 expression in normal mature B cells suggests that its expression in mature-derived neoplasms with different cellular origin, such as Burkitt's lymphoma and chronic lymphocytic leukemia, might be due to an aberrant phenomenon.
Collapse
Affiliation(s)
- Marta Crespo
- Department of Hematology, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Paccani SR, Boncristiano M, Patrussi L, Ulivieri C, Wack A, Valensin S, Hirst TR, Amedei A, Del Prete G, Telford JL, D'Elios MM, Baldari CT. Defective Vav expression and impaired F-actin reorganization in a subset of patients with common variable immunodeficiency characterized by T-cell defects. Blood 2005; 106:626-34. [PMID: 15817684 DOI: 10.1182/blood-2004-05-2051] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Common variable immunodeficiency (CVID) is a primary immune disorder characterized by impaired antibody production, which is in many instances secondary to defective T-cell function (T-CVID). We have previously identified a subset of patients with T-CVID characterized by defective T-cell receptor (TCR)-dependent protein tyrosine phosphorylation. In these patients, ZAP-70 fails to be recruited to the TCR as the result of impaired CD3zeta phosphorylation, which is, however, not dependent on defective Lck expression or activity. Here we show that neither Fyn nor CD45 is affected in these patients. On the other hand, T-CVID T cells show dramatic defects in the Vav/Rac pathway controlling F-actin dynamics. A significant deficiency in Vav protein was indeed observed; in 3 of 4 patients with T-CVID, it was associated with reduced VAV1 mRNA levels. The impairment in Vav expression correlated with defective F-actin reorganization in response to TCR/CD28 co-engagement. Furthermore, TCR/CD28-dependent up-regulation of lipid rafts at the cell surface, which requires F-actin dynamics, was impaired in these patients. The actin cytoskeleton defect could be reversed by reconstitution of Vav1 expression in the patients' T cells. Results demonstrate an essential role of Vav in human T cells and strongly suggest Vav insufficiency in T-CVID.
Collapse
Affiliation(s)
- Silvia Rossi Paccani
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nolz JC, Tschumper RC, Pittner BT, Darce JR, Kay NE, Jelinek DF. ZAP-70 is expressed by a subset of normal human B-lymphocytes displaying an activated phenotype. Leukemia 2005; 19:1018-24. [PMID: 15800671 DOI: 10.1038/sj.leu.2403726] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Syk family tyrosine kinase ZAP-70 is essential for normal T-cell development and signaling. Recently, leukemic cells from some patients with B-cell chronic lymphocytic leukemia (B-CLL) were shown to express ZAP-70. Owing to the prognostic value of B-CLL ZAP-70 expression, this phenotype may reflect intrinsic biological differences between the two subsets of disease. However, it remains unclear whether CLL-B cells aberrantly acquire ZAP-70 expression during the transformation process or whether ZAP-70 may be expressed under certain conditions in normal human B-lymphocytes. To discriminate between these two possibilities, we assessed ZAP-70 expression in normal human B-lymphocytes. Our data demonstrate that ZAP-70 is expressed in a subpopulation of tonsillar and splenic normal B-lymphocytes that express an activated phenotype. Furthermore, ZAP-70 expression can be induced in vitro upon stimulation of blood and tonsillar B cells. Finally, we show that phosphorylation of ZAP-70 occurs in tonsillar B cells with stimulation through the B-cell receptor. These results provide new insight into normal human B-cell biology as well as provide clues about the transformed cell in B-CLL.
Collapse
Affiliation(s)
- J C Nolz
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Graduate School, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Steinberg M, Adjali O, Swainson L, Merida P, Di Bartolo V, Pelletier L, Taylor N, Noraz N. T-cell receptor–induced phosphorylation of the ζ chain is efficiently promoted by ZAP-70 but not Syk. Blood 2004; 104:760-7. [PMID: 15059847 DOI: 10.1182/blood-2003-12-4314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEngagement of the T-cell receptor (TCR) results in the activation of Lck/Fyn and ZAP-70/Syk tyrosine kinases. Lck-mediated tyrosine phosphorylation of signaling motifs (ITAMs) in the CD3-ζ subunits of the TCR is an initial step in the transduction of signaling cascades. However, ζ phosphorylation is also promoted by ZAP-70, as TCR-induced ζ phosphorylation is defective in ZAP-70–deficient T cells. We show that this defect is corrected by stable expression of ZAP-70, but not Syk, in primary and transformed T cells. Indeed, these proteins are differentially coupled to the TCR with a 5- to 10-fold higher association of ZAP-70 with ζ as compared to Syk. Low-level Syk-ζ binding is associated with significantly less Lck coupled to the TCR. Moreover, diminished coupling of Lck to ζ correlates with a poor phosphorylation of the positive regulatory tyr352 residue of Syk. Thus, recruitment of Lck into the TCR complex with subsequent ζ chain phosphorylation is promoted by ZAP-70 but not Syk. Importantly, the presence of ZAP-70 positively regulates the TCR-induced tyrosine phosphorylation of Syk. The interplay between Syk and ZAP-70 in thymocytes, certain T cells, and B-chronic lymphocytic leukemia cells, in which they are coexpressed, will therefore modulate the amplitude of antigen-mediated receptor signaling.
Collapse
Affiliation(s)
- Marcos Steinberg
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique Unité de Recherches 5535/Institut Fédératife de Recherche, F-34293 Montpellier 5, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abraham RT, Weiss A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol 2004; 4:301-8. [PMID: 15057788 DOI: 10.1038/nri1330] [Citation(s) in RCA: 424] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert T Abraham
- Program in Signal Transduction Research at The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
35
|
Hoyer-Fender S. Molecular aspects of XY body formation. Cytogenet Genome Res 2004; 103:245-55. [PMID: 15051945 DOI: 10.1159/000076810] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 09/26/2003] [Indexed: 11/19/2022] Open
Abstract
More than a century ago, a densely stained area inside the nucleus of male meiotic cells was described. It was later shown to harbor the sex chromosomes which undergo transcriptional inactivation in conjunction with heterochromatinisation and synapsis to form the XY body. Formation of the XY body is conserved throughout the mammalian phylogenetic tree and is thought to be essential for successful spermatogenesis. However, its biological role as well as the molecular mechanisms underlying XY body formation are still far from being understood. A lot of effort has already been undertaken to characterize components of the XY body and to investigate their functional implications in sex chromatin heterochromatinisation and meiotic sex chromosome inactivation (MSCI). This review gives an overview of those components and their possible implications in XY body formation and function.
Collapse
Affiliation(s)
- S Hoyer-Fender
- Georg-August-Universität Göttingen, Göttinger Zentrum für Molekulare Biowissenschaften, Abteilung Entwicklungsbiologie, Göttingen, Germany.
| |
Collapse
|
36
|
Rivera GM, Briceño CA, Takeshima F, Snapper SB, Mayer BJ. Inducible clustering of membrane-targeted SH3 domains of the adaptor protein Nck triggers localized actin polymerization. Curr Biol 2004; 14:11-22. [PMID: 14711409 DOI: 10.1016/j.cub.2003.12.033] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND SH2/SH3 adaptor proteins play a critical role in tyrosine kinase signaling pathways, regulating essential cell functions by increasing the local concentration or altering the subcellular localization of downstream effectors. The SH2 domain of the Nck adaptor can bind tyrosine-phosphorylated proteins, while its SH3 domains can modulate actin polymerization by interacting with effectors such as WASp/Scar family proteins. Although several studies have implicated Nck in regulating actin polymerization, its role in living cells is not well understood. RESULTS We used an antibody-based system to experimentally modulate the local concentration of Nck SH3 domains on the plasma membrane of living cells. Clustering of fusion proteins containing all three Nck SH3 domains induced localized polymerization of actin, including the formation of actin tails and spots, accompanied by general cytoskeletal rearrangements. All three Nck SH3 domains were required, as clustering of individual SH3 domains or a combination of the two N-terminal Nck SH3 domains failed to promote significant local polymerization of actin in vivo. Changes in actin dynamics induced by Nck SH3 domain clustering required the recruitment of N-WASp, but not WAVE1, and were unaffected by downregulation of Cdc42. CONCLUSIONS We show that high local concentrations of Nck SH3 domains are sufficient to stimulate localized, Cdc42-independent actin polymerization in living cells. This study provides strong evidence of a pivotal role for Nck in directly coupling ligand-induced tyrosine phosphorylation at the plasma membrane to localized changes in organization of the actin cytoskeleton through a signaling pathway that requires N-WASp.
Collapse
Affiliation(s)
- Gonzalo M Rivera
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
The interaction of particles with certain cell surface receptors initiates intracellular signalling pathways that ultimately lead to submembranous actin filament assembly, pseudopod extension, and the ingestion of the particles. Here, Steven Greenberg reviews recent evidence implicating various signalling events in phagocytosis--in particular, activation of tyrosine kinases and phosphatidylinositol 3-kinase--and speculates how they might regulate the actin cytoskeleton.
Collapse
Affiliation(s)
- S Greenberg
- Dept of Medicine, Pulmonary Division, Columbia University College of Physicians & Surgeons, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
38
|
Sado T, Li E, Sasaki H. Effect of TSIX disruption on XIST expression in male ES cells. Cytogenet Genome Res 2004; 99:115-8. [PMID: 12900553 DOI: 10.1159/000071582] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 12/24/2002] [Indexed: 11/19/2022] Open
Abstract
XIST and its antisense partner, TSIX, encode non-coding RNAs and play key roles in X chromosome inactivation. Targeted disruption of TSIX causes ectopic expression of XIST in the extraembryonic tissues upon maternal transmission, which subsequently results in embryonic lethality due to inactivation of both X chromosomes in females and a single X chromosome in males. TSIX, therefore, plays a crucial role in maintaining the silenced state of XIST in CIS and regulates the imprinted X inactivation in the extraembryonic tissues. In this study, we examined the effect of TSIX disruption on XIST expression in the embryonic lineage using embryonic stem (ES) cells as a model system. Upon differentiation, XIST is ectopically activated in a subset of the nuclei of male ES cells harboring the TSIX-deficient X chromosome. Such ectopic expression, however, eventually ceased during prolonged culture. It is likely that surveillance by the X chromosome counting mechanism somehow shuts off the ectopic expression of XIST before inactivation of the X chromosome.
Collapse
Affiliation(s)
- T Sado
- Division of Human Genetics, National Institute of Genetics, The Graduate University for Advanced Studies, Mishima, Japan.
| | | | | |
Collapse
|
39
|
Vasques LR, Klöckner MN, Pereira LV. X chromosome inactivation: how human are mice? Cytogenet Genome Res 2004; 99:30-5. [PMID: 12900542 DOI: 10.1159/000071570] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Accepted: 12/02/2002] [Indexed: 11/19/2022] Open
Abstract
Mammals perform dosage compensation of X-linked gene products between XY males and XX females by transcriptionally silencing all but one X chromosome per diploid cell, a process called X chromosome inactivation (XCI). XCI involves counting X chromosomes in a cell, random or imprinted choice of one X to remain active, initiation and spread of the inactivation signal in CIS throughout the other X chromosomes, and maintenance of the inactive state of those X chromosomes during cell divisions thereafter. Most of what is known of the molecular mechanisms involved in the different steps of XCI has been studied in the mouse. In this review we compare XCI in mouse and human, and discuss how much of the murine data can be extrapolated to humans.
Collapse
Affiliation(s)
- L R Vasques
- Depto. Biologia, Centro de Estudos do Genoma Humano, Instituto de Biociências, Universidade de São Paulo, Brazil
| | | | | |
Collapse
|
40
|
Monk M. Mammalian embryonic development--insights from studies on the X chromosome. Cytogenet Genome Res 2004; 99:200-9. [PMID: 12900565 DOI: 10.1159/000071594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 02/26/2003] [Indexed: 11/19/2022] Open
Abstract
This paper reviews our early studies on the cycle of changes of X chromosome activity in different lineages of the developing female mouse embryo. The emphasis is placed on the insights gained into key developmental processes such as the temporal and spatial aspects of developmental totipotency, the timing and cell numbers involved in the origin of the germ line, the molecular mechanisms of genetic deprogramming, reprogramming and X chromosome imprinting, and transgenerational epigenetic inheritance. When viewed in this way, it is quite remarkable to see how much was learned about mammalian development from early studies on the X chromosome. Indeed several paradigm shifts occurred as a result of these studies and these are highlighted in this review.
Collapse
Affiliation(s)
- M Monk
- Molecular Embryology Unit, Institute of Child Health, London, UK.
| |
Collapse
|
41
|
Caparros ML, Alexiou M, Webster Z, Brockdorff N. Functional analysis of the highly conserved exon IV of XIST RNA. Cytogenet Genome Res 2004; 99:99-105. [PMID: 12900551 DOI: 10.1159/000071580] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Accepted: 12/02/2002] [Indexed: 11/19/2022] Open
Abstract
X inactivation is effected by a large CIS-acting RNA molecule termed the X inactive specific transcript (XIST). Exon IV of XIST RNA is highly conserved at the primary sequence level and is predicted to form a stable stem-loop structure. These features suggest that it is important for XIST RNA function. We have used homologous recombination to delete exon IV of the mouse XIST gene. Surprisingly we found no detectable effects on X inactivation. Heterozygous female animals show normal random X inactivation and transcripts from the mutant allele were seen to localise IN CIS over the length of the inactive X chromosome. There was however a reduced steady state level of mutant relative to wild type XIST RNA. This effect was not attributable to decreased stability, suggesting that the deletion affects transcription or processing of XIST RNA.
Collapse
Affiliation(s)
- M-L Caparros
- X inactivation Group, MRC Clinical Sciences Centre, London, UK
| | | | | | | |
Collapse
|
42
|
Ayling LJ, Griffin DK. The evolution of sex chromosomes. Cytogenet Genome Res 2004; 99:125-40. [PMID: 12900555 DOI: 10.1159/000071584] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2002] [Accepted: 02/28/2003] [Indexed: 11/19/2022] Open
Abstract
Mammalian sex chromosomes appear, behave and function differently than the autosomes, passing on their genes in a unique sex-linked manner. The publishing of Ohno's hypothesis provided a framework for discussion of sex chromosome evolution, allowing it to be developed and challenged numerous times. In this report we discuss the pressures that drove the evolution of sex and the mechanisms by which it occurred. We concentrate on how the sex chromosomes evolved in mammals, discussing the various hypotheses proposed and the evidence supporting them.
Collapse
Affiliation(s)
- L-J Ayling
- Cell and Chromosome Biology Group, Department of Biological Sciences, Brunel University, Uxbridge, UK
| | | |
Collapse
|
43
|
Zhong L, Wu CH, Lee WH, Liu CP. ζ-Associated Protein of 70 kDa (ZAP-70), but Not Syk, Tyrosine Kinase Can Mediate Apoptosis of T Cells through the Fas/Fas Ligand, Caspase-8 and Caspase-3 Pathways. THE JOURNAL OF IMMUNOLOGY 2004; 172:1472-82. [PMID: 14734724 DOI: 10.4049/jimmunol.172.3.1472] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR zeta-chain-associated protein of 70 kDA (ZAP-70) and Syk tyrosine kinases play critical roles in regulating TCR-mediated signal transduction. They not only share some overlapped functions but also may play unique roles in regulating the function and development of T cells. However, it is not known whether they have different effects on the activation and activation-induced cell death of T cells. To address this question, we generated cDNAs encoding chimeric molecules that a tailless TCR zeta-chain was directly linked to truncated ZAP-70 (Z/ZAP) or Syk (Z/Syk) molecules lacking the two Src homology 2 domains. Transfection of these molecules into zeta-chain-deficient cells restored their TCR expression. In addition, Z/ZAP and Z/Syk transfectants but not control cells demonstrated kinase activities in phosphorylating an exogenous substrate specific for ZAP-70 and Syk kinases. Z/ZAP transfectants activated through TCRs underwent a faster time course of apoptosis and had a greater percentage of apoptotic cells than that of Z/Syk and control cells. Activated Z/ZAP transfectants increased Fas and Fas ligand (FasL) expression 3- and 40-fold, respectively. Blocking of the Fas/FasL interaction could inhibit the apoptosis of Z/ZAP transfectants. In contrast, although activated Z/Syk transfectants could increase FasL expression, their Fas expression actually decreased and the percentage of apoptotic cells did not increase. Further studies of the mechanisms revealed that activation of Z/ZAP but not Z/Syk transfectants resulted in rapid activation of caspase-3 and caspase-8 that could also be inhibited by blocking Fas/FasL interaction. These results demonstrated that ZAP-70 and Syk play distinct roles in T cell activation and activation-induced cell death.
Collapse
Affiliation(s)
- Lingwen Zhong
- Division of Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
44
|
Mustelin T, Taskén K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 2003; 371:15-27. [PMID: 12485116 PMCID: PMC1223257 DOI: 10.1042/bj20021637] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 12/12/2002] [Accepted: 12/16/2002] [Indexed: 11/17/2022]
Abstract
The sequence of events in T-cell antigen receptor (TCR) signalling leading to T-cell activation involves regulation of a number of protein tyrosine kinases (PTKs) and the phosphorylation status of many of their substrates. Proximal signalling pathways involve PTKs of the Src, Syk, Csk and Tec families, adapter proteins and effector enzymes in a highly organized tyrosine-phosphorylation cascade. In intact cells, tyrosine phosphorylation is rapidly reversible and generally of a very low stoichiometry even under induced conditions due to the fact that the enzymes removing phosphate from tyrosine-phosphorylated substrates, the protein tyrosine phosphatases (PTPases), have a capacity that is several orders of magnitude higher than that of the PTKs. It follows that a relatively minor change in the PTK/PTPase balance can have a major impact on net tyrosine phosphorylation and thereby on activation and proliferation of T-cells. This review focuses on the involvement of PTKs and PTPases in positive and negative regulation of T-cell activation, the emerging theme of reciprocal regulation of each type of enzyme by the other, as well as regulation of phosphotyrosine turnover by Ser/Thr phosphorylation and regulation of localization of signal components.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Signal Transduction, Cancer Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
45
|
Castro MAA, Nunes RJ, Oliveira MI, Tavares PA, Simões C, Parnes JR, Moreira A, Carmo AM. OX52 is the rat homologue of CD6: evidence for an effector function in the regulation of CD5 phosphorylation. J Leukoc Biol 2003; 73:183-90. [PMID: 12525577 DOI: 10.1189/jlb.0902437] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The MRC OX52 monoclonal antibody is a marker of rat T lymphocytes. We have cloned by polymerase chain reaction the rat homologue of CD6, and fluorescein-activated cell sorter analysis and immunoprecipitations using OX52 in COS7 cells transfected with rat CD6 cDNA showed that CD6 is the cell-surface molecule recognized by OX52. Immunoprecipitation analysis showed that CD6 coprecipitated with CD5, which in turn, was coprecipitated equivalently with CD2, CD6, and the T cell receptor (TCR), but the fraction of CD5 associated with CD6 was highly phosphorylated in kinase assays, in marked contrast with the low level of phosphorylation of CD5 associated with TCR or CD2. Examination of protein kinases associating with these antigens showed that paradoxically, CD2 coprecipitated the highest amount of Lck and Fyn. CD6 also associated with Lck, Fyn, and ZAP-70, although at lower levels but additionally coprecipitated the Tec family kinase Itk, which is absent from CD2, CD5, and TCR complexes. Lck together with Itk was the best combination of kinases, effectively phosphorylating synthetic peptides corresponding to a cytoplasmic sequence of CD5. Overall, our results suggest that CD6 has an important role in the regulation of CD5 tyrosine phosphorylation, probably as a result of its unique feature of associating with kinases of different families.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/physiology
- CD2 Antigens
- CD5 Antigens/metabolism
- COS Cells
- Cloning, Molecular
- Male
- Molecular Sequence Data
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, Antigen, T-Cell
- Signal Transduction
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Mónica A A Castro
- Institute for Molecular and Cellular Biology, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lutz C, Nimpf J, Jenny M, Boecklinger K, Enzinger C, Utermann G, Baier-Bitterlich G, Baier G. Evidence of functional modulation of the MEKK/JNK/cJun signaling cascade by the low density lipoprotein receptor-related protein (LRP). J Biol Chem 2002; 277:43143-51. [PMID: 12193592 DOI: 10.1074/jbc.m204426200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoprotein receptors, such as LRP, have been shown to assemble multiprotein complexes containing intracellular signaling molecules; however, in vivo, their signaling function is poorly understood. Using a novel LRP receptor fusion construct, a type I transmembrane protein chimera, termed sIgG-LRP (bearing the intracellular COOH-terminal tail of human LRP as recombinant fusion to a transmembrane region plus the extracellular IgG-F(c) domain), we here investigated LRP signal transduction specificity in intact cells. First and similar to activated alpha2-macroglobulin as agonist of endogenous LRP, expression of sIgG-LRP demonstrated significant apoptosis protection. Second and similar to alpha2-macroglobulin-induced endogenous LRP, sIgG-LRP is sufficient to negatively modulate mitogen-induced Elk-1 and cJun (but not NF-kappaB) transcriptional activity. Third, expression of sIgG-LRP also impaired cJun transactivation mediated by constitutive active mutants of Rac-1 and MEKK-1. Fourth and unexpectedly, sIgG-LRP expression was found to be associated with a marked enhancement of mitogen-induced cJun amino-terminal kinase (JNK) activation. Fifth, confocal microscopic examination and subcellular fractionation demonstrated that sIgG-LRP and JNK co-localize in transfected cells. Therefore, sIgG-LRP expression was found to significantly impair activation-induced translocation of JNK into the nucleus. Taken together, we here demonstrate that sIgG-LRP protein sequesters activated JNK into the plasma membrane compartment in intact cells, inhibiting nuclear activation of the JNK-dependent transcription factors Elk-1 and cJun.
Collapse
Affiliation(s)
- Christina Lutz
- Institute for Medical Biology and Human Genetics, the Institute for Medical Chemistry and Biochemistry, University of Innsbruck, Innsbruck, Austria A6020
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Among the myriad receptors expressed by T cells, the sine qua non is the CD3/T cell receptor (CD3/TCR) complex, because it is uniquely capable of translating the presence of a specific antigen into intracellular signals necessary to trigger an immune response against a pathogen or tumor. Much work over the past 2 decades has attempted to define the signaling pathways leading from the CD3/TCR complex that culminate ultimately in the functions necessary for effective T cell immune responses, such as cytokine production. Here, we summarize recent advances in our understanding of the mechanisms by which the CD3/TCR complex controls integrin-mediated T cell adhesion, and discuss new information that suggests that there may be unexpected facets to this pathway that distinguish it from those previously defined.
Collapse
Affiliation(s)
- Sirid-Aimée Kellermann
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
48
|
Su HP, Nakada-Tsukui K, Tosello-Trampont AC, Li Y, Bu G, Henson PM, Ravichandran KS. Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J Biol Chem 2002; 277:11772-9. [PMID: 11729193 DOI: 10.1074/jbc.m109336200] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prompt clearance of cells undergoing apoptosis is critical during embryonic development, normal tissue turnover, as well as inflammation and autoimmunity. The molecular details of the engulfment of apoptotic cells are not fully understood. ced-6 and its human homologue gulp, encode an adapter protein, whose function in engulfment is highly evolutionarily conserved; however, the upstream and downstream components of CED-6 mediated signaling are not known. Recently, ced-1 has been shown to encode a transmembrane protein on phagocytic cells, with two functional sequence motifs in its cytoplasmic tail that are important for engulfment. In this study, using a combination of biochemical approaches and yeast two-hybrid analysis, we present evidence for a physical interaction between GULP/CED-6 and one of the two motifs (NPXY motif) in the cytoplasmic tail of CED-1. The phosphotyrosine binding domain of GULP was necessary and sufficient for this interaction. Since the precise mammalian homologue of CED-1 is not known, we undertook a database search for human proteins that contain the motifs shown to be important for CED-1 function and identified CD91/LRP (low density lipoprotein receptor-related protein) as one candidate. Interestingly, recent studies have also identified CD91/LRP as a receptor involved in the phagocytosis of apoptotic cells in mammals. The GULP phosphotyrosine binding domain was able to specifically interact with one specific NPXY motif in the CD91 cytoplasmic tail. During these studies we have also identified the mouse GULP sequence. These studies suggest a physical link between CED-1 or CD91/LRP and the adapter protein CED-6/GULP during engulfment of apoptotic cells and further elucidate the pathway suggested by the genetic studies.
Collapse
Affiliation(s)
- Hua Poo Su
- Beirne Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Alon R, Feigelson S. From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Semin Immunol 2002; 14:93-104. [PMID: 11978081 DOI: 10.1006/smim.2001.0346] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In order to extravasate the bloodstream at specific sites of inflammation or antigen presentation, circulating leukocytes must rapidly translate specific adhesive and stimulatory signals into firm adhesion. Leukocyte arrest is nearly exclusively mediated by integrin receptors. Recent in vitro and in vivo evidence suggests that specialized integrins support reversible tethers that slow down selectin-initiated rolling of leukocytes prior to their arrest. In situ activation of integrin avidity by ligand and chemokine signaling can take place within fractions of seconds, resulting either in augmented reversible adhesions or immediate arrest on the vascular endothelium. The ability of leukocyte integrins to rapidly respond to these in situ avidity modulators appears to depend on preformed affinity and clustering states, which are internally regulated by cytoskeletal constraints on integrin conformation and mobility. We discuss potential regulatory mechanisms by which a given set of chemokine receptors and integrins may interact to rapidly generate high avidity, shear-resistant integrin-mediated leukocyte arrest on vascular endothelium.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel.
| | | |
Collapse
|
50
|
Kabak S, Skaggs BJ, Gold MR, Affolter M, West KL, Foster MS, Siemasko K, Chan AC, Aebersold R, Clark MR. The direct recruitment of BLNK to immunoglobulin alpha couples the B-cell antigen receptor to distal signaling pathways. Mol Cell Biol 2002; 22:2524-35. [PMID: 11909947 PMCID: PMC133735 DOI: 10.1128/mcb.22.8.2524-2535.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Revised: 12/18/2001] [Accepted: 12/24/2001] [Indexed: 01/30/2023] Open
Abstract
Following B-cell antigen receptor (BCR) ligation, the cytoplasmic domains of immunoglobulin alpha (Ig alpha) and Ig beta recruit Syk to initiate signaling cascades. The coupling of Syk to several distal substrates requires linker protein BLNK. However, the mechanism by which BLNK is recruited to the BCR is unknown. Using chimeric receptors with wild-type and mutant Ig alpha cytoplasmic tails we show that the non-immunoreceptor tyrosine-based activation motif (ITAM) tyrosines, Y176 and Y204, are required to activate BLNK-dependent pathways. Subsequent analysis demonstrated that BLNK bound directly to phospho-Y204 and that fusing BLNK to mutated Ig alpha reconstituted downstream signaling events. Moreover, ligation of the endogenous BCR induced Y204 phosphorylation and BLNK recruitment. These data demonstrate that the non-ITAM tyrosines of Ig alpha couple Syk activation to BLNK-dependent pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- CD79 Antigens
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Clone Cells
- Enzyme Precursors/metabolism
- Intracellular Signaling Peptides and Proteins
- Isoenzymes/metabolism
- Mice
- Models, Molecular
- Mutation
- Phospholipase C gamma
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein-Tyrosine Kinases/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Syk Kinase
- Type C Phospholipases/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- Shara Kabak
- Committee on Immunology, Section of Rheumatology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|