1
|
Ashok S, Ramachandra Rao S. Updates on protein-prenylation and associated inherited retinopathies. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1410874. [PMID: 39026984 PMCID: PMC11254824 DOI: 10.3389/fopht.2024.1410874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Membrane-anchored proteins play critical roles in cell signaling, cellular architecture, and membrane biology. Hydrophilic proteins are post-translationally modified by a diverse range of lipid molecules such as phospholipids, glycosylphosphatidylinositol, and isoprenes, which allows their partition and anchorage to the cell membrane. In this review article, we discuss the biochemical basis of isoprenoid synthesis, the mechanisms of isoprene conjugation to proteins, and the functions of prenylated proteins in the neural retina. Recent discovery of novel prenyltransferases, prenylated protein chaperones, non-canonical prenylation-target motifs, and reversible prenylation is expected to increase the number of inherited systemic and blinding diseases with aberrant protein prenylation. Recent important investigations have also demonstrated the role of several unexpected regulators (such as protein charge, sequence/protein-chaperone interaction, light exposure history) in the photoreceptor trafficking of prenylated proteins. Technical advances in the investigation of the prenylated proteome and its application in vision research are discussed. Clinical updates and technical insights into known and putative prenylation-associated retinopathies are provided herein. Characterization of non-canonical prenylation mechanisms in the retina and retina-specific prenylated proteome is fundamental to the understanding of the pathogenesis of protein prenylation-associated inherited blinding disorders.
Collapse
Affiliation(s)
- Sudhat Ashok
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Sriganesh Ramachandra Rao
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Research Service, VA Western New York Healthcare System, Buffalo, NY, United States
| |
Collapse
|
2
|
Raeker MÖ, Perera ND, Karoukis AJ, Chen L, Feathers KL, Ali RR, Thompson DA, Fahim AT. Reduced Retinal Pigment Epithelial Autophagy Due to Loss of Rab12 Prenylation in a Human iPSC-RPE Model of Choroideremia. Cells 2024; 13:1068. [PMID: 38920696 PMCID: PMC11201631 DOI: 10.3390/cells13121068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in CHM, encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of CHM, the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown. A CRISPR/Cas-9-edited CHM-/- iPSC-RPE model was generated with isogenic control cells. Unprenylated Rabs were biotinylated in vitro and identified by tandem mass tag (TMT) spectrometry. Rab12 was one of the least prenylated and has an established role in suppressing mTORC1 signaling and promoting autophagy. CHM-/- iPSC-RPE cells demonstrated increased mTORC1 signaling and reduced autophagic flux, consistent with Rab12 dysfunction. Autophagic flux was rescued in CHM-/- cells by transduction with gene replacement (ShH10-CMV-CHM) and was reduced in control cells by siRNA knockdown of Rab12. This study supports Rab12 under-prenylation as an important cause of RPE cell dysfunction in choroideremia and highlights increased mTORC1 and reduced autophagy as potential disease pathways for further investigation.
Collapse
Affiliation(s)
- Maide Ö. Raeker
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Nirosha D. Perera
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Athanasios J. Karoukis
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Lisheng Chen
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kecia L. Feathers
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Robin R. Ali
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
- KCL Center for Cell and Gene Therapy, London WC2R 2LS, UK
| | - Debra A. Thompson
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abigail T. Fahim
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| |
Collapse
|
3
|
Xu S, Cao B, Xuan G, Xu S, An Z, Zhu C, Li L, Tang C. Function and regulation of Rab GTPases in cancers. Cell Biol Toxicol 2024; 40:28. [PMID: 38695990 PMCID: PMC11065922 DOI: 10.1007/s10565-024-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The Rab small GTPases are characterized by the distinct intracellular localization and modulate various endocytic, transcytic and exocytic transport pathways. Rab proteins function as scaffolds that connect signaling pathways and intracellular membrane trafficking processes through the recruitment of effectors, such as tethering factors, phosphatases, motors and kinases. In different cancers, Rabs play as either an onco-protein or a tumor suppressor role, highly dependending on the context. The molecular mechanistic research has revealed that Rab proteins are involved in cancer progression through influences on migration, invasion, metabolism, exosome secretion, autophagy, and drug resistance of cancer cells. Therefore, targeting Rab GTPases to recover the dysregulated vesicle transport systems may provide potential strategy to restrain cancer progression. In this review, we discuss the regulation of Rab protein level and activity in modulating pathways involved in tumor progression, and propose that Rab proteins may serve as a prognostic factor in different cancers.
Collapse
Affiliation(s)
- Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ge Xuan
- Department of Gynaecology, Ningbo Women and Children's Hospital, No.339 Liuting Road, Ningbo, 315012, China
| | - Shu Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zihao An
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chongying Zhu
- The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
4
|
Saffari A, Brechmann B, Böger C, Saber WA, Jumo H, Whye D, Wood D, Wahlster L, Alecu JE, Ziegler M, Scheffold M, Winden K, Hubbs J, Buttermore ED, Barrett L, Borner GHH, Davies AK, Ebrahimi-Fakhari D, Sahin M. High-content screening identifies a small molecule that restores AP-4-dependent protein trafficking in neuronal models of AP-4-associated hereditary spastic paraplegia. Nat Commun 2024; 15:584. [PMID: 38233389 PMCID: PMC10794252 DOI: 10.1038/s41467-023-44264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adapter protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, BCH-HSP-C01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate potential mechanisms of action of BCH-HSP-C01. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future studies.
Collapse
Affiliation(s)
- Afshin Saffari
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Barbara Brechmann
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cedric Böger
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wardiya Afshar Saber
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hellen Jumo
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dosh Whye
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Delaney Wood
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lara Wahlster
- Department of Hematology & Oncology, Boston Children's Hospital & Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julian E Alecu
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marvin Ziegler
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marlene Scheffold
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kellen Winden
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jed Hubbs
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth D Buttermore
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lee Barrett
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
| | - Alexandra K Davies
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Darius Ebrahimi-Fakhari
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Mustafa Sahin
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Ma H, Huo J, Xin C, Yang J, Liu Q, Dong H, Li R, Liu Y. RABGGTB plays a critical role in ALS pathogenesis. Brain Res Bull 2024; 206:110833. [PMID: 38042502 DOI: 10.1016/j.brainresbull.2023.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with unknown causes, which mainly affects motor neurons in the anterior horn of the spinal cord, brain stem, and cerebral cortex, also known as motor neuron disease. An important pathological feature of ALS is the formation of aggregates of mutant SOD1 protein, CTF25 of TDP-43, or other abnormal proteins in motor neurons, which require autophagy for degradation. Protein prenylation is known to participate in membrane association and proper localization of proteins. RABGGTB is the β subunit of GGTase II (one of the prenyltransferases) that can regulate autophagy via Rab7 geranylgeranylation. In this study, we overexpressed RABGGTB via lentiviral transfection in NSC34-hSOD1G93A and TDP-43 cells. Overexpression of RABGGTB improved ALS cell proliferation by facilitating autophagosome-lysosome fusion. Furthermore, the abnormal aggregation of SOD1 protein was reduced. This indicates that protein prenylation is important for the proliferation and autophagy of cells autophagy. Enhanced autophagy has been observed in two of the most widely used ALS cell models. These findings indicate the widespread applicability of prenylation in ALS. In summary, overexpression of RABGGTB improved the geranylgeranylation of the Rab7 protein and had a positive effect on cells. These findings provide insights into the development of a novel therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Haiyang Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Saffari A, Brechmann B, Boeger C, Saber WA, Jumo H, Whye D, Wood D, Wahlster L, Alecu J, Ziegler M, Scheffold M, Winden K, Hubbs J, Buttermore E, Barrett L, Borner G, Davies A, Sahin M, Ebrahimi-Fakhari D. High-Content Small Molecule Screen Identifies a Novel Compound That Restores AP-4-Dependent Protein Trafficking in Neuronal Models of AP-4-Associated Hereditary Spastic Paraplegia. RESEARCH SQUARE 2023:rs.3.rs-3036166. [PMID: 37398196 PMCID: PMC10312991 DOI: 10.21203/rs.3.rs-3036166/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect novel therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adaptor protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia, characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, C-01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate putative molecular targets of C-01 and potential mechanisms of action. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future Investigational New Drug (IND)-enabling studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Dosh Whye
- Boston Children's Hospital, Harvard Medical School
| | - Delaney Wood
- Boston Children's Hospital, Harvard Medical School
| | | | - Julian Alecu
- Boston Children's Hospital, Harvard Medical School
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hashida N, Nishida K. Recent advances and future prospects: current status and challenges of the intraocular injection of drugs for vitreoretinal diseases. Adv Drug Deliv Rev 2023; 198:114870. [PMID: 37172783 DOI: 10.1016/j.addr.2023.114870] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/07/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Effective drug therapy for vitreoretinal disease is a major challenge in the field of ophthalmology; various protective systems, including anatomical and physiological barriers, complicate drug delivery to precise targets. However, as the eye is a closed cavity, it is an ideal target for local administration. Various types of drug delivery systems have been investigated that take advantage of this aspect of the eye, enhancing ocular permeability and optimizing local drug concentrations. Many drugs, mainly anti-VEGF drugs, have been evaluated in clinical trials and have provided clinical benefit to many patients. In the near future, innovative drug delivery systems will be developed to avoid frequent intravitreal administration of drugs and maintain effective drug concentrations for a long period of time. Here, we review the published literature on various drugs and administration routes and current clinical applications. Recent advances in drug delivery systems are discussed along with future prospects.
Collapse
Affiliation(s)
- Noriyasu Hashida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Nagai-Ito Y, Xu L, Ito K, Kajihara Y, Ito G, Tomita T. The atypical Rab GTPase associated with Parkinson's disease, Rab29, is localized to membranes. J Biol Chem 2022; 298:102499. [PMID: 36116551 PMCID: PMC9574512 DOI: 10.1016/j.jbc.2022.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022] Open
Abstract
Several genetic studies have shown that the small GTPase Rab29 is involved in the pathogenesis of Parkinson's disease (PD). It has also been shown that overexpression of Rab29 increases the activity of leucine-rich repeat kinase 2 (LRRK2), a protein kinase often mutated in familial PD, although the mechanism underlying this activation remains unclear. Here we employed biochemical analyses to characterize the localization of Rab29 and found that unlike general Rab proteins, Rab29 is predominantly fractionated into the membrane fraction by ultracentrifugation. We also found that Rab29 is resistant to extraction from membranes by GDP-dissociation inhibitors (GDIs) in vitro. Furthermore, Rab29 failed to interact with GDIs, and its membrane localization was not affected by the knockout of GDIs in cells. We show that knockout of Rab geranylgeranyltransferase decreased the hydrophobicity of Rab29, suggesting that Rab29 is geranylgeranylated at its carboxyl terminus as is with typical Rab proteins. Notably, we demonstrated that membrane-bound Rab29 retains some hydrophilicity, indicating that mechanisms other than geranylgeranylation might also be involved in the membrane localization of Rab29. Taken together, these findings uncover the atypical nature of Rab29 among Rab proteins, which will provide important clues for understanding how Rab29 is involved in the molecular pathomechanism of PD.
Collapse
Affiliation(s)
- Yuki Nagai-Ito
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Lejia Xu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyohei Ito
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yotaro Kajihara
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan; Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Sahin B, Burton E, Kuybu O, Sahin Y, Brinkley J. The genetic counseling in a patient affected by choroideremia solved with the whole-exome sequencing approach. Indian J Ophthalmol 2022; 70:2693-2694. [PMID: 35791209 PMCID: PMC9426147 DOI: 10.4103/ijo.ijo_64_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Bedia Sahin
- Department of Ophthalmology, Karaman State Hospital, Karaman, Turkey
| | - Erik Burton
- Department of Neurology, LSU Health Shreveport, Shreveport, LA, USA
| | - Okkes Kuybu
- Department of Neurology, LSU Health Shreveport, Shreveport, LA, USA
| | - Yavuz Sahin
- Genoks Genetic Diseases Diagnostic Center, Ankara, Turkey
| | - John Brinkley
- Department of Ophthalmology, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
10
|
Korn VL, Pennerman KK, Padhi S, Bennett JW. Trans-2-hexenal downregulates several pathogenicity genes of Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats. J Ind Microbiol Biotechnol 2021; 48:kuab060. [PMID: 34415032 PMCID: PMC8788850 DOI: 10.1093/jimb/kuab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022]
Abstract
White-nose syndrome is an emergent wildlife disease that has killed millions of North American bats. It is caused by Pseudogymnoascus destructans, a cold-loving, invasive fungal pathogen that grows on bat tissues and disrupts normal hibernation patterns. Previous work identified trans-2-hexenal as a fungistatic volatile compound that potentially could be used as a fumigant against P. destructans in bat hibernacula. To determine the physiological responses of the fungus to trans-2-hexenal exposure, we characterized the P. destructans transcriptome in the presence and absence of trans-2-hexenal. Specifically, we analyzed the effects of sublethal concentrations (5 μmol/L, 10 μmol/L, and 20 μmol/L) of gas-phase trans-2-hexenal of the fungus grown in liquid culture. Among the three treatments, a total of 407 unique differentially expressed genes (DEGs) were identified, of which 74 were commonly affected across all three treatments, with 44 upregulated and 30 downregulated. Downregulated DEGs included several probable virulence genes including those coding for a high-affinity iron permease, a superoxide dismutase, and two protein-degrading enzymes. There was an accompanying upregulation of an ion homeostasis gene, as well as several genes involved in transcription, translation, and other essential cellular processes. These data provide insights into the mechanisms of action of trans-2-hexenal as an anti-fungal fumigant that is active at cold temperatures and will guide future studies on the molecular mechanisms by which six carbon volatiles inhibit growth of P. destructans and other pathogenic fungi.
Collapse
Affiliation(s)
| | - Kayla K Pennerman
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA
| | - Sally Padhi
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
11
|
Gutkowska M, Kaus‐Drobek M, Hoffman‐Sommer M, Małgorzata Pamuła M, Daria Leja A, Perycz M, Lichocka M, Witek A, Wojtas M, Dadlez M, Swiezewska E, Surmacz L. Impact of C-terminal truncations in the Arabidopsis Rab escort protein (REP) on REP-Rab interaction and plant fertility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1400-1421. [PMID: 34592024 PMCID: PMC9293207 DOI: 10.1111/tpj.15519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Lipid anchors are common post-translational modifications for proteins engaged in signaling and vesicular transport in eukaryotic cells. Rab proteins are geranylgeranylated at their C-termini, a modification which is important for their stable binding to lipid bilayers. The Rab escort protein (REP) is an accessory protein of the Rab geranylgeranyl transferase (RGT) complex and it is obligatory for Rab prenylation. While REP-Rab interactions have been studied by biochemical, structural, and genetic methods in animals and yeast, data on the plant RGT complex are still limited. Here we use hydrogen-deuterium exchange mass spectrometry (HDX-MS) to describe the structural basis of plant REP-Rab binding. The obtained results show that the interaction of REP with Rabs is highly dynamic and involves specific structural changes in both partners. In some cases the Rab and REP regions involved in the interaction are molecule-specific, and in other cases they are common for a subset of Rabs. In particular, the C-terminus of REP is not involved in binding of unprenylated Rab proteins in plants, in contrast to mammalian REP. In line with this, a C-terminal REP truncation does not have pronounced phenotypic effects in planta. On the contrary, a complete lack of functional REP leads to male sterility in Arabidopsis: pollen grains develop in the anthers, but they do not germinate efficiently and hence are unable to transmit the mutated allele. The presented data show that the mechanism of action of REP in the process of Rab geranylgeranylation is different in plants than in animals or yeast.
Collapse
Affiliation(s)
- Małgorzata Gutkowska
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Magdalena Kaus‐Drobek
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
- Mossakowski Medical Research CentrePolish Academy of Sciencesul. Pawinskiego 5, 02‐106WarsawPoland
| | - Marta Hoffman‐Sommer
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | | | - Anna Daria Leja
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Małgorzata Perycz
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
- Institute of Computer SciencePolish Academy of Sciencesul. Jana Kazimierza 501‐248WarsawPoland
| | - Małgorzata Lichocka
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Agnieszka Witek
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Magdalena Wojtas
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Michał Dadlez
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Ewa Swiezewska
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| | - Liliana Surmacz
- Institute of Biochemistry and BiophysicsPolish Academy of Sciencesul. Pawinskiego 5a, 02‐106WarsawPoland
| |
Collapse
|
12
|
Kalatzis V, Roux AF, Meunier I. Molecular Therapy for Choroideremia: Pre-clinical and Clinical Progress to Date. Mol Diagn Ther 2021; 25:661-675. [PMID: 34661884 DOI: 10.1007/s40291-021-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/01/2022]
Abstract
Choroideremia is an inherited retinal disease characterised by a degeneration of the light-sensing photoreceptors, supporting retinal pigment epithelium and underlying choroid. Patients present with the same symptoms as those with classic rod-cone dystrophy: (1) night blindness early in life; (2) progressive peripheral visual field loss, and (3) central vision decline with a slow progression to legal blindness. Choroideremia is monogenic and caused by mutations in CHM. Eight clinical trials (three phase 1/2, four phase 2, and one phase 3) have started (four of which are already finished) to evaluate the therapeutic efficacy of gene supplementation mediated by subretinal delivery of an adeno-associated virus serotype 2 (AAV2/2) vector expressing CHM. Furthermore, one phase 1 clinical trial has been initiated to evaluate the efficiency of a novel AAV variant to deliver CHM to the outer retina following intravitreal delivery. Lastly, a non-viral-mediated CHM replacement strategy is currently under development, which could lead to a future clinical trial. Here, we summarise the rationale behind these various studies, as well as any results published to date. The diversity of these trials currently places choroideremia at the forefront of the retinal gene therapy field. As a consequence, the trial outcomes, regardless of the results, have the potential to change the landscape of gene supplementation for inherited retinal diseases.
Collapse
Affiliation(s)
- Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.
| | - Anne-Françoise Roux
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
13
|
Fry LE, Patrício MI, Jolly JK, Xue K, MacLaren RE. Expression of Rab Prenylation Pathway Genes and Relation to Disease Progression in Choroideremia. Transl Vis Sci Technol 2021; 10:12. [PMID: 34254989 PMCID: PMC8287038 DOI: 10.1167/tvst.10.8.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Choroideremia results from the deficiency of Rab Escort Protein 1 (REP1), encoded by CHM, involved in the prenylation of Rab GTPases. Here, we investigate whether the transcription and expression of other genes involved in the prenylation of Rab proteins correlates with disease progression in a cohort of patients with choroideremia. Methods Rates of retinal pigment epithelial area loss in 41 patients with choroideremia were measured using fundus autofluorescence imaging for up to 4 years. From lysates of cultured skin fibroblasts donated by patients (n = 15) and controls (n = 14), CHM, CHML, RABGGTB and RAB27A mRNA expression, and REP1 and REP2 protein expression were compared. Results The central autofluorescent island area loss in patients with choroideremia occurred with a mean half-life of 5.89 years (95% confidence interval [CI] = 5.09-6.70), with some patients demonstrating relatively fast or slow rates of progression (range = 3.3-14.1 years). Expression of CHM mRNA and REP1 protein were significantly decreased in all patients. No difference in expression of CHML, RABGGTB, RAB27A, or REP2 was seen between patients and controls. No correlation was seen between expression of the genes analyzed and rates of retinal degeneration. Non-sense induced transcriptional compensation of CHML, a CHM-like retrogene, was not observed in patients with CHM variants predicted to undergo non-sense mediated decay. Conclusions Patients with choroideremia, who are deficient for REP1, show normal levels of expression of other genes involved in Rab prenylation, which do not appear to play any modifying role in the rate of disease progression. Translational Relevance There remains little evidence for selection of patients for choroideremia gene therapy based on genotype.
Collapse
Affiliation(s)
- Lewis E Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
14
|
Molecular Characterization of Choroideremia-Associated Deletions Reveals an Unexpected Regulation of CHM Gene Transcription. Genes (Basel) 2021; 12:genes12081111. [PMID: 34440285 PMCID: PMC8392058 DOI: 10.3390/genes12081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Choroideremia (CHM) is a X-linked recessive chorioretinal dystrophy due to deficiency of the CHM gene product, i.e., Rab escort protein isoform 1 (REP1). To date, gene therapy for CHM has shown variable effectiveness, likely because the underlying pathogenic mechanisms as well as genotype-phenotype correlation are not yet fully known. Small nucleotide variants leading to premature termination codons (PTCs) are a major cause of CHM, but about 20% of patients has CHM gene deletions. To improve understanding of the disease mechanisms, we analyzed molecular features of seven deletions involving the CHM gene sequence. We mapped the deletion breakpoints by using polymerase chain reaction, sequencing and array comparative genomic hybridization; to identify rearrangement-promoting DNA sequences, we analyzed genomic architecture surrounding the breakpoint regions. Moreover, in some CHM patients with different mutation types, we measured transcript level of CHM and of CHML, encoding the REP2 isoform. Scattered along the whole CHM gene and in close proximity to the deletion breakpoints we found numerous repeat elements that generate a locus-specific rearrangement hot spot. Unexpectedly, patients with non-PTC variants had increased expression of the aberrant CHM mRNA; CHML expression was higher than normal in a patient lacking CHM and its putative regulatory sequences. This latest evidence suggests that mechanisms regulating CHM and CHML gene expression are worthy of further study, because their full knowledge could be also useful for developing effective therapies for this hitherto untreatable inherited retinal degeneration.
Collapse
|
15
|
Fry LE, Patrício MI, Williams J, Aylward JW, Hewitt H, Clouston P, Xue K, Barnard AR, MacLaren RE. Association of Messenger RNA Level With Phenotype in Patients With Choroideremia: Potential Implications for Gene Therapy Dose. JAMA Ophthalmol 2020; 138:128-135. [PMID: 31855248 DOI: 10.1001/jamaophthalmol.2019.5071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Importance Gene therapy is a promising treatment for choroideremia, an X-linked retinal degeneration. The required minimum level of gene expression to ameliorate degeneration rate is unknown. This can be interrogated by exploring the association between messenger RNA (mRNA) levels and phenotype in mildly affected patients with choroideremia. Objective To analyze CHM mRNA splicing outcomes in 2 unrelated patients with the same c.940+3delA CHM splice site variant identified as mildly affected from a previous study of patients with choroideremia. Design, Setting, and Participants In this retrospective observational case series, 2 patients with c.940+3delA CHM variants treated at a single tertiary referral center were studied. In addition, a third patient with a c.940+2T>A variant that disrupts the canonical dinucleotide sequence at the same donor site served as a positive control. Data were collected from October 2013 to July 2018. Main Outcomes and Measures Central area of residual fundus autofluorescence was used as a biomarker for disease progression. CHM transcript splicing was assessed by both end point and quantitative polymerase chain reaction. Rab escort protein 1 (REP1) expression was assessed by immunoblot. Results The 2 mildly affected patients with c.940+3delA variants had large areas of residual autofluorescence for their age and longer degeneration half-lives compared with the previous cohort of patients with choroideremia. The control patient with a c.940+2T>A variant had a residual autofluorescence area within the range expected for his age. Both patients with the c.940+3delA variant expressed residual levels of full-length CHM mRNA transcripts relative to the predominant truncated transcript (mean [SEM] residual level: patient 1, 2.3% [0.3]; patient 2, 4.7% [0.2]), equivalent to approximately less than 1% of the level of full-length CHM expressed in nonaffected individuals. Full-length CHM expression was undetectable in the control patient. REP1 expression was less than the threshold for detection both in patients 1 and 2 and the control patient compared with wild-type controls. Conclusions and Relevance These results demonstrate the first genotype-phenotype association in choroideremia. A +3 deletion in intron 7 is sufficient to cause choroideremia in a milder form. If replicated with gene therapy, these findings would suggest that relatively low expression (less than 1%) of the wild-type levels of mRNA would be sufficient to slow disease progression.
Collapse
Affiliation(s)
- Lewis E Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jonathan Williams
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - James W Aylward
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Harriet Hewitt
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Penny Clouston
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Fioretti T, Ungari S, Savarese M, Cattaneo F, Pirozzi E, Esposito G. A putative frameshift variant in the CHM gene is associated with an unexpected splicing alteration in a choroideremia patient. Mol Genet Genomic Med 2020; 8:e1490. [PMID: 32949230 PMCID: PMC7667377 DOI: 10.1002/mgg3.1490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Background Due to the limited availability of mRNA analysis data, the number of exonic variants resulting in splicing impairment is underestimated although aberrant splicing correction is a promising therapeutic option to treat monogenic diseases, including choroideremia (CHM), a rare X‐linked eye disorder arising from sequence alteration of the CHM gene. Herein we report an exonic frameshift variant associated with an mRNA splicing alteration that leads to a CHM hypomorphic allele. Methods Total RNA and genomic DNA were extracted from peripheral blood of a patient affected by a mild form of CHM. The CHM gene was analyzed by PCR‐based methods and Sanger sequencing. Results Besides the known c.1335dup frameshift variant, mRNA analysis revealed a splicing alteration that restored the reading frame of the mutant transcript, likely leading to an aberrant protein with residual activity. Bioinformatic analyses identified novel putative exonic splicing enhancer elements and provided clues that also pre‐mRNA secondary structure should be taken into account when exploring splicing mechanisms. Conclusion A careful molecular characterization of the c.1335dup variant's effect explains the relationship between genotype and phenotype severity in a CHM patient and provides new perspectives for the study of therapeutic strategies based on splicing correction in human diseases.
Collapse
Affiliation(s)
| | - Silvana Ungari
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy
| | | | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Enza Pirozzi
- Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy
| | - Gabriella Esposito
- CEINGE - Advanced Biotechnologies, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
VASCULAR ALTERATIONS REVEALED WITH OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN PATIENTS WITH CHOROIDEREMIA. Retina 2020. [PMID: 29543633 DOI: 10.1097/iae.0000000000002118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Choroideremia is a rare degenerative retinal disease that causes incurable blindness. It occurs as a result of the deficiency of the X-linked CHM gene, which encodes the Rab escort protein 1 (REP1). Gene therapy has been developed to treat CHM using adeno-associated viral vectors and is currently undergoing clinical trials. Expression of the CHM gene is ubiquitous throughout the retina, and it is therefore important to identify which retinal layers are affected in the disease process. The purpose of this study was to assess in particular the choriocapillaris using optical coherence tomography angiography because this layer is difficult to see with conventional imaging techniques. METHODS Six men with choroideremia were identified and underwent standardized optical coherence tomography angiography as part of an ethics-approved clinical study and were compared with age-matched control subjects. RESULTS The choriocapillaris appeared normal in regions where the retinal pigment epithelium remained intact, but it was deficient elsewhere. The outer retinal vasculature showed significant changes peripherally but also some changes centrally. The inner retinal vasculature appeared unaffected by the disease process. CONCLUSION Choroideremia is a disease in which the choriocapillaris maintains a normal structure until the loss of the overlying retinal pigment epithelium. The inner retina also appears not to be affected at the vascular level. Although this study is limited by the small number of patients eligible for inclusion in the study, the observations support the concept of targeting gene therapy to the retinal pigment epithelium and outer retina because there is no evidence of independent degeneration of the choriocapillaris.
Collapse
|
18
|
Stevanovic M, Cehajic Kapetanovic J, Jolly JK, MacLaren RE. A distinct retinal pigment epithelial cell autofluorescence pattern in choroideremia predicts early involvement of overlying photoreceptors. Acta Ophthalmol 2020; 98:e322-e327. [PMID: 31736270 DOI: 10.1111/aos.14281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Choroideremia is an X-linked retinal disease characterized by early retinal pigment epithelium (RPE) loss and subsequent retinal degeneration. The RPE adopts either a smooth or mottled appearance on fundus autofluorescence (FAF). It is not known how RPE changes predict the health of the overlying ellipsoid zone (EZ). METHODS A retrospective review of FAF and optical coherence tomography (OCT) images from 20 patients with choroideremia was performed. The percentage of intact EZ in each smooth and mottled FAF region was determined using one horizontal trans-foveal OCT section. RESULTS Fourteen out of 20 patients had distinct smooth and mottled areas in both eyes and were included in the sub-analysis. On average, 62.5 ± 10.1% of the EZ in each smooth region of the right eyes was intact compared to 10.0 ± 4.3% in the mottled areas. The same trend was observed in left eyes: 76.5 ± 7.2% of the EZ was intact in the smooth regions versus 9.8 ± 3.9% in the mottled areas (two-way anova, p < 0.0001). Thus, the mottled FAF regions were associated with EZ disruption more so than the smooth areas. CONCLUSION Retinal pigment epithelium (RPE) changes correlate with the health of the overlying EZ in choroideremia. The smooth FAF region likely represents early stages of the disease, with most of the area containing preserved EZ, whereas the mottled zone indicates more advanced stages and has mostly disrupted EZ. Because of the clear relationship between FAF findings and EZ integrity, FAF imaging can be used to monitor disease progression and identify areas of preserved EZ that could be rescued by gene therapy.
Collapse
Affiliation(s)
- Marta Stevanovic
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasmina Cehajic Kapetanovic
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K Jolly
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
19
|
Shirakawa R, Goto‐Ito S, Goto K, Wakayama S, Kubo H, Sakata N, Trinh DA, Yamagata A, Sato Y, Masumoto H, Cheng J, Fujimoto T, Fukai S, Horiuchi H. A SNARE geranylgeranyltransferase essential for the organization of the Golgi apparatus. EMBO J 2020; 39:e104120. [PMID: 32128853 PMCID: PMC7156963 DOI: 10.15252/embj.2019104120] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 01/08/2023] Open
Abstract
Protein prenylation is essential for many cellular processes including signal transduction, cytoskeletal reorganization, and membrane trafficking. Here, we identify a novel type of protein prenyltransferase, which we named geranylgeranyltransferase type-III (GGTase-III). GGTase-III consists of prenyltransferase alpha subunit repeat containing 1 (PTAR1) and the β subunit of RabGGTase. Using a biotinylated geranylgeranyl analogue, we identified the Golgi SNARE protein Ykt6 as a substrate of GGTase-III. GGTase-III transfers a geranylgeranyl group to mono-farnesylated Ykt6, generating doubly prenylated Ykt6. The crystal structure of GGTase-III in complex with Ykt6 provides structural basis for Ykt6 double prenylation. In GGTase-III-deficient cells, Ykt6 remained in a singly prenylated form, and the Golgi SNARE complex assembly was severely impaired. Consequently, the Golgi apparatus was structurally disorganized, and intra-Golgi protein trafficking was delayed. Our findings reveal a fourth type of protein prenyltransferase that generates geranylgeranyl-farnesyl Ykt6. Double prenylation of Ykt6 is essential for the structural and functional organization of the Golgi apparatus.
Collapse
Affiliation(s)
- Ryutaro Shirakawa
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Sakurako Goto‐Ito
- Institute for Quantitative BiosciencesThe University of TokyoTokyoJapan
- Synchrotron Radiation Research OrganizationThe University of TokyoTokyoJapan
| | - Kota Goto
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Shonosuke Wakayama
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Haremaru Kubo
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Natsumi Sakata
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Duc Anh Trinh
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Atsushi Yamagata
- Institute for Quantitative BiosciencesThe University of TokyoTokyoJapan
- Synchrotron Radiation Research OrganizationThe University of TokyoTokyoJapan
| | - Yusuke Sato
- Institute for Quantitative BiosciencesThe University of TokyoTokyoJapan
- Synchrotron Radiation Research OrganizationThe University of TokyoTokyoJapan
- Present address:
Center for Research on Green Sustainable ChemistryTottori UniversityTottoriJapan
| | - Hiroshi Masumoto
- Biomedical Research Support CenterNagasaki University School of MedicineNagasakiJapan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell BiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoshi Fujimoto
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Shuya Fukai
- Institute for Quantitative BiosciencesThe University of TokyoTokyoJapan
- Synchrotron Radiation Research OrganizationThe University of TokyoTokyoJapan
| | - Hisanori Horiuchi
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| |
Collapse
|
20
|
Patrício MI, Cox CI, Blue C, Barnard AR, Martinez-Fernandez de la Camara C, MacLaren RE. Inclusion of PF68 Surfactant Improves Stability of rAAV Titer when Passed through a Surgical Device Used in Retinal Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:99-106. [PMID: 31890744 PMCID: PMC6931089 DOI: 10.1016/j.omtm.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
Recent advances in recombinant adeno-associated virus (rAAV) gene therapy for choroideremia show gene replacement to be a promising approach. It is, however, well known that contact of vector solution with plastic materials in the surgical device may result in non-specific adsorption with resulting loss of physical titer and/or level of protein expression and activity. Here we assessed the biocompatibility and stability of rAAV2-REP1 (Rab Escort Protein-1) before and following passage through the injection device over a period of time to mimic the clinical scenario. Three identical devices were screened using two concentrations of vector: high (1E+12 DNase-resistant particles [DRP]/mL) and low (1E+11 DRP/mL), to mimic high- and low-dose administrations of vector product. The low dose was prepared using either formulation buffer that contained 0.001% of a non-ionic surfactant (PF68) or balanced salt solution (BSS). We observed significant losses in the genomic titer of samples diluted with BSS for all time points. The addition of 0.001% PF68 did not, however, affect rAAV physical titer, or REP1 protein expression and biological activity. Hence we observed that neither the genomic titer nor the biological activity of a rAAV2-REP1-containing solution was affected following passage through the surgical device when PF68 was present as a surfactant and this was maintained over a period up to 10 h.
Collapse
Affiliation(s)
- Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Clare Blue
- Nightstar Therapeutics, 10 Midford Place, London, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
21
|
Erkilic N, Gatinois V, Torriano S, Bouret P, Sanjurjo-Soriano C, Luca VD, Damodar K, Cereso N, Puechberty J, Sanchez-Alcudia R, Hamel CP, Ayuso C, Meunier I, Pellestor F, Kalatzis V. A Novel Chromosomal Translocation Identified due to Complex Genetic Instability in iPSC Generated for Choroideremia. Cells 2019; 8:cells8091068. [PMID: 31514470 PMCID: PMC6770680 DOI: 10.3390/cells8091068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have revolutionized the study of human diseases as they can renew indefinitely, undergo multi-lineage differentiation, and generate disease-specific models. However, the difficulty of working with iPSCs is that they are prone to genetic instability. Furthermore, genetically unstable iPSCs are often discarded, as they can have unforeseen consequences on pathophysiological or therapeutic read-outs. We generated iPSCs from two brothers of a previously unstudied family affected with the inherited retinal dystrophy choroideremia. We detected complex rearrangements involving chromosomes 12, 20 and/or 5 in the generated iPSCs. Suspecting an underlying chromosomal aberration, we performed karyotype analysis of the original fibroblasts, and of blood cells from additional family members. We identified a novel chromosomal translocation t(12;20)(q24.3;q11.2) segregating in this family. We determined that the translocation was balanced and did not impact subsequent retinal differentiation. We show for the first time that an undetected genetic instability in somatic cells can breed further instability upon reprogramming. Therefore, the detection of chromosomal aberrations in iPSCs should not be disregarded, as they may reveal rearrangements segregating in families. Furthermore, as such rearrangements are often associated with reproductive failure or birth defects, this in turn has important consequences for genetic counseling of family members.
Collapse
Affiliation(s)
- Nejla Erkilic
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Vincent Gatinois
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Simona Torriano
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Pauline Bouret
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Carla Sanjurjo-Soriano
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Valerie De Luca
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Krishna Damodar
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Nicolas Cereso
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Jacques Puechberty
- Service of Clinical Genetics, Department of Medical Genetics, Rare Diseases and Personalized Medicine, CHU, Montpellier, France
| | - Rocio Sanchez-Alcudia
- Department of Genetics, Institute for Sanitary Investigation, Foundation Jimenez Diaz, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Christian P Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, CHU, 34295 Montpellier, France
| | - Carmen Ayuso
- Department of Genetics, Institute for Sanitary Investigation, Foundation Jimenez Diaz, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Isabelle Meunier
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, CHU, 34295 Montpellier, France
| | - Franck Pellestor
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Vasiliki Kalatzis
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France.
- University of Montpellier, 34090 Montpellier, France.
| |
Collapse
|
22
|
Edler E, Stein M. Recognition and stabilization of geranylgeranylated human Rab5 by the GDP Dissociation Inhibitor (GDI). Small GTPases 2019; 10:227-242. [PMID: 29065764 PMCID: PMC6548291 DOI: 10.1080/21541248.2017.1371268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 01/13/2023] Open
Abstract
The small GTPase Rab5 is the key regulator of early endosomal fusion. It is post-translationally modified by covalent attachment of two geranylgeranyl (GG) chains to adjacent cysteine residues of the C-terminal hypervariable region (HVR). The GDP dissociation inhibitor (GDI) recognizes membrane-associated Rab5(GDP) and serves to release it into the cytoplasm where it is kept in a soluble state. A detailed new structural and dynamic model for human Rab5(GDP) recognition and binding with human GDI at the early endosome membrane and in its dissociated state is presented. In the cytoplasm, the GDI protein accommodates the GG chains in a transient hydrophobic binding pocket. In solution, two different binding modes of the isoprenoid chains inserted into the hydrophobic pocket of the Rab5(GDP):GDI complex can be identified. This equilibrium between the two states helps to stabilize the protein-protein complex in solution. Interprotein contacts between the Rab5 switch regions and characteristic patches of GDI residues from the Rab binding platform (RBP) and the C-terminus coordinating region (CCR) reveal insight on the formation of such a stable complex. GDI binding to membrane-anchored Rab5(GDP) is initially mediated by the solvent accessible switch regions of the Rab-specific RBP. Formation of the membrane-associated Rab5(GDP):GDI complex induces a GDI reorientation to establish additional interactions with the Rab5 HVR. These results allow to devise a detailed structural model for the process of extraction of GG-Rab5(GDP) by GDI from the membrane and the dissociation from targeting factors and effector proteins prior to GDI binding.
Collapse
Affiliation(s)
- Eileen Edler
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
23
|
Yun JS, Ha SC, Kim S, Kim YG, Kim H, Chang JH. Crystal structure of Arabidopsis thaliana RabA1a. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:93-109. [PMID: 30010245 DOI: 10.1111/jipb.12700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
RabGTPase is a member of the Ras superfamily of small GTPases, which share a GTP-binding pocket containing highly conserved motifs that promote GTP hydrolysis. In Arabidopsis, the RabA group, which corresponds to the Rab11 group in animals, functions in the recycling of endosomes that control docking and fusion during vesicle transport. However, their molecular mechanisms remain unknown. In this study, we determined the crystal structures of the GDP-bound inactive form and both GppNHp- and GTP-bound active forms of RabA1a, at resolutions of 2.8, 2.6, and 2.6 Å, respectively. A bound sulfate ion in the active site of the GDP-bound structure stabilized Switch II by bridging the interaction between a magnesium ion and Arg74. Comparisons of the two states of RabA1a with Rab11 proteins revealed clear differences in the Switch I and II loops. These results suggested that conformational change of the Switch regions of RabA1a, derived by GTP or GDP binding, could maintain subcellular membrane traffic through the specific interaction of effector molecules.
Collapse
Affiliation(s)
- Ji-Sook Yun
- Department of Biology Education, Kyungpook National University, Daehak-ro 80, Daegu 41566, South Korea
| | - Sung Chul Ha
- Beamline Science Division, Pohang Accelerator Laboratory, Jigok-ro 127, Pohang 37673, South Korea
| | - Shinae Kim
- Department of Biology Education, Kyungpook National University, Daehak-ro 80, Daegu 41566, South Korea
| | - Yeon-Gil Kim
- Beamline Science Division, Pohang Accelerator Laboratory, Jigok-ro 127, Pohang 37673, South Korea
| | - Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Kangwondaehak-gil 1, Chuncheon 24341, South Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daehak-ro 80, Daegu 41566, South Korea
| |
Collapse
|
24
|
Abstract
The Golgi apparatus is a central sorting station in the cell. It receives newly synthesized molecules from the endoplasmic reticulum and directs them to different subcellular destinations, such as the plasma membrane or the endocytic pathway. Importantly, in the last few years, it has emerged that the maintenance of Golgi structure is connected to the proper regulation of membrane trafficking. Rab proteins are small GTPases that are considered to be the master regulators of the intracellular membrane trafficking. Several of the over 60 human Rabs are involved in the regulation of transport pathways at the Golgi as well as in the maintenance of its architecture. This chapter will summarize the different roles of Rab GTPases at the Golgi, both as regulators of membrane transport, scaffold, and tethering proteins and in preserving the structure and function of this organelle.
Collapse
|
25
|
Novel CHM mutations in Polish patients with choroideremia - an orphan disease with close perspective of treatment. Orphanet J Rare Dis 2018; 13:221. [PMID: 30541579 PMCID: PMC6291982 DOI: 10.1186/s13023-018-0965-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/27/2018] [Indexed: 11/27/2022] Open
Abstract
Background Choroideremia (CHM) is a rare X-linked recessive retinal dystrophy characterized by progressive chorioretinal degeneration in the males affected. The symptoms include night blindness in childhood, progressive peripheral vision loss and total blindness in the late stages. The disease is caused by mutations in the CHM gene encoding Rab Escort Protein 1 (REP-1). The aim of the study was to identify the molecular basis of choroideremia in five families of Polish origin. Methods Six male patients from five unrelated families of Polish ethnicity, who were clinically diagnosed with choroideremia, were examined in this study. An ophthalmologic examination performed in all the probands included: best-corrected visual acuity, slit-lamp examination, funduscopy, fluorescein angiography and perimetry. The entire coding region encompassing 15 exons and the flanking intronic sequences of the CHM gene were amplified with PCR and directly sequenced in all the patients. Results Five variants in the CHM gene were identified in the five families examined. Two of the variants were new: c.1175dupT and c.83C > G, while three had been previously reported. Conclusions This study provides the first molecular genetic characteristics of patients with choroideremia from the previously unexplored Polish population.
Collapse
|
26
|
Vaché C, Torriano S, Faugère V, Erkilic N, Baux D, Garcia-Garcia G, Hamel CP, Meunier I, Zanlonghi X, Koenig M, Kalatzis V, Roux AF. Pathogenicity of novel atypical variants leading to choroideremia as determined by functional analyses. Hum Mutat 2018; 40:31-35. [DOI: 10.1002/humu.23671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Christel Vaché
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Simona Torriano
- Institut des Neurosciences de Montpellier; INSERM; Université de Montpellier; Montpellier France
| | - Valérie Faugère
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Nejla Erkilic
- Institut des Neurosciences de Montpellier; INSERM; Université de Montpellier; Montpellier France
| | - David Baux
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Gema Garcia-Garcia
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Christian P. Hamel
- Institut des Neurosciences de Montpellier; INSERM; Université de Montpellier; Montpellier France
- Centre de Référence Maladies Sensorielles Génétiques; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Isabelle Meunier
- Institut des Neurosciences de Montpellier; INSERM; Université de Montpellier; Montpellier France
- Centre de Référence Maladies Sensorielles Génétiques; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Xavier Zanlonghi
- Centre de Compétence Maladie Rares; Clinique Pluridisciplinaire Jules Verne; Nantes France
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Vasiliki Kalatzis
- Institut des Neurosciences de Montpellier; INSERM; Université de Montpellier; Montpellier France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| |
Collapse
|
27
|
Patrício MI, Barnard AR, Xue K, MacLaren RE. Choroideremia: molecular mechanisms and development of AAV gene therapy. Expert Opin Biol Ther 2018; 18:807-820. [DOI: 10.1080/14712598.2018.1484448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
28
|
Abstract
Fruit ripening is a complex developmental process that involves the synthesis and modification of the cell wall leading up to the formation of an edible fruit. During the period of fruit ripening, new cell wall polymers and enzymes are synthesized and trafficked to the apoplast. Vesicle trafficking has been shown to play a key role in facilitating the synthesis and modification of cell walls in fruits. Through reverse genetics and gene expression studies, the importance of Rab guanosine triphosphatases (GTPases) as integral regulators of vesicle trafficking to the cell wall has been revealed. It has been a decade since a rich literature on the involvement of Rab GTPase in ripening was published. Therefore, this review sets out to summarize the progress in studies on the pivotal roles of Rab GTPases in fruit development and sheds light on new approaches that could be adopted in the fields of postharvest biology and fruit-ripening research.
Collapse
Affiliation(s)
- Tamunonengiyeofori Lawson
- a School of Biosciences, Faculty of Science , The University of Nottingham, Malaysia Campus , Semenyih , Selangor , Malaysia.,b Division of Plant and Crop Sciences, School of Biosciences , University of Nottingham , Sutton Bonington Campus, Loughborough , Leicestershire , UK.,c Crops for the Future (CFF) , Semenyih , Malaysia
| | - Sean Mayes
- b Division of Plant and Crop Sciences, School of Biosciences , University of Nottingham , Sutton Bonington Campus, Loughborough , Leicestershire , UK.,c Crops for the Future (CFF) , Semenyih , Malaysia
| | - Grantley W Lycett
- b Division of Plant and Crop Sciences, School of Biosciences , University of Nottingham , Sutton Bonington Campus, Loughborough , Leicestershire , UK
| | - Chiew Foan Chin
- a School of Biosciences, Faculty of Science , The University of Nottingham, Malaysia Campus , Semenyih , Selangor , Malaysia
| |
Collapse
|
29
|
The effect of PTC124 on choroideremia fibroblasts and iPSC-derived RPE raises considerations for therapy. Sci Rep 2018; 8:8234. [PMID: 29844446 PMCID: PMC5974348 DOI: 10.1038/s41598-018-26481-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/04/2018] [Indexed: 11/24/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are caused by mutations in over 200 genes, resulting in a range of therapeutic options. Translational read-through inducing drugs (TRIDs) offer the possibility of treating multiple IRDs regardless of the causative gene. TRIDs promote ribosomal misreading of premature stop codons, which results in the incorporation of a near-cognate amino acid to produce a full-length protein. The IRD choroideremia (CHM) is a pertinent candidate for TRID therapy, as nonsense variants cause 30% of cases. Recently, treatment of the UAA nonsense-carrying CHM zebrafish model with the TRID PTC124 corrected the underlying biochemical defect and improved retinal phenotype. To be clinically relevant, we studied PTC124 efficiency in UAA nonsense-carrying human fibroblasts and induced pluripotent stem cell-derived retinal pigment epithelium, as well as in a UAA-mutated CHM overexpression system. We showed that PTC124 treatment induces a non-significant trend for functional rescue, which could not be improved by nonsense-mediated decay inhibition. Furthermore, it does not produce a detectable CHM-encoded protein even when coupled with a proteasome inhibitor. We suggest that drug efficiency may depend upon on the target amino acid and its evolutionary conservation, and argue that patient cells should be screened in vitro prior to inclusion in a clinical trial.
Collapse
|
30
|
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2018. [PMID: 28632484 DOI: 10.1080/215412481336191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab molecular switches are key players in defining membrane identity and regulating intracellular trafficking events in eukaryotic cells. In spite of their global structural similarity, Rab-family members acquired particular features that allow them to perform specific cellular functions. The overall fold and local sequence conservations enable them to utilize a common machinery for prenylation and recycling; while individual Rab structural differences determine interactions with specific partners such as GEFs, GAPs and effector proteins. These interactions orchestrate the spatiotemporal regulation of Rab localization and their turning ON and OFF, leading to tightly controlled Rab-specific functionalities such as membrane composition modifications, recruitment of molecular motors for intracellular trafficking, or recruitment of scaffold proteins that mediate interactions with downstream partners, as well as actin cytoskeleton regulation. In this review we summarize structural information on Rab GTPases and their complexes with protein partners in the context of partner binding specificity and functional outcomes of their interactions in the cell.
Collapse
Affiliation(s)
- Olena Pylypenko
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Hussein Hammich
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
- b Sorbonne Universités , UPMC Univ Paris 06, Sorbonne Universités, IFD , Paris , France
| | - I-Mei Yu
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Anne Houdusse
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| |
Collapse
|
31
|
Torriano S, Erkilic N, Faugère V, Damodar K, Hamel CP, Roux AF, Kalatzis V. Pathogenicity of a novel missense variant associated with choroideremia and its impact on gene replacement therapy. Hum Mol Genet 2018; 26:3573-3584. [PMID: 28911202 DOI: 10.1093/hmg/ddx244] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Abstract
Choroideremia (CHM) is an inherited retinal dystrophy characterised by progressive degeneration of photoreceptors, retinal pigment epithelium (RPE) and underlying choroid. It is caused by loss-of-function mutations in CHM, which has an X-linked inheritance, and is thus an ideal candidate for gene replacement strategies. CHM encodes REP1, which plays a key role in the prenylation of Rab GTPases. We recently showed that an induced pluripotent stem cell (iPSc)-derived RPE model for CHM is fully functional and reproduces the underlying prenylation defect. This criterion can thus be used for testing the pathogenic nature of novel variants. Until recently, missense variants were not associated with CHM. Currently, at least nine such variants have been reported but only two have been shown to be pathogenic. We report here the characterisation of the third pathogenic missense CHM variant, p.Leu457Pro. Clinically, the associated phenotype is indistinguishable from that of loss-of-function mutations. By contrast, this missense variant results in wild type CHM expression levels and detectable levels of mutant protein. The prenylation status of patient-specific fibroblasts and iPSc-derived RPE is within the range observed for loss-of-function mutations, consistent with the clinical phenotype. Lastly, considering the current climate of CHM gene therapy, we assayed whether the presence of mutant REP1 could interfere with a gene replacement strategy by testing the prenylation status of patient-specific iPSc-derived RPE following AAV-mediated gene transfer. Our results show that correction of the functional defect is possible and highlight the predictive value of these models for therapy screening prior to inclusion in clinical trials.
Collapse
Affiliation(s)
- Simona Torriano
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France.,University of Montpellier, Montpellier, France
| | - Nejla Erkilic
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France.,University of Montpellier, Montpellier, France
| | | | - Krishna Damodar
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France.,University of Montpellier, Montpellier, France
| | - Christian P Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France.,University of Montpellier, Montpellier, France.,Department of Ophthalmology, CHRU, Montpellier, France.,Centre of Reference for Genetic Sensory Diseases, CHRU, Montpellier, France
| | - Anne-Francoise Roux
- Laboratory of Molecular Genetics, CHRU, Montpellier, France.,Laboratory of Rare Genetic Diseases, EA 7402, University of Montpellier, Montpellier, France
| | - Vasiliki Kalatzis
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France.,University of Montpellier, Montpellier, France
| |
Collapse
|
32
|
Abstract
The small GTPase Rab7 is the main regulator of membrane trafficking at late endosomes. This small GTPase regulates endosome-to-trans Golgi Network trafficking of sorting receptors, membrane fusion of late endosomes to lysosomes, and autophagosomes to lysosomes during autophagy. Rab7, like all Rab GTPases, binds downstream effectors coordinating several divergent pathways. How cells regulate these interactions and downstream functions is not well understood. Recent evidence suggests that Rab7 function can be modulated by the combination of several post-translational modifications that facilitate interactions with one effector while preventing binding to another one. In this review, we discuss recent data on how phosphorylation, palmitoylation and ubiquitination modulate the ability of this small GTPase to orchestrate membrane trafficking at the late endosomes.
Collapse
Affiliation(s)
- Graziana Modica
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada H7V 1B7
| | - Stephane Lefrancois
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada H7V 1B7.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| |
Collapse
|
33
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
34
|
Ba-Ali S, Christensen SK, Sander B, Rosenberg T, Larsen M, Lund-Andersen H. Choroideremia: melanopsin-mediated postillumination pupil relaxation is abnormally slow. Acta Ophthalmol 2017; 95:809-814. [PMID: 28271634 DOI: 10.1111/aos.13394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate the rod-cone and melanopsin pupillary light response (PLR) pathways in choroideremia. METHODS Eight patients with choroideremia and 18 healthy age-matched controls underwent chromatic pupillometry by applying blue (463 nm) and red light (643 nm) at 100 lux intensity to the right eye while recording pupil diameters. Absolute baseline pupil size (mm), normalized maximal pupil constriction and the early and late postillumination pupillary dilation, from 0 to 10 seconds and 10 to 30 seconds after the end of illumination, respectively, were determined. Postillumination responses to blue light were considered to be primarily driven by melanopsin activation of the intrinsic photosensitive retinal ganglion cells. RESULTS Baseline pupil diameters were comparable in patients with choroideremia and control subjects (p = 0.48). The maximum pupil constriction in patients with choroideremia was severely weakened in red light but only mildly weakened in blue light (p < 0.05). Postillumination dilation of the pupil was normal after red illumination but extremely protracted after blue illumination. Also, in contrast to healthy subjects, no abrupt change in the dilation curve was seen in the patients after the end of blue illumination, the early-phase dilation being completely abolished (p < 0.01). CONCLUSION Rod-cone-driven pupil responses were decreased as expected in an outer retinal degeneration, and near-normal pupil constriction in blue light supports that the melanopsin system is normal. In contrast, the lack of brisk early-phase dilation after blue illumination in choroideremia is remarkable and may be interpreted to mean that the absence of photoreceptor inhibition promotes a tonic contraction of the pupil.
Collapse
Affiliation(s)
- Shakoor Ba-Ali
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | | | - Birgit Sander
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
| | | | - Michael Larsen
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Henrik Lund-Andersen
- Department of Ophthalmology; Rigshospitalet; Glostrup Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
35
|
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2017. [PMID: 28632484 PMCID: PMC5902227 DOI: 10.1080/21541248.2017.1336191] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rab molecular switches are key players in defining membrane identity and regulating intracellular trafficking events in eukaryotic cells. In spite of their global structural similarity, Rab-family members acquired particular features that allow them to perform specific cellular functions. The overall fold and local sequence conservations enable them to utilize a common machinery for prenylation and recycling; while individual Rab structural differences determine interactions with specific partners such as GEFs, GAPs and effector proteins. These interactions orchestrate the spatiotemporal regulation of Rab localization and their turning ON and OFF, leading to tightly controlled Rab-specific functionalities such as membrane composition modifications, recruitment of molecular motors for intracellular trafficking, or recruitment of scaffold proteins that mediate interactions with downstream partners, as well as actin cytoskeleton regulation. In this review we summarize structural information on Rab GTPases and their complexes with protein partners in the context of partner binding specificity and functional outcomes of their interactions in the cell.
Collapse
Affiliation(s)
- Olena Pylypenko
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Hussein Hammich
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France.,b Sorbonne Universités , UPMC Univ Paris 06, Sorbonne Universités, IFD , Paris , France
| | - I-Mei Yu
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Anne Houdusse
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| |
Collapse
|
36
|
Chichger H, Braza J, Duong H, Boni G, Harrington EO. Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin. Am J Respir Cell Mol Biol 2017; 54:769-81. [PMID: 26551054 DOI: 10.1165/rcmb.2015-0286oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Huetran Duong
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Geraldine Boni
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
37
|
Chen JJ, Boehning D. Protein Lipidation As a Regulator of Apoptotic Calcium Release: Relevance to Cancer. Front Oncol 2017; 7:138. [PMID: 28706877 PMCID: PMC5489567 DOI: 10.3389/fonc.2017.00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
Calcium is a critical regulator of cell death pathways. One of the most proximal events leading to cell death is activation of plasma membrane and endoplasmic reticulum-resident calcium channels. A large body of evidence indicates that defects in this pathway contribute to cancer development. Although we have a thorough understanding of how downstream elevations in cytosolic and mitochondrial calcium contribute to cell death, it is much less clear how calcium channels are activated upstream of the apoptotic stimulus. Recently, it has been shown that protein lipidation is a potent regulator of apoptotic signaling. Although classically thought of as a static modification, rapid and reversible protein acylation has emerged as a new signaling paradigm relevant to many pathways, including calcium release and cell death. In this review, we will discuss the role of protein lipidation in regulating apoptotic calcium signaling with direct therapeutic relevance to cancer.
Collapse
Affiliation(s)
- Jessica J Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| |
Collapse
|
38
|
Abstract
Rab GTPases, the highly conserved members of Ras GTPase superfamily are central players in the vesicular trafficking. They are critically involved in intracellular trafficking pathway, beginning from formation of vesicles on donor membranes, defining trafficking specificity to facilitating vesicle docking on target membranes. Given the dynamic roles of Rabs during different stages of vesicular trafficking, mechanisms for their spatial and temporal regulation are crucial for normal cellular function. Regulation of Rab GTPase activity, localization and function has always been focused in and around the association of GDP dissociation inhibitor (GDI), Guanine nucleotide Exchange Factor (GEFs) and GTPase accelerating protein (GAP) to Rabs. However, several recent studies have highlighted the importance of different post-translational modifications in regulation of Rab activation and function. This review provides a summary of various post translational modifications (PTMs) and their significance to regulate localization and function of different Rabs.
Collapse
Affiliation(s)
- Swapnil Rohidas Shinde
- a Laboratory of Cell Death & Cell Survival , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Nampally, Hyderabad , India.,b Graduate Studies , Manipal University , Manipal , India
| | - Subbareddy Maddika
- a Laboratory of Cell Death & Cell Survival , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Nampally, Hyderabad , India
| |
Collapse
|
39
|
Guo T, Duan Z, Chen J, Xie C, Wang Y, Chen P, Wang X. Pull-down combined with proteomic strategy reveals functional diversity of synaptotagmin I. PeerJ 2017; 5:e2973. [PMID: 28194317 PMCID: PMC5301975 DOI: 10.7717/peerj.2973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 12/05/2022] Open
Abstract
Synaptotagmin I (Syt I) is most abundant in the brain and is involved in multiple cellular processes. Its two C2 domains, C2A and C2B, are the main functional regions. Our present study employed a pull-down combined with proteomic strategy to identify the C2 domain-interacting proteins to comprehensively understand the biological roles of the C2 domains and thus the functional diversity of Syt I. A total of 135 non-redundant proteins interacting with the C2 domains of Syt I were identified. Out of them, 32 and 64 proteins only bound to C2A or C2B domains, respectively, and 39 proteins bound to both of them. Compared with C2A, C2B could bind to many more proteins particularly those involved in synaptic transmission and metabolic regulation. Functional analysis indicated that Syt I may exert impacts by interacting with other proteins on multiple cellular processes, including vesicular membrane trafficking, synaptic transmission, metabolic regulation, catalysis, transmembrane transport and structure formation, etc. These results demonstrate that the functional diversity of Syt I is higher than previously expected, that its two domains may mediate the same and different cellular processes cooperatively or independently, and that C2B domain may play even more important roles than C2A in the functioning of Syt I. This work not only further deepened our understanding of the functional diversity of Syt I and the functional differences between its two C2 domains, but also provided important clues for the further related researches.
Collapse
Affiliation(s)
- Tianyao Guo
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Zhigui Duan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Jia Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Chunliang Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Ying Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Ping Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| |
Collapse
|
40
|
Abstract
Rab proteins are the major regulators of vesicular trafficking in eukaryotic cells. Their activity can be tightly controlled within cells: Regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), they switch between an active GTP-bound state and an inactive GDP-bound state, interacting with downstream effector proteins only in the active state. Additionally, they can bind to membranes via C-terminal prenylated cysteine residues and they can be solubilized and shuttled between membranes by chaperone-like molecules called GDP dissociation inhibitors (GDIs). In this review we give an overview of Rab proteins with a focus on the current understanding of their regulation by GEFs, GAPs and GDI.
Collapse
Affiliation(s)
- Matthias P Müller
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Roger S Goody
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
41
|
Affiliation(s)
- Tom Mejuch
- Department
of Chemical Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
42
|
Sanchez-Alcudia R, Garcia-Hoyos M, Lopez-Martinez MA, Sanchez-Bolivar N, Zurita O, Gimenez A, Villaverde C, Rodrigues-Jacy da Silva L, Corton M, Perez-Carro R, Torriano S, Kalatzis V, Rivolta C, Avila-Fernandez A, Lorda I, Trujillo-Tiebas MJ, Garcia-Sandoval B, Lopez-Molina MI, Blanco-Kelly F, Riveiro-Alvarez R, Ayuso C. A Comprehensive Analysis of Choroideremia: From Genetic Characterization to Clinical Practice. PLoS One 2016; 11:e0151943. [PMID: 27070432 PMCID: PMC4829155 DOI: 10.1371/journal.pone.0151943] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
Choroideremia (CHM) is a rare X-linked disease leading to progressive retinal degeneration resulting in blindness. The disorder is caused by mutations in the CHM gene encoding REP-1 protein, an essential component of the Rab geranylgeranyltransferase (GGTase) complex. In the present study, we evaluated a multi-technique analysis algorithm to describe the mutational spectrum identified in a large cohort of cases and further correlate CHM variants with phenotypic characteristics and biochemical defects of choroideremia patients. Molecular genetic testing led to the characterization of 36 out of 45 unrelated CHM families (80%), allowing the clinical reclassification of four CHM families. Haplotype reconstruction showed independent origins for the recurrent p.Arg293* and p.Lys178Argfs*5 mutations, suggesting the presence of hotspots in CHM, as well as the identification of two different unrelated events involving exon 9 deletion. No certain genotype-phenotype correlation could be established. Furthermore, all the patients´ fibroblasts analyzed presented significantly increased levels of unprenylated Rabs proteins compared to control cells; however, this was not related to the genotype. This research demonstrates the major potential of the algorithm proposed for diagnosis. Our data enhance the importance of establish a differential diagnosis with other retinal dystrophies, supporting the idea of an underestimated prevalence of choroideremia. Moreover, they suggested that the severity of the disorder cannot be exclusively explained by the genotype.
Collapse
Affiliation(s)
- Rocio Sanchez-Alcudia
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Maria Garcia-Hoyos
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
| | - Miguel Angel Lopez-Martinez
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Noelia Sanchez-Bolivar
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Olga Zurita
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Ascension Gimenez
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Cristina Villaverde
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | | | - Marta Corton
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Raquel Perez-Carro
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Simona Torriano
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Vasiliki Kalatzis
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Almudena Avila-Fernandez
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Isabel Lorda
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Maria J. Trujillo-Tiebas
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Blanca Garcia-Sandoval
- Department of Ophthalmology, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | | | - Fiona Blanco-Kelly
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Instituto de Investigacion Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- * E-mail:
| |
Collapse
|
43
|
Abstract
Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
44
|
Shi W, Zeng Q, Kunkel BN, Running MP. Arabidopsis Rab Geranylgeranyltransferases Demonstrate Redundancy and Broad Substrate Specificity in Vitro. J Biol Chem 2015; 291:1398-410. [PMID: 26589801 DOI: 10.1074/jbc.m115.673491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
Posttranslational lipid modifications mediate the membrane attachment of Rab GTPases, facilitating their function in regulating intracellular vesicular trafficking. In Arabidopsis, most Rab GTPases have two C-terminal cysteines and potentially can be double-geranylgeranylated by heterodimeric Rab geranylgeranyltransferases (Rab-GGTs). Genes encoding two putative α subunits and two putative β subunits of Rab-GGTs have been annotated in the Arabidopsis thaliana genome, but little is known about Rab-GGT activity in Arabidopsis. In this study, we demonstrate that four different heterodimers can be formed between putative Arabidopsis Rab-GGT α subunits RGTA1/RGTA2 and β subunits RGTB1/RGTB2, but only RGTA1·RGTB1 and RGTA1·RGTB2 exhibit bona fide Rab-GGT activity, and they are biochemically redundant in vitro. We hypothesize that RGTA2 function might be disrupted by a 12-amino acid insertion in a conserved motif. We present evidence that Arabidopsis Rab-GGTs may have preference for prenylation of C-terminal cysteines in particular positions. We also demonstrate that Arabidopsis Rab-GGTs can not only prenylate a great variety of Rab GTPases in the presence of Rab escort protein but, unlike Rab-GGT in yeast and mammals, can also prenylate certain non-Rab GTPases independently of Rab escort protein. Our findings may help to explain some of the phenotypes of Arabidopsis protein prenyltransferase mutants.
Collapse
Affiliation(s)
- Wan Shi
- From the Department of Biology, Washington University, Saint Louis, Missouri 63130
| | - Qin Zeng
- the Donald Danforth Plant Science Center, Saint Louis, Missouri 63132, and
| | - Barbara N Kunkel
- From the Department of Biology, Washington University, Saint Louis, Missouri 63130
| | - Mark P Running
- the Department of Biology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
45
|
Abstract
Rab GTPases control intracellular membrane traffic by recruiting specific effector proteins to restricted membranes in a GTP-dependent manner. In this Cell Science at a Glance and the accompanying poster, we highlight the regulation of Rab GTPases by proteins that control their membrane association and activation state, and provide an overview of the cellular processes that are regulated by Rab GTPases and their effectors, including protein sorting, vesicle motility and vesicle tethering. We also discuss the physiological importance of Rab GTPases and provide examples of diseases caused by their dysfunctions.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway Department for Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway Department for Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway
| |
Collapse
|
46
|
Dimopoulos IS, Chan S, MacLaren RE, MacDonald IM. Pathogenic mechanisms and the prospect of gene therapy for choroideremia. Expert Opin Orphan Drugs 2015; 3:787-798. [PMID: 26251765 PMCID: PMC4522943 DOI: 10.1517/21678707.2015.1046434] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Choroideremia is a rare, X-linked disorder recognized by its specific ocular phenotype as a progressive degenerative retinopathy resulting in blindness. New therapeutic approaches, primarily based on genetic mechanisms, have emerged that aim to prevent the progressive vision loss. AREAS COVERED This article will review the research that has progressed incrementally over the past two decades from mapping to gene discovery, uncovering the presumed mechanisms triggering the retinopathy to preclinical testing of potential therapies. EXPERT OPINION While still in an evaluative phase, the introduction of gene replacement as a potential therapy has been greeted with great enthusiasm by patients, advocacy groups and the medical community.
Collapse
Affiliation(s)
- Ioannis S Dimopoulos
- University of Alberta, Department of Ophthalmology and Visual Sciences, Edmonton, Alberta, Canada
| | - Stephanie Chan
- University of Alberta, Department of Ophthalmology and Visual Sciences, Edmonton, Alberta, Canada
| | - Robert E MacLaren
- Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, UK
- Moorfields Eye Hospital Foundation Trust, NIHR Ophthalmology Biomedical Research Centre, London, UK
| | - Ian M MacDonald
- University of Alberta, Department of Ophthalmology and Visual Sciences, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Lall P, Lindsay AJ, Hanscom S, Kecman T, Taglauer ES, McVeigh UM, Franklin E, McCaffrey MW, Khan AR. Structure-Function Analyses of the Interactions between Rab11 and Rab14 Small GTPases with Their Shared Effector Rab Coupling Protein (RCP). J Biol Chem 2015; 290:18817-32. [PMID: 26032412 DOI: 10.1074/jbc.m114.612366] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 01/05/2023] Open
Abstract
Rab GTPases recruit effector proteins, via their GTP-dependent switch regions, to distinct subcellular compartments. Rab11 and Rab25 are closely related small GTPases that bind to common effectors termed the Rab11 family of interacting proteins (FIPs). The FIPs are organized into two subclasses (class I and class II) based on sequence and domain organization, and both subclasses contain a highly conserved Rab-binding domain at their C termini. Yeast two-hybrid and biochemical studies have revealed that the more distantly related Rab14 also interacts with class I FIPs. Here, we perform detailed structural, thermodynamic, and cellular analyses of the interactions between Rab14 and one of the class I FIPs, the Rab-coupling protein (RCP), to clarify the molecular aspects of the interaction. We find that Rab14 indeed binds to RCP, albeit with reduced affinity relative to conventional Rab11-FIP and Rab25-FIP complexes. However, in vivo, Rab11 recruits RCP onto biological membranes. Furthermore, biophysical analyses reveal a noncanonical 1:2 stoichiometry between Rab14-RCP in dilute solutions, in contrast to Rab11/25 complexes. The structure of Rab14-RCP reveals that Rab14 interacts with the canonical Rab-binding domain and also provides insight into the unusual properties of the complex. Finally, we show that both the Rab coupling protein and Rab14 function in neuritogenesis.
Collapse
Affiliation(s)
- Patrick Lall
- From the School of Biochemistry and Immunology, Trinity College, Dublin 2 and
| | - Andrew J Lindsay
- the Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Sara Hanscom
- the Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Tea Kecman
- From the School of Biochemistry and Immunology, Trinity College, Dublin 2 and
| | | | - Una M McVeigh
- From the School of Biochemistry and Immunology, Trinity College, Dublin 2 and
| | - Edward Franklin
- From the School of Biochemistry and Immunology, Trinity College, Dublin 2 and
| | - Mary W McCaffrey
- the Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Amir R Khan
- From the School of Biochemistry and Immunology, Trinity College, Dublin 2 and
| |
Collapse
|
48
|
Cheng Y, Wang J, Wang Y, Ding M. Synaptotagmin 1 directs repetitive release by coupling vesicle exocytosis to the Rab3 cycle. eLife 2015; 4. [PMID: 25710274 PMCID: PMC4374511 DOI: 10.7554/elife.05118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/23/2015] [Indexed: 01/09/2023] Open
Abstract
In response to Ca2+ influx, a synapse needs to release neurotransmitters quickly while immediately preparing for repeat firing. How this harmonization is achieved is not known. In this study, we found that the Ca2+ sensor synaptotagmin 1 orchestrates the membrane association/disassociation cycle of Rab3, which functions in activity-dependent recruitment of synaptic vesicles. In the absence of Ca2+, synaptotagmin 1 binds to Rab3 GTPase activating protein (GAP) and inhibits the GTP hydrolysis of Rab3 protein. Rab3 GAP resides on synaptic vesicles, and synaptotagmin 1 is essential for the synaptic localization of Rab3 GAP. In the presence of Ca2+, synaptotagmin 1 releases Rab3 GAP and promotes membrane disassociation of Rab3. Without synaptotagmin 1, the tight coupling between vesicle exocytosis and Rab3 membrane disassociation is disrupted. We uncovered the long-sought molecular apparatus linking vesicle exocytosis to Rab3 cycling and we also revealed the important function of synaptotagmin 1 in repetitive synaptic vesicle release. DOI:http://dx.doi.org/10.7554/eLife.05118.001 Neurons communicate with one another at junctions called synapses. The arrival of an electrical signal called an action potential causes calcium ions to enter the first cell, which in turn triggers the release of molecules called neurotransmitters into the gap between the neurons. The binding of these molecules to receptors on the second cell then enables the action potential to be regenerated. For cells to respond rapidly and reliably to incoming electrical signals, they must maintain a supply of vesicles—the packages that contain neurotransmitters—close to the site where they are released from the first cell. The vesicles are held in contact with the cell membrane by a structure called the docking complex. A number of the proteins in this docking complex have been identified, including two that have been referred to as the ‘yin and yang’ of vesicle fusion: synaptotagmin, which promotes fusion, and Rab3, which limits it. However, little is known about how these and other proteins interact to keep vesicles docked at the membrane. Cheng, Wang et al. have now clarified the docking process with the aid of experiments in nematode worms. In resting neurons that are not releasing neurotransmitters, synaptotagmin (‘yin’) binds to an enzyme called GAP and prevents it from converting GTP—an energy-storage molecule—into GDP. Given that Rab3 (‘yang’) requires a molecule of GTP to power its own activity, the actions of synaptotagmin ensure that Rab3 has enough energy to remain bound to other proteins within the docking complex. However, when an action potential arrives, calcium ions enter the neuron, and some of them bind to synaptotagmin. This disrupts its interaction with the GAP enzyme, which thus becomes free to convert the GTP molecule bound to Rab3 into GDP. The loss of its energy source causes Rab3 to separate from its binding partners, and docking complex collapses. As a result, vesicles fuse with the membrane and release neurotransmitter molecules into the synapse. Given that Rab3 and synaptotagmin have changed little over the course of evolution, it is highly likely that the same indirect interaction between these two proteins also regulates the release of transmitter at synapses in the mammalian brain. DOI:http://dx.doi.org/10.7554/eLife.05118.002
Collapse
Affiliation(s)
- Yunsheng Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaming Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Binotti B, Pavlos NJ, Riedel D, Wenzel D, Vorbrüggen G, Schalk AM, Kühnel K, Boyken J, Erck C, Martens H, Chua JJE, Jahn R. The GTPase Rab26 links synaptic vesicles to the autophagy pathway. eLife 2015; 4:e05597. [PMID: 25643395 PMCID: PMC4337689 DOI: 10.7554/elife.05597] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/01/2015] [Indexed: 12/27/2022] Open
Abstract
Small GTPases of the Rab family not only regulate target recognition in membrane traffic but also control other cellular functions such as cytoskeletal transport and autophagy. Here we show that Rab26 is specifically associated with clusters of synaptic vesicles in neurites. Overexpression of active but not of GDP-preferring Rab26 enhances vesicle clustering, which is particularly conspicuous for the EGFP-tagged variant, resulting in a massive accumulation of synaptic vesicles in neuronal somata without altering the distribution of other organelles. Both endogenous and induced clusters co-localize with autophagy-related proteins such as Atg16L1, LC3B and Rab33B but not with other organelles. Furthermore, Atg16L1 appears to be a direct effector of Rab26 and binds Rab26 in its GTP-bound form, albeit only with low affinity. We propose that Rab26 selectively directs synaptic and secretory vesicles into preautophagosomal structures, suggesting the presence of a novel pathway for degradation of synaptic vesicles. DOI:http://dx.doi.org/10.7554/eLife.05597.001 Our brain contains billions of cells called neurons that form an extensive network through which information is readily exchanged. These cells connect to each other via junctions called synapses. Our developing brain starts off with far more synapses than it needs, but the excess synapses are destroyed as the brain matures. Even in adults, synapses are continuously made and destroyed in response to experiences and learning. Inside neurons there are tiny bubble-like compartments called vesicles that supply the synapses with many of the proteins and other components that they need. There is a growing body of evidence that suggests these vesicles are rapidly destroyed once a synapse is earmarked for destruction, but it is not clear how this may occur. Here, Binotti, Pavlos et al. found that a protein called Rab26 sits on the surface of the vesicles near synapses. This protein promotes the formation of clusters of vesicles, and a membrane sometimes surrounds these clusters. Further experiments indicate that several proteins involved in a process called autophagy—where unwanted proteins and debris are destroyed—may also be found around the clusters of vesicles. Autophagy starts with the formation of a membrane around the material that needs to be destroyed. This seals the material off from rest of the cell so that enzymes can safely break it down. Binotti, Pavlos et al. found that one of the autophagy proteins—called Atg16L—can bind directly to Rab26, but only when Rab26 is in an ‘active’ state. These findings suggest that excess vesicles at synapses may be destroyed by autophagy. Further work will be required to establish how this process is controlled and how it is involved in the loss of synapses. DOI:http://dx.doi.org/10.7554/eLife.05597.002
Collapse
Affiliation(s)
- Beyenech Binotti
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nathan J Pavlos
- School of Surgery, University of Western Australia, Crawley, Australia
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Wenzel
- Facility for Transmission Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gerd Vorbrüggen
- Research Group Molecular Cell Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Amanda M Schalk
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Karin Kühnel
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Janina Boyken
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | - John J E Chua
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
50
|
Yuan W, Liu Y, Lok JB, Stoltzfus JD, Gasser RB, Lei W, Fang R, Zhao J, Hu M. Exploring features and function of Ss-riok-3, an enigmatic kinase gene from Strongyloides stercoralis. Parasit Vectors 2014; 7:561. [PMID: 25477034 PMCID: PMC4265397 DOI: 10.1186/s13071-014-0561-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/23/2014] [Indexed: 02/01/2023] Open
Abstract
Background Right open reading frame protein kinase 3 (RIOK-3) belongs to the atypical kinase family. Unlike the other two members, RIOK-1 and RIOK-2, which are conserved from Archaea to humans, RIOK-3 occurs only in multicellular organisms. Studies on HeLa cells indicate that human RIOK-3 is a component of the 40S small ribosome subunit and supports cancer cell growth and survival. However, almost nothing is known about the function of RIOK-3. We explored the functional role of RIOK-3 encoding gene from Strongyloides stercoralis, a parasitic nematode of humans and dogs. Methods To analyze the gene and promoter structure of Ss-riok-3, RACE-PCR and Genome-walker PCR were performed to isolate the full length cDNA, gDNA and promoter region of Ss-riok-3. RNA-seq was conducted to assess the transcript abundance of Ss-riok-3 in different stages of S. stercoralis. Transgenesis was employed to determine the anatomic expression patterns of Ss-riok-3. Results The RIOK-3 protein-encoding gene (designated Ss-riok-3) of S. stercoralis was characterized. The full-length complementary and genomic DNAs of the RIOK-3 encoding gene (riok-3) were isolated from this nematode. The cDNA of Ss-riok-3 is 1,757 bp in length, including a 23 bp 5’-UTR, a 36 bp 3’-UTR and a 1,698 bp coding region encoding a protein of 565 amino acids (aa) containing a RIO kinase domain. RNA sequencing (RNA-seq) analysis revealed that Ss-riok-3 is transcribed in all developmental stages of S. stercoralis assessed, with transcripts being particularly abundant in parasitic females. Gene structure analysis revealed that Ss-riok-3 contains no intron. The putative promoter contains conserved promoter elements, including four TATA, two GATA, one inverse GATA and one inverse CAAT boxes. The promoter of Ss-riok-3 drives GFP expression in the head neuron, intestine and body wall muscle of transgenic S. stercoralis larvae, and the TATA boxes present in the 3’-UTR of the gene immediately upstream of Ss-riok-3 initiate transcription. Conclusions The characterization of the RIOK-3 encoding gene from S. stercoralis provides a sound foundation for investigating in detail its function in the development and reproduction of this important pathogen. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0561-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wang Yuan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Yingying Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Jonathan D Stoltzfus
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA. .,Department of Biology, Hollins University, Roanoke, VI, 24020, USA.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville, VI, 3010, Australia.
| | - Weiqiang Lei
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China.
| |
Collapse
|