1
|
Curtis SN, Mayer CA, Bonfield TL, Raffay TM, DiFiore JM, Martin RJ, Hoffman AC, Folz MA, Bavis RW, Dutschmann M, MacFarlane PM. Unique infrared thermographic profiles and altered hypothalamic neurochemistry associated with mortality in endotoxic shock. Exp Neurol 2025; 385:115130. [PMID: 39732274 DOI: 10.1016/j.expneurol.2024.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Neonatal sepsis results in significant morbidity and mortality, but early detection is clinically challenging. In a neonatal rat model of endotoxic shock, we characterised unique infrared thermographic (IRT) profiles in skin temperature that could identify risk of later mortality. Ten-day old rats were placed in a thermally stable isolette and IRT images of cranial (TCR), scapula (TSC) and rump (TRU) skin temperature were obtained continuously for 8 h following an intraperitoneal injection of lipopolysaccharide (LPS) or saline. LPS resulted in ∼74 % mortality (designated as non-survivors, LPSNS) between 4.5 and 7.5 h post-injection. LPSNS and survivors of LPS (LPSS) rats displayed hypothermic tendencies with TCR, TSC and TRU decreasing at ∼80-100 min (T80-100) post-injection. Compared to LPSS rats, however, the hypothermia of LPSNS rats occurred slightly earlier (T80), was more severe, and failed to recover. The TCR, TSC and TRU of LPSS rats fully recovered by 4 h (T240) post-injection. In separate rats, hypothalamic microglia and extracellular matrix (ECM) expression at T240 post-injection were increased in putatively identified LPSNS rats (but not LPSS rats) and negatively correlated with IR temperatures. IRT could be a useful early identifier of infants at risk of death from endotoxic shock, which may be related to early failure of central nervous system (CNS) thermogenic mechanisms mediated by unique hypothalamic changes in inflammatory (microglia) and ECM neurochemistry.
Collapse
Affiliation(s)
- Sean N Curtis
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Catherine A Mayer
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Thomas M Raffay
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Juliann M DiFiore
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Richard J Martin
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Adriana C Hoffman
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Michael A Folz
- School of Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME, United States of America
| | - Mathias Dutschmann
- Pulmonary, Critical, and Sleep Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Peter M MacFarlane
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America.
| |
Collapse
|
2
|
Mazuryk O, Gurgul I, Oszajca M, Polaczek J, Kieca K, Bieszczad-Żak E, Martyka T, Stochel G. Nitric Oxide Signaling and Sensing in Age-Related Diseases. Antioxidants (Basel) 2024; 13:1213. [PMID: 39456466 PMCID: PMC11504650 DOI: 10.3390/antiox13101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Nitric oxide (NO) is a key signaling molecule involved in numerous physiological and pathological processes within the human body. This review specifically examines the involvement of NO in age-related diseases, focusing on the cardiovascular, nervous, and immune systems. The discussion delves into the mechanisms of NO signaling in these diseases, emphasizing the post-translational modifications of involved proteins, such as S-nitrosation and nitration. The review also covers the dual nature of NO, highlighting both its protective and harmful effects, determined by concentration, location, and timing. Additionally, potential therapies that modulate NO signaling, including the use of NO donors and nitric oxide synthases (NOSs) inhibitors in the treatment of cardiovascular, neurodegenerative, and oncological diseases, are analyzed. Particular attention is paid to the methods for the determination of NO and its derivatives in the context of illness diagnosis and monitoring. The review underscores the complexity and dual role of NO in maintaining cellular balance and suggests areas for future research in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Ilona Gurgul
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Konrad Kieca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ewelina Bieszczad-Żak
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Tobiasz Martyka
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| |
Collapse
|
3
|
Kreimendahl S, Pernas L. Metabolic immunity against microbes. Trends Cell Biol 2024; 34:496-508. [PMID: 38030541 DOI: 10.1016/j.tcb.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Pathogens, including viruses, bacteria, fungi, and parasites, remodel the metabolism of their host to acquire the nutrients they need to proliferate. Thus, host cells are often perceived as mere exploitable nutrient pools during infection. Mounting reports challenge this perception and instead suggest that host cells can actively reprogram their metabolism to the detriment of the microbial invader. In this review, we present metabolic mechanisms that host cells use to defend against pathogens. We highlight the contribution of domesticated microbes to host defenses and discuss examples of host-pathogen arms races that are derived from metabolic conflict.
Collapse
Affiliation(s)
| | - Lena Pernas
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Wiggins DA, Maxwell JN, Nelson DE. Exploring the role of CITED transcriptional regulators in the control of macrophage polarization. Front Immunol 2024; 15:1365718. [PMID: 38646545 PMCID: PMC11032013 DOI: 10.3389/fimmu.2024.1365718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Macrophages are tissue resident innate phagocytic cells that take on contrasting phenotypes, or polarization states, in response to the changing combination of microbial and cytokine signals at sites of infection. During the opening stages of an infection, macrophages adopt the proinflammatory, highly antimicrobial M1 state, later shifting to an anti-inflammatory, pro-tissue repair M2 state as the infection resolves. The changes in gene expression underlying these transitions are primarily governed by nuclear factor kappaB (NF-κB), Janus kinase (JAK)/signal transducer and activation of transcription (STAT), and hypoxia-inducible factor 1 (HIF1) transcription factors, the activity of which must be carefully controlled to ensure an effective yet spatially and temporally restricted inflammatory response. While much of this control is provided by pathway-specific feedback loops, recent work has shown that the transcriptional co-regulators of the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxy-terminal domain (CITED) family serve as common controllers for these pathways. In this review, we describe how CITED proteins regulate polarization-associated gene expression changes by controlling the ability of transcription factors to form chromatin complexes with the histone acetyltransferase, CBP/p300. We will also cover how differences in the interactions between CITED1 and 2 with CBP/p300 drive their contrasting effects on pro-inflammatory gene expression.
Collapse
Affiliation(s)
| | | | - David E. Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
5
|
Zhu M, Guo Z, Xu H, Li X, Chen H, Cao R, Lv Y. Aminoguanidine alleviates gout in goslings experimentally infected with goose astrovirus-2 by reducing kidney lesions. Poult Sci 2024; 103:103484. [PMID: 38306918 PMCID: PMC10847692 DOI: 10.1016/j.psj.2024.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
Goose astrovirus (GAstV)-2, a novel pathogen identified in 2018, mainly causes visceral gout in goslings, leading to approximately 50% mortality. At present, no commercial veterinary products are available to prevent and treat the disease. Our previous studies showed that nitric oxide (NO) and inducible NO synthase (iNOS) were markedly higher in the kidney and spleen of goslings infected with GAstV-2, but their effects during GAstV-2 infection remain unclear. In the present study, goslings were intraperitoneally injected with aminoguanidine (AG)-an iNOS inhibitor-to examine the role of NO during GAstV-2 infection. AG significantly decreased the serum NO concentration and iNOS mRNA expression in the kidney. Moreover, AG reduced the mortality, serum uric acid and creatinine content, and urate deposition in visceral organs and joints. Histopathological analysis demonstrated that AG reduced renal tubular cell necrosis, inflammatory cell infiltration, glycogen deposition in glomerular mesangium, and interstitial fibrosis, suggesting alleviation of kidney lesions. Furthermore, AG decreased the expression of renal injury markers such as KIM-1 and desmin; inflammatory cytokine-related genes such as IL-1β, IL-8, and MMP-9; and autophagy-related genes and proteins such as LC3II, ATG5, and Beclin1. However, quantitative real-time PCR and immunohistochemistry showed that treatment with AG did not affect the kidney and liver viral load. These findings suggest that AG decreases the mortality rate and kidney lesions in goslings infected with GAstV-2 through mechanisms associated with autophagy and inhibition of inflammatory cytokine production in the kidney but not with GAstV-2 replication.
Collapse
Affiliation(s)
- Ming Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixuan Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoran Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyang Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongbo Chen
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Boopathy B, Mukherjee D, Nishanth V, Chowdhury AR, Chakravortty D, Rao L. Generation of Species-Specific High-Strength Plasma Activated Water at Neutral pH and its Antimicrobial Characteristics. PLASMA CHEMISTRY AND PLASMA PROCESSING 2024; 44:1003-1017. [DOI: 10.1007/s11090-023-10439-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2025]
|
7
|
Verkerke M, Berdenis van Berlekom A, Donega V, Vonk D, Sluijs JA, Butt NF, Kistemaker L, de Witte LD, Pasterkamp RJ, Middeldorp J, Hol EM. Transcriptomic and morphological maturation of human astrocytes in cerebral organoids. Glia 2024; 72:362-374. [PMID: 37846809 DOI: 10.1002/glia.24479] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Cerebral organoids (CerOrgs) derived from human induced pluripotent stem cells (iPSCs) are a valuable tool to study human astrocytes and their interaction with neurons and microglia. The timeline of astrocyte development and maturation in this model is currently unknown and this limits the value and applicability of the model. Therefore, we generated CerOrgs from three healthy individuals and assessed astrocyte maturation after 5, 11, 19, and 37 weeks in culture. At these four time points, the astrocyte lineage was isolated based on the expression of integrin subunit alpha 6 (ITGA6). Based on the transcriptome of the isolated ITGA6-positive cells, astrocyte development started between 5 and 11 weeks in culture and astrocyte maturation commenced after 11 weeks in culture. After 19 weeks in culture, the ITGA6-positive astrocytes had the highest expression of human mature astrocyte genes, and the predicted functional properties were related to brain homeostasis. After 37 weeks in culture, a subpopulation of ITGA6-negative astrocytes appeared, highlighting the heterogeneity within the astrocytes. The morphology shifted from an elongated progenitor-like morphology to the typical bushy astrocyte morphology. Based on the morphological properties, predicted functional properties, and the similarities with the human mature astrocyte transcriptome, we concluded that ITGA6-positive astrocytes have developed optimally in 19-week-old CerOrgs.
Collapse
Affiliation(s)
- Marloes Verkerke
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Amber Berdenis van Berlekom
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Vanessa Donega
- Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy & Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, The Netherlands
| | - Daniëlle Vonk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nayab F Butt
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lois Kistemaker
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Amason ME, Li L, Harvest CK, Lacey CA, Miao EA. Validation of the Intermolecular Disulfide Bond in Caspase-2. BIOLOGY 2024; 13:49. [PMID: 38248479 PMCID: PMC10813798 DOI: 10.3390/biology13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Caspases are a family of proteins involved in cell death. Although several caspase members have been well characterized, caspase-2 remains enigmatic. Caspase-2 has been implicated in several phenotypes, but there has been no consensus in the field about its upstream activating signals or its downstream protein targets. In addition, the unique ability of caspase-2 to form a disulfide-bonded dimer has not been studied in depth. Herein, we investigate the disulfide bond in the context of inducible dimerization, showing that disulfide bond formation is dimerization dependent. We also explore and review several stimuli published in the caspase-2 field, test ferroptosis-inducing stimuli, and study in vivo infection models. We hypothesize that the disulfide bond will ultimately prove to be essential for the evolved function of caspase-2. Proving this will require the discovery of cell death phenotypes where caspase-2 is definitively essential.
Collapse
Affiliation(s)
- Megan E. Amason
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lupeng Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carissa K. Harvest
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolyn A. Lacey
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
9
|
Milovic A, Duong JV, Barbour AG. The infection-tolerant white-footed deermouse tempers interferon responses to endotoxin in comparison to the mouse and rat. eLife 2024; 12:RP90135. [PMID: 38193896 PMCID: PMC10945503 DOI: 10.7554/elife.90135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
The white-footed deermouse Peromyscus leucopus, a long-lived rodent, is a key reservoir in North America for agents of several zoonoses, including Lyme disease, babesiosis, anaplasmosis, and a viral encephalitis. While persistently infected, this deermouse is without apparent disability or diminished fitness. For a model for inflammation elicited by various pathogens, the endotoxin lipopolysaccharide (LPS) was used to compare genome-wide transcription in blood by P. leucopus, Mus musculus, and Rattus norvegicus and adjusted for white cell concentrations. Deermice were distinguished from the mice and rats by LPS response profiles consistent with non-classical monocytes and alternatively-activated macrophages. LPS-treated P. leucopus, in contrast to mice and rats, also displayed little transcription of interferon-gamma and lower magnitude fold-changes in type 1 interferon-stimulated genes. These characteristics of P. leucopus were also noted in a Borrelia hermsii infection model. The phenomenon was associated with comparatively reduced transcription of endogenous retrovirus sequences and cytoplasmic pattern recognition receptors in the deermice. The results reveal a mechanism for infection tolerance in this species and perhaps other animal reservoirs for agents of human disease.
Collapse
Affiliation(s)
- Ana Milovic
- Department of Microbiology & Molecular Genetics, University of California, IrvineIrvineUnited States
| | - Jonathan V Duong
- Department of Microbiology & Molecular Genetics, University of California, IrvineIrvineUnited States
| | - Alan G Barbour
- Departments of Medicine, Microbiology & Molecular Genetics, and Ecology & Evolutionary Biology, University of California, IrvineIrvineUnited States
| |
Collapse
|
10
|
Li C, Liu C, Zhang J, Lu Y, Jiang B, Xiong H, Li C. Pyruvate dehydrogenase kinase regulates macrophage polarization in metabolic and inflammatory diseases. Front Immunol 2023; 14:1296687. [PMID: 38193078 PMCID: PMC10773690 DOI: 10.3389/fimmu.2023.1296687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024] Open
Abstract
Macrophages are highly heterogeneous and plastic, and have two main polarized phenotypes that are determined by their microenvironment, namely pro- and anti-inflammatory macrophages. Activation of pro-inflammatory macrophages is closely associated with metabolic reprogramming, especially that of aerobic glycolysis. Mitochondrial pyruvate dehydrogenase kinase (PDK) negatively regulates pyruvate dehydrogenase complex activity through reversible phosphorylation and further links glycolysis to the tricarboxylic acid cycle and ATP production. PDK is commonly associated with the metabolism and polarization of macrophages in metabolic and inflammatory diseases. This review examines the relationship between PDK and macrophage metabolism and discusses the mechanisms by which PDK regulates macrophage polarization, migration, and inflammatory cytokine secretion in metabolic and inflammatory diseases. Elucidating the relationships between the metabolism and polarization of macrophages under physiological and pathological conditions, as well as the regulatory pathways involved, may provide valuable insights into the etiology and treatment of macrophage-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Chenyu Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Chuanbin Liu
- Department of Pediatric Dentistry, Jining Stomatological Hospital, Jining, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Yanyu Lu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Bingtong Jiang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
11
|
Ting KKY, Jongstra-Bilen J, Cybulsky MI. The multi-faceted role of NADPH in regulating inflammation in activated myeloid cells. Front Immunol 2023; 14:1328484. [PMID: 38106413 PMCID: PMC10722250 DOI: 10.3389/fimmu.2023.1328484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Recent advances in the immunometabolism field have demonstrated the importance of metabolites in fine-tuning the inflammatory responses in myeloid cells. Cofactors, which are metabolites comprised of inorganic ions and organic molecules, may tightly or loosely bind to distinct sites of enzymes to catalyze a specific reaction. Since many enzymes that mediate inflammatory and anti-inflammatory processes require the same cofactors to function, this raises the possibility that under conditions where the abundance of these cofactors is limited, inflammatory and anti-inflammatory enzymes must compete with each other for the consumption of cofactors. Thus, this competition may reflect a naturally evolved mechanism to efficiently co-regulate inflammatory versus anti-inflammatory pathways, fine-tuning the extent of an inflammatory response. The role of NADPH, the reduced form of nicotinamide adenine dinucleotide phosphate (NADP+), in mediating inflammatory and anti-inflammatory responses in activated myeloid cells has been well-established in the past decades. However, how the dynamic of NADPH consumption mediates the co-regulation between individual inflammatory and anti-inflammatory pathways is only beginning to be appreciated. In this review, we will summarize the established roles of NADPH in supporting inflammatory and anti-inflammatory pathways, as well as highlight how the competition for NADPH consumption by these opposing pathways fine-tunes the inflammatory response in activated myeloid cells.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jenny Jongstra-Bilen
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Myron I. Cybulsky
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
12
|
Youssef L, Durand S, Aprahamian F, Lefevre D, Bourgin M, Maiuri MC, Dulac M, Hajj-Boutros G, Marcangeli V, Buckinx F, Peyrusqué E, Morais JA, Gaudreau P, Gouspillou G, Kroemer G, Aubertin-Leheudre M, Noirez P. Serum metabolomic adaptations following a 12-week high-intensity interval training combined to citrulline supplementation in obese older adults. Eur J Sport Sci 2023; 23:2157-2169. [PMID: 37161876 DOI: 10.1080/17461391.2023.2213185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Physical activity and nutrition play important roles in preventing adverse health outcomes that accompany aging. It has been shown that high-intensity interval training (HIIT) combined with citrulline (CIT) supplementation can improve physical and functional capacities. The aim of this study was to evaluate serum metabolites following a 12-week HIIT combined or not with CIT in obese older adults, and to correlate the metabolic changes with clinico-biological parameters changes. Eighty-six obese older adults completed a 12-week HIIT program combined with a 10 g daily supplementation of either CIT or placebo (PLA) during a double-blinded randomized interventional trial. Only participants with blood samples at T0 (before the intervention) and/or T12 (after the intervention) were included in our sub-analysis (HIIT-PLA-T0: n = 44 and HIIT-PLA-T12: n = 28; HIIT-CIT-T0: n = 39 and HIIT-CIT-T12: n = 42). Serum samples were analyzed by different liquid or gas phase chromatography methods coupled to mass spectrometry. Among the identified metabolites, 44 changed significantly following the 12-week intervention (Time effect), and 10 of them were more affected when HIIT was combined with CIT (Time × Supp effect). Arginine increased significantly due to the 12-week intervention. Correlation analyses demonstrated that decreased triglyceride (TG) (16:1/18:1/16:0) and aspartic acid significantly correlated with a reduction of adiposity-related parameters (fat mass, leg lean mass, leptin, total triglycerides and low-density lipoprotein). Arginine, TG (16:1/18:1/16:0) and aspartic acid might constitute biomarkers of cardiometabolic health and adiposity. Further studies are needed to confirm these associations and understand the underlying mechanisms.Highlights A 12-week intervention involving high-intensity interval training (HIIT) with or without citrulline (CIT) supplementation induced adaptations in the serum metabolome of obese older adults through significant changes in 44 metabolites.Changes in 23 metabolites were observed when a CIT supplementation was administered along with a 12-week HIIT intervention.TG (16:1/18:1/16:0) correlated with several adiposity parameters including leptin, triglycerides, legs lean mass.Aspartic acid correlated with several adiposity parameters including leptin, LDL cholesterol as well as android, arms and trunk fat mass.
Collapse
Affiliation(s)
- Layale Youssef
- T3S INSERM U1124, Université Paris Cité, Paris, France
- École de Kinésiologie et des Sciences de l'Activité Physique (EKSAP), Université de Montréal, Montréal, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
| | - Sylvère Durand
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
| | - Fanny Aprahamian
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
| | - Deborah Lefevre
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
| | - Mélanie Bourgin
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
| | - Maria Chiara Maiuri
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
| | - Maude Dulac
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
- Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada
- Département de biologie, Université du Québec à Montréal, Montréal, Canada
- Research Institute of the McGill University Health Center (MUHC), Montréal, Canada
| | - Guy Hajj-Boutros
- Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada
- Research Institute of the McGill University Health Center (MUHC), Montréal, Canada
| | - Vincent Marcangeli
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
- Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada
- Département de biologie, Université du Québec à Montréal, Montréal, Canada
| | - Fanny Buckinx
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Canada
| | - Eva Peyrusqué
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
- Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Canada
| | - José A Morais
- Research Institute of the McGill University Health Center (MUHC), Montréal, Canada
| | - Pierrette Gaudreau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Canada
- Département de Médecine, Université de Montréal, Montréal, Canada
| | - Gilles Gouspillou
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
- Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Canada
| | - Guido Kroemer
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, AMMICa US23/CNRS UMS3655, Villejuif, France
| | - Mylène Aubertin-Leheudre
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
- Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Canada
| | - Philippe Noirez
- T3S INSERM U1124, Université Paris Cité, Paris, France
- Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montréal, Canada
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Canada
- UFR STAPS, Performance Santé Métrologie Société (PSMS), Université de Reims Champagne Ardenne, Reims, France
- Institut de Recherche Médicale et d'Épidémiologie du Sport (IRMES), INSEP, Université Paris Cité, Paris, France
| |
Collapse
|
13
|
Milovic A, Duong JV, Barbour AG. The white-footed deermouse, an infection-tolerant reservoir for several zoonotic agents, tempers interferon responses to endotoxin in comparison to the mouse and rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543964. [PMID: 37745581 PMCID: PMC10515768 DOI: 10.1101/2023.06.06.543964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The white-footed deermouse Peromyscus leucopus, a long-lived rodent, is a key reservoir for agents of several zoonoses, including Lyme disease. While persistently infected, this deermouse is without apparent disability or diminished fitness. For a model for inflammation elicited by various pathogens, the endotoxin lipopolysaccharide (LPS) was used to compare genome-wide transcription in blood by P. leucopus, Mus musculus and Rattus norvegicus and adjusted for white cell concentrations. Deermice were distinguished from the mice and rats by LPS response profiles consistent with non-classical monocytes and alternatively-activated macrophages. LPS-treated P. leucopus, in contrast to mice and rats, also displayed little transcription of interferon-gamma and lower magnitude fold-changes in type 1 interferon-stimulated genes. This was associated with comparatively reduced transcription of endogenous retrovirus sequences and cytoplasmic pattern recognition receptors in the deermice. The results reveal a mechanism for infection tolerance in this species and perhaps other animal reservoirs for agents of human disease.
Collapse
Affiliation(s)
- Ana Milovic
- Department of Microbiology & Molecular Genetics, University of California Irvine
| | - Jonathan V. Duong
- Department of Microbiology & Molecular Genetics, University of California Irvine
| | - Alan G. Barbour
- Departments of Medicine, Microbiology & Molecular Genetics, and Ecology & Evolutionary Biology, University of California Irvine
| |
Collapse
|
14
|
Limón G, Samhadaneh NM, Pironti A, Darwin KH. Aldehyde accumulation in Mycobacterium tuberculosis with defective proteasomal degradation results in copper sensitivity. mBio 2023; 14:e0036323. [PMID: 37350636 PMCID: PMC10470581 DOI: 10.1128/mbio.00363-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium tuberculosis is a major human pathogen and the causative agent of tuberculosis disease. M. tuberculosis is able to persist in the face of host-derived antimicrobial molecules nitric oxide (NO) and copper (Cu). However, M. tuberculosis with defective proteasome activity is highly sensitive to NO and Cu, making the proteasome an attractive target for drug development. Previous work linked NO susceptibility with the accumulation of para-hydroxybenzaldehyde (pHBA) in M. tuberculosis mutants with defective proteasomal degradation. In this study, we found that pHBA accumulation was also responsible for Cu sensitivity in these strains. We showed that exogenous addition of pHBA to wild-type M. tuberculosis cultures sensitized bacteria to Cu to a degree similar to that of a proteasomal degradation mutant. We determined that pHBA reduced the production and function of critical Cu resistance proteins of the regulated in copper repressor (RicR) regulon. Furthermore, we extended these Cu-sensitizing effects to an aldehyde that M. tuberculosis may face within the macrophage. Collectively, this study is the first to mechanistically propose how aldehydes can render M. tuberculosis susceptible to an existing host defense and could support a broader role for aldehydes in controlling M. tuberculosis infections. IMPORTANCE M. tuberculosis is a leading cause of death by a single infectious agent, causing 1.5 million deaths annually. An effective vaccine for M. tuberculosis infections is currently lacking, and prior infection does not typically provide robust immunity to subsequent infections. Nonetheless, immunocompetent humans can control M. tuberculosis infections for decades. For these reasons, a clear understanding of how mammalian immunity inhibits mycobacterial growth is warranted. In this study, we show aldehydes can increase M. tuberculosis susceptibility to copper, an established antibacterial metal used by immune cells to control M. tuberculosis and other microbes. Given that activated macrophages produce increased amounts of aldehydes during infection, we propose host-derived aldehydes may help control bacterial infections, making aldehydes a previously unappreciated antimicrobial defense.
Collapse
Affiliation(s)
- Gina Limón
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Nora M. Samhadaneh
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, New York, USA
| | - K. Heran Darwin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
15
|
Feng N, Zhong F, Cai G, Zheng W, Zou H, Gu J, Yuan Y, Zhu G, Liu Z, Bian J. Fusarium Mycotoxins Zearalenone and Deoxynivalenol Reduce Hepatocyte Innate Immune Response after the Listeria monocytogenes Infection by Inhibiting the TLR2/NFκB Signaling Pathway. Int J Mol Sci 2023; 24:ijms24119664. [PMID: 37298614 DOI: 10.3390/ijms24119664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Zearalenone (ZEA) and deoxynivalenol (DON) are two common mycotoxins produced by the genus Fusarium and have potential immunotoxic effects that may lead to a weak immune response against bacterial infections. Listeria monocytogenes (L. monocytogenes), a food-borne pathogenic microorganism ubiquitous in the environment, actively multiplies in the liver, where hepatocytes are capable of resistance through mediated innate immune responses. At present, it is not clear if ZEA and DON affect hepatocyte immune responses to L. monocytogenes infection or the mechanisms involved. Therefore, in this study, in vivo and in vitro models were used to investigate the effects of ZEA and DON on the innate immune responses of hepatocytes and related molecules after L. monocytogenes infection. In vivo studies revealed that ZEA and DON inhibited the toll-like receptors 2 (TLR2)/nuclear factor kappa-B (NFκB) pathway in the liver tissue of L. monocytogenes-infected mice, downregulating the expression levels of Nitric oxide (NO), in the liver and repressing the immune response. In addition, ZEA and DON inhibited Lipoteichoic acid (LTA)-induced expression of TLR2 and myeloid differentiation factor 88 (MyD88) in Buffalo Rat Liver (BRL 3A) cells in vitro, downregulating the TLR2/NFκB signaling pathway and resulting in the decreased expression levels of NO, causing immunosuppressive effects. In summary, ZEA and DON can negatively regulate NO levels through TLR2/NFκB, inhibiting the innate immune responses of the liver, and aggravate L. monocytogenes infections in mouse livers.
Collapse
Affiliation(s)
- Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Fang Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guodong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
16
|
Lackner K, Ebner S, Watschinger K, Maglione M. Multiple Shades of Gray-Macrophages in Acute Allograft Rejection. Int J Mol Sci 2023; 24:8257. [PMID: 37175964 PMCID: PMC10179242 DOI: 10.3390/ijms24098257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Long-term results following solid organ transplantation do not mirror the excellent short-term results achieved in recent decades. It is therefore clear that current immunosuppressive maintenance protocols primarily addressing the adaptive immune system no longer meet the required clinical need. Identification of novel targets addressing this shortcoming is urgently needed. There is a growing interest in better understanding the role of the innate immune system in this context. In this review, we focus on macrophages, which are known to prominently infiltrate allografts and, during allograft rejection, to be involved in the surge of the adaptive immune response by expression of pro-inflammatory cytokines and direct cytotoxicity. However, this active participation is janus-faced and unspecific targeting of macrophages may not consider the different subtypes involved. Under this premise, we give an overview on macrophages, including their origins, plasticity, and important markers. We then briefly describe their role in acute allograft rejection, which ranges from sustaining injury to promoting tolerance, as well as the impact of maintenance immunosuppressants on macrophages. Finally, we discuss the observed immunosuppressive role of the vitamin-like compound tetrahydrobiopterin and the recent findings that suggest the innate immune system, particularly macrophages, as its target.
Collapse
Affiliation(s)
- Katharina Lackner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Manuel Maglione
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
- Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Fujii J, Osaki T. Involvement of Nitric Oxide in Protecting against Radical Species and Autoregulation of M1-Polarized Macrophages through Metabolic Remodeling. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020814. [PMID: 36677873 PMCID: PMC9861185 DOI: 10.3390/molecules28020814] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
When the expression of NOS2 in M1-polarized macrophages is induced, huge amounts of nitric oxide (•NO) are produced from arginine and molecular oxygen as the substrates. While anti-microbial action is the primary function of M1 macrophages, excessive activation may result in inflammation being aggravated. The reaction of •NO with superoxide produces peroxynitrite, which is highly toxic to cells. Alternatively, however, this reaction eliminates radial electrons and may occasionally alleviate subsequent radical-mediated damage. Reactions of •NO with lipid radicals terminates the radical chain reaction in lipid peroxidation, which leads to the suppression of ferroptosis. •NO is involved in the metabolic remodeling of M1 macrophages. Enzymes in the tricarboxylic acid (TCA) cycle, notably aconitase 2, as well as respiratory chain enzymes, are preferential targets of •NO derivatives. Ornithine, an alternate compound produced from arginine instead of citrulline and •NO, is recruited to synthesize polyamines. Itaconate, which is produced from the remodeled TCA cycle, and polyamines function as defense systems against overresponses of M1 macrophages in a feedback manner. Herein, we overview the protective aspects of •NO against radical species and the autoregulatory systems that are enabled by metabolic remodeling in M9-polarized macrophages.
Collapse
|
18
|
Chen X, Li W, Jiang X, Fan Q, Li X, Wang L, Li W, Li K, Hong W. Hydrogen Peroxide-Activated Nitric Oxide-Releasing Vancomycin-Loaded Electrostatic Complexation for Efficient Elimination of Methicillin-Resistant Staphylococcus aureus Abscesses. Mol Pharm 2023; 20:711-721. [PMID: 36534730 DOI: 10.1021/acs.molpharmaceut.2c00888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The treatment of subcutaneous abscesses has been greatly hindered due to the spread of drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). Thus, alternative strategies are highly desired to complement conventional antibiotic therapies and surgical intervention. As one of such strategies, applications of nitric oxide (NO) have shown great potential in the treatment of bacteria-induced subcutaneous abscesses by improving the efficacy of many therapeutic methods. However, it is extremely challenging to achieve precise delivery and controlled release because of its gaseous nature. In the present study, an effective strategy was reported in which on demand hydrogen peroxide (H2O2)-activated nitric oxide-releasing vancomycin (Van)-loaded electrostatic complexation (Lipo/Van@Arg) was fabricated. In this system, Van was encapsulated into a negative-charged DSPG/Chol liposome (Lipo/Van) and electrostatically bound with the positive-charged l-arginine (l-Arg). As expected, Lipo/Van@Arg exhibited superior bacterial binding and biofilm penetration abilities. After being in the interior of the biofilms, Lipo/Van@Arg could be triggered by the endogenous H2O2 and effectively release NO. The released NO could exhibit combined antibacterial and biofilm eradication effects with Van. Moreover, an in vivo evaluation using a BALB/c mouse model of subcutaneous abscesses indicated that the combination treatment of NO and Van based on Lipo/Van@Arg could effectively eliminate MRSA from the abscesses, thereby preventing abscess recurrence. In summary, the Lipo/Van@Arg system developed in this study realized controlled delivery and precise release of NO, which had significant clinical implications in the efficient treatment of abscesses.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading and Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai264003, P. R. China
| | - Wenting Li
- School of Pharmacy, Shandong New Drug Loading and Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai264003, P. R. China
| | - Xinyu Jiang
- School of Pharmacy, Shandong New Drug Loading and Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai264003, P. R. China
| | - Qing Fan
- School of Pharmacy, Shandong New Drug Loading and Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai264003, P. R. China
| | - Xueling Li
- School of Pharmacy, Shandong New Drug Loading and Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai264003, P. R. China
| | - Longle Wang
- School of Pharmacy, Shandong New Drug Loading and Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai264003, P. R. China
| | - Weiwei Li
- School of Pharmacy, Shandong New Drug Loading and Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai264003, P. R. China
| | - Keke Li
- School of Pharmacy, Shandong New Drug Loading and Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai264003, P. R. China
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading and Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai264003, P. R. China
| |
Collapse
|
19
|
MacMicking JD. Rewiring the logic board of IFN signaling. Sci Signal 2022; 15:eadf0778. [PMID: 36512642 DOI: 10.1126/scisignal.adf0778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interferons (IFNs) activate cell-autonomous immunity to combat infection and control inflammation. In this issue of Science Signaling, Boccuni et al. reveal how macrophages incorporate stress signals through the p38 MAPK pathway to enhance IFN-induced responses against intracellular pathogens.
Collapse
Affiliation(s)
- John D MacMicking
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Yale Systems Biology Institute, West Haven, CT 06477, USA.,Department of Immunobiology and Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
20
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
21
|
Gao L, Han B, Dong X. The Androgen Receptor and Its Crosstalk With the Src Kinase During Castrate-Resistant Prostate Cancer Progression. Front Oncol 2022; 12:905398. [PMID: 35832549 PMCID: PMC9271573 DOI: 10.3389/fonc.2022.905398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
While the androgen receptor (AR) signalling is the mainstay therapeutic target for metastatic prostate cancers, these tumours will inevitably develop therapy resistance to AR pathway inhibitors suggesting that prostate tumour cells possess the capability to develop mechanisms to bypass their dependency on androgens and/or AR to survive and progress. In many studies, protein kinases such as Src are reported to promote prostate tumour progression. Specifically, the pro-oncogene tyrosine Src kinase regulates prostate cancer cell proliferation, adhesion, invasion, and metastasis. Not only can Src be activated under androgen depletion, low androgen, and supraphysiological androgen conditions, but also through crosstalk with other oncogenic pathways. Reciprocal activations between Src and AR proteins had also been reported. These findings rationalize Src inhibitors to be used to treat castrate-resistant prostate tumours. Although several Src inhibitors had advanced to clinical trials, the failure to observe patient benefits from these studies suggests that further evaluation of the roles of Src in prostate tumours is required. Here, we summarize the interplay between Src and AR signalling during castrate-resistant prostate cancer progression to provide insights on possible approaches to treat prostate cancer patients.
Collapse
Affiliation(s)
- Lin Gao
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuesen Dong
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Xuesen Dong,
| |
Collapse
|
22
|
Caputa G, Matsushita M, Sanin DE, Kabat AM, Edwards-Hicks J, Grzes KM, Pohlmeyer R, Stanczak MA, Castoldi A, Cupovic J, Forde AJ, Apostolova P, Seidl M, van Teijlingen Bakker N, Villa M, Baixauli F, Quintana A, Hackl A, Flachsmann L, Hässler F, Curtis JD, Patterson AE, Henneke P, Pearce EL, Pearce EJ. Intracellular infection and immune system cues rewire adipocytes to acquire immune function. Cell Metab 2022; 34:747-760.e6. [PMID: 35508110 DOI: 10.1016/j.cmet.2022.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/24/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
Abstract
Adipose tissue (AT) plays a central role in systemic metabolic homeostasis, but its function during bacterial infection remains unclear. Following subcutaneous bacterial infection, adipocytes surrounding draining lymph nodes initiated a transcriptional response indicative of stimulation with IFN-γ and a shift away from lipid metabolism toward an immunologic function. Natural killer (NK) and invariant NK T (iNKT) cells were identified as sources of infection-induced IFN-γ in perinodal AT (PAT). IFN-γ induced Nos2 expression in adipocytes through a process dependent on nuclear-binding oligomerization domain 1 (NOD1) sensing of live intracellular bacteria. iNOS expression was coupled to metabolic rewiring, inducing increased diversion of extracellular L-arginine through the arginosuccinate shunt and urea cycle to produce nitric oxide (NO), directly mediating bacterial clearance. In vivo, control of infection in adipocytes was dependent on adipocyte-intrinsic sensing of IFN-γ and expression of iNOS. Thus, adipocytes are licensed by innate lymphocytes to acquire anti-bacterial functions during infection.
Collapse
Affiliation(s)
- George Caputa
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Mai Matsushita
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - David E Sanin
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Agnieszka M Kabat
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Katarzyna M Grzes
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Roland Pohlmeyer
- Imaging Facility, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Michal A Stanczak
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Angela Castoldi
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jovana Cupovic
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Aaron J Forde
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Center for Chronic Immune Deficiency, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Petya Apostolova
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immune Deficiency, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Institute of Pathology, Heinrich Heine University and University Hospital of Duesseldorf, 40225 Duesseldorf, Germany
| | - Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Matteo Villa
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Francesc Baixauli
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Andrea Quintana
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Alexandra Hackl
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Lea Flachsmann
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Fabian Hässler
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jonathan D Curtis
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Annette E Patterson
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immune Deficiency, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
23
|
Kim HG, Lee C, Yoon JH, Kim JH, Cho JY. BN82002 alleviated tissue damage of septic mice by reducing inflammatory response through inhibiting AKT2/NF-κB signaling pathway. Pharmacotherapy 2022; 148:112740. [DOI: 10.1016/j.biopha.2022.112740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/20/2023]
|
24
|
Barreira-Silva P, Melo-Miranda R, Nobrega C, Roque S, Serre-Miranda C, Borges M, Armada G, de Sá Calçada D, Behar SM, Appelberg R, Correia-Neves M. IFNγ and iNOS-Mediated Alterations in the Bone Marrow and Thymus and Its Impact on Mycobacterium avium-Induced Thymic Atrophy. Front Immunol 2021; 12:696415. [PMID: 34987496 PMCID: PMC8721011 DOI: 10.3389/fimmu.2021.696415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Disseminated infection with the high virulence strain of Mycobacterium avium 25291 leads to progressive thymic atrophy. We previously showed that M. avium-induced thymic atrophy results from increased glucocorticoid levels that synergize with nitric oxide (NO) produced by interferon gamma (IFNγ) activated macrophages. Where and how these mediators act is not understood. We hypothesized that IFNγ and NO promote thymic atrophy through their effects on bone marrow (BM) T cell precursors and T cell differentiation in the thymus. We show that M. avium infection cause a reduction in the percentage and number of common lymphoid progenitors (CLP). Additionally, BM precursors from infected mice show an overall impaired ability to reconstitute thymi of RAGKO mice, in part due to IFNγ. Thymi from infected mice present an IFNγ and NO-driven inflammation. When transplanted under the kidney capsule of uninfected mice, thymi from infected mice are unable to sustain T cell differentiation. Finally, we observed increased thymocyte death via apoptosis after infection, independent of both IFNγ and iNOS; and a decrease on active caspase-3 positive thymocytes, which is not observed in the absence of iNOS expression. Together our data suggests that M. avium-induced thymic atrophy results from a combination of defects mediated by IFNγ and NO, including alterations in the BM T cell precursors, the thymic structure and the thymocyte differentiation.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| | - Rita Melo-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Claudia Nobrega
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Cláudia Serre-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Margarida Borges
- Research Unit on Applied Molecular Biosciences (UCIBIO)/Rede de Química e Tecnologia (REQUINTE), Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gisela Armada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Daniela de Sá Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Rui Appelberg
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| |
Collapse
|
25
|
Tang S, Zhang Z, Oakley RH, Li W, He W, Xu X, Ji M, Xu Q, Chen L, Wellman AS, Li Q, Li L, Li JL, Li X, Cidlowski JA, Li X. Intestinal epithelial glucocorticoid receptor promotes chronic inflammation-associated colorectal cancer. JCI Insight 2021; 6:151815. [PMID: 34784298 PMCID: PMC8783679 DOI: 10.1172/jci.insight.151815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Synthetic immunosuppressive glucocorticoids (GCs) are widely used to control inflammatory bowel disease (IBD). However, the impact of GC signaling on intestinal tumorigenesis remains controversial. Here, we report that intestinal epithelial GC receptor (GR), but not whole intestinal tissue GR, promoted chronic intestinal inflammation-associated colorectal cancer in both humans and mice. In patients with colorectal cancer, GR was enriched in intestinal epithelial cells and high epithelial cell GR levels were associated with poor prognosis. Consistently, intestinal epithelium–specific deletion of GR (GR iKO) in mice increased macrophage infiltration, improved tissue recovery, and enhanced antitumor response in a chronic inflammation–associated colorectal cancer model. Consequently, GR iKO mice developed fewer and less advanced tumors than control mice. Furthermore, oral GC administration in the early phase of tissue injury delayed recovery and accelerated the formation of aggressive colorectal cancers. Our study reveals that intestinal epithelial GR signaling repressed acute colitis but promoted chronic inflammation–associated colorectal cancer. Our study suggests that colorectal epithelial GR could serve as a predictive marker for colorectal cancer risk and prognosis. Our findings further suggest that, although synthetic GC treatment for IBD should be used with caution, there is a therapeutic window for GC therapy during colorectal cancer development in immunocompetent patients.
Collapse
Affiliation(s)
- Shuang Tang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhan Zhang
- Central for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Wenling Li
- Biostatistics and Computational Biology Branch, NIEHS/NIH, Research Triangle Park, United States of America
| | - Weijing He
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaojiang Xu
- Integrated Bioinformatics, NIEHS/NIH, Research Triangle Park, United States of America
| | - Ming Ji
- Signal Transduction Laboratory, NIEHS/NIH, Research Triangle Park, United States of America
| | - Qing Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, United States of America
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Alicia S Wellman
- Signal Transduction Laboratory, NIEHS/NIH, Research Triangle Park, United States of America
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Leping Li
- Biostatistics and Computational Biology Branch, NIEHS/NIH, Research Triangle Park, United States of America
| | - Jian-Liang Li
- NIEHS/NIH, Research Triangle Park, United States of America
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS/NIH, Research Triangle Park, United States of America
| | - Xiaoling Li
- Signal Transduction Laboratory, NIEHS/NIH, Research Triangle Park, United States of America
| |
Collapse
|
26
|
Böning MAL, Parzmair GP, Jeron A, Düsedau HP, Kershaw O, Xu B, Relja B, Schlüter D, Dunay IR, Reinhold A, Schraven B, Bruder D. Enhanced Susceptibility of ADAP-Deficient Mice to Listeria monocytogenes Infection Is Associated With an Altered Phagocyte Phenotype and Function. Front Immunol 2021; 12:724855. [PMID: 34659211 PMCID: PMC8515145 DOI: 10.3389/fimmu.2021.724855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
The adhesion and degranulation-promoting adaptor protein (ADAP) serves as a multifunctional scaffold and is involved in the formation of immune signaling complexes. To date, only limited data exist regarding the role of ADAP in pathogen-specific immunity during in vivo infection, and its contribution in phagocyte-mediated antibacterial immunity remains elusive. Here, we show that mice lacking ADAP (ADAPko) are highly susceptible to the infection with the intracellular pathogen Listeria monocytogenes (Lm) by showing enhanced immunopathology in infected tissues together with increased morbidity, mortality, and excessive infiltration of neutrophils and monocytes. Despite high phagocyte numbers in the spleen and liver, ADAPko mice only inefficiently controlled pathogen growth, hinting at a functional impairment of infection-primed phagocytes in the ADAP-deficient host. Flow cytometric analysis of hallmark pro-inflammatory mediators and unbiased whole genome transcriptional profiling of neutrophils and inflammatory monocytes uncovered broad molecular alterations in the inflammatory program in both phagocyte subsets following their activation in the ADAP-deficient host. Strikingly, ex vivo phagocytosis assay revealed impaired phagocytic capacity of neutrophils derived from Lm-infected ADAPko mice. Together, our data suggest that an alternative priming of phagocytes in ADAP-deficient mice during Lm infection induces marked alterations in the inflammatory profile of neutrophils and inflammatory monocytes that contribute to enhanced immunopathology while limiting their capacity to eliminate the pathogen and to prevent the fatal outcome of the infection.
Collapse
Affiliation(s)
- Martha A L Böning
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Gerald P Parzmair
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andreas Jeron
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Henning P Düsedau
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität, Berlin, Germany
| | - Baolin Xu
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology, Institute of Medical Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
27
|
Xie K, Wang N, Guo Y, Zhao S, Tan J, Wang L, Li G, Wu J, Yang Y, Xu W, Chen J, Jiang W, Fu P, Hao Y. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivo study. Bioact Mater 2021; 8:140-152. [PMID: 34541392 PMCID: PMC8424517 DOI: 10.1016/j.bioactmat.2021.06.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 01/05/2023] Open
Abstract
Magnesium (Mg) alloys that have both antibacterial and osteogenic properties are suitable candidates for orthopedic implants. However, the fabrication of ideal Mg implants suitable for bone repair remains challenging because it requires implants with interconnected pore structures and personalized geometric shapes. In this study, we fabricated a porous 3D-printed Mg-Nd-Zn-Zr (denoted as JDBM) implant with suitable mechanical properties using selective laser melting technology. The 3D-printed JDBM implant exhibited cytocompatibility in MC3T3-E1 and RAW267.4 cells and excellent osteoinductivity in vitro. Furthermore, the implant demonstrated excellent antibacterial ratios of 90.0% and 92.1% for methicillin-resistant S. aureus (MRSA) and Escherichia coli, respectively. The 3D-printed JDBM implant prevented MRSA-induced implant-related infection in a rabbit model and showed good in vivo biocompatibility based on the results of histological evaluation, blood tests, and Mg2+ deposition detection. In addition, enhanced inflammatory response and TNF-α secretion were observed at the bone-implant interface of the 3D-printed JDBM implants during the early implantation stage. The high Mg2+ environment produced by the degradation of 3D-printed JDBM implants could promote M1 phenotype of macrophages (Tnf, iNOS, Ccl3, Ccl4, Ccl5, Cxcl10, and Cxcl2), and enhance the phagocytic ability of macrophages. The enhanced immunoregulatory effect generated by relatively fast Mg2+ release and implant degradation during the early implantation stage is a potential antibacterial mechanism of Mg-based implant. Our findings indicate that 3D-printed porous JDBM implants, having both antibacterial property and osteoinductivity, hold potential for future orthopedic applications. Porous JDBM implants promising mechanical properties was fabricated by selective laser melting. 3D-printed JDBM implant exhibited excellent antibacterial property, osteoinductivity, and biocompatibility. Temporally enhanced immunoregulatory effect in early stage was a potential antibacterial mechanism of Mg-based implant.
Collapse
Affiliation(s)
- Kai Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Nanqing Wang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, 100044, Beijing, China
| | - Shuang Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jia Tan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lei Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guoyuan Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Junxiang Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yangzi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenyu Xu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Chen
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Penghuai Fu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
28
|
Interplay of Immunometabolism and Epithelial-Mesenchymal Transition in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22189878. [PMID: 34576042 PMCID: PMC8466075 DOI: 10.3390/ijms22189878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) and metabolic reprogramming in cancer cells are the key hallmarks of tumor metastasis. Since the relationship between the two has been well studied, researchers have gained increasing interest in the interplay of cancer cell EMT and immune metabolic changes. Whether the mutual influences between them could provide novel explanations for immune surveillance during metastasis is worth understanding. Here, we review the role of immunometabolism in the regulatory loop between tumor-infiltrating immune cells and EMT. We also discuss the challenges and perspectives of targeting immunometabolism in cancer treatment.
Collapse
|
29
|
Lopes LGF, Carvalho EM, Sousa EHS. A bioinorganic chemistry perspective on the roles of metals as drugs and targets against Mycobacterium tuberculosis - a journey of opportunities. Dalton Trans 2021; 49:15988-16003. [PMID: 32583835 DOI: 10.1039/d0dt01365j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Medicinal inorganic chemists have provided many strategies to tackle a myriad of diseases, pushing forward the frontiers of pharmacology. As an example, the fight against tuberculosis (TB), an infectious bacterial disease, has led to the development of metal-based compounds as potential drugs. This disease remains a current health issue causing over 1.4 million of deaths per year. The emergence of multi- (MDR) and extensively-drug resistant (XDR) Mycobacterium tuberculosis (Mtb) strains along with a long dormancy process, place major challenges in developing new therapeutic compounds. Isoniazid is a front-line prodrug used against TB with appealing features for coordination chemists, which have been explored in a series of cases reported here. An isoniazid iron-based compound, called IQG-607, has caught our attention, whose in vitro and in vivo studies are advanced and thoroughly discussed, along with other metal complexes. Isoniazid is inactive against dormant Mtb, a hard to eliminate state of this bacillus, found in one-fourth of the world's population and directly implicated in the lengthy treatment of TB (ca. 6 months). Thus, our understanding of this phenomenon may lead to a rational design of new drugs. Along these lines, we describe how metals as targets can cross paths with metals used as selective therapeutics, where we mainly review heme-based sensors, DevS and DosT, as a key system in the Mtb dormancy process and a current drug target. Overall, we report new opportunities for bioinorganic chemists to tackle this longstanding and current threat.
Collapse
Affiliation(s)
- Luiz G F Lopes
- Group of Bioinorganic, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil.
| | | | | |
Collapse
|
30
|
Wang L, Hou Z, Pranantyo D, Kang ET, Chan-Park M. High-Density Three-Dimensional Network of Covalently Linked Nitric Oxide Donors to Achieve Antibacterial and Antibiofilm Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33745-33755. [PMID: 34278776 DOI: 10.1021/acsami.1c00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial colonization on biomedical devices often leads to biofilms that are recalcitrant to antibiotic treatment and the leading cause of hospital-acquired infections. We have invented a novel pretreatment chemistry for device surfaces to produce a high-density three-dimensional (3-D) network of covalently linked S-nitrosothiol (RSNO), which is a nitric oxide (NO) donor. Poly(polyethylene glycol-hydroxyl-terminated) (i.e., PPEG-OH) brushes were grafted from an ozone-pretreated polyurethane (PU) surface. The high-density hydroxyl groups on the dangling PPEG-OH brushes then underwent condensation with a mercapto-silane (i.e., MPS, mercaptopropyl trimethoxysilane) followed by S-nitrosylation to produce a 3-D network of NO-releasing RSNO to form the PU/PPEG-OH-MPS-NO coating. This 3-D coating produces NO flux of up to 7 nmol/(cm2 min), which is nearly 3 orders of magnitude higher than the picomole/(cm2 min) levels of other NO-releasing biomedical implants previously reported. The covalent immobilization of RSNO avoids donor leaching and reduces the risks of cytotoxicity arising from leachable RSNO. Our coated PU surfaces display good biocompatibility and exhibit excellent antibiofilm formation activity in vitro (up to 99.99%) against a broad spectrum of Gram-positive and Gram-negative bacteria. Further, the high-density RSNO achieves nearly 99% and 99.9% in vivo reduction of Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) in a murine subcutaneous implantation infection model. Our surface chemistry to create high NO payload without NO-donor leaching can be applied to many biomedical devices.
Collapse
Affiliation(s)
- Liping Wang
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Zheng Hou
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Dicky Pranantyo
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mary Chan-Park
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
31
|
Deficiency of the novel high mobility group protein HMGXB4 protects against systemic inflammation-induced endotoxemia in mice. Proc Natl Acad Sci U S A 2021; 118:2021862118. [PMID: 33563757 DOI: 10.1073/pnas.2021862118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sepsis is a major cause of mortality in intensive care units, which results from a severely dysregulated inflammatory response that ultimately leads to organ failure. While antibiotics can help in the early stages, effective strategies to curtail inflammation remain limited. The high mobility group (HMG) proteins are chromosomal proteins with important roles in regulating gene transcription. While HMGB1 has been shown to play a role in sepsis, the role of other family members including HMGXB4 remains unknown. We found that expression of HMGXB4 is strongly induced in response to lipopolysaccharide (LPS)-elicited inflammation in murine peritoneal macrophages. Genetic deletion of Hmgxb4 protected against LPS-induced lung injury and lethality and cecal ligation and puncture (CLP)-induced lethality in mice, and attenuated LPS-induced proinflammatory gene expression in cultured macrophages. By integrating genome-wide transcriptome profiling and a publicly available ChIP-seq dataset, we identified HMGXB4 as a transcriptional activator that regulates the expression of the proinflammatory gene, Nos2 (inducible nitric oxide synthase 2) by binding to its promoter region, leading to NOS2 induction and excessive NO production and tissue damage. Similar to Hmgxb4 ablation in mice, administration of a pharmacological inhibitor of NOS2 robustly decreased LPS-induced pulmonary vascular permeability and lethality in mice. Additionally, we identified the cell adhesion molecule, ICAM1, as a target of HMGXB4 in endothelial cells that facilitates inflammation by promoting monocyte attachment. In summary, our study reveals a critical role of HMGXB4 in exacerbating endotoxemia via transcriptional induction of Nos2 and Icam1 gene expression and thus targeting HMGXB4 may be an effective therapeutic strategy for the treatment of sepsis.
Collapse
|
32
|
Duchesne C, Frescaline N, Blaise O, Lataillade JJ, Banzet S, Dussurget O, Rousseau A. Cold Atmospheric Plasma Promotes Killing of Staphylococcus aureus by Macrophages. mSphere 2021; 6:e0021721. [PMID: 34133202 PMCID: PMC8265637 DOI: 10.1128/msphere.00217-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 01/16/2023] Open
Abstract
Macrophages are important immune cells that are involved in the elimination of microbial pathogens. Following host invasion, macrophages are recruited to the site of infection, where they launch antimicrobial defense mechanisms. Effective microbial clearance by macrophages depends on phagocytosis and phagolysosomal killing mediated by oxidative burst, acidification, and degradative enzymes. However, some pathogenic microorganisms, including some drug-resistant bacteria, have evolved sophisticated mechanisms to prevent phagocytosis or escape intracellular degradation. Cold atmospheric plasma (CAP) is an emerging technology with promising bactericidal effects. Here, we investigated the effect of CAP on Staphylococcus aureus phagocytosis by RAW 264.7 macrophage-like cells. We demonstrate that CAP treatment increases intracellular concentrations of reactive oxygen species (ROS) and nitric oxide and promotes the elimination of both antibiotic-sensitive and antibiotic-resistant S. aureus by RAW 264.7 cells. This effect was inhibited by antioxidants indicating that the bactericidal effect of CAP was mediated by oxidative killing of intracellular bacteria. Furthermore, we show that CAP promotes the association of S. aureus to lysosomal-associated membrane protein 1 (LAMP-1)-positive phagosomes, in which bacteria are exposed to low pH and cathepsin D hydrolase. Taken together, our results provide the first evidence that CAP activates defense mechanisms of macrophages, ultimately leading to bacterial elimination. IMPORTANCE Staphylococcus aureus is the most frequent cause of skin and soft tissue infections. Treatment failures are increasingly common due to antibiotic resistance and the emergence of resistant strains. Macrophages participate in the first line of immune defense and are critical for coordinated defense against pathogenic bacteria. However, S. aureus has evolved sophisticated mechanisms to escape macrophage killing. In the quest to identify novel antimicrobial therapeutic approaches, we investigated the activity of cold atmospheric plasma (CAP) on macrophages infected with S. aureus. Here, we show that CAP treatment promotes macrophage ability to eliminate internalized bacteria. Importantly, CAP could trigger killing of both antibiotic-sensitive and antibiotic-resistant strains of S. aureus. While CAP did not affect the internalization capacity of macrophages, it increased oxidative-dependent bactericidal activity and promoted the formation of degradative phagosomes. Our study shows that CAP has beneficial effects on macrophage defense mechanisms and may potentially be useful in adjuvant antimicrobial therapies.
Collapse
Affiliation(s)
- Constance Duchesne
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Nadira Frescaline
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Océane Blaise
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Olivier Dussurget
- Institut Pasteur, Unité de Recherche Yersinia, Département de Microbiologie, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Antoine Rousseau
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| |
Collapse
|
33
|
Suresh V, Reddy A. Dysregulation of nitric oxide synthases during early and late pathophysiological conditions of diabetes mellitus leads to amassing of microvascular impedement. J Diabetes Metab Disord 2021; 20:989-1002. [PMID: 34178871 PMCID: PMC8212285 DOI: 10.1007/s40200-021-00799-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022]
Abstract
Diabetes is a major killer worldwide and its unprecedented rise poses a serious threat to mankind. According to recent estimation, 387 million people worldwide are affected from the disease with a prevalence rate of 8.3 and 46.3 % still remains undiagnosed. Important characteristics of diabetes are abnormalities of the physiological signalling functions of reactive oxygen species and reactive nitrogen species. Increased oxidative stress contributes to the activation of stress-sensitive intracellular signalling pathways and the development of gene products that trigger cellular damage and contribute to the vascular complications of diabetes. Growing evidence from studies into many diseases suggests that the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure are correlated with oxidative stress. This leads to cell metabolism and cell-cell homeostasis to be complexly dysregulated. This review focuses to investigate the status of oxidative stress, nitric oxide and reactive species in early and diabetes. Significance of nitric oxide synthases Evidences has accumulated indicating that the generation of reactive oxygen species (oxidative stress) may play an important role in the etiology of diabetic complications thus attention was given on the reactive oxygen and reactive nitrogen species and their potential role in pathogenesis. Additionally, the therapeutic advances in diabetes management are included. Nanotechnology, statins and stem cell technology are some techniques which can be considered to have a possible future in the treatment sector of diabetes.
Collapse
Affiliation(s)
- Varuna Suresh
- Animal Cell Culture Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kancheepuram District-603203, Kattankulathur, Tamil Nadu India
| | - Amala Reddy
- Animal Cell Culture Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kancheepuram District-603203, Kattankulathur, Tamil Nadu India
| |
Collapse
|
34
|
Li K, You T, Zhao P, Luo Y, Zhang D, Wei H, Wang Y, Yang J, Guan X, Kuang Z. Structural basis for the regulation of inducible nitric oxide synthase by the SPRY domain-containing SOCS box protein SPSB2, an E3 ubiquitin ligase. Nitric Oxide 2021; 113-114:1-6. [PMID: 33862200 DOI: 10.1016/j.niox.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/12/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Relatively high concentration of nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) in response to a variety of stimuli is a source of reactive nitrogen species, an important weapon of host innate immune defense. The SPRY domain-containing SOCS box protein 2 (SPSB2) is an E3 ubiquitin ligase that regulates the lifetime of iNOS. SPSB2 interacts with the N-terminal region of iNOS via a binding site on the SPRY domain of SPSB2, and recruits an E3 ubiquitin ligase complex to polyubiquitinate iNOS, leading to its proteasomal degradation. Although critical residues for the SPSB2-iNOS interaction have been identified, structural basis for the interaction remains to be explicitly determined. In this study, we have determined a crystal structure of the N-terminal region of iNOS in complex with the SPRY domain of SPSB2 at 1.24 Å resolution. We have resolved the roles of some flanking residues, whose contribution to the SPSB2-iNOS interaction was structurally unclear previously. Furthermore, we have evaluated the effects of SPSB2 inhibitors on NO production using transient transfection and cell-penetrating peptide approaches, and found that such inhibitors can elevate NO production in RAW264.7 macrophages. These results thus provide a useful basis for the development of potent SPSB2 inhibitors as well as recruiting ligands for proteolysis targeting chimera (PROTAC) design.
Collapse
Affiliation(s)
- Kefa Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Tingting You
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Panqi Zhao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Yanhong Luo
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Danting Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Huan Wei
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Yuhui Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Jinjin Yang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Xueyan Guan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Zhihe Kuang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China.
| |
Collapse
|
35
|
Balderrama-Gutierrez G, Milovic A, Cook VJ, Islam MN, Zhang Y, Kiaris H, Belisle JT, Mortazavi A, Barbour AG. An Infection-Tolerant Mammalian Reservoir for Several Zoonotic Agents Broadly Counters the Inflammatory Effects of Endotoxin. mBio 2021; 12:e00588-21. [PMID: 33849979 PMCID: PMC8092257 DOI: 10.1128/mbio.00588-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Animals that are competent reservoirs of zoonotic pathogens commonly suffer little morbidity from the infections. To investigate mechanisms of this tolerance of infection, we used single-dose lipopolysaccharide (LPS) as an experimental model of inflammation and compared the responses of two rodents: Peromyscus leucopus, the white-footed deermouse and reservoir for the agents of Lyme disease and other zoonoses, and the house mouse Mus musculus Four hours after injection with LPS or saline, blood, spleen, and liver samples were collected and subjected to transcriptome sequencing (RNA-seq), metabolomics, and specific reverse transcriptase quantitative PCR (RT-qPCR). Differential expression analysis was at the gene, pathway, and network levels. LPS-treated deermice showed signs of sickness similar to those of exposed mice and had similar increases in corticosterone levels and expression of interleukin 6 (IL-6), tumor necrosis factor, IL-1β, and C-reactive protein. By network analysis, the M. musculus response to LPS was characterized as cytokine associated, while the P. leucopus response was dominated by neutrophil activity terms. In addition, dichotomies in the expression levels of arginase 1 and nitric oxide synthase 2 and of IL-10 and IL-12 were consistent with type M1 macrophage responses in mice and type M2 responses in deermice. Analysis of metabolites in plasma and RNA in organs revealed species differences in tryptophan metabolism. Two genes in particular signified the different phenotypes of deermice and mice: the Slpi and Ibsp genes. Key RNA-seq findings for P. leucopus were replicated in older animals, in a systemic bacterial infection, and with cultivated fibroblasts. The findings indicate that P. leucopus possesses several adaptive traits to moderate inflammation in its balancing of infection resistance and tolerance.IMPORTANCE Animals that are natural carriers of pathogens that cause human diseases commonly manifest little or no sickness as a consequence of infection. Examples include the deermouse, Peromyscus leucopus, which is a reservoir for Lyme disease and several other disease agents in North America, and some types of bats, which are carriers of viruses with pathogenicity for humans. Mechanisms of this phenomenon of infection tolerance and entailed trade-off costs are poorly understood. Using a single injection of lipopolysaccharide (LPS) endotoxin as a proxy for infection, we found that deermice differed from the mouse (Mus musculus) in responses to LPS in several diverse pathways, including innate immunity, oxidative stress, and metabolism. Features distinguishing the deermice cumulatively would moderate downstream ill effects of LPS. Insights gained from the P. leucopus model in the laboratory have implications for studying infection tolerance in other important reservoir species, including bats and other types of wildlife.
Collapse
Affiliation(s)
- Gabriela Balderrama-Gutierrez
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Ana Milovic
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Vanessa J Cook
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - M Nurul Islam
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Youwen Zhang
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Hippokratis Kiaris
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, South Carolina, USA
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, USA
| | - John T Belisle
- Department of Microbiology, Immunology, & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Alan G Barbour
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, USA
- Department of Ecology & Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| |
Collapse
|
36
|
Kobayashi S, Homma T, Fujii J. Nitric oxide produced by NOS2 copes with the cytotoxic effects of superoxide in macrophages. Biochem Biophys Rep 2021; 26:100942. [PMID: 33665378 PMCID: PMC7905073 DOI: 10.1016/j.bbrep.2021.100942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/10/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) reacts with superoxide to produce peroxynitrite, a potent oxidant and reportedly exerts cytotoxic action. Herein we validated the hypothesis that interaction of NO with superoxide exerts protection against superoxide toxicity using macrophages from mice with a knockout (KO) of inducible NO synthase (NOS2) and superoxide dismutase 1 (SOD1), either individually or both. While no difference was observed in viability between wild-type (WT) and NOS2KO macrophages, SOD1KO and SOD1-and NOS2-double knockout (DKO) macrophages were clearly vulnerable and cell death was observed within four days. A lipopolysaccharide (LPS) treatment induced the formation of NOS2, which resulted in NO production in WT and these levels were even higher in SOD1KO macrophages. The viability of the DKO macrophages but not SOD1KO macrophages were decreased by the LPS treatment. Supplementation of NOC18, a NO donor, improved the viability of SOD1KO and DKO macrophages both with and without the LPS treatment. The NOS2 inhibitor nitro-l-arginine methyl ester consistently decreased the viability of LPS-treated SOD1KO macrophages but not WT macrophages. Thus, in spite of the consequent production of peroxynitrite in LPS-stimulated macrophages, the coordinated elevation of NO appears to exert anti-oxidative affects by coping with superoxide cytotoxicity upon conditions of inflammatory stimuli.
Collapse
Affiliation(s)
- Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City, Yamagata, 990-9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City, Yamagata, 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City, Yamagata, 990-9585, Japan
| |
Collapse
|
37
|
Kumar S, Gupta E, Gupta N, Kaushik S, Srivastava VK, Kumar S, Mehta S, Jyoti A. Functional role of iNOS-Rac2 interaction in neutrophil extracellular traps (NETs) induced cytotoxicity in sepsis. Clin Chim Acta 2021; 513:43-49. [PMID: 33309799 DOI: 10.1016/j.cca.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/01/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Recent reports from this lab have demonstrated a higher incidence of NETs, nitrosative, as well as oxidative stress, and have a direct correlation with the severity of sepsis and organ damage. However, the mechanistic perspective of NETs induced organ damage has not been understood at the cellular and molecular level. Interaction of inducible nitric oxide synthase (iNOS) with Rac2 in regulating reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation and its implications in microbial killing has been reported. This study was, therefore, undertaken in neutrophils of sepsis patients to investigate the functional importance of iNOS-Rac2 interaction in ROS/ RNS, peroxynitrite generation, NETs generation, and NETs mediated cell death. METHODS The study was conducted on 100 patients with sepsis and 50 healthy volunteers. Interaction between iNOS and Rac2 was performed using co-immunoprecipitation and co-immunolabeling assay. Free radicals involving ROS and RNS were evaluated using cytochrome c reduction assay. NETs formation was evaluated by fluorescence microscopy. The cytotoxic effect of NETs was assessed on lung carcinoma cell line (A549) using colorimetric Alamar blue assay. RESULTS Enhanced interaction between iNOS and Rac2 was found in sepsis neutrophils in comparison with control. This was accompanied by an increased level of superoxide (O2.-), nitric oxide (NO), and peroxynitrite (ONOO-) which were decreased in the presence of NAC, DPI, and 1400 W, signifying the role of iNOS-Rac2 interaction. Enhanced NETs release from activated sepsis neutrophils were abrogated in the presence of DPI. NETs from sepsis neutrophils exert a cytotoxic effect on lung epithelial cells (A549) in a concentration-dependent manner. CONCLUSION Our findings exhibit the functional role of iNOS-Rac2 interaction in ROS/RNS, peroxynitrite generation, NETs generation, and NETs mediated cell death.
Collapse
Affiliation(s)
- S Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - E Gupta
- Amity Institute of Biotechnology, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - N Gupta
- Department of Biotechnology, IIS (deemed to be University), Gurukul Marg, SFS, Mansarovar, Jaipur, India
| | - S Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - V K Srivastava
- Amity Institute of Biotechnology, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - S Kumar
- Amity School of Architecture and Planning, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - S Mehta
- Department of Medicine, SMS Medical College & Attached Hospitals, J.L.N. Marg, Jaipur, Rajasthan, India
| | - A Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India.
| |
Collapse
|
38
|
Naïli I, Gardette M, Garrivier A, Daniel J, Desvaux M, Pizza M, Gobert A, Marchal T, Loukiadis E, Jubelin G. Interplay between enterohaemorrhagic Escherichia coli and nitric oxide during the infectious process. Emerg Microbes Infect 2021; 9:1065-1076. [PMID: 32459575 PMCID: PMC7336997 DOI: 10.1080/22221751.2020.1768804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are bacterial pathogens responsible for life-threatening diseases in humans such as bloody diarrhoea and the hemolytic and uremic syndrome. To date, no specific therapy is available and treatments remain essentially symptomatic. In recent years, we demonstrated in vitro that nitric oxide (NO), a major mediator of the intestinal immune response, strongly represses the synthesis of the two cardinal virulence factors in EHEC, namely Shiga toxins (Stx) and the type III secretion system, suggesting NO has a great potential to protect against EHEC infection. In this study, we investigated the interplay between NO and EHEC in vivo using mouse models of infection. Using a NO-sensing reporter strain, we determined that EHEC sense NO in the gut of infected mice. Treatment of infected mice with a specific NOS inhibitor increased EHEC adhesion to the colonic mucosa but unexpectedly decreased Stx activity in the gastrointestinal tract, protecting mice from renal failure. Taken together, our data indicate that NO can have both beneficial and detrimental consequences on the outcome of an EHEC infection, and underline the importance of in vivo studies to increase our knowledge in host–pathogen interactions.
Collapse
Affiliation(s)
- Ilham Naïli
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Siena, Italy
| | - Marion Gardette
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Université de Lyon, CNRS, INRAE, Université Claude Bernard Lyon 1, VetAgro Sup, Laboratoire d'Ecologie Microbienne, F-63280 Marcy l'Etoile, France
| | - Annie Garrivier
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Julien Daniel
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | | | - Alain Gobert
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Thierry Marchal
- VetAgro Sup, Laboratoire vétérinaire d'histopathologie, F-63280 Marcy-l'Etoile, France
| | - Estelle Loukiadis
- Université de Lyon, CNRS, INRAE, Université Claude Bernard Lyon 1, VetAgro Sup, Laboratoire d'Ecologie Microbienne, F-63280 Marcy l'Etoile, France.,VetAgro Sup, Laboratoire national de référence des E. coli, F-63280 Marcy-l'Etoile, France
| | - Grégory Jubelin
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
39
|
Maietta V, Reyes-García J, Yadav VR, Zheng YM, Peng X, Wang YX. Cellular and Molecular Processes in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:21-38. [PMID: 34019261 DOI: 10.1007/978-3-030-68748-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) is a progressive lung disease characterized by persistent pulmonary vasoconstriction. Another well-recognized characteristic of PH is the muscularization of peripheral pulmonary arteries. This pulmonary vasoremodeling manifests in medial hypertrophy/hyperplasia of smooth muscle cells (SMCs) with possible neointimal formation. The underlying molecular processes for these two major vascular responses remain not fully understood. On the other hand, a series of very recent studies have shown that the increased reactive oxygen species (ROS) seems to be an important player in mediating pulmonary vasoconstriction and vasoremodeling, thereby leading to PH. Mitochondria are a primary site for ROS production in pulmonary artery (PA) SMCs, which subsequently activate NADPH oxidase to induce further ROS generation, i.e., ROS-induced ROS generation. ROS control the activity of multiple ion channels to induce intracellular Ca2+ release and extracellular Ca2+ influx (ROS-induced Ca2+ release and influx) to cause PH. ROS and Ca2+ signaling may synergistically trigger an inflammatory cascade to implicate in PH. Accordingly, this paper explores the important roles of ROS, Ca2+, and inflammatory signaling in the development of PH, including their reciprocal interactions, key molecules, and possible therapeutic targets.
Collapse
Affiliation(s)
- Vic Maietta
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jorge Reyes-García
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.,Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vishal R Yadav
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX, USA.
| | - Yong-Xiao Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
40
|
Miyajima M. Amino acids: key sources for immunometabolites and immunotransmitters. Int Immunol 2020; 32:435-446. [PMID: 32383454 DOI: 10.1093/intimm/dxaa019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Immune-cell activation and functional plasticity are closely linked to metabolic reprogramming that is required to supply the energy and substrates for such dynamic transformations. During such processes, immune cells metabolize many kinds of molecules including nucleic acids, sugars and lipids, which is called immunometabolism. This review will mainly focus on amino acids and their derivatives among such metabolites and describe the functions of these molecules in the immune system. Although amino acids are essential for, and well known as, substrates for protein synthesis, they are also metabolized as energy sources and as substrates for functional catabolites. For example, glutamine is metabolized to produce energy through glutaminolysis and tryptophan is consumed to supply nicotinamide adenine dinucleotide, whereas arginine is metabolized to produce nitric acid and polyamine by nitric oxide synthase and arginase, respectively. In addition, serine is catabolized to produce nucleotides and to induce methylation reactions. Furthermore, in addition to their intracellular functions, amino acids and their derivatives are secreted and have extracellular functions as immunotransmitters. Many amino acids and their derivatives have been classified as neurotransmitters and their functions are clear as transmitters between nerve cells, or between nerve cells and immune cells, functioning as immunotransmitters. Thus, this review will describe the intracellular and external functions of amino acid from the perspective of immunometabolism and immunotransmission.
Collapse
Affiliation(s)
- Michio Miyajima
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
41
|
Ritter K, Sodenkamp JC, Hölscher A, Behrends J, Hölscher C. IL-6 is not Absolutely Essential for the Development of a TH17 Immune Response after an Aerosol Infection with Mycobacterium Tuberculosis H37rv. Cells 2020; 10:cells10010009. [PMID: 33375150 PMCID: PMC7822128 DOI: 10.3390/cells10010009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Anti-inflammatory treatment of chronic inflammatory diseases often increases susceptibility to infectious diseases such as tuberculosis (TB). Since numerous chronic inflammatory and autoimmune diseases are mediated by interleukin (IL)-6-induced T helper (TH) 17 cells, a TH17-directed anti-inflammatory therapy may be preferable to an IL-12-dependent TH1 inhibition in order to avoid reactivation of latent infections. To assess, however, the risk of inhibition of IL-6-dependent TH17-mediated inflammation, we examined the TH17 immune response and the course of experimental TB in IL-6- and T-cell-specific gp130-deficient mice. Our study revealed that the absence of IL-6 or gp130 on T cells has only a minor effect on the development of antigen-specific TH1 and TH17 cells. Importantly, these gene-deficient mice were as capable as wild type mice to control mycobacterial infection. Together, in contrast to its key function for TH17 development in other inflammatory diseases, IL-6 plays an inferior role for the generation of TH17 immune responses during experimental TB.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.C.S.); (A.H.)
| | - Jan Christian Sodenkamp
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.C.S.); (A.H.)
| | - Alexandra Hölscher
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.C.S.); (A.H.)
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Centre Borstel, D-23845 Borstel, Germany;
| | - Christoph Hölscher
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.C.S.); (A.H.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, D-23845 Borstel, Germany
- Correspondence:
| |
Collapse
|
42
|
Al-Shehri SS. Reactive oxygen and nitrogen species and innate immune response. Biochimie 2020; 181:52-64. [PMID: 33278558 DOI: 10.1016/j.biochi.2020.11.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022]
Abstract
The innate immune system is the first line of defense against pathogens and is characterized by its fast but nonspecific response. One important mechanism of this system is the production of the biocidal reactive oxygen and nitrogen species, which are widely distributed within biological systems, including phagocytes and secretions. Reactive oxygen and nitrogen species are short-lived intermediates that are biochemically synthesized by various enzymatic reactions in aerobic organisms and are regulated by antioxidants. The physiological levels of reactive species play important roles in cellular signaling and proliferation. However, higher concentrations and prolonged exposure can fight infections by damaging important microbial biomolecules. One feature of the reactive species generation system is the interaction between its components to produce more biocidal agents. For example, the phagocytic NADPH oxidase complex generates superoxide, which functions as a precursor for antimicrobial hydrogen peroxide synthesis. Peroxide is then used by myeloperoxidase in the same cells to generate hypochlorous acid, a highly microbicidal agent. Studies on animal models and microorganisms have shown that deficiency of these antimicrobial agents is associated with severe recurrent infections and immunocompromised diseases, such as chronic granulomatous disease. There is accumulating evidence that reactive species have important positive aspects on human health and immunity; however, some important promising features of this system remain obscure.
Collapse
Affiliation(s)
- Saad S Al-Shehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
43
|
Louie A, Bhandula V, Portnoy DA. Secretion of c-di-AMP by Listeria monocytogenes Leads to a STING-Dependent Antibacterial Response during Enterocolitis. Infect Immun 2020; 88:e00407-20. [PMID: 33020211 PMCID: PMC7671888 DOI: 10.1128/iai.00407-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/27/2020] [Indexed: 12/24/2022] Open
Abstract
Stimulator of interferon genes (STING) acts as a cytoplasmic signaling hub of innate immunity that is activated by host-derived or bacterially derived cyclic dinucleotides. Listeria monocytogenes is a foodborne, facultative intracellular pathogen that secretes c-di-AMP and activates STING, yet the in vivo role of the STING pathway during bacterial pathogenesis remains unclear. In this study, we found that STING-deficient mice had increased weight loss and roughly 10-fold-increased systemic bacterial burden during L. monocytogenes-induced enterocolitis. Infection with a L. monocytogenes mutant impaired in c-di-AMP secretion failed to elicit a protective response, whereas a mutant with increased c-di-AMP secretion triggered enhanced protection. Type I interferon (IFN) is a major output of STING signaling; however, disrupting IFN signaling during L. monocytogenes-induced enterocolitis did not recapitulate STING deficiency. In the absence of STING, the intestinal immune response was associated with a reduced influx of inflammatory monocytes. These studies suggest that in barrier sites such as the intestinal tract, where pathogen-associated molecular patterns are abundant, cytosolic surveillance systems such as STING are well positioned to detect pathogenic bacteria.
Collapse
Affiliation(s)
- Alexander Louie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Varaang Bhandula
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
44
|
Ojo BA, Lu P, Alake SE, Keirns B, Anderson K, Gallucci G, Hart MD, El-Rassi GD, Ritchey JW, Chowanadisai W, Lin D, Clarke S, Smith BJ, Lucas EA. Pinto beans modulate the gut microbiome, augment MHC II protein, and antimicrobial peptide gene expression in mice fed a normal or western-style diet. J Nutr Biochem 2020; 88:108543. [PMID: 33144228 DOI: 10.1016/j.jnutbio.2020.108543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
The onset of type 2 diabetes in obesity is associated with gut dysbiosis and a failure to confine commensal bacteria and toxins to the gut lumen while prebiotics may prevent these effects. This study evaluated the effects of pinto beans (PB) supplementation on cecal bacteria, short-chain fatty acids (SCFAs), distal ileal antigen presentation marker (major histocompatibility complex [MHC] II) and antimicrobial peptide genes during short-term high-fat, high sucrose (HFS) feeding. Six-week-old, male C57BL/6J mice were randomly assigned to four groups (n=12/group), and fed a control (C) or HFS diet with or without cooked PB (10%, wt/wt) for 30 days. Supplemental PB in both the C and HFS diets decreased the abundance of Tenericutes and the sulfate-reducing bacteria Bilophila. In contrast, PB raised the abundance of taxa within the SCFAs-producing family, Lachnospiraceae, compared to groups without PB. Consequently, fecal butyric acid was significantly higher in PB-supplemented groups compared to C and HFS groups. PB reversed the HFS-induced ablation of the distal ileal STAT3 phosphorylation, and up-regulated antimicrobial peptide genes (Reg3γ and Reg3β). Furthermore, the expression of MHC II protein was elevated in the PB supplemented groups compared to C and HFS. Tenericutes and Bilophilia negatively correlated with activated STAT3 and MHC II proteins. Finally, supplemental PB improved fasting blood glucose, glucose tolerance and suppressed TNFα and inducible nitric oxide synthase mRNA in the visceral adipose tissue. Put together, the beneficial impact of PB supplementation on the gut may be central to its potential to protect against diet-induced inflammation and impaired glucose tolerance.
Collapse
Affiliation(s)
- Babajide A Ojo
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Peiran Lu
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Sanmi E Alake
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Bryant Keirns
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Kendall Anderson
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Grace Gallucci
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Matthew D Hart
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Guadalupe Davila El-Rassi
- Robert M Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jerry W Ritchey
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Winyoo Chowanadisai
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Dingbo Lin
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Stephen Clarke
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
45
|
Yousuf S, Karlinsey JE, Neville SL, McDevitt CA, Libby SJ, Fang FC, Frawley ER. Manganese import protects Salmonella enterica serovar Typhimurium against nitrosative stress. Metallomics 2020; 12:1791-1801. [PMID: 33078811 DOI: 10.1039/d0mt00178c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nitric oxide (NO˙) is a radical molecule produced by mammalian phagocytic cells as part of the innate immune response to bacterial pathogens. It exerts its antimicrobial activity in part by impairing the function of metalloproteins, particularly those containing iron and zinc cofactors. The pathogenic Gram-negative bacterium Salmonella enterica serovar typhimurium undergoes dynamic changes in its cellular content of the four most common metal cofactors following exposure to NO˙ stress. Zinc, iron and magnesium all decrease in response to NO˙ while cellular manganese increases significantly. Manganese acquisition is driven primarily by increased expression of the mntH and sitABCD transporters following derepression of MntR and Fur. ZupT also contributes to manganese acquisition in response to nitrosative stress. S. Typhimurium mutants lacking manganese importers are more sensitive to NO˙, indicating that manganese is important for resistance to nitrosative stress.
Collapse
Affiliation(s)
- Shehla Yousuf
- Rhodes College Biology Department, 2000 North Parkway, Memphis, TN 38112, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Lebonville CL, Paniccia JE, Parekh SV, Wangler LM, Jones ME, Fuchs RA, Lysle DT. Expression of a heroin contextually conditioned immune effect in male rats requires CaMKIIα-expressing neurons in dorsal, but not ventral, subiculum and hippocampal CA1. Brain Behav Immun 2020; 89:414-422. [PMID: 32717403 PMCID: PMC7572614 DOI: 10.1016/j.bbi.2020.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
The physiological and motivational effects of heroin and other abused drugs become associated with environmental (contextual) stimuli during repeated drug use. As a result, these contextual stimuli gain the ability to elicit drug-like conditioned effects. For example, after context-heroin pairings, exposure to the heroin-paired context alone produces similar effects on peripheral immune function as heroin itself. Conditioned immune effects can significantly exacerbate the adverse health consequences of heroin use. Our laboratory has shown that exposure to a heroin-paired context suppresses lipopolysaccharide (LPS)-induced splenic nitric oxide (NO) production in male rats, and this effect is mediated in part by the dorsal hippocampus (dHpc). However, specific dHpc output regions, whose efferents might mediate conditioned immune effects, have not been identified, nor has the contribution of ventral hippocampus (vHpc) been investigated. Here, we evaluated the role of CaMKIIα-expressing neurons in the dHpc and vHpc main output regions by expressing Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) under a CaMKIIα promoter in the dorsal subiculum and CA1 (dSub, dCA1) or ventral subiculum and CA1 (vSub, vCA1). After context-heroin conditioning, clozapine-N-oxide (CNO, DREADD agonist) or vehicle was administered systemically prior to heroin-paired context (or home-cage control) exposure and LPS immune challenge. Chemogenetic inhibition of CaMKIIα-expressing neurons in dHpc, but not vHpc, output regions attenuated the expression of conditioned splenic NO suppression. These results establish that the main dHpc output regions, the dSub and dCA1, are critical for this context-heroin conditioned immune effect.
Collapse
Affiliation(s)
- Christina L. Lebonville
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Jacqueline E. Paniccia
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Shveta V. Parekh
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Lynde M. Wangler
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Meghan E. Jones
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Rita A. Fuchs
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, P.O. Box 647620, Pullman, WA, 99164-7620, USA
| | - Donald T. Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA,Corresponding Author: , Telephone: +1-919-962-3088, Fax: +1-919-962-2537
| |
Collapse
|
47
|
Costa MO, Harding JCS. Swine dysentery disease mechanism: Brachyspira hampsonii impairs the colonic immune and epithelial repair responses to induce lesions. Microb Pathog 2020; 148:104470. [PMID: 32889046 DOI: 10.1016/j.micpath.2020.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Swine dysentery (SD) is a global, production-limiting disease of pigs in commercial farms. It is associated with infection by Brachyspira hyodysenteriae and B. hampsonii, and characterized by mucohaemorrhagic diarrhea and colitis, SD prevention, treatment or control relies heavily on antimicrobials as no commercial vaccines are available. This is linked to our poor understanding of the disease pathogenesis. Our goal was to characterize the host-pathogen interactions during the early stage of infection. We employed dual RNA-seq to profile mRNA and miRNA following 1-h incubation of colonic explants with a pathogenic or a non-pathogenic B. hampsonii strain. Our results suggest that the pathogenic strain more efficiently interfered with the host's ability to activate and build a humoral response (through IL-4/CCR6/KLHL6 interactions), epithelial wound repair mechanisms (associated with LSECtin impairment of macrophages), induced mitochondrial dysfunction (linked to MDR1), and loss of microbiome homeostasis. The pathogenic strain also up-regulated the expression of stress-associated genes, when compared to the non-pathogenic strain. These results shed a light on the pathophysiological mechanisms that lead to SD and will contribute to the development of novel disease control tools.
Collapse
Affiliation(s)
- Matheus O Costa
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK. Canada; Department of Population Health, Faculty of Veterinary Medicine, Utrecht University. Utrecht, the Netherlands.
| | - John C S Harding
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK. Canada
| |
Collapse
|
48
|
Wang Y, Wang K, Fu J. HDAC6 Mediates Macrophage iNOS Expression and Excessive Nitric Oxide Production in the Blood During Endotoxemia. Front Immunol 2020; 11:1893. [PMID: 32973784 PMCID: PMC7468378 DOI: 10.3389/fimmu.2020.01893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
Excessive nitric oxide (NO) production and NO-mediated nitrative stress contribute to vascular dysfunction, inflammation, and tissue injury in septic shock. New therapeutic targets are urgently needed to provide better control of NO level during septic shock. In the present study, we investigated the role of HDAC6 in the regulation of NO production and nitrative stress in a mouse model of endotoxin-induced septic shock. HDAC6 deficient mice and a specific HDAC6 inhibitor were utilized in our studies. Our data clearly indicate that HDAC6 is an important mediator of NO production in macrophages. HDAC6 mediates NO production through the regulation of iNOS expression in macrophages. HDAC6 up-regulates iNOS expression in macrophages by modulating STAT1 activation and IRF-1 expression. HDAC6 inhibition potently blocked endotoxin-induced STAT1 activation and iNOS expression in macrophages. Furthermore, HDAC6 contributes to excessive NO production and nitrotyrosine level in the blood and promotes iNOS expression in the lung tissues during septic shock. Our data reveal a novel HDAC6/STAT1/iNOS pathway that mediates excessive NO production and nitrative stress in septic shock.
Collapse
Affiliation(s)
- Yan Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Fu
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
49
|
Du Q, Luo J, Yang MQ, Liu Q, Heres C, Yan YH, Stolz D, Geller DA. iNOS/NO is required for IRF1 activation in response to liver ischemia-reperfusion in mice. Mol Med 2020; 26:56. [PMID: 32517688 PMCID: PMC7285570 DOI: 10.1186/s10020-020-00182-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background Ischemia and reperfusion (I/R) induces cytokines, and up-regulates inducible nitric oxide synthase (iNOS), interferon regulatory factor-1(IRF1) and p53 up-regulated modulator of apoptosis (PUMA), which contribute to cell death and tissue injury. However, the mechanisms that I/R induces IRF1-PUMA through iNOS/NO is still unknown. Methods Ischemia was induced by occluding structures in the portal triad (hepatic artery, portal vein, and bile duct) to the left and median liver lobes for 60 min, and reperfusion was initiated by removal of the clamp. Induction of iNOS, IRF1 and PUMA in response to I/R were analyzed. I/R induced IRF1 and PUMA expression were compared between iNOS wild-type and iNOS knockout (KO) mice. Human iNOS gene transfected-cells were used to determine iNOS/NO signals targeting IRF1. To test whether HDAC2 was involved in the mediation of iNOS/NO-induced IRF1 transcriptional activities and its target gene (PUMA and p21) expression, NO donors were used in vitro and in vivo. Results IRF1 nuclear translocation and PUMA transcription elevation were markedly induced following I/R in the liver of iNOS wild-type mice compared with that in knock-out mice. Furthermore, I/R induced hepatic HDAC2 expression and activation, and decreased H3AcK9 expression in iNOS wild-type mice, but not in the knock-out mice. Mechanistically, over-expression of human iNOS gene increased IRF1 transcriptional activity and PUMA expression, while iNOS inhibitor L-NIL reversed these effects. Cytokine-induced PUMA through IRF1 was p53 dependent. IRF1 and p53 synergistically up-regulated PUMA expression. iNOS/NO-induced HDAC2 mediated histone H3 deacetylation and promoted IRF1 transcriptional activity. Moreover, treating the cells with romidepsin, an HDAC1/2 inhibitor decreased NO-induced IRF1 and PUMA expression. Conclusions This study demonstrates a novel mechanism that iNOS/NO is required for IRF1/PUMA signaling through a positive-feedback loop between iNOS and IRF1, in which HDAC2-mediated histone modification is involved to up-regulate IRF1 in response to I/R in mice.
Collapse
Affiliation(s)
- Qiang Du
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Jing Luo
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Department of Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan, People's Republic of China, 410011
| | - Mu-Qing Yang
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Department of Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Quan Liu
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.,Southern University of Science and Technology, School of Medicine, 1088 Xueyuan Blvd. , Nanshan District, Shenzhen, Guangdong, People's Republic of China, 518055
| | - Caroline Heres
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Yi-He Yan
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA
| | - Donna Stolz
- Department of Cellular Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David A Geller
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
50
|
Lee DJ, Yip J, Lee JM. Nasal nitric oxide as a long-term monitoring and prognostic biomarker of mucosal health in chronic rhinosinusitis. Int Forum Allergy Rhinol 2020; 10:971-977. [PMID: 32279461 DOI: 10.1002/alr.22581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Nasal nitric oxide (nNO) is a potential biomarker of chronic rhinosinusitis (CRS), and correlates well with endoscopic and radiologic severity of disease. However, the long-term profile of nNO as a biomarker is not established in the literature. The objectives of our study were to examine whether nNO can maintain this correlation in a 5-year follow-up after endoscopic sinus surgery (ESS) and to investigate whether nNO value can be used to prognosticate revision rates in patients with CRS. METHODS We enrolled CRS patients 5 years after initial ESS at our institution. Patients underwent initial ESS at our institution between January 2013 and January 2015. Patients prospectively had the following measurements at baseline, 1 month, 6 months, and 5 years post-ESS: nNO levels, Lund-Kennedy Endoscopy Score (LKES), and 22-item Sino-Nasal Outcome Test-22 (SNOT-22) score. We also compared the nNO levels between patients who underwent revision ESS and those who did not. RESULTS There were 32 patients included in the study with 8 patients undergoing revision ESS during the 5-year follow-up. nNO levels were elevated at 1 month, 6 months, and 5 years post-ESS compared to baseline. A significant negative correlation between nNO and LKES was found at 5 years post-ESS. nNO levels were significantly reduced at baseline and 6 months post-ESS in the revision cohort compared to the nonrevision cohort despite having comparable radiologic severity. CONCLUSION nNO may serve as a noninvasive long-term biomarker to monitor sinus disease severity and to prognosticate results in patients with CRS. This has implications for potential integration into clinical practice.
Collapse
Affiliation(s)
- Daniel J Lee
- Division of Rhinology, Department of Otolaryngology-Head & Neck Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Jonathan Yip
- Division of Rhinology, Department of Otolaryngology-Head & Neck Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - John M Lee
- Division of Rhinology, Department of Otolaryngology-Head & Neck Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|