1
|
Rümke LW, Davies MA, Vestjens SMT, van der Putten BCL, Bril-Keijzers WCM, van Houten MA, Rots NY, Wijmenga-Monsuur AJ, van der Ende A, de Gier B, Vlaminckx BJM, van Sorge NM. Nationwide upsurge in invasive disease in the context of longitudinal surveillance of carriage and invasive Streptococcus pyogenes 2009-2023, the Netherlands: a molecular epidemiological study. J Clin Microbiol 2024; 62:e0076624. [PMID: 39194268 PMCID: PMC11481533 DOI: 10.1128/jcm.00766-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Since 2022, many countries have reported an upsurge in invasive group A streptococcal (iGAS) infections. We explored whether changes in Streptococcus pyogenes carriage rates or emergence of strains with potentially altered virulence, such as emm1 variants M1UK and M1DK, contributed to the 2022/2023 surge in the Netherlands. We determined emm (sub)type distribution for 2,698 invasive and 351 S. pyogenes carriage isolates collected between January 2009 and March 2023. Genetic evolution of emm1 was analyzed by whole-genome sequencing of 497 emm1 isolates. The nationwide iGAS upsurge coincided with a sharp increase of emm1.0 from 18% (18/100) of invasive isolates in Q1 2022 to 58% (388/670) in Q1 2023 (Fisher's exact test, P < 0.0001). M1UK became dominant among invasive emm1 isolates in 2016 and further expanded from 72% in Q1 2022 to 96% in Q1 2023. Phylogenetic comparison revealed evolution and clonal expansion of four new M1UK clades in 2022/2023. DNase Spd1 and superantigen SpeC were acquired in 9% (46/497) of emm1 isolates. S. pyogenes carriage rates and emm1 proportions in carriage isolates remained stable during this surge, and the expansion of M1UK in iGAS was not reflected in carriage isolates. During the 2022/2023 iGAS surge in the Netherlands, expansion of four new M1UK clades was observed among invasive isolates, but not carriage isolates, suggesting increased virulence and fitness of M1UK compared to contemporary M1 strains. The emergence of more virulent clades has important implications for public health strategies such as antibiotic prophylaxis for close contacts of iGAS patients.IMPORTANCEThis study describes the molecular epidemiology of invasive group A streptococcal (iGAS) infections in the Netherlands based on >3,000 Streptococcus pyogenes isolates from both asymptomatic carriers and iGAS patients collected before, during, and after the COVID-19 pandemic period (2009-2023) and is the first to assess whether changes in carriage rates or carried emm types contributed to the alarming post-COVID-19 upsurge in iGAS infections. We show that the 2022/2023 iGAS surge coincided with a sharp increase of emm1, particularly the toxicogenic M1UK variant, in invasive isolates, but not in carriage isolates. These findings suggest that increased virulence and fitness of M1UK likely contributes to an increased dissemination between hosts. The emergence of a more virulent and fit lineage has important implications for iGAS control interventions such as antibiotic prophylaxis for close contacts of iGAS patients and calls for a reappraisal of iGAS control interventions and guidelines.
Collapse
Affiliation(s)
- Lidewij W. Rümke
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Matthew A. Davies
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Stefan M. T. Vestjens
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, the Netherlands
- Department of Medical Microbiology and Immunology, Diakonessenhuis, Utrecht, the Netherlands
| | | | - Wendy C. M. Bril-Keijzers
- Netherlands Reference Laboratory for Bacterial Meningitis (NRLBM), Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | | | - Nynke Y. Rots
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Brechje de Gier
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Bart J. M. Vlaminckx
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Nina M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis (NRLBM), Amsterdam UMC location AMC, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Troese MJ, Burlet E, Cunningham MW, Alvarez K, Bentley R, Thomas N, Carwell S, Morefield GL. Group A Streptococcus Vaccine Targeting the Erythrogenic Toxins SpeA and SpeB Is Safe and Immunogenic in Rabbits and Does Not Induce Antibodies Associated with Autoimmunity. Vaccines (Basel) 2023; 11:1504. [PMID: 37766180 PMCID: PMC10534881 DOI: 10.3390/vaccines11091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Group A streptococcus (GAS) is a global pathogen associated with significant morbidity and mortality for which there is currently no licensed vaccine. Vaccine development has been slow, mostly due to safety concerns regarding streptococcal antigens associated with autoimmunity and related complications. For a GAS vaccine to be safe, it must be ensured that the antigens used in the vaccine do not elicit an antibody response that can cross-react with host tissues. In this study, we evaluated the safety of our GAS vaccine candidate called VaxiStrep in New Zealand White rabbits. VaxiStrep is a recombinant fusion protein comprised of streptococcal pyrogenic exotoxin A (SpeA) and exotoxin B (SpeB), also known as erythrogenic toxins, adsorbed to an aluminum adjuvant. The vaccine elicited a robust immune response against the two toxins in the rabbits without any adverse events or toxicity. No signs of autoimmune pathology were detected in the rabbits' brains, hearts, and kidneys via immunohistochemistry, and serum antibodies did not cross-react with cardiac or neuronal tissue proteins associated with rheumatic heart disease or Sydenham chorea (SC). This study further confirms that VaxiStrep does not elicit autoantibodies and is safe to be tested in a first-in-human trial.
Collapse
Affiliation(s)
| | | | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathy Alvarez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecca Bentley
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
3
|
Davies MR, Keller N, Brouwer S, Jespersen MG, Cork AJ, Hayes AJ, Pitt ME, De Oliveira DMP, Harbison-Price N, Bertolla OM, Mediati DG, Curren BF, Taiaroa G, Lacey JA, Smith HV, Fang NX, Coin LJM, Stevens K, Tong SYC, Sanderson-Smith M, Tree JJ, Irwin AD, Grimwood K, Howden BP, Jennison AV, Walker MJ. Detection of Streptococcus pyogenes M1 UK in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA. Nat Commun 2023; 14:1051. [PMID: 36828918 PMCID: PMC9951164 DOI: 10.1038/s41467-023-36717-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
A new variant of Streptococcus pyogenes serotype M1 (designated 'M1UK') has been reported in the United Kingdom, linked with seasonal scarlet fever surges, marked increase in invasive infections, and exhibiting enhanced expression of the superantigen SpeA. The progenitor S. pyogenes 'M1global' and M1UK clones can be differentiated by 27 SNPs and 4 indels, yet the mechanism for speA upregulation is unknown. Here we investigate the previously unappreciated expansion of M1UK in Australia, now isolated from the majority of serious infections caused by serotype M1 S. pyogenes. M1UK sub-lineages circulating in Australia also contain a novel toxin repertoire associated with epidemic scarlet fever causing S. pyogenes in Asia. A single SNP in the 5' transcriptional leader sequence of the transfer-messenger RNA gene ssrA drives enhanced SpeA superantigen expression as a result of ssrA terminator read-through in the M1UK lineage. This represents a previously unappreciated mechanism of toxin expression and urges enhanced international surveillance.
Collapse
Affiliation(s)
- Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Nadia Keller
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Miranda E Pitt
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David M P De Oliveira
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nichaela Harbison-Price
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Olivia M Bertolla
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bodie F Curren
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - George Taiaroa
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen V Smith
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Ning-Xia Fang
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Adam D Irwin
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia.,Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Keith Grimwood
- School of Medicine and Dentistry and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, QLD, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amy V Jennison
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Rom JS, Le Breton Y, Islam E, Belew AT, El-Sayed NM, McIver KS. Loss of rpoE Encoding the δ-Factor of RNA Polymerase Impacts Pathophysiology of the Streptococcus pyogenes M1T1 Strain 5448. Microorganisms 2022; 10:microorganisms10081686. [PMID: 36014103 PMCID: PMC9412562 DOI: 10.3390/microorganisms10081686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022] Open
Abstract
Streptococcus pyogenes, also known as the Group A Streptococcus (GAS), is a Gram-positive bacterial pathogen of major clinical significance. Despite remaining relatively susceptible to conventional antimicrobial therapeutics, GAS still causes millions of infections and hundreds of thousands of deaths each year worldwide. Thus, a need for prophylactic and therapeutic interventions for GAS is in great demand. In this study, we investigated the importance of the gene encoding the delta (δ) subunit of the GAS RNA polymerase, rpoE, for its impact on virulence during skin and soft-tissue infection. A defined 5448 mutant with an insertionally-inactivated rpoE gene was defective for survival in whole human blood and was attenuated for both disseminated lethality and lesion size upon mono-culture infection in mouse soft tissue. Furthermore, the mutant had reduced competitive fitness when co-infected with wild type (WT) 5448 in the mouse model. We were unable to attribute this attenuation to any observable growth defect, although colony size and the ability to grow at higher temperatures were both affected when grown with nutrient-rich THY media. RNA-seq of GAS grown in THY to late log phase found that mutation of rpoE significantly impacted (>2-fold) the expression of 429 total genes (205 upregulated, 224 downregulated), including multiple virulence and “housekeeping” genes. The arc operon encoding the arginine deiminase (ADI) pathway was the most upregulated in the rpoE mutant and this could be confirmed phenotypically. Taken together, these findings demonstrate that the delta (δ) subunit of RNA polymerase is vital in GAS gene expression and virulence.
Collapse
|
5
|
González-Abad MJ, Alonso Sanz M. Invasive Streptococcus pyogenes infections (2011–2018): EMM-type and clinical presentation. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.anpede.2019.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
González-Abad MJ, Alonso Sanz M. [Invasive Streptococcus pyogenes infections (2011-2018): EMM-type and clinical presentation]. An Pediatr (Barc) 2019; 92:351-358. [PMID: 31879253 DOI: 10.1016/j.anpedi.2019.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Streptococcus pyogenes (S. pyogenes) is an important human pathogen that is responsible for a broad range of infections, from uncomplicated to more severe and invasive diseases with high morbidity/mortality. The M protein (emm type) is a critical virulence factor. Several studies have shown an increased incidence of invasive S. pyogenes disease. This was associated with an increase in the prevalence of M1 and M3 types, well-recognised virulent M types. The aim of the present study was to confirm the resurgence of invasive S. pyogenes disease during 2011-2018 and to identify the relationship between specific M types with disease presentation. MATERIAL AND METHODS Isolates were confirmed using standard techniques: colony morphology, β-haemolysis, biochemical tests, and agglutination with specific antisera (DiaMondiaL Strep Kit, DiaMondiaL, Langenhagen, Germany). The antibiotic sensitivity was performed using microdilution (Vitek®2 Compact, bioMeriéux, Inc., Durham, NC). Molecular analysis included the determination of the emm gene and superantigen profile. RESULTS A total of 29 invasive isolates were collected (2011-2018) from blood (16), pleural fluid (9), synovial fluid (3), and cerebrospinal fluid (1). One strain per year was isolated between 2011 and 2013, with 2, 5, 4, 6, and 9 strains being isolated between 2014 and 2018, respectively. The most frequent clinical presentations were bacteraemia and pneumonia (10 and 9 cases). The predominant types were M1 (11 isolates) and M3 (3 isolates). A correlation was found between M1 and M3 types, and pneumonia (6/7 cases) and deep soft tissue infections (3/3 cases). CONCLUSIONS An increased incidence of invasive S. pyogenes disease was observed during the study period, with M1 and M3 types being those most commonly isolated and associated with pneumonia and deep soft tissue infections.
Collapse
Affiliation(s)
- María José González-Abad
- Sección de Microbiología, Servicio de Análisis Clínicos, Hospital Infantil Universitario Niño Jesús, Madrid, España.
| | - Mercedes Alonso Sanz
- Sección de Microbiología, Servicio de Análisis Clínicos, Hospital Infantil Universitario Niño Jesús, Madrid, España
| |
Collapse
|
7
|
Li X, O'Moore L, Song Y, Bond PL, Yuan Z, Wilkie S, Hanzic L, Jiang G. The rapid chemically induced corrosion of concrete sewers at high H 2S concentration. WATER RESEARCH 2019; 162:95-104. [PMID: 31255785 DOI: 10.1016/j.watres.2019.06.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/04/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Concrete corrosion in sewers is primarily caused by H2S in sewer atmosphere. H2S concentration can vary from several ppm to hundreds of ppm in real sewers. Our understanding of sewer corrosion has increased dramatically in recent years, however, there is limited knowledge of the concrete corrosion at high H2S levels. This study examined the corrosion development in sewers with high H2S concentrations. Fresh concrete coupons, manufactured according to sewer pipe standards, were exposed to corrosive conditions in a pilot-scale gravity sewer system with gaseous H2S at 1100 ± 100 ppm. The corrosion process was continuously monitored by measuring the surface pH, corrosion product composition, corrosion loss and the microbial community. The surface pH of concrete was reduced from 10.5 ± 0.3 to 3.1 ± 0.5 within 20 days and this coincided with a rapid corrosion rate of 3.5 ± 0.3 mm year -1. Microbial community analysis based on 16S rRNA gene sequencing indicated the absence of sulfide-oxidizing microorganisms in the corrosion layer. The chemical analysis of corrosion products supported the reaction of cement with sulfuric acid formed by the chemical oxidation of H2S. The rapid corrosion of concrete in the gravity pipe was confirmed to be caused by the chemical oxidation of hydrogen sulfide at high concentrations. This is in contrast to the conventional knowledge that is focused on microbially induced corrosion. This first-ever systematic investigation shows that chemically induced oxidation of H2S leads to the rapid corrosion of new concrete sewers within a few weeks. These findings contribute novel understanding of in-sewer corrosion processes and hold profound implications for sewer operation and corrosion management.
Collapse
Affiliation(s)
- Xuan Li
- Advanced Water Management Centre, The University of Queensland, Australia.
| | - Liza O'Moore
- School of Civil Engineering, The University of Queensland, Australia.
| | - Yarong Song
- Advanced Water Management Centre, The University of Queensland, Australia.
| | - Philp L Bond
- Advanced Water Management Centre, The University of Queensland, Australia.
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, Australia.
| | - Simeon Wilkie
- Advanced Water Management Centre, The University of Queensland, Australia; Division of Civil Engineering, University of Dundee, Scotland, United Kingdom.
| | - Lucija Hanzic
- School of Civil Engineering, The University of Queensland, Australia.
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, Australia; School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia.
| |
Collapse
|
8
|
McNitt DH, Van De Water L, Marasco D, Berisio R, Lukomski S. Streptococcal Collagen-like Protein 1 Binds Wound Fibronectin: Implications in Pathogen Targeting. Curr Med Chem 2019; 26:1933-1945. [PMID: 30182848 DOI: 10.2174/0929867325666180831165704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 02/01/2023]
Abstract
Group A Streptococcus (GAS) infections are responsible for significant morbidity and mortality worldwide. The outlook for an effective global vaccine is reduced because of significant antigenic variation among GAS strains worldwide. Other challenges in GAS therapy include the lack of common access to antibiotics in developing countries, as well as allergy to and treatment failures with penicillin and increasing erythromycin resistance in the industrialized world. At the portal of entry, GAS binds to newly deposited extracellular matrix, which is rich in cellular fibronectin isoforms with extra domain A (EDA, also termed EIIIA) via the surface adhesin, the streptococcal collagen-like protein 1 (Scl1). Recombinant Scl1 constructs, derived from diverse GAS strains, bind the EDA loop segment situated between the C and C' β-strands. Despite the sequence diversity in Scl1 proteins, multiple sequence alignments and secondary structure predictions of Scl1 variants, as well as crystallography and homology modeling studies, point to a conserved mechanism of Scl1-EDA binding. We propose that targeting this interaction may prevent the progression of infection. A synthetic cyclic peptide, derived from the EDA C-C' loop, binds to recombinant Scl1 with a micromolar dissociation constant. This review highlights the current concept of EDA binding to Scl1 and provides incentives to exploit this binding to treat GAS infections and wound colonization.
Collapse
Affiliation(s)
- Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, United States
| | - Livingston Van De Water
- Departments of Surgery and Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Frederico II, Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, via Mezzocannone, 16, 80134, Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, United States
| |
Collapse
|
9
|
Wang B, Cleary PP. Intracellular Invasion by Streptococcus pyogenes: Invasins, Host Receptors, and Relevance to Human Disease. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0049-2018. [PMID: 31267891 PMCID: PMC10957197 DOI: 10.1128/microbiolspec.gpp3-0049-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
The human oral-nasal mucosa is the primary reservoir for Streptococcus pyogenes infections. Although the most common infection of consequence in temperate climates is pharyngitis, the past 25 years have witnessed a dramatic increase in invasive disease in many regions of the world. Historically, S. pyogenes has been associated with sepsis and fulminate systemic infections, but the mechanism by which these streptococci traverse mucosal or epidermal barriers is not understood. The discovery that S. pyogenes can be internalized by mammalian epithelial cells at high frequencies (1-3) and/or open tight junctions to pass between cells (4) provides potential explanations for changes in epidemiology and the ability of this species to breach such barriers. In this article, the invasins and pathways that S. pyogenes uses to reach the intracellular state are reviewed, and the relationship between intracellular invasion and human disease is discussed.
Collapse
Affiliation(s)
- Beinan Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing China
| | - P Patrick Cleary
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
10
|
Abstract
ABSTRACT
Streptococcus pyogenes
(i.e., the group A
Streptococcus
) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of
S. pyogenes
is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in
S. pyogenes
disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A
Streptococcus
, as well as their roles in the pathogenesis of human disease.
Collapse
|
11
|
Li Y, Liu X, Wang L, Zhang X. Hopf bifurcation of a delay SIRS epidemic model with novel nonlinear incidence: Application to scarlet fever. INT J BIOMATH 2018. [DOI: 10.1142/s1793524518500912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An [Formula: see text] epidemic model incorporating incubation time delay and novel nonlinear incidence is proposed and analyzed to seek for the control strategies of scarlet fever, where the contact rate which can reflect the regular behavior and habit changes of children is non-monotonic with respect to the number of susceptible. The model without delay may exhibit backward bifurcation and bistable states even though the basic reproduction number is less than unit. Furthermore, we derive the conditions for occurrence of Hopf bifurcation when the time delay is considered as a bifurcation parameter. The data of scarlet fever of China are simulated to verify our theoretical results. In the end, several effective preventive and intervention measures of scarlet fever are found out.
Collapse
Affiliation(s)
- Yong Li
- Key Laboratory of Eco-environments in Three Gorges, Reservoir Region (Ministry of Education), School of Mathematics and Statistics, Southwest University, Chongqing 400715, P. R. China
- School of Information and Mathematics, Yangtze University, Jingzhou 434023, P. R. China
| | - Xianning Liu
- Key Laboratory of Eco-environments in Three Gorges, Reservoir Region (Ministry of Education), School of Mathematics and Statistics, Southwest University, Chongqing 400715, P. R. China
| | - Lianwen Wang
- Department of Mathematics, Hubei University for Nationalities, Enshi 445000, P. R. China
| | - Xingan Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
12
|
Hertzog BB, Kaufman Y, Biswas D, Ravins M, Ambalavanan P, Wiener R, Angeli V, Chen SL, Hanski E. A Sub-population of Group A Streptococcus Elicits a Population-wide Production of Bacteriocins to Establish Dominance in the Host. Cell Host Microbe 2018; 23:312-323.e6. [PMID: 29544095 DOI: 10.1016/j.chom.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/26/2017] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Abstract
Bacteria use quorum sensing (QS) to regulate gene expression. We identified a group A Streptococcus (GAS) strain possessing the QS system sil, which produces functional bacteriocins, through a sequential signaling pathway integrating host and bacterial signals. Host cells infected by GAS release asparagine (ASN), which is sensed by the bacteria to alter its gene expression and rate of proliferation. We show that upon ASN sensing, GAS upregulates expression of the QS autoinducer peptide SilCR. Initial SilCR expression activates the autoinduction cycle for further SilCR production. The autoinduction process propagates throughout the GAS population, resulting in bacteriocin production. Subcutaneous co-injection of mice with a bacteriocin-producing strain and the globally disseminated M1T1 GAS clone results in M1T1 killing within soft tissue. Thus, by sensing host signals, a fraction of a bacterial population can trigger an autoinduction mechanism mediated by QS, which acts on the entire bacterial community to outcompete other bacteria within the infection.
Collapse
Affiliation(s)
- Baruch B Hertzog
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Yael Kaufman
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Debabrata Biswas
- NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Poornima Ambalavanan
- NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Veronique Angeli
- Department of Microbiology and Immunology, National University of Singapore; LSI Immunology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Swaine L Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, and Infectious Diseases Group, Genome Institute of Singapore, Singapore 119074, Singapore
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel; NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore.
| |
Collapse
|
13
|
Endopeptidase PepO Regulates the SpeB Cysteine Protease and Is Essential for the Virulence of Invasive M1T1 Streptococcus pyogenes. J Bacteriol 2018; 200:JB.00654-17. [PMID: 29378883 DOI: 10.1128/jb.00654-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) causes a wide range of human infections. The pathogenesis of GAS infections is dependent on the temporal expression of numerous secreted and surface-associated virulence factors that interact with host proteins. Streptococcal pyrogenic exotoxin B (SpeB) is one of the most extensively studied toxins produced by GAS, and the coordinate growth phase-dependent regulation of speB expression is linked to disease severity phenotypes. Here, we identified the endopeptidase PepO as a novel growth phase-dependent regulator of SpeB in the invasive GAS M1 serotype strain 5448. By using transcriptomics followed by quantitative reverse transcriptase PCR and Western blot analyses, we demonstrate through targeted mutagenesis that PepO influences growth phase-dependent induction of speB gene expression. Compared to wild-type and complemented mutant strains, we demonstrate that the 5448ΔpepO mutant strain is more susceptible to killing by human neutrophils and is attenuated in virulence in a murine model of invasive GAS infection. Our results expand the complex regulatory network that is operating in GAS to control SpeB production and suggest that PepO is a virulence requirement during GAS M1T1 strain 5448 infections.IMPORTANCE Despite the continuing susceptibility of S. pyogenes to penicillin, this bacterial pathogen remains a leading infectious cause of global morbidity and mortality. A particular subclone of the M1 serotype (M1T1) has persisted globally for decades as the most frequently isolated serotype from patients with invasive and noninvasive diseases in Western countries. One of the key GAS pathogenicity factors is the potent broad-spectrum cysteine protease SpeB. Although there has been extensive research interest on the regulatory mechanisms that control speB gene expression, its genetic regulation is not fully understood. Here, we identify the endopeptidase PepO as a new regulator of speB gene expression in the globally disseminated M1T1 clone and as being essential for virulence.
Collapse
|
14
|
Multimerization of the Virulence-Enhancing Group A Streptococcus Transcription Factor RivR Is Required for Regulatory Activity. J Bacteriol 2016; 199:JB.00452-16. [PMID: 27795318 DOI: 10.1128/jb.00452-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/17/2016] [Indexed: 12/27/2022] Open
Abstract
Group A Streptococcus (GAS) (Streptococcus pyogenes) causes more than 700 million human infections each year. The significant morbidity and mortality rates associated with GAS infections are in part a consequence of the ability of this pathogen to coordinately regulate virulence factor expression during infection. RofA-like protein IV (RivR) is a member of the Mga-like family of transcriptional regulators, and previously we reported that RivR negatively regulates transcription of the hasA and grab virulence factor-encoding genes. Here, we determined that RivR inhibits the ability of GAS to survive and to replicate in human blood. To begin to assess the biochemical basis of RivR activity, we investigated its ability to form multimers, which is a characteristic of Mga-like proteins. We found that RivR forms both dimers and a higher-molecular-mass multimer, which we hypothesize is a tetramer. As cysteine residues are known to contribute to the ability of proteins to dimerize, we created a library of expression plasmids in which each of the four cysteines in RivR was converted to serine. While the C68S RivR protein was essentially unaffected in its ability to dimerize, the C32S and C377S proteins were attenuated, while the C470S protein completely lacked the ability to dimerize. Consistent with dimerization being required for regulatory activity, the C470S RivR protein was unable to repress hasA and grab gene expression in a rivR mutant. Thus, multimer formation is a prerequisite for RivR activity, which supports recent data obtained for other Mga-like family members, suggesting a common regulatory mechanism. IMPORTANCE The modulation of gene transcription is key to the ability of bacterial pathogens to infect hosts to cause disease. Here, we discovered that the group A Streptococcus transcription factor RivR negatively regulates the ability of this pathogen to survive in human blood, and we also began biochemical characterization of this protein. We determined that, in order for RivR to function, it must self-associate, forming both dimers (consisting of two RivR proteins) and higher-order complexes (consisting of more than two RivR proteins). This functional requirement for RivR is shared by other regulators in the same family of proteins, suggesting a common regulatory mechanism. Insight into how these transcription factors function may facilitate the development of novel therapeutic agents targeting their activity.
Collapse
|
15
|
Abstract
Toxic shock syndrome (TSS) represents a heterogeneous group of disorders that results in hypotension, multiorgan system involvement, and a characteristic rash or soft tissue infection caused by staphylococcal or streptococcal exotoxins and enterotoxins. Staphylococcal TSS emerged in the late 1970s as an illness associated with highly absorbent tampons; subsequently it has been described with postoperative infections, burns, and various viral illnesses. Although the morbidity rate associated with staphylococcal TSS may be high, the mortality rate approximates 5%. Streptococcal TSS has emerged in the 1980s and into the 1990s as a disorder that results in rapid progression of soft tissue infection in the form of cellulitis, myositis, or necrotizing fasciitis due to pyogenic streptococcal group A exotoxin. The rapidity of progression of local infection to hypotension and multiorgan failure results in a mortality rate of 30–70%. In both forms of TSS, staphylococcal and streptococcal exotoxins function as superantigens, a unique mechanism of immune activation that results in an exuberant T-cell response and profound cytokine expression. The role of antibiotics is reviewed. The use of clindamycin in streptococcal TSS and the potential therapeutic role of intravenous immunoglobulin in both forms of this disorder are discussed as well.
Collapse
Affiliation(s)
- Paul F. Dellaripa
- Section of Pulmonary and Critical Care Medicine and Section of Rheumatology, Lahey Clinic Medical Center, Burlington, MA
| |
Collapse
|
16
|
Feng W, Liu M, Chen DG, Yiu R, Fang FC, Lei B. Contemporary Pharyngeal and Invasive emm1 and Invasive emm12 Group A Streptococcus Isolates Exhibit Similar In Vivo Selection for CovRS Mutants in Mice. PLoS One 2016; 11:e0162742. [PMID: 27611332 PMCID: PMC5017694 DOI: 10.1371/journal.pone.0162742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022] Open
Abstract
Group A Streptococcus (GAS) causes diverse infections ranging from common pharyngitis to rare severe invasive infections. Invasive GAS isolates can have natural mutations in the virulence regulator CovRS, which result in enhanced expression of multiple virulence genes, suppressed the expression of the protease SpeB, and increased virulence. It is believed that CovRS mutations arise during human infections with GAS carrying wild-type CovRS and are not transmissible. CovRS mutants of invasive GAS of the emm1 genotype arise readily during experimental infection in mice. It is possible that invasive GAS arises from pharyngeal GAS through rare genetic mutations that confer the capacity of mutated GAS to acquire covRS mutations during infection. The objective of this study was to determine whether contemporary pharyngeal emm1 GAS isolates have a reduced propensity to acquire CovRS mutations in vivo compared with invasive emm1 GAS and whether emm3, emm12, and emm28 GAS acquire CovRS mutants in mouse infection. The propensity of invasive and pharyngeal emm1 and invasive emm3, emm12, and emm28 SpeBA+ isolates to acquire variants with the SpeBA- phenotype was determined during subcutaneous infection of mice. The majority of both invasive and pharyngeal emm1 SpeBA+ isolates and two of three emm12 isolates, but not emm3 and emm28 isolates, were found to acquire SpeBA- variants during skin infection in mice. All analyzed SpeBA- variants of emm1 and emm12 GAS from the mouse infection acquired covRS mutations and produced more platelet-activating factor acetylhydrolase SsE. Thus, contemporary invasive and pharyngeal emm1 GAS isolates and emm12 GAS have a similar capacity to acquire covRS mutations in vivo. The rarity of severe invasive infections caused by GAS does not appear to be attributable to a reduced ability of pharyngeal isolates to acquire CovRS mutations.
Collapse
Affiliation(s)
- Wenchao Feng
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Mengyao Liu
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Daniel G. Chen
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Rossana Yiu
- Harborview Medical Center Clinical Microbiology Laboratory and University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ferric C. Fang
- Harborview Medical Center Clinical Microbiology Laboratory and University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Benfang Lei
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
- * E-mail:
| |
Collapse
|
17
|
Bachert BA, Choi SJ, LaSala PR, Harper TI, McNitt DH, Boehm DT, Caswell CC, Ciborowski P, Keene DR, Flores AR, Musser JM, Squeglia F, Marasco D, Berisio R, Lukomski S. Unique Footprint in the scl1.3 Locus Affects Adhesion and Biofilm Formation of the Invasive M3-Type Group A Streptococcus. Front Cell Infect Microbiol 2016; 6:90. [PMID: 27630827 PMCID: PMC5005324 DOI: 10.3389/fcimb.2016.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/15/2016] [Indexed: 12/04/2022] Open
Abstract
The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i) an IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci.
Collapse
Affiliation(s)
- Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Soo J Choi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Paul R LaSala
- Department of Pathology, West Virginia University Morgantown, WV, USA
| | - Tiffany I Harper
- Department of Pathology, West Virginia University Morgantown, WV, USA
| | - Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Clayton C Caswell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | | | - Anthony R Flores
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Texas Children's HospitalHouston, TX, USA; Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute and Hospital SystemHouston, TX, USA
| | - James M Musser
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute and Hospital System Houston, TX, USA
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Frederico II Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| |
Collapse
|
18
|
Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. mBio 2016; 7:mBio.00618-16. [PMID: 27302756 PMCID: PMC4916377 DOI: 10.1128/mbio.00618-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. This set of experiments demonstrates the inherent variability of mouse models for the characterization of GAS vaccine candidate protective efficacy. Such variability poses an important challenge for GAS vaccine development, as advancement of candidates to human clinical trials requires strong evidence of efficacy. This study highlights the need for an open discussion within the field regarding standardization of animal models for GAS vaccine development.
Collapse
|
19
|
Interleukin-17A Contributes to the Control of Streptococcus pyogenes Colonization and Inflammation of the Female Genital Tract. Sci Rep 2016; 6:26836. [PMID: 27241677 PMCID: PMC4886215 DOI: 10.1038/srep26836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
Postpartum women are at increased risk of developing puerperal sepsis caused by group A Streptococcus (GAS). Specific GAS serotypes, including M1 and M28, are more commonly associated with puerperal sepsis. However, the mechanisms of GAS genital tract infection are not well understood. We utilized a murine genital tract carriage model to demonstrate that M1 and M28 GAS colonization triggers TNF-α, IL-1β, and IL-17A production in the female genital tract. GAS-induced IL-17A significantly influences streptococcal carriage and alters local inflammatory responses in two genetically distinct inbred strains of mice. An absence of IL-17A or the IL-1 receptor was associated with reduced neutrophil recruitment to the site of infection; and clearance of GAS was significantly attenuated in IL-17A(-/-) mice and Rag1(-/-) mice (that lack mature lymphocytes) but not in mice deficient for the IL-1 receptor. Together, these findings support a role for IL-17A in contributing to the control of streptococcal mucosal colonization and provide new insight into the inflammatory mediators regulating host-pathogen interactions in the female genital tract.
Collapse
|
20
|
Moon AF, Krahn JM, Lu X, Cuneo MJ, Pedersen LC. Structural characterization of the virulence factor Sda1 nuclease from Streptococcus pyogenes. Nucleic Acids Res 2016; 44:3946-57. [PMID: 26969731 PMCID: PMC4856990 DOI: 10.1093/nar/gkw143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/25/2016] [Indexed: 11/22/2022] Open
Abstract
Infection by Group A Streptococcus pyogenes (GAS) is a leading cause of severe invasive disease in humans, including streptococcal toxic shock syndrome and necrotizing fasciitis. GAS infections lead to nearly 163,000 annual deaths worldwide. Hypervirulent strains of S. pyogenes have evolved a plethora of virulence factors that aid in disease—by promoting bacterial adhesion to host cells, subsequent invasion of deeper tissues and blocking the immune system's attempts to eradicate the infection. Expression and secretion of the extracellular nuclease Sda1 is advantageous for promoting bacterial dissemination throughout the host organism, and evasion of the host's innate immune response. Here we present two crystal structures of Sda1, as well as biochemical studies to address key structural features and surface residues involved in DNA binding and catalysis. In the active site, Asn211 is observed to directly chelate a hydrated divalent metal ion and Arg124, on the putative substrate binding loop, likely stabilizes the transition state during phosphodiester bond cleavage. These structures provide a foundation for rational drug design of small molecule inhibitors to be used in prevention of invasive streptococcal disease.
Collapse
Affiliation(s)
- Andrea F Moon
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Xun Lu
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Matthew J Cuneo
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
21
|
NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus. PLoS Pathog 2016; 12:e1005468. [PMID: 26938870 PMCID: PMC4777570 DOI: 10.1371/journal.ppat.1005468] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/02/2016] [Indexed: 01/19/2023] Open
Abstract
A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS) has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase). When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO), and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase) that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells. Invasive infections due to group A Streptococcus (S. pyogenes or GAS) have become more frequent since the 1980s due, in part, to the emergence and global spread of closely related strains of the M1T1 serotype. A feature of this clonal group is the production of a secreted enzyme, NAD+-glycohydrolase (NADase), which has been suggested to contribute to GAS virulence by intoxication of host cells. For NADase to exert its toxic effects, it must be translocated into the host cell by a second GAS protein, streptolysin O (SLO). SLO is a pore-forming toxin that damages cell membranes in addition to its role in translocating NADase. In order to distinguish effects of NADase on host cell biology from those of SLO, we used components of anthrax toxin to deliver NADase to human throat epithelial cells, independently of SLO. Introduction of NADase into GAS-infected cells increased the intracellular survival of GAS lacking NADase or SLO, and the increase in bacterial survival correlated with inhibition of intracellular trafficking of GAS to lysosomes that mediate bacterial killing. The results support an important role for NADase in enhancing GAS survival in human epithelial cells, a phenomenon that may contribute to GAS colonization and disease.
Collapse
|
22
|
de Almeida Torres RSL, dos Santos TZ, Torres RADA, Petrini LMCDM, Burger M, Steer AC, Smeesters PR. Management of Contacts of Patients With Severe Invasive Group A Streptococcal Infection. J Pediatric Infect Dis Soc 2016; 5:47-52. [PMID: 26908491 DOI: 10.1093/jpids/piu107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/05/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Conflicting recommendations regarding antibiotic prophylaxis for contacts of patients with invasive group A streptococcal (GAS) infection exist. Close contacts of patients with such severe and rapidly progressive disease often strongly appeal to the treating clinicians for antimicrobial treatment to prevent additional cases. We aimed to use an approach based on pharyngeal culture testing of contacts and targeted antibiotic prophylaxis. METHODS A large throat swab survey including 105 contacts was undertaken after a fulminant and fatal case of GAS necrotizing fasciitis. GAS strains were characterized by emm typing and antimicrobial susceptibility to 7 antibiotics. The presence of 30 virulence determinants was determined by polymerase chain reaction and sequencing. RESULTS The GAS isolate recovered from the index patient was an M1T1 GAS clone susceptible to all antimicrobial agents tested. The same clone was present in the throat of 36% of close contacts who had exposure to the index patient (family households and classroom contacts) for >24 hours/week, whereas the strain was present in only 2% of the other contacts. CONCLUSIONS Although the study does not allow firm conclusions to be drawn as to whether antibiotic prophylaxis is effective, we describe a practical approach, including an educational campaign and targeted antibiotic treatment to close contacts who have been exposed to an index patient for > 24 hours/week before the initial disease onset.
Collapse
Affiliation(s)
| | | | | | | | - Marion Burger
- Secretaria Municipal de Curitiba Associação Hospitalar de Proteção a Infância Dr Raul Carneiro, Curitiba, Paraná, Brazil
| | - Andrew C Steer
- Centre for International Child Health, University of Melbourne Group A Streptococcal Research Group, Murdoch Children's Research Institute, Parkville, Melbourne, Victoria, Australia
| | - Pierre R Smeesters
- Centre for International Child Health, University of Melbourne Group A Streptococcal Research Group, Murdoch Children's Research Institute, Parkville, Melbourne, Victoria, Australia Laboratory of Bacterial Genetics and Physiology, IBMM, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
23
|
Transfer of scarlet fever-associated elements into the group A Streptococcus M1T1 clone. Sci Rep 2015; 5:15877. [PMID: 26522788 PMCID: PMC4629146 DOI: 10.1038/srep15877] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 11/30/2022] Open
Abstract
The group A Streptococcus (GAS) M1T1 clone emerged in the 1980s as a leading cause of epidemic invasive infections worldwide, including necrotizing fasciitis and toxic shock syndrome123. Horizontal transfer of mobile genetic elements has played a central role in the evolution of the M1T1 clone45, with bacteriophage-encoded determinants DNase Sda16 and superantigen SpeA27 contributing to enhanced virulence and colonization respectively. Outbreaks of scarlet fever in Hong Kong and China in 2011, caused primarily by emm12 GAS8910, led to our investigation of the next most common cause of scarlet fever, emm1 GAS89. Genomic analysis of 18 emm1 isolates from Hong Kong and 16 emm1 isolates from mainland China revealed the presence of mobile genetic elements associated with the expansion of emm12 scarlet fever clones1011 in the M1T1 genomic background. These mobile genetic elements confer expression of superantigens SSA and SpeC, and resistance to tetracycline, erythromycin and clindamycin. Horizontal transfer of mobile DNA conferring multi-drug resistance and expression of a new superantigen repertoire in the M1T1 clone should trigger heightened public health awareness for the global dissemination of these genetic elements.
Collapse
|
24
|
The majority of 9,729 group A streptococcus strains causing disease secrete SpeB cysteine protease: pathogenesis implications. Infect Immun 2015; 83:4750-8. [PMID: 26416912 DOI: 10.1128/iai.00989-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022] Open
Abstract
Group A streptococcus (GAS), the causative agent of pharyngitis and necrotizing fasciitis, secretes the potent cysteine protease SpeB. Several lines of evidence suggest that SpeB is an important virulence factor. SpeB is expressed in human infections, protects mice from lethal challenge when used as a vaccine, and contributes significantly to tissue destruction and dissemination in animal models. However, recent descriptions of mutations in genes implicated in SpeB production have led to the idea that GAS may be under selective pressure to decrease secreted SpeB protease activity during infection. Thus, two divergent hypotheses have been proposed. One postulates that SpeB is a key contributor to pathogenesis; the other, that GAS is under selection to decrease SpeB during infection. In order to distinguish between these alternative hypotheses, we performed casein hydrolysis assays to measure the SpeB protease activity secreted by 6,775 GAS strains recovered from infected humans. The results demonstrated that 84.3% of the strains have a wild-type SpeB protease phenotype. The availability of whole-genome sequence data allowed us to determine the relative frequencies of mutations in genes implicated in SpeB production. The most abundantly mutated genes were direct transcription regulators. We also sequenced the genomes of 2,954 GAS isolates recovered from nonhuman primates with experimental necrotizing fasciitis. No mutations that would result in a SpeB-deficient phenotype were identified. Taken together, these data unambiguously demonstrate that the great majority of GAS strains recovered from infected humans secrete wild-type levels of SpeB protease activity. Our data confirm the important role of SpeB in GAS pathogenesis and help end a long-standing controversy.
Collapse
|
25
|
The Mga Regulon but Not Deoxyribonuclease Sda1 of Invasive M1T1 Group A Streptococcus Contributes to In Vivo Selection of CovRS Mutations and Resistance to Innate Immune Killing Mechanisms. Infect Immun 2015; 83:4293-303. [PMID: 26283338 DOI: 10.1128/iai.00857-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022] Open
Abstract
Invasive M1T1 group A Streptococcus (GAS) can have a mutation in the regulatory system CovRS, and this mutation can render strains hypervirulent. Interestingly, via mechanisms that are not well understood, the host innate immune system's neutrophils select spontaneous M1T1 GAS CovRS hypervirulent mutants, thereby enhancing the pathogen's ability to evade immune killing. It has been reported that the DNase Sda1 is critical for the resistance of M1T1 strain 5448 to killing in human blood and provides pressure for in vivo selection of CovRS mutations. We reexamined the role of Sda1 in the selection of CovRS mutations and in GAS innate immune evasion. Deletion of sda1 or all DNase genes in M1T1 strain MGAS2221 did not alter emergence of CovRS mutants during murine infection. Deletion of sda1 in strain 5448 resulted in Δsda1 mutants with (5448 Δsda1(M+) strain) and without (5448 Δsda1(M-) strain) M protein production. The 5448 Δsda1(M+) strain accumulated CovRS mutations in vivo and resisted killing in the bloodstream, whereas the 5448 Δsda1(M-) strain lost in vivo selection of CovRS mutations and was sensitive to killing. The deletion of emm and a spontaneous Mga mutation in MGAS2221 reduced and prevented in vivo selection for CovRS mutants, respectively. Thus, in contrast to previous reports, Sda1 is not critical for in vivo selection of invasive M1T1 CovRS mutants and GAS resistance to innate immune killing mechanisms. In contrast, M protein and other Mga-regulated proteins contribute to the in vivo selection of M1T1 GAS CovRS mutants. These findings advance the understanding of the progression of invasive M1T1 GAS infections.
Collapse
|
26
|
Stetzner ZW, Li D, Feng W, Liu M, Liu G, Wiley J, Lei B. Serotype M3 and M28 Group A Streptococci Have Distinct Capacities to Evade Neutrophil and TNF-α Responses and to Invade Soft Tissues. PLoS One 2015; 10:e0129417. [PMID: 26047469 PMCID: PMC4457532 DOI: 10.1371/journal.pone.0129417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/10/2015] [Indexed: 11/18/2022] Open
Abstract
The M3 Serotype of Group A Streptococcus (GAS) is one of the three most frequent serotypes associated with severe invasive GAS infections, such as necrotizing fasciitis, in the United States and other industrialized countries. The basis for this association and hypervirulence of invasive serotype M3 GAS is not fully understood. In this study, the sequenced serotype M3 strain, MGAS315, and serotype M28 strain, MGAS6180, were characterized in parallel to determine whether contemporary M3 GAS has a higher capacity to invade soft tissues than M28 GAS. In subcutaneous infection, MGAS315 invaded almost the whole skin, inhibited neutrophil recruitment and TNF-α production, and was lethal in subcutaneous infection of mice, whereas MGAS6180 did not invade skin, induced robust neutrophil infiltration and TNF-α production, and failed to kill mice. In contrast to MGAS6180, MGAS315 had covS G1370T mutation. Either replacement of the covS1370T gene with wild-type covS in MGAS315 chromosome or in trans expression of wild-type covS in MGAS315 reduced expression of CovRS-controlled virulence genes hasA, spyCEP, and sse by >10 fold. MGAS315 covSwt lost the capacity to extensively invade skin and to inhibit neutrophil recruitment and had attenuated virulence, indicating that the covS G1370T mutation critically contribute to the hypervirulence of MGAS315. Under the background of functional CovRS, MGAS315 covSwt still caused greater lesions than MGAS6180, and, consistently under the background of covS deletion, MGAS6180 ΔcovS caused smaller lesions than MGAS315 ΔcovS. Thus, contemporary invasive M3 GAS has a higher capacity to evade neutrophil and TNF-α responses and to invade soft tissue than M28 GAS and that this skin-invading capacity of M3 GAS is maximized by natural CovRS mutations. These findings enhance our understanding of the basis for the frequent association of M3 GAS with necrotizing fasciitis.
Collapse
Affiliation(s)
- Zachary W. Stetzner
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Dengfeng Li
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Wenchao Feng
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Mengyao Liu
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Guanghui Liu
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - James Wiley
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Benfang Lei
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
- * E-mail:
| |
Collapse
|
27
|
Streptolysin O and NAD-glycohydrolase prevent phagolysosome acidification and promote group A Streptococcus survival in macrophages. mBio 2014; 5:e01690-14. [PMID: 25227466 PMCID: PMC4172074 DOI: 10.1128/mbio.01690-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Group A Streptococcus (GAS, Streptococcus pyogenes) is an ongoing threat to human health as the agent of streptococcal pharyngitis, skin and soft tissue infections, and life-threatening conditions such as necrotizing fasciitis and streptococcal toxic shock syndrome. In animal models of infection, macrophages have been shown to contribute to host defense against GAS infection. However, as GAS can resist killing by macrophages in vitro and induce macrophage cell death, it has been suggested that GAS intracellular survival in macrophages may enable persistent infection. Using isogenic mutants, we now show that the GAS pore-forming toxin streptolysin O (SLO) and its cotoxin NAD-glycohydrolase (NADase) mediate GAS intracellular survival and cytotoxicity for macrophages. Unexpectedly, the two toxins did not inhibit fusion of GAS-containing phagosomes with lysosomes but rather prevented phagolysosome acidification. SLO served two essential functions, poration of the phagolysosomal membrane and translocation of NADase into the macrophage cytosol, both of which were necessary for maximal GAS intracellular survival. Whereas NADase delivery to epithelial cells is mediated by SLO secreted from GAS bound to the cell surface, in macrophages, the source of SLO and NADase is GAS contained within phagolysosomes. We found that transfer of NADase from the phagolysosome to the macrophage cytosol occurs not by simple diffusion through SLO pores but rather by a specific translocation mechanism that requires the N-terminal translocation domain of NADase. These results illuminate the mechanisms through which SLO and NADase enable GAS to defeat macrophage-mediated killing and provide new insight into the virulence of a major human pathogen. IMPORTANCE Macrophages constitute an important element of the innate immune response to mucosal pathogens. They ingest and kill microbes by phagocytosis and secrete inflammatory cytokines to recruit and activate other effector cells. Group A Streptococcus (GAS, Streptococcus pyogenes), an important cause of pharyngitis and invasive infections, has been shown to resist killing by macrophages. We find that GAS resistance to macrophage killing depends on the GAS pore-forming toxin streptolysin O (SLO) and its cotoxin NAD-glycohydrolase (NADase). GAS bacteria are internalized by macrophage phagocytosis but resist killing by secreting SLO, which damages the phagolysosome membrane, prevents phagolysosome acidification, and translocates NADase from the phagolysosome into the macrophage cytosol. NADase augments SLO-mediated cytotoxicity by depleting cellular energy stores. These findings may explain the nearly universal production of SLO by GAS clinical isolates and the association of NADase with the global spread of a GAS clone implicated in invasive infections.
Collapse
|
28
|
Olafsdottir LB, Erlendsdóttir H, Melo-Cristino J, Weinberger DM, Ramirez M, Kristinsson KG, Gottfredsson M. Invasive infections due to Streptococcus pyogenes: seasonal variation of severity and clinical characteristics, Iceland, 1975 to 2012. Euro Surveill 2014. [DOI: 10.2807/1560-7917.es2014.19.17.20784] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemiology and clinical characteristics of invasive Group A streptococcal infections (IGASI) are highly variable. Long-term studies are needed to understand the interplay between epidemiology and virulence. In a population-based study of IGASI in Iceland from 1975 to 2012, 288 cases were identified by positive cultures from normally sterile body sites. Charts were reviewed retrospectively and emm-types of viable Streptococcus pyogenes isolates (n=226) determined. Comparing the first and last decade of the study period, IGASI incidence increased from 1.09 to 3.96 cases per 100,000 inhabitants per year. The most common were emm types 1 (25%), 28 (11%) and 89 (11%); emm1 strains were most likely to cause severe infections. Infections in adults were significantly more likely to be severe during the seasonal peak from January to April (risk ratio: 2.36, 95% confidence interval: 1.34–4.15). Significant seasonal variability in severity was noted among patients with diagnosis of sepsis, respiratory infection and cellulitis, with 38% of severe infections in January to April compared with 16% in other months (p<0.01). A seasonal increase in severity of IGASI suggested that generalised seasonal increase in host susceptibility, rather than introduction of more virulent strains may play a role in the pathogenesis of these potentially fatal infections.
Collapse
Affiliation(s)
- L B Olafsdottir
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - H Erlendsdóttir
- Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - J Melo-Cristino
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - D M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| | - M Ramirez
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - K G Kristinsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland
| | - M Gottfredsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
29
|
Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences. Proc Natl Acad Sci U S A 2014; 111:E1768-76. [PMID: 24733896 DOI: 10.1073/pnas.1403138111] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD(+)-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide.
Collapse
|
30
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
31
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 566] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
32
|
Neutrophils select hypervirulent CovRS mutants of M1T1 group A Streptococcus during subcutaneous infection of mice. Infect Immun 2014; 82:1579-90. [PMID: 24452689 DOI: 10.1128/iai.01458-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogen mutants arise during infections. Mechanisms of selection for pathogen variants are poorly understood. We tested whether neutrophils select mutations in the two-component regulatory system CovRS of group A Streptococcus (GAS) during infection using the lack of production of the protease SpeB (SpeB activity negative [SpeB(A-)]) as a marker. Depletion of neutrophils by antibodies RB6-8C5 and 1A8 reduced the percentage of SpeB(A-) variants (SpeB(A-)%) recovered from mice infected with GAS strain MGAS2221 by >76%. Neutrophil recruitment and SpeB(A-)% among recovered GAS were reduced by 95% and 92%, respectively, in subcutaneous MGAS2221 infection of CXCR2(-/-) mice compared with control mice. In air sac infection with MGAS2221, levels of neutrophils and macrophages in lavage fluid were reduced by 49% and increased by 287%, respectively, in CXCR2(-/-) mice compared with control mice, implying that macrophages play an insignificant role in the reduction of selection for SpeB(A-) variants in CXCR2(-/-) mice. One randomly chosen SpeB(A-) mutant outcompeted MGAS2221 in normal mice but was outcompeted by MGAS2221 in neutropenic mice and had enhancements in expression of virulence factors, innate immune evasion, skin invasion, and virulence. This and nine other SpeB(A-) variants from a mouse all had nonsynonymous covRS mutations that resulted in the SpeB(A-) phenotype and enhanced expression of the CovRS-controlled secreted streptococcal esterase (SsE). Our findings are consistent with a model that neutrophils select spontaneous covRS mutations that maximize the potential of GAS to evade neutrophil responses, resulting in variants with enhanced survival and virulence. To our knowledge, this is the first report of the critical contribution of neutrophils to the selection of pathogen variants.
Collapse
|
33
|
Abstract
SUMMARY This review begins with a discussion of the large family of Staphylococcus aureus and beta-hemolytic streptococcal pyrogenic toxin T lymphocyte superantigens from structural and immunobiological perspectives. With this as background, the review then discusses the major known and possible human disease associations with superantigens, including associations with toxic shock syndromes, atopic dermatitis, pneumonia, infective endocarditis, and autoimmune sequelae to streptococcal illnesses. Finally, the review addresses current and possible novel strategies to prevent superantigen production and passive and active immunization strategies.
Collapse
|
34
|
Bergmann R, Nerlich A, Chhatwal GS, Nitsche-Schmitz DP. Distribution of small native plasmids in Streptococcus pyogenes in India. Int J Med Microbiol 2013; 304:370-8. [PMID: 24444719 DOI: 10.1016/j.ijmm.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/22/2013] [Accepted: 12/08/2013] [Indexed: 02/05/2023] Open
Abstract
Complete characterization of a Streptococcus pyogenes population from a defined geographic region comprises information on the plasmids that circulate in these bacteria. Therefore, we determined the distribution of small plasmids (<5kb) in a collection of 279 S. pyogenes isolates from India, where diversity of strains and incidence rates of S. pyogenes infections are high. The collection comprised 77 emm-types. For plasmid detection and discrimination, we developed PCRs for different plasmid replication initiation protein genes, the putative repressor gene copG and bacteriocin genes dysA and scnM57. Plasmid distribution was limited to 13 emm-types. Co-detection analysis using aforementioned PCRs revealed four distinct plasmid sub-types, two of which were previously unknown. Representative plasmids pA852 and pA996 of the two uncharacterized plasmid sub-types were sequenced. These two plasmids could be assigned to the pMV158 and the pC194/pUB110 family of rolling-circle plasmids, respectively. The majority of small plasmids found in India belonged to the two newly characterized sub-types, with pA852- and pA996-like plasmids amounting to 42% and 22% of all detected plasmids, respectively. None of the detected plasmids coded for a known antibiotic resistance gene. Instead, all of the four plasmid sub-types carried known or potential bacteriocin genes. These genes may have influence on the evolutionary success of certain S. pyogenes genotypes. Notably, pA852-like plasmids were found in all isolates of the most prevalent emm-type 11.0. Together, a priori fitness of this genotype and increased fitness due to the acquired plasmids may have rendered type emm11.0 successful and caused the prevalence of pA852-like plasmids in India.
Collapse
Affiliation(s)
- René Bergmann
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Andreas Nerlich
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Gursharan S Chhatwal
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - D Patric Nitsche-Schmitz
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.
| |
Collapse
|
35
|
Streptococcal superantigens: categorization and clinical associations. Trends Mol Med 2013; 20:48-62. [PMID: 24210845 DOI: 10.1016/j.molmed.2013.10.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 01/01/2023]
Abstract
Superantigens are key virulence factors in the immunopathogenesis of invasive disease caused by group A streptococcus. These protein exotoxins have also been associated with severe group C and group G streptococcal infections. A number of novel streptococcal superantigens have recently been described with some resulting confusion in their classification. In addition to clarifying the nomenclature of streptococcal superantigens and proposing guidelines for their categorization, this review summarizes the evidence supporting their involvement in various clinical diseases including acute rheumatic fever.
Collapse
|
36
|
Abreu AC, Tavares RR, Borges A, Mergulhão F, Simões M. Current and emergent strategies for disinfection of hospital environments. J Antimicrob Chemother 2013; 68:2718-32. [PMID: 23869049 PMCID: PMC7109789 DOI: 10.1093/jac/dkt281] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A significant number of hospital-acquired infections occur due to inefficient disinfection of hospital surfaces, instruments and rooms. The emergence and wide spread of multiresistant forms of several microorganisms has led to a situation where few compounds are able to inhibit or kill the infectious agents. Several strategies to disinfect both clinical equipment and the environment are available, often involving the use of antimicrobial chemicals. More recently, investigations into gas plasma, antimicrobial surfaces and vapour systems have gained interest as promising alternatives to conventional disinfectants. This review provides updated information on the current and emergent disinfection strategies for clinical environments.
Collapse
Affiliation(s)
- Ana C Abreu
- LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | | | | | | | | |
Collapse
|
37
|
Differences in the epidemiology between paediatric and adult invasiveStreptococcus pyogenesinfections. Epidemiol Infect 2013; 142:512-9. [DOI: 10.1017/s0950268813001386] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYIn order to investigate for possible differences between paediatric and adult invasiveStreptococcus pyogenes(iGAS) infections, a total of 142 cases were identified in 17 Greek hospitals during 2003–2007, of which 96 were children and 46 adults. Bacteraemia, soft tissue infections, streptococcal toxic shock syndrome (STSS), and necrotizing fasciitis were the main clinical presentations (67·6%, 45·1%, 13·4%, and 12·0% of cases, respectively). Bacteraemia and lymphadenitis were significantly more frequent in children (P = 0·019 and 0·021, respectively), whereas STSS was more frequent in adults (P = 0·017). The main predisposing factors in children were varicella and streptococcal pharyngotonsillitis (25% and 19·8%, respectively), as opposed to malignancy, intravenous drug abuse and diabetes mellitus in adults (19·6%, 15·2% and 10·9%, respectively). Of the two dominantemm-types, 1 and 12 (28·2% and 8·5%, respectively), the proportion ofemm-type 12 remained stable during the study period, whereasemm-type 1 rates fluctuated considerably. Strains ofemm-type 1 from children were associated with erythromycin susceptibility, STSS and intensive-care-unit admission, whereasemm-type 12 isolates from adults were associated with erythromycin and clindamycin resistance. Finally, specificemm-types were detected exclusively in adults or in children. In conclusion, several clinical and epidemiological differences were detected, that could prove useful in designing age-focused strategies for prevention and treatment of iGAS infections.
Collapse
|
38
|
Acquisition of the Sda1-encoding bacteriophage does not enhance virulence of the serotype M1 Streptococcus pyogenes strain SF370. Infect Immun 2013; 81:2062-9. [PMID: 23529618 DOI: 10.1128/iai.00192-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The resurgence of invasive disease caused by Streptococcus pyogenes (group A Streptococcus [GAS]) in the past 30 years has paralleled the emergence and global dissemination of the highly virulent M1T1 clone. The GAS M1T1 clone has diverged from the ancestral M1 serotype by horizontal acquisition of two unique bacteriophages, encoding the potent DNase Sda1/SdaD2 and the superantigen SpeA, respectively. The phage-encoded DNase promotes escape from neutrophil extracellular traps and is linked to enhanced virulence of the M1T1 clone. In this study, we successfully used in vitro lysogenic conversion to transfer the Sda1-encoding phage from the M1T1 clonal strain 5448 to the nonclonal M1 isolate SF370 and determined the impact of this horizontal gene transfer event on virulence. Although Sda1 was expressed in SF370 lysogens, no capacity of the phage-converted strain to survive human neutrophil killing, switch to a hyperinvasive covRS mutant form, or cause invasive lethal infection in a humanized plasminogen mouse model was observed. This work suggests that the hypervirulence of the M1T1 clone is due to the unique synergic effect of the M1T1 clone bacteriophage-specific virulence factor Sda1 acting in concert with the M1T1 clone-specific genetic scaffold.
Collapse
|
39
|
Liang Z, Zhang Y, Agrahari G, Chandrahas V, Glinton K, Donahue DL, Balsara RD, Ploplis VA, Castellino FJ. A natural inactivating mutation in the CovS component of the CovRS regulatory operon in a pattern D Streptococcal pyogenes strain influences virulence-associated genes. J Biol Chem 2013; 288:6561-73. [PMID: 23316057 PMCID: PMC3585089 DOI: 10.1074/jbc.m112.442657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/28/2012] [Indexed: 11/06/2022] Open
Abstract
A skin-tropic invasive group A Streptococcus pyogenes (GAS) strain, AP53, contains a natural inactivating mutation in the covS gene (covS(M)) of the two-component responder (CovR)/sensor (CovS) gene regulatory system. The effects of this mutation on specific GAS virulence determinants have been assessed, with emphasis on expression of the extracellular protease, streptococcal pyrogenic exotoxin B (SpeB), capsular hyaluronic acid, and proteins that allow host plasmin assembly on the bacterial surface, viz. a high affinity plasminogen (Pg)/plasmin receptor, Pg-binding group A streptococcal M protein (PAM), and the human Pg activator streptokinase. To further illuminate mechanisms of the functioning of CovRS in the virulence of AP53, two AP53 isogenic strains were generated, one in which the natural covS(M) gene was mutated to WT-covS (AP53/covS(WT)) and a strain that contained an inactivated covR gene (AP53/ΔcovR). Two additional strains that do not contain PAM, viz. WT-NS931 and NS931/covS(M), were also employed. SpeB was not measurably expressed in strains containing covR(WT)/covS(M), whereas in strains with natural or engineered covR(WT)/covS(WT), SpeB expression was highly up-regulated. Alternatively, capsule synthesis via the hasABC operon was enhanced in strain AP53/covS(M), whereas streptokinase expression was only slightly affected by the covS inactivation. PAM expression was not substantially influenced by the covS mutation, suggesting that covRS had minimal effects on the mga regulon that controls PAM expression. These results demonstrate that a covS inactivation results in virulence gene alterations and also suggest that the CovR phosphorylation needed for gene up- or down-regulation can occur by alternative pathways to CovS kinase.
Collapse
Affiliation(s)
- Zhong Liang
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Yueling Zhang
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Garima Agrahari
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Vishwanatha Chandrahas
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Kristofor Glinton
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Deborah L. Donahue
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Rashna D. Balsara
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A. Ploplis
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J. Castellino
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
40
|
Coiled-coil irregularities of the M1 protein structure promote M1-fibrinogen interaction and influence group A Streptococcus host cell interactions and virulence. J Mol Med (Berl) 2013; 91:861-9. [PMID: 23443671 PMCID: PMC3695690 DOI: 10.1007/s00109-013-1012-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 12/18/2022]
Abstract
Group A Streptococcus (GAS) is a human pathogen causing a wide range of mild to severe and life-threatening diseases. The GAS M1 protein is a major virulence factor promoting GAS invasiveness and resistance to host innate immune clearance. M1 displays an irregular coiled-coil structure, including the B-repeats that bind fibrinogen. Previously, we found that B-repeat stabilisation generates an idealised version of M1 (M1) characterised by decreased fibrinogen binding in vitro. To extend these findings based on a soluble truncated version of M1, we now studied the importance of the B-repeat coiled-coil irregularities in full length M1 and M1 expressed in live GAS and tested whether the modulation of M1-fibrinogen interactions would open up novel therapeutic approaches. We found that altering either the M1 structure on the GAS cell surface or removing its target host protein fibrinogen blunted GAS virulence. GAS expressing M1 showed an impaired ability to adhere to and to invade human endothelial cells, was more readily killed by whole blood or neutrophils and most importantly was less virulent in a murine necrotising fasciitis model. M1-mediated virulence of wild-type GAS was strictly dependent on the presence and concentration of fibrinogen complementing our finding that M1-fibrinogen interactions are crucial for GAS virulence. Consistently blocking M1-fibrinogen interactions by fragment D reduced GAS virulence in vitro and in vivo. This supports our conclusion that M1-fibrinogen interactions are crucial for GAS virulence and that interference may open up novel complementary treatment options for GAS infections caused by the leading invasive GAS strain M1.
Collapse
|
41
|
Kotloff KL. Streptococcus group A vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
42
|
Current insights in invasive group A streptococcal infections in pediatrics. Eur J Pediatr 2012; 171:1589-98. [PMID: 22367328 DOI: 10.1007/s00431-012-1694-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/07/2012] [Indexed: 01/17/2023]
Abstract
A rising incidence of invasive group A Streptococcus infections (IGASI) has been noted in children in the past three decades. The relative frequency of the infection types showed marked differences to IGASI in adults, and severity of the disease resulted in a mortality rate usually comprising between 3.6% and 8.3%. The emm1-type group A Streptococcus (GAS) subclone displaying a particular pattern of virulence factors was widely disseminated and prevalent in children with IGASI while the emm3-type GAS subclone appeared as a recent emerging genotype. However, the implication of these hypervirulent clones in the increase of IGASI in children is still controversial. Recent advances in our knowledge on pathogenesis of IGASI underlined that deregulation of virulence factor production, individual susceptibility, as well as exuberant cytokine response are important factors that may account for the severity of the disease in children. Future changes in IGASI epidemiology are awaited from current prospects for a safe and effective vaccine against GAS. IGASI are complex infections associating septic, toxic, and immunological disorders. Treatment has to be effective on both the etiologic agent and its toxins, due to the severity of the disease associated to the spread of highly virulent bacterial clones. More generally, emergence of virulent clones responsible for septic and toxic disease is a matter of concern in pediatric infectiology in the absence of vaccination strategy.
Collapse
|
43
|
Maamary PG, Ben Zakour NL, Cole JN, Hollands A, Aziz RK, Barnett TC, Cork AJ, Henningham A, Sanderson-Smith M, McArthur JD, Venturini C, Gillen CM, Kirk JK, Johnson DR, Taylor WL, Kaplan EL, Kotb M, Nizet V, Beatson SA, Walker MJ. Tracing the evolutionary history of the pandemic group A streptococcal M1T1 clone. FASEB J 2012; 26:4675-84. [PMID: 22878963 DOI: 10.1096/fj.12-212142] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The past 50 years has witnessed the emergence of new viral and bacterial pathogens with global effect on human health. The hyperinvasive group A Streptococcus (GAS) M1T1 clone, first detected in the mid-1980s in the United States, has since disseminated worldwide and remains a major cause of severe invasive human infections. Although much is understood regarding the capacity of this pathogen to cause disease, much less is known of the precise evolutionary events selecting for its emergence. We used high-throughput technologies to sequence a World Health Organization strain collection of serotype M1 GAS and reconstructed its phylogeny based on the analysis of core genome single-nucleotide polymorphisms. We demonstrate that acquisition of a 36-kb genome segment from serotype M12 GAS and the bacteriophage-encoded DNase Sda1 led to increased virulence of the M1T1 precursor and occurred relatively early in the molecular evolutionary history of this strain. The more recent acquisition of the phage-encoded superantigen SpeA is likely to have provided selection advantage for the global dissemination of the M1T1 clone. This study provides an exemplar for the evolution and emergence of virulent clones from microbial populations existing commensally or causing only superficial infection.
Collapse
Affiliation(s)
- Peter G Maamary
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Uchiyama S, Andreoni F, Schuepbach RA, Nizet V, Zinkernagel AS. DNase Sda1 allows invasive M1T1 Group A Streptococcus to prevent TLR9-dependent recognition. PLoS Pathog 2012; 8:e1002736. [PMID: 22719247 PMCID: PMC3375267 DOI: 10.1371/journal.ppat.1002736] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/20/2012] [Indexed: 01/09/2023] Open
Abstract
Group A Streptococcus (GAS) has developed a broad arsenal of virulence factors that serve to circumvent host defense mechanisms. The virulence factor DNase Sda1 of the hyperinvasive M1T1 GAS clone degrades DNA-based neutrophil extracellular traps allowing GAS to escape extracellular killing. TLR9 is activated by unmethylated CpG-rich bacterial DNA and enhances innate immune resistance. We hypothesized that Sda1 degradation of bacterial DNA could alter TLR9-mediated recognition of GAS by host innate immune cells. We tested this hypothesis using a dual approach: loss and gain of function of DNase in isogenic GAS strains and presence and absence of TLR9 in the host. Either DNA degradation by Sda1 or host deficiency of TLR9 prevented GAS induced IFN-α and TNF-α secretion from murine macrophages and contributed to bacterial survival. Similarly, in a murine necrotizing fasciitis model, IFN-α and TNF-α levels were significantly decreased in wild type mice infected with GAS expressing Sda1, whereas no such Sda1-dependent effect was seen in a TLR9-deficient background. Thus GAS Sda1 suppressed both the TLR9-mediated innate immune response and macrophage bactericidal activity. Our results demonstrate a novel mechanism of bacterial innate immune evasion based on autodegradation of CpG-rich DNA by a bacterial DNase.
Collapse
Affiliation(s)
- Satoshi Uchiyama
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Andreoni
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A. Schuepbach
- Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victor Nizet
- Department of Pediatrics, Division of Pharmacology & Drug Discovery and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Annelies S. Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
45
|
Green AE, Rowlands RS, Cooper RA, Maddocks SE. The effect of the flavonol morin on adhesion and aggregation of Streptococcus pyogenes. FEMS Microbiol Lett 2012; 333:54-8. [PMID: 22591139 DOI: 10.1111/j.1574-6968.2012.02598.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/14/2012] [Indexed: 11/27/2022] Open
Abstract
The effect of the flavonol morin on Streptococcus pyogenes biofilm growth was determined using a static biofilm model, in which reduced biofilm biomass was observed in the presence of morin, suggesting that morin inhibited biofilm development. Morin at concentrations exceeding 225 μM had the greatest impact on biofilm biomass causing reductions of up to 65%, which was found to be statistically significant. Morin was also shown to induce rapid bacterial aggregation. Approximately 55% of S. pyogenes in liquid suspension aggregated when incubated with morin at concentrations of 275 and 300 μM for 120 min, compared to the control group in which only 10% of the cells aggregated, this was also shown to be statistically significant.
Collapse
|
46
|
Tse H, Bao JYJ, Davies MR, Maamary P, Tsoi HW, Tong AHY, Ho TCC, Lin CH, Gillen CM, Barnett TC, Chen JHK, Lee M, Yam WC, Wong CK, Ong CLY, Chan YW, Wu CW, Ng T, Lim WWL, Tsang THF, Tse CWS, Dougan G, Walker MJ, Lok S, Yuen KY. Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. J Infect Dis 2012; 206:341-51. [PMID: 22615319 DOI: 10.1093/infdis/jis362] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A scarlet fever outbreak occurred in Hong Kong in 2011. The majority of cases resulted in the isolation of Streptococcus pyogenes emm12 with multiple antibiotic resistances. Phylogenetic analysis of 22 emm12 scarlet fever outbreak isolates, 7 temporally and geographically matched emm12 non-scarlet fever isolates, and 18 emm12 strains isolated during 2005-2010 indicated the outbreak was multiclonal. Genome sequencing of 2 nonclonal scarlet fever isolates (HKU16 and HKU30), coupled with diagnostic polymerase chain reaction assays, identified 2 mobile genetic elements distributed across the major lineages: a 64.9-kb integrative and conjugative element encoding tetracycline and macrolide resistance and a 46.4-kb prophage encoding superantigens SSA and SpeC and the DNase Spd1. Phenotypic comparison of HKU16 and HKU30 with the S. pyogenes M1T1 strain 5448 revealed that HKU16 displays increased adherence to HEp-2 human epithelial cells, whereas HKU16, HKU30, and 5448 exhibit equivalent resistance to neutrophils and virulence in a humanized plasminogen murine model. However, in contrast to M1T1, the virulence of HKU16 and HKU30 was not associated with covRS mutation. The multiclonal nature of the emm12 scarlet fever isolates suggests that factors such as mobile genetic elements, environmental factors, and host immune status may have contributed to the 2011 scarlet fever outbreak.
Collapse
Affiliation(s)
- Herman Tse
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tran-Winkler HJ, Love JF, Gryllos I, Wessels MR. Signal transduction through CsrRS confers an invasive phenotype in group A Streptococcus. PLoS Pathog 2011; 7:e1002361. [PMID: 22046138 PMCID: PMC3203184 DOI: 10.1371/journal.ppat.1002361] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/21/2011] [Indexed: 11/19/2022] Open
Abstract
The CsrRS (or CovRS) two component system controls expression of up to 15% of the genome of group A Streptococcus (GAS). While some studies have suggested that the sensor histidine kinase CsrS responds to membrane perturbations as a result of various environmental stresses, other data have implicated the human antimicrobial peptide LL-37 and extracellular Mg2+ as specific signals. We now report that Mg2+ and LL-37 have opposite effects on expression of multiple genes that are activated or repressed by the transcriptional regulator CsrR. Using a GAS isolate representative of the recently emerged and widely disseminated M1T1 clone implicated in severe invasive disease, we found marked up-regulation by CsrRS of multiple virulence factors including pyrogenic exotoxin A, DNase Sda1, streptolysin O, and the hyaluronic acid capsular polysaccharide, among others. Topology and surface protein labeling studies indicated that CsrS is associated with the bacterial cell membrane and has a surface-exposed extracellular domain accessible to environmental ligands. Replacement of a cluster of three acidic amino acids with uncharged residues in the extracellular domain of CsrS abrogated LL-37 signaling and conferred a hyporesponsive phenotype consistent with tonic activation of CsrS autokinase activity, an effect that could be overridden by mutation of the CsrS active site histidine. Both loss- and gain-of-function mutations of a conserved site in the receiver domain of CsrR established an essential role for lysine 102 in CsrS-to-CsrR signal transduction. These results provide strong evidence that Mg2+ and LL-37 are specific signals that function by altering CsrS autokinase activity and downstream phosphotransfer to CsrR to modulate its activity as a transcriptional regulator. The representation of multiple antiphagocytic and cytotoxic factors in the CsrRS regulon together with results of in vitro phagocytic killing assays support the hypothesis that CsrRS mediates conversion of GAS from a colonizing to an invasive phenotype in response to signaling by host LL-37. Group A Streptococcus (S. pyogenes or GAS) is exclusively a human pathogen that can inhabit the human throat as a harmless commensal, cause localized, self-limited infection in the form of pharyngitis or strep throat, or invade local tissues or the bloodstream to produce life-threatening disease states such as necrotizing fasciitis or streptococcal toxic shock. We present evidence that the GAS CsrRS (or CovRS) two component system governs the transition from a colonizing to an invasive phenotype by transducing a specific signal from the antimicrobial peptide LL-37 that is secreted as part of the human innate immune response to GAS infection. We show that LL-37 signaling requires specific domains of both the CsrS sensor kinase and the CsrR response regulator, and that signaling results in a coordinated and marked increase in expression of multiple bacterial factors that confer resistance to phagocytic killing, a hallmark of GAS virulence.
Collapse
Affiliation(s)
- Hien J. Tran-Winkler
- Division of Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - John F. Love
- Division of Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ioannis Gryllos
- Division of Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael R. Wessels
- Division of Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
|
49
|
Imöhl M, van der Linden M, Reinert RR, Ritter K. Invasive group A streptococcal disease and association with varicella in Germany, 1996–2009. ACTA ACUST UNITED AC 2011; 62:101-9. [DOI: 10.1111/j.1574-695x.2011.00788.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Brosnahan AJ, Schlievert PM. Gram-positive bacterial superantigen outside-in signaling causes toxic shock syndrome. FEBS J 2011; 278:4649-67. [PMID: 21535475 DOI: 10.1111/j.1742-4658.2011.08151.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus and Streptococcus pyogenes (group A streptococci) are Gram-positive pathogens capable of producing a variety of bacterial exotoxins known as superantigens. Superantigens interact with antigen-presenting cells (APCs) and T cells to induce T cell proliferation and massive cytokine production, which leads to fever, rash, capillary leak and subsequent hypotension, the major symptoms of toxic shock syndrome. Both S. aureus and group A streptococci colonize mucosal surfaces, including the anterior nares and vagina for S. aureus, and the oropharynx and less commonly the vagina for group A streptococci. However, due to their abilities to secrete a variety of virulence factors, the organisms can also cause illnesses from the mucosa. This review provides an updated discussion of the biochemical and structural features of one group of secreted virulence factors, the staphylococcal and group A streptococcal superantigens, and their abilities to cause toxic shock syndrome from a mucosal surface. The main focus of this review, however, is the abilities of superantigens to induce cytokines and chemokines from epithelial cells, which has been linked to a dodecapeptide region that is relatively conserved among all superantigens and is distinct from the binding sites required for interactions with APCs and T cells. This phenomenon, termed outside-in signaling, acts to recruit adaptive immune cells to the submucosa, where the superantigens can then interact with those cells to initiate the final cytokine cascades that lead to toxic shock syndrome.
Collapse
Affiliation(s)
- Amanda J Brosnahan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, USA
| | | |
Collapse
|