1
|
Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines-Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca 2+-Dependent Phospholipases, and Mitochondrial Energetics Collapse. Int J Mol Sci 2020; 21:ijms21207461. [PMID: 33050414 PMCID: PMC7589681 DOI: 10.3390/ijms21207461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/16/2023] Open
Abstract
Long-chain acylcarnitines (LCAC) are implicated in ischemia-reperfusion (I/R)-induced myocardial injury and mitochondrial dysfunction. Yet, molecular mechanisms underlying involvement of LCAC in cardiac injury are not sufficiently studied. It is known that in cardiomyocytes, palmitoylcarnitine (PC) can induce cytosolic Ca2+ accumulation, implicating L-type calcium channels, Na+/Ca2+ exchanger, and Ca2+-release from sarcoplasmic reticulum (SR). Alternatively, PC can evoke dissipation of mitochondrial potential (ΔΨm) and mitochondrial permeability transition pore (mPTP). Here, to dissect the complex nature of PC action on Ca2+ homeostasis and oxidative phosphorylation (OXPHOS) in cardiomyocytes and mitochondria, the methods of fluorescent microscopy, perforated path-clamp, and mitochondrial assays were used. We found that LCAC in dose-dependent manner can evoke Ca2+-sparks and oscillations, long-living Ca2+ enriched microdomains, and, finally, Ca2+ overload leading to hypercontracture and cardiomyocyte death. Collectively, PC-driven cardiotoxicity involves: (I) redistribution of Ca2+ from SR to mitochondria with minimal contribution of external calcium influx; (II) irreversible inhibition of Krebs cycle and OXPHOS underlying limited mitochondrial Ca2+ buffering; (III) induction of mPTP reinforced by PC-calcium interplay; (IV) activation of Ca2+-dependent phospholipases cPLA2 and PLC. Based on the inhibitory analysis we may suggest that simultaneous inhibition of both phospholipases could be an effective strategy for protection against PC-mediated toxicity in cardiomyocytes.
Collapse
|
2
|
Negative chronotropism, positive inotropism and lusitropism of 3,5-di-t-butyl-4-hydroxyanisole (DTBHA) on rat heart preparations occur through reduction of RyR2 Ca2+ leak. Biochem Pharmacol 2018; 155:434-443. [DOI: 10.1016/j.bcp.2018.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
|
3
|
Mizuta K, Zhang Y, Mizuta F, Hoshijima H, Shiga T, Masaki E, Emala CW. Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2015; 309:L970-82. [PMID: 26342087 DOI: 10.1152/ajplung.00041.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/31/2015] [Indexed: 02/03/2023] Open
Abstract
Obesity is one of the major risk factors for asthma. Previous studies have demonstrated that free fatty acid levels are elevated in the plasma of obese individuals. Medium- and long-chain free fatty acids act as endogenous ligands for the free fatty acid receptors FFAR1/GPR40 and FFAR4/GPR120, which couple to Gq proteins. We investigated whether FFAR1 and FFAR4 are expressed on airway smooth muscle and whether they activate Gq-coupled signaling and modulate airway smooth muscle tone. We detected the protein expression of FFAR1 and FFAR4 in freshly dissected native human and guinea pig airway smooth muscle and cultured human airway smooth muscle (HASM) cells by immunoblotting and immunohistochemistry. The long-chain free fatty acids (oleic acid and linoleic acid) and GW9508 (FFAR1/FFAR4 dual agonist) dose-dependently stimulated transient intracellular Ca(2+) concentration ([Ca(2+)]i) increases and inositol phosphate synthesis in HASM cells. Downregulation of FFAR1 or FFAR4 in HASM cells by small interfering RNA led to a significant inhibition of the long-chain free fatty acids-induced transient [Ca(2+)]i increases. Oleic acid, linoleic acid, or GW9508 stimulated stress fiber formation in HASM cells, potentiated acetylcholine-contracted guinea pig tracheal rings, and attenuated the relaxant effect of isoproterenol after an acetylcholine-induced contraction. In contrast, TUG-891 (FFAR4 agonist) did not induce the stress fiber formation or potentiate acetylcholine-induced contraction. These results suggest that FFAR1 is the functionally dominant free fatty acid receptor in both human and guinea pig airway smooth muscle. The free fatty acid sensors expressed on airway smooth muscle could be an important modulator of airway smooth muscle tone.
Collapse
Affiliation(s)
- Kentaro Mizuta
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York; Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan; and
| | - Yi Zhang
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Fumiko Mizuta
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan; and
| | - Hiroshi Hoshijima
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan; and
| | - Toshiya Shiga
- Department of Anesthesiology, Chemotherapy Research Institute, Kaken Hospital, International University of Health and Welfare, Chiba, Japan
| | - Eiji Masaki
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan; and
| | - Charles W Emala
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| |
Collapse
|
4
|
Ciapaite J, van den Berg SA, Houten SM, Nicolay K, van Dijk KW, Jeneson JA. Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice. J Nutr Biochem 2014; 26:155-64. [PMID: 25516489 DOI: 10.1016/j.jnutbio.2014.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023]
Abstract
High-fat diets (HFDs) have been shown to interfere with skeletal muscle energy metabolism and cause peripheral insulin resistance. However, understanding of HFD impact on skeletal muscle primary function, i.e., contractile performance, is limited. Male C57BL/6J mice were fed HFD containing lard (HFL) or palm oil (HFP), or low-fat diet (LFD) for 5weeks. Fast-twitch (FT) extensor digitorum longus (EDL) and slow-twitch (ST) soleus muscles were characterized with respect to contractile function and selected biochemical features. In FT EDL muscle, a 30%-50% increase in fatty acid (FA) content and doubling of long-chain acylcarnitine (C14-C18) content in response to HFL and HFP feeding were accompanied by increase in protein levels of peroxisome proliferator-activated receptor-γ coactivator-1α, mitochondrial oxidative phosphorylation complexes and acyl-CoA dehydrogenases involved in mitochondrial FA β-oxidation. Peak force of FT EDL twitch and tetanic contractions was unaltered, but the relaxation time (RT) of twitch contractions was 30% slower compared to LFD controls. The latter was caused by accumulation of lipid intermediates rather than changes in the expression levels of proteins involved in calcium handling. In ST soleus muscle, no evidence for lipid overload was found in any HFD group. However, particularly in HFP group, the peak force of twitch and tetanic contractions was reduced, but RT was faster than LFD controls. The latter was associated with a fast-to-slow shift in troponin T isoform expression. Taken together, these data highlight fiber-type-specific sensitivities and phenotypic adaptations to dietary lipid overload that differentially impact fast- versus slow-twitch skeletal muscle contractile function.
Collapse
Affiliation(s)
- Jolita Ciapaite
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, PO Box 94215, NL-1090GE Amsterdam, The Netherlands; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Building 3226, 9713 AV Groningen, The Netherlands.
| | - Sjoerd A van den Berg
- Netherlands Consortium for Systems Biology, PO Box 94215, NL-1090GE Amsterdam, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, NL- 2333ZA Leiden, The Netherlands
| | - Sander M Houten
- Laboratory Genetic Metabolic Diseases, Departments of Pediatrics and Clinical Chemistry, Academic Medical Center, Meibergdreef 9, NL-1105AZ Amsterdam, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands
| | - Ko Willems van Dijk
- Netherlands Consortium for Systems Biology, PO Box 94215, NL-1090GE Amsterdam, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, NL- 2333ZA Leiden, The Netherlands
| | - Jeroen A Jeneson
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, PO Box 94215, NL-1090GE Amsterdam, The Netherlands; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Building 3226, 9713 AV Groningen, The Netherlands
| |
Collapse
|
5
|
Zhao Y, Wang L, Qiu J, Zha D, Sun Q, Chen C. Linoleic acid stimulates [Ca2+]i increase in rat pancreatic beta-cells through both membrane receptor- and intracellular metabolite-mediated pathways. PLoS One 2013; 8:e60255. [PMID: 23565210 PMCID: PMC3614997 DOI: 10.1371/journal.pone.0060255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/24/2013] [Indexed: 01/08/2023] Open
Abstract
The role of the free fatty acid (FFA) receptor and the intracellular metabolites of linoleic acid (LA) in LA-stimulated increase in cytosolic free calcium concentration ([Ca2+]i) was investigated. [Ca2+]i was measured using Fura-2 as indicator in rat pancreatic β-cells in primary culture. LA (20 µM for 2 min) stimulated a transient peak increase followed by a minor plateau increase in [Ca2+]i. Elongation of LA stimulation up to 10 min induced a strong and long-lasting elevation in [Ca2+]i. Activation of FFA receptors by the non-metabolic agonist GW9508 (40 µM for 10 min) resulted in an increase in [Ca2+]i similar to that of 2-min LA treatment. Inhibition of acyl-CoA synthetases by Triacsin C suppressed the strong and long-lasting increase in [Ca2+]i. The increase in [Ca2+]i induced by 2 min LA or GW9508 were fully eliminated by exhaustion of endoplasmic reticulum (ER) Ca2+ stores or by inhibition of phospholipase C (PLC). Removal of extracellular Ca2+ did not influence the transient peak increase in [Ca2+]i stimulated by 2 min LA or GW9508. The strong and long-lasting increase in [Ca2+]i induced by 10 min LA was only partially suppressed by extracellular Ca2+ removal or thapsigargin pretreatment, whereas remaining elevation in [Ca2+]i was eliminated after exhaustion of mitochondrial Ca2+ using triphenyltin. In conclusion, LA stimulates Ca2+ release from ER through activation of the FFA receptor coupled to PLC and mobilizes mitochondrial Ca2+ by intracellular metabolites in β-cells.
Collapse
Affiliation(s)
- Yufeng Zhao
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail: (CC); (YZ)
| | - Li Wang
- The Second Affiliated Hospital of Medical School, Xi’an Jiao Tong University, Xi’an, China
| | - Jianhua Qiu
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dingjun Zha
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qiang Sun
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (CC); (YZ)
| |
Collapse
|
6
|
Berezhnov AV, Fedotova EI, Nenov MN, Zinchenko VP, Dynnik VV. Role of phospholipases in cytosolic calcium overload and cardiomyocytes death in the presence of activated fatty acid derivatives. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2010. [DOI: 10.1134/s1990747810010095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Berezhnov AV, Fedotova EI, Nenov MN, Kokoz YM, Zinchenko VP, Dynnik VV. Destabilization of the cytosolic calcium level and the death of cardiomyocytes in the presence of derivatives of long-chain fatty acids. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908060183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Kohno D, Sone H, Minokoshi Y, Yada T. Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochem Biophys Res Commun 2007; 366:388-92. [PMID: 18068666 DOI: 10.1016/j.bbrc.2007.11.166] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 11/22/2007] [Indexed: 01/30/2023]
Abstract
Ghrelin, an orexigenic hormone, directly activates neuropeptide (NPY) neurons in the hypothalamic arcuate nucleus (ARC), and thereby stimulates food intake. The hypothalamic level of AMP-activated protein kinase (AMPK), an intracellular energy sensor, is activated by peripheral and central administration of ghrelin. We examined whether ghrelin regulates AMPK activity in NPY neurons of the ARC. Single neurons were isolated from the ARC and cytosolic Ca(2+) concentration ([Ca(2+)](i)) was measured by fura-2 microfluorometry, followed by immunocytochemical identification of NPY, phospho-AMPK, and phospho-acetyl-CoA carboxylase (ACC). Ghrelin and AICAR, an AMPK activator, increased [Ca(2+)](i) in neurons isolated from the ARC. The ghrelin-responsive neurons highly overlapped with AICAR-responsive neurons. The neurons that responded to both ghrelin and AICAR were primarily NPY-immunoreactive neurons. Treatment with ghrelin increased phosphorylation of AMPK and ACC. An AMPK inhibitor, compound C, suppressed ghrelin-induced [Ca(2+)](i) increases. These results demonstrate that ghrelin increases [Ca(2+)](i) via AMPK-mediated signaling in the ARC NPY neurons.
Collapse
Affiliation(s)
- Daisuke Kohno
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | |
Collapse
|
9
|
Faergeman NJ, Wadum M, Feddersen S, Burton M, Kragelund BB, Knudsen J. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA. Mol Cell Biochem 2007; 299:55-65. [PMID: 17013545 DOI: 10.1007/s11010-005-9040-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Besides serving as essential substrates for beta-oxidation and synthesis of triacylglycerols and more complex lipids like sphingolipids and sterol esters, long-chain fatty acyl-CoA esters are increasingly being recognized as important regulators of enzyme activities and gene transcription. Acyl-CoA binding protein, ACBP, has been proposed to play a pivotal role in the intracellular trafficking and utilization of long-chain fatty acyl-CoA esters. Depletion of acyl-CoA binding protein in yeast results in aberrant organelle morphology incl. fragmented vacuoles, multi-layered plasma membranes and accumulation of vesicles of variable sizes. In contrast to synthesis and turn-over of glycerolipids, the levels of very-long-chain fatty acids, long-chain bases and ceramide are severely affected by Acb1p depletion, suggesting that Acb1p, rather than playing a general role, serves specific roles in cellular lipid metabolism.
Collapse
Affiliation(s)
- Nils J Faergeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| | | | | | | | | | | |
Collapse
|
10
|
Mountjoy PD, Bailey SJ, Rutter GA. Inhibition by glucose or leptin of hypothalamic neurons expressing neuropeptide Y requires changes in AMP-activated protein kinase activity. Diabetologia 2007; 50:168-77. [PMID: 17093945 DOI: 10.1007/s00125-006-0473-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 09/04/2006] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Changes in the activity of glucose-excited and glucose-inhibited neurons within the basomedial hypothalamus are key to the central regulation of satiety. However, the molecular mechanisms through which these cells respond to extracellular stimuli remain poorly understood. Here, we investigate the role of 5'-AMP-activated protein kinase (AMPK), a trimeric complex encoded by seven distinct genes of the PRKA family, in the responses to glucose and leptin of each cell type. METHODS The activity of isolated rat basomedial hypothalamic neurons was assessed by: (1) recording cellular voltage responses under current clamp; (2) measuring intracellular free Ca(2+) with fluo-3 or fura-2; and (3) developing a neuropeptide Y (NPY) promoter-driven adenovirally produced ratiometric 'pericam' (a green fluorescent protein-based Ca(2+) sensor) to monitor [Ca(2+)] changes selectively in NPY-positive neurons. RESULTS The stimulatory effects of decreased (0 or 1.0 vs 15 mmol/l) glucose on glucose-inhibited neurons were mimicked by the AMPK activator, 5-amino-imidazole-4-carboxamide riboside (AICAR) and blocked by the inhibitor Compound C. Similarly, AICAR reversed the inhibitory effects of leptin in the majority of glucose-inhibited neurons. The responses to glucose of Npy-expressing cells, which represented approximately 40 % of all glucose-inhibited neurons, were also sensitive to Compound C or AICAR. Forced changes in AMPK activity had no effect on glucose-excited and non-glucose-responsive neurons. CONCLUSIONS/INTERPRETATION Changes in AMPK activity are involved in the responses of glucose-inhibited neurons to large fluctuations in glucose concentration, and possibly also to leptin. This mechanism may contribute to the acute reduction of electrical activity and Ca(2+) oscillation frequency in these, but not other neurons, in the basomedial hypothalamus.
Collapse
Affiliation(s)
- P D Mountjoy
- Henry Wellcome Laboratories of Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
11
|
Magkos F, Kavouras SA. Caffeine Use in Sports, Pharmacokinetics in Man, and Cellular Mechanisms of Action. Crit Rev Food Sci Nutr 2005; 45:535-62. [PMID: 16371327 DOI: 10.1080/1040-830491379245] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Caffeine is the most widely consumed psychoactive 'drug' in the world and probably one of the most commonly used stimulants in sports. This is not surprising, since it is one of the few ergogenic aids with documented efficiency and minimal side effects. Caffeine is rapidly and completely absorbed by the gastrointestinal tract and is readily distributed throughout all tissues of the body. Peak plasma concentrations after normal consumption are usually around 50 microM, and half-lives for elimination range between 2.5-10 h. The parent compound is extensively metabolized in the liver microsomes to more than 25 derivatives, while considerably less than 5% of the ingested dose is excreted unchanged in the urine. There is, however, considerable inter-individual variability in the handling of caffeine by the body, due to both environmental and genetic factors. Evidence from in vitro studies provides a wealth of different cellular actions that could potentially contribute to the observed effects of caffeine in humans in vivo. These include potentiation of muscle contractility via induction of sarcoplasmic reticulum calcium release, inhibition of phosphodiesterase isoenzymes and concomitant cyclic monophosphate accumulation, inhibition of glycogen phosphorylase enzymes in liver and muscle, non-selective adenosine receptor antagonism, stimulation of the cellular membrane sodium/potassium pump, impairment of phosphoinositide metabolism, as well as other, less thoroughly characterized actions. Not all, however, seem to account for the observed effects in vivo, although a variable degree of contribution cannot be readily discounted on the basis of experimental data. The most physiologically relevant mechanism of action is probably the blockade of adenosine receptors, but evidence suggests that, at least under certain conditions, other biochemical mechanisms may also be operational.
Collapse
Affiliation(s)
- Faidon Magkos
- Laboratory of Nutrition and Clinical Dietetics, Department of Nutrition and Dietetics, Harokopio University, 176 71 Kallithea, Athens, Greece
| | | |
Collapse
|
12
|
Rapedius M, Soom M, Shumilina E, Schulze D, Schönherr R, Kirsch C, Lang F, Tucker SJ, Baukrowitz T. Long chain CoA esters as competitive antagonists of phosphatidylinositol 4,5-bisphosphate activation in Kir channels. J Biol Chem 2005; 280:30760-7. [PMID: 15980413 DOI: 10.1074/jbc.m503503200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long chain fatty acid esters of coenzyme A (LC-CoA) are potent activators of ATP-sensitive (K(ATP)) channels, and elevated levels have been implicated in the pathophysiology of type 2 diabetes. This stimulatory effect is thought to involve a mechanism similar to phosphatidylinositol 4,5-bisphosphate (PIP2), which activates all known inwardly rectifying potassium (Kir) channels. However, the effect of LC-CoA on other Kir channels has not been well characterized. In this study, we show that in contrast to their stimulatory effect on K(ATP) channels, LC-CoA (e.g. oleoyl-CoA) potently and reversibly inhibits all other Kir channels tested (Kir1.1, Kir2.1, Kir3.4, Kir7.1). We also demonstrate that the inhibitory potency of the LC-CoA increases with the chain length of the fatty acid chain, while both its activatory and inhibitory effects critically depend on the presence of the 3'-ribose phosphate on the CoA group. Biochemical studies also demonstrate that PIP2 and LC-CoA bind with similar affinity to the C-terminal domains of Kir2.1 and Kir6.2 and that PIP2 binding can be competitively antagonized by LC-CoA, suggesting that the mechanism of LC-CoA inhibition involves displacement of PIP2. Furthermore, we demonstrate that in contrast to its stimulatory effect on K(ATP) channels, phosphatidylinositol 3,4-bisphosphate has an inhibitory effect on Kir1.1 and Kir2.1. These results demonstrate a bi-directional modulation of Kir channel activity by LC-CoA and phosphoinositides and suggest that changes in fatty acid metabolism (e.g. LC-CoA production) could have profound and widespread effects on cellular electrical activity.
Collapse
Affiliation(s)
- Markus Rapedius
- Institute of Physiology II, Friedrich Schiller University Jena, Teichgraben 8, 07743 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cimini A, Benedetti E, Cristiano L, Sebastiani P, D'Amico MA, D'Angelo B, Di Loreto S. Expression of peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RXRs) in rat cortical neurons. Neuroscience 2005; 130:325-37. [PMID: 15664689 DOI: 10.1016/j.neuroscience.2004.09.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2004] [Indexed: 11/17/2022]
Abstract
Neuronal differentiation is a complex process involving the sequential expression of several factors. The important role of lipid molecules in brain development is well known. Many fatty acid cell signaling activities are mediated by peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated transcription factors belonging to the steroid, thyroid and retinoid nuclear receptor superfamily. They are activated by fatty acids and their derivatives. Different isotypes of PPARs (alpha, beta/delta and gamma) have distinct physiological functions depending on their different ligand activation profiles and tissue distribution. PPARs have been involved in neural cell differentiation and death as well as in inflammation and neurodegeneration. Although PPARs have been described in neurons by in situ studies, the presence and possible modulation of these receptors during neuronal differentiation has not been explored yet. In this study we analyzed the expression of PPARs and of their heterodimeric partners, RXRs, in embryonic rat cortical neurons during their in vitro maturation. Our results demonstrate the presence of PPARs alpha, beta/delta and gamma and of RXRs beta and gamma. PPARalpha, beta/delta and gamma are differentially modulated during culture time suggesting that they may be involved in neuronal maturation. In particular, we point toward the PPARbeta/delta isotype as a key factor in neuronal differentiation.
Collapse
Affiliation(s)
- A Cimini
- Department of Basic and Applied Biology, University of L'Aquila, via Vetoio n.10, 67010 Coppito (AQ), Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Long chain acyl-CoA esters and acyl-CoA binding protein (ACBP) in cell function. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)33008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Cimini A, Bernardo A, Cifone MG, Di Marzio L, Di Loreto S, Cifone G, Di Muzio L. TNFalpha downregulates PPARdelta expression in oligodendrocyte progenitor cells: implications for demyelinating diseases. Glia 2003; 41:3-14. [PMID: 12465041 DOI: 10.1002/glia.10143] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
TNFalpha has been implicated in several demyelinating disorders, including multiple sclerosis (MS) and X-adrenoleukodystrophy (X-ALD). TNFalpha abundance is greatly increased in the areas surrounding damaged regions of the central nervous system of patients with MS and X-ALD, but its role in the observed demyelination remains to be elucidated. A class of nuclear receptors, the peroxisome proliferator-activated receptors (PPARs), has been implicated in several physiological and pathological processes. In particular, PPARdelta has been shown to promote oligodendrocyte (OL) survival and differentiation and PPARgamma has been implicated in inflammation. In the present study, we investigate on the effects of TNFalpha on OLs during differentiation in vitro. The results obtained show that TNFalpha treatment impairs PPARdelta expression with concomitant decrease of lignocerolyl-CoA synthase and very-long-chain fatty acid beta-oxidation as well as plasmalogen biosynthesis. We propose a hypothetical model possibly explaining the perturbation effects of proinflammatory cytokines on myelin synthesis, maturation, and turnover.
Collapse
Affiliation(s)
- Annamaria Cimini
- Department of Basic and Applied Biology, Università di L'Aquila, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 2003; 97:1-33. [PMID: 12493533 DOI: 10.1016/s0163-7258(02)00300-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the largest protein families in the human genome. They are subject to numerous post-translational modifications, including palmitoylation. This review highlights the dynamic nature of palmitoylation and its role in GPCR expression and function. The palmitoylation of other proteins involved in GPCR signaling, such as G-proteins, regulators of G-protein signaling, and G-protein-coupled receptor kinases, is also discussed.
Collapse
Affiliation(s)
- Riad Qanbar
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, 2900 Edouard Montpetit, Montreál, Quebec, Canada H3C 3J7
| | | |
Collapse
|
17
|
Fitzsimmons TJ, Gukovsky I, McRoberts JA, Rodriguez E, Lai FA, Pandol SJ. Multiple isoforms of the ryanodine receptor are expressed in rat pancreatic acinar cells. Biochem J 2000; 351:265-71. [PMID: 10998370 PMCID: PMC1221358 DOI: 10.1042/0264-6021:3510265] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regulation of cytosolic Ca(2+) is important for a variety of cell functions. The ryanodine receptor (RyR) is a Ca(2+) channel that conducts Ca(2+) from internal pools to the cytoplasm. To demonstrate the presence of the RyR in the pancreatic acinar cell, we performed reverse transcriptase (RT)-PCR, Western blot, immunocytochemistry and microscopic Ca(2+)-release measurements on these cells. RT-PCR showed the presence of mRNA for RyR isoforms 1, 2 and 3 in both rat pancreas and dispersed pancreatic acini. Furthermore, mRNA expression for RyR isoforms 1 and 2 was demonstrated by RT-PCR in individual pancreatic acinar cells selected under the microscope. Western-blot analysis of acinar cell immunoprecipitates, using antibodies against RyR1 and RyR2, showed a high-molecular-mass (>250 kDa) protein band that was much less intense when immunoprecipitated in the presence of RyR peptide. Functionally, permeablized acinar cells stimulated with the RyR activator, palmitoyl-CoA, released Ca(2+) from both basolateral and apical regions. These data show that pancreatic acinar cells express multiple isoforms of the RyR and that there are functional receptors throughout the cell.
Collapse
Affiliation(s)
- T J Fitzsimmons
- Department of Medicine, University of California, Los Angeles, Veterans Affairs Greater Los Angeles Healthcare System, West Los Angeles, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Long-chain acylcarnitines increase intracellular Ca2+ (Ca2+i) and induce electrophysiologic alterations that likely contribute to the genesis of malignant ventricular arrhythmias induced during myocardial ischemia. The mechanisms by which long-chain acylcarnitines increase Ca2+i are not known, although it occurs in the presence of Ca2+ channel blockade and inhibition of Na+/Ca2+ exchange. Long-chain acylcarnitines activate Ca2+ release channels from skeletal muscle sarcoplasmic reticulum (SR), but their effect on cardiac SR is unclear. To test the hypothesis that long-chain acylcarnitines increase Ca2+i from the SR, SR-enriched membrane fractions were prepared from rabbit left ventricular myocardium using sucrose density-gradient centrifugation and characterized by marker enzyme analysis. 45Ca2+ efflux was assessed in the presence or absence of long-chain acylcarnitines. Palmitoylcarnitine and stearoylcarnitine produced concentration-dependent efflux of 45Ca2+, whereas shorter chain acylcarnitines, palmitate, and palmitoyl-coenzyme A did not. Pretreatment of cardiac SR vesicles with ryanodine did not prevent palmitoylcarnitine-induced Ca2+ release. In addition, palmitoylcarnitine did not influence specific [3H]ryanodine binding, suggesting a mechanism independent of alterations in ryanodine receptor/Ca2+ release channel binding. In summary, long-chain acylcarnitines enhance Ca2+ release from cardiac SR vesicles and may thereby mobilize Ca2+i to induce electrophysiologic derangements under conditions, such as ischemia, in which these amphiphiles accumulate.
Collapse
Affiliation(s)
- K A Yamada
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
19
|
Knudsen J, Neergaard TB, Gaigg B, Jensen MV, Hansen JK. Role of acyl-CoA binding protein in acyl-CoA metabolism and acyl-CoA-mediated cell signaling. J Nutr 2000; 130:294S-298S. [PMID: 10721891 DOI: 10.1093/jn/130.2.294s] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-chain acyl-CoA esters (LCA) act both as substrates and intermediates in metabolism and as regulators of various intracellular functions. Acyl-CoA binding protein (ACBP) binds LCA with high affinity and is believed to play an important role in intracellular acyl-CoA transport and pool formation and therefore also for the function of LCA as metabolites and regulators of cellular functions . The free concentration of cytosolic LCA is efficiently buffered to low nanomole concentration by ACBP and fatty acid binding protein (FABP). An additional important factor is the activity of acyl-CoA hydrolases. The estimated cellular free LCA concentration is two to four orders of magnitude lower than the concentrations reported to be necessary to regulate most LCA-affected cellular functions. Preliminary evidence indicates that the regulatory effect of LCA might be mediated by the LCA/ACBP complex.
Collapse
Affiliation(s)
- J Knudsen
- Institute of Biochemistry, Odense University, Denmark
| | | | | | | | | |
Collapse
|
20
|
Faergeman NJ, Ballegaard T, Knudsen J, Black PN, DiRusso C. Possible roles of long-chain fatty Acyl-CoA esters in the fusion of biomembranes. Subcell Biochem 2000; 34:175-231. [PMID: 10808334 DOI: 10.1007/0-306-46824-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- N J Faergeman
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208, USA
| | | | | | | | | |
Collapse
|
21
|
Basu-Modak S, Braissant O, Escher P, Desvergne B, Honegger P, Wahli W. Peroxisome proliferator-activated receptor beta regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. J Biol Chem 1999; 274:35881-8. [PMID: 10585473 DOI: 10.1074/jbc.274.50.35881] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate the expression of many genes involved in lipid metabolism. The biological roles of PPARalpha and PPARgamma are relatively well understood, but little is known about the function of PPARbeta. To address this question, and because PPARbeta is expressed to a high level in the developing brain, we used reaggregated brain cell cultures prepared from dissociated fetal rat telencephalon as experimental model. In these primary cultures, the fetal cells initially form random aggregates, which progressively acquire a tissue-specific pattern resembling that of the brain. PPARs are differentially expressed in these aggregates, with PPARbeta being the prevalent isotype. PPARalpha is present at a very low level, and PPARgamma is absent. Cell type-specific expression analyses revealed that PPARbeta is ubiquitous and most abundant in some neurons, whereas PPARalpha is predominantly astrocytic. We chose acyl-CoA synthetases (ACSs) 1, 2, and 3 as potential target genes of PPARbeta and first analyzed their temporal and cell type-specific pattern. This analysis indicated that ACS2 and PPARbeta mRNAs have overlapping expression patterns, thus designating the ACS2 gene as a putative target of PPARbeta. Using a selective PPARbeta activator, we found that the ACS2 gene is transcriptionally regulated by PPARbeta, demonstrating a role for PPARbeta in brain lipid metabolism.
Collapse
Affiliation(s)
- S Basu-Modak
- Institut de Biologie Animale, Bâtiment de Biologie, Université de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Fulceri R, Giunti R, Knudsen J, Leuzzi R, Kardon T, Benedetti A. Rapamycin inhibits activation of ryanodine receptors from skeletal muscle by the fatty acyl CoA-acyl CoA binding protein complex. Biochem Biophys Res Commun 1999; 264:409-12. [PMID: 10529377 DOI: 10.1006/bbrc.1999.1532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed (Fulceri et al., Biochem. J. 325, 423, 1997) that the fatty acyl CoA ester palmitoyl CoA (PCoA) complexed with a molar excess of its cytosolic binding protein (ACBP) causes a discrete Ca(2+) efflux or allows Ca(2+) release by suboptimal caffeine concentrations, in the Ca(2+)-preloaded terminal cisternae fraction (TC) from rabbit skeletal muscle, by activating ryanodine receptor Ca(2+) release channels (RyRC). We show here that both effects were abolished by pretreating TC with the FKBP12 ligand rapamycin (20 microM). Moreover, rapamycin reversed the Ca(2+) release induced by combined treatment with 3 mM caffeine and the PCoA-ACBP complex. Rapamycin also reduced the Ca(2+)-releasing activity by PCoA alone. Under the above experimental conditions, rapamycin removed FKBP12 from the TC membranes, as revealed by Western blot analysis. We conclude that FKBP12 associated with RyRC in the TC membrane participates in the activation of the Ca(2+) channel by fatty acyl CoA esters.
Collapse
Affiliation(s)
- R Fulceri
- Dipartimento di Fisiopatologia e Medicina Sperimentale, Università di Siena, Siena, 53100-, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Pascale A, Bhagavan S, Nelson TJ, Neve RL, McPhie DL, Etcheberrigaray R. Enhanced BK-induced calcium responsiveness in PC12 cells expressing the C100 fragment of the amyloid precursor protein. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:205-13. [PMID: 10529479 DOI: 10.1016/s0169-328x(99)00223-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several lines of evidence have implicated the amyloid precursor protein (APP) and its metabolic products as key players in Alzheimer's disease (AD) pathophysiology. The approximately 100 amino acid C-terminal fragment (C100) of APP has been shown to accumulate intracellularly in neurons expressing familial AD (FAD) mutants of APP and to cause neurodegeneration when expressed in transfected neuronal cells. Transgenic animals expressing this fragment in the brain also exhibit some neuropathological and behavioral AD-like deficits. Here, we present evidence that PC12 cells expressing the C100 fragment either via stable transfections or herpes simplex virus-mediated infections show alterations in calcium handling that are similar to those previously shown in fibroblasts from AD patients. This alteration in calcium homeostasis may contribute to the deleterious effects of C100 in PC12 cells. Our data also lend support for a pathophysiological role for C100 since it induces an alteration thought to play an important role in AD pathology.
Collapse
Affiliation(s)
- A Pascale
- Laboratory of Applied Neuroscience, Institute for Cognitive and Computational Sciences, Georgetown University Medical Center, The Research Bldg., Room WP 14, 3970 Reservoir Rd., NW, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
24
|
Nelson TJ, Zhao WQ, Yuan S, Favit A, Pozzo-Miller L, Alkon DL. Calexcitin interaction with neuronal ryanodine receptors. Biochem J 1999; 341 ( Pt 2):423-33. [PMID: 10393102 PMCID: PMC1220376 DOI: 10.1042/0264-6021:3410423] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calexcitin (CE), a Ca2+- and GTP-binding protein, which is phosphorylated during memory consolidation, is shown here to co-purify with ryanodine receptors (RyRs) and bind to RyRs in a calcium-dependent manner. Nanomolar concentrations of CE released up to 46% of the 45Ca label from microsomes preloaded with 45CaCl2. This release was Ca2+-dependent and was blocked by antibodies against the RyR or CE, by the RyR inhibitor dantrolene, and by a seven-amino-acid peptide fragment corresponding to positions 4689-4697 of the RyR, but not by heparin, an Ins(1,4,5)P3-receptor antagonist. Anti-CE antibodies, in the absence of added CE, also blocked Ca2+ release elicited by ryanodine, suggesting that the CE and ryanodine binding sites were in relative proximity. Calcium imaging with bis-fura-2 after loading CE into hippocampal CA1 pyramidal cells in hippocampal slices revealed slow, local calcium transients independent of membrane depolarization. Calexcitin also released Ca2+ from liposomes into which purified RyR had been incorporated, indicating that CE binding can be a proximate cause of Ca2+ release. These results indicated that CE bound to RyRs and suggest that CE may be an endogenous modulator of the neuronal RyR.
Collapse
Affiliation(s)
- T J Nelson
- Laboratory of Adaptive Systems, National Institutes of Health, Bldg. 36, Room 4A-23, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Knudsen J, Jensen MV, Hansen JK, Faergeman NJ, Neergaard TB, Gaigg B. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling. Mol Cell Biochem 1999; 192:95-103. [PMID: 10331663 DOI: 10.1007/978-1-4615-4929-1_11] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport and pool formation and therefore also for the function of LCAs as metabolites and regulators of cellular functions [1]. The major factors controlling the free concentration of cytosol long chain acylCoA ester (LCA) include ACBP [2], sterol carrier protein 2 (SCP2) [3] and fatty acid binding protein (FABP) [4]. Additional factors affecting the concentration of free LCA include feed back inhibition of the acylCoA synthetase [5], binding to acylCoA receptors (LCA-regulated molecules and enzymes), binding to membranes and the activity of acylCoA hydrolases [6].
Collapse
Affiliation(s)
- J Knudsen
- Biokemisk Institut, Odense Universitet, Denmark
| | | | | | | | | | | |
Collapse
|
26
|
Mohr T, Van Soeren M, Graham TE, Kjaer M. Caffeine ingestion and metabolic responses of tetraplegic humans during electrical cycling. J Appl Physiol (1985) 1998; 85:979-85. [PMID: 9729573 DOI: 10.1152/jappl.1998.85.3.979] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normally, caffeine ingestion results in a wide spectrum of neural and hormonal responses, making it difficult to evaluate which are critical regulatory factors. We examined the responses to caffeine (6 mg/kg) ingestion in a group of spinal cord-injured subjects [7 tetraplegic (C5-7) and 2 paraplegic (T4) subjects] at rest and during functional electrical stimulation of their paralyzed limbs to the point of fatigue. Plasma insulin did not change, caffeine had no effect on plasma epinephrine, and there was a slight increase (P < 0. 05) in norepinephrine after 15 min of exercise. Nevertheless, serum free fatty acids were increased (P < 0.05) after caffeine ingestion after 60 min of rest and throughout the first 15 min of exercise, but the respiratory exchange ratio was not affected. The exercise time was increased (P < 0.05) by 6% or 1.26 +/- 0.57 min. These data suggest that caffeine had direct effects on both the adipose tissue and the active muscle. It is proposed that the ergogenic action of caffeine is occurring, at least in part, by a direct action of the drug on muscle.
Collapse
Affiliation(s)
- T Mohr
- The Copenhagen Muscle Research Centre, Department H, Bispebjerg Hospital, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | | | | | |
Collapse
|
27
|
Fitzsimmons TJ, McRoberts JA, Tachiki KH, Pandol SJ. Acyl-coenzyme A causes Ca2+ release in pancreatic acinar cells. J Biol Chem 1997; 272:31435-40. [PMID: 9395476 DOI: 10.1074/jbc.272.50.31435] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The regulation of cytosolic Ca2+ is important for a variety of cell functions. One non-inositol 1,4,5-trisphosphate (IP3) compound that may regulate Ca2+ is palmitoyl-coenzyme A (CoA), a fatty acid-CoA that is reported to cause Ca2+ release from intracellular stores of oocytes, myocytes, and hepatocytes. To study the role of palmitoyl-CoA in the pancreatic acinar cell, rat pancreatic acini were isolated by collagenase digestion, permeablized with streptolysin O, and the release of Ca2+ from internal stores was measured with fura-2. Palmitoyl-CoA released Ca2+ from internal stores (EC50 = 14 microM). The palmitoyl-CoA-sensitive pool was distinct from, and overlapping with the IP3-sensitive Ca2+ pool. The effects of submaximal doses of IP3 or cyclic ADP-ribose plus palmitoyl-CoA were additive. Fatty acid-CoA derivatives with carbon chain lengths of 16-18 were the most potent and efficacious. Ryanodine and caffeine or elevated resting [Ca2+] sensitized the Ca2+ pool to the actions of palmitoyl-CoA. Fatty acid-CoA levels in pancreatic acini were measured by extraction with 2-propanol/acetonitrile, followed by separation and quantification using reverse phase high performance liquid chromatography, and were found to be 10.17 +/- 0.93 nmol/mg protein. These data suggest the presence of an IP3-insensitive palmitoyl-CoA-sensitive Ca2+ store in pancreatic acinar cells and suggest that palmitoyl-CoA may be needed for Ca2+-induced Ca2+ release.
Collapse
Affiliation(s)
- T J Fitzsimmons
- Department of Veterans Affairs Medical Center, West Los Angeles, California, USA.
| | | | | | | |
Collapse
|
28
|
Fulceri R, Knudsen J, Giunti R, Volpe P, Nori A, Benedetti A. Fatty acyl-CoA-acyl-CoA-binding protein complexes activate the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum. Biochem J 1997; 325 ( Pt 2):423-8. [PMID: 9230123 PMCID: PMC1218577 DOI: 10.1042/bj3250423] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously reported that fatty acyl-CoA esters activate ryanodine receptor/Ca2+ release channels in a terminal cisternae fraction from rabbit skeletal muscle [Fulceri, Nori, Gamberucci, Volpe, Giunti and Benedetti (1994) Cell Calcium 15, 109-116]. Skeletal muscle cytosol contains a high-affinity fatty acyl-CoA-binding protein (ACBP) [Knudsen, Hojrup, Hansen, H.O., Hansen, H.F. and Roepstorff (1989) Biochem. J. 262, 513-519]. We show here that palmitoyl-CoA (PCoA) in a complex with a molar excess of bovine ACBP causes a discrete Ca2+ efflux or allows Ca2+ release from the Ca2+-preloaded terminal cisternae fraction by sub-optimal caffeine concentrations. Both effects were abolished by elevating the free [Mg2+] in the system, which inhibits the Ca2+ release channel activity. Sensitization towards caffeine was a function of both the concentration of the complex and the [PCoA]-to-[ACBP] ratio. In all experimental conditions the calculated free [PCoA] was no more than 50 nM, and such concentrations by themselves were inactive on Ca2+ release channels. The KD for PCoA binding was approx. 2 nM for bovine and yeast ACBP, and slightly higher (8 nM) for rat ACBP. The PCoA-rat ACBP complex behaved in the same manner as the PCoA-bovine ACBP complex, whereas the ester complexed with yeast ACBP was more active in activating/sensitizing Ca2+ efflux. A non-hydrolysable analogue of PCoA bound to (bovine) ACBP also sensitized the Ca2+ release channel towards caffeine. These findings indicate that fatty acyl-CoA-ACBP complexes either interact directly with one or more components in the terminal cisternae membranes or, through interaction with the component(s), donate the fatty acyl-CoA esters to high-affinity binding sites of the membrane, thus affecting (and possibly regulating) Ca2+ release channel activity.
Collapse
Affiliation(s)
- R Fulceri
- Istituto di Patologia Generale, Viale A. Moro, Università di Siena, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Faergeman NJ, Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 1997; 323 ( Pt 1):1-12. [PMID: 9173866 PMCID: PMC1218279 DOI: 10.1042/bj3230001] [Citation(s) in RCA: 530] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl-CoA binding protein and that acetyl-CoA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of acyl-CoA indicate that long-chain acyl-CoA esters can act as regulatory molecules in vivo. This view is further supported by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase.
Collapse
Affiliation(s)
- N J Faergeman
- Institute of Biochemistry, Odense University, DK-5230 Odense, Denmark
| | | |
Collapse
|
30
|
Nori A, Fulceri R, Gamberucci A, Benedetti A, Volpe P. Biochemical and functional heterogeneity of rat cerebrum microsomal membranes in relation to SERCA Ca(2+)-ATPases and Ca2+ release channels. Cell Calcium 1996; 19:375-81. [PMID: 8793177 DOI: 10.1016/s0143-4160(96)90110-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rat cerebrum microsomes were subfractionated on isopycnic linear sucrose (20-42%) density gradients. The Ca2+ loading/release properties and the distribution of intracellular Ca2+ store channels, inositol 1,4,5-trisphosphate (IP3) receptor and ryanodine (Ry) receptor, and SERCA pumps, were monitored in each subfraction by ligand binding and 45Ca2+ loading/release assays. Three different classes of vesicles were identified: (i) heavy density vesicles with high content of Ry receptors and Ca2+ pumps and high thapsigargin (TG)-sensitivity of Ca2+ loading; (ii) intermediate sucrose density vesicles with high content of IP3 receptor, high IP(S)3-sensitivity of Ca2+ loading and low content of Ry receptors; and (iii) light sucrose density vesicles with high content of Ry receptors, low content of IP3 receptors and low content of SERCA pumps highly sensitive to TG. Isolation of molecularly heterogeneous rat cerebrum microsomes and identification of specific Ca2+ loading/release properties support the presence of multiple, potentially active, heterogeneous rapidly exchanging Ca2+ stores in rat cerebrum.
Collapse
Affiliation(s)
- A Nori
- Dipartimento di Scienze Biomediche Sperimentali dell'Università di Padova, Italy
| | | | | | | | | |
Collapse
|
31
|
Gamberucci A, Marcolongo P, Fulceri R, Giunti R, Watkins SL, Waddell ID, Burchell A, Benedetti A. Low levels of glucose-6-phosphate hydrolysis in the sarcoplasmic reticulum of skeletal muscle: involvement of glucose-6-phosphatase. Mol Membr Biol 1996; 13:103-8. [PMID: 8839454 DOI: 10.3109/09687689609160583] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glucose-6-phosphate hydrolysis was measured in a fraction obtained from rabbit fast-twitch skeletal muscle and corresponding to total sarcoplasmic reticulum, as well as in three subfractions containing longitudinal tubules, terminal cisternae or both structures. In all cases the levels of hydrolysis measured both in native and disrupted membranes were approximately 60-100 times lower than the microsomal glucose-6-phosphatase activity of the corresponding livers. In contrast to liver microsomes, most (up to 80%) of the glucose-6-phosphate hydrolysing activity in muscle sarcoplasmic reticulum membranes was not inactivated by pH 5.0 pre-incubation indicating that it was not catalysed by the specific glucose-6-phosphatase enzyme. Osmotically induced changes in light-scattering intensity of sarcoplasmic reticulum vesicles revealed that, in contrast to liver microsomes, sarcoplasmic reticulum vesicles were not selectively permeable to glucose-6-phosphate as mannose-6-phosphate was also permeable and in addition they were poorly permeable to glucose. Immunoblot experiments using antibodies raised against the glucose-6-phosphatase enzyme, and liver endoplasmic reticulum glucose and Pi translocases, failed to detect the presence of these protein components in sarcoplasmic reticulum membranes. Southern blot analysis of reverse transcriptase-polymerase chain reaction products from rat muscle revealed that glucose-6-phosphatase mRNA is present in muscle. Quantification of Northern blot analysis of liver and muscle mRNA indicated that muscle contains less than 2% of the amount of glucose-6-phosphate mRNA found in corresponding livers. We conclude that very low levels of specific glucose-6-phosphatase (e.g. as in liver; E.C. 3.1.3.9) are present in muscle sarcoplasmic reticulum and that the muscle and liver glucose-6-phosphatase systems have several different properties.
Collapse
Affiliation(s)
- A Gamberucci
- Instituto di Patologia Generale, Università di Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fulceri R, Gamberucci A, Scott HM, Giunti R, Burchell A, Benedetti A. Fatty acyl-CoA esters inhibit glucose-6-phosphatase in rat liver microsomes. Biochem J 1995; 307 ( Pt 2):391-7. [PMID: 7733874 PMCID: PMC1136661 DOI: 10.1042/bj3070391] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In native rat liver microsomes glucose 6-phosphatase activity is dependent not only on the activity of the glucose-6-phosphatase enzyme (which is lumenal) but also on the transport of glucose-6-phosphate, phosphate and glucose through the respective translocases T1, T2 and T3. By using enzymic assay techniques, palmitoyl-CoA or CoA was found to inhibit glucose-6-phosphatase activity in intact microsomes. The effect of CoA required ATP and fatty acids to form fatty acyl esters. Increasing concentrations (2-50 microM) of CoA (plus ATP and 20 microM added palmitic acid) or of palmitoyl-CoA progressively decreased glucose-6-phosphatase activity to 50% of the control value. The inhibition lowered the Vmax without significantly changing the Km. A non-hydrolysable analogue of palmitoyl-CoA also inhibited, demonstrating that binding of palmitoyl-CoA rather than hydrolysis produces the inhibition. Light-scattering measurements of osmotically induced changes in the size of rat liver microsomal vesicles pre-equilibrated in a low-osmolality buffer demonstrated that palmitoyl-CoA alone or CoA plus ATP and palmitic acid altered the microsomal permeability to glucose 6-phosphate, but not to glucose or phosphate, indicating that T1 is the site of palmitoyl-CoA binding and inhibition of glucose-6-phosphatase activity in native microsomes. The type of inhibition found suggests that liver microsomes may comprise vesicles heterogeneous with respect to glucose-6-phosphate translocase(s), i.e. sensitive or insensitive to fatty acid ester inhibition.
Collapse
Affiliation(s)
- R Fulceri
- Istituto di Patologia Generale, University of Siena, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Rich GT, Comerford JG, Graham S, Dawson AP. Effects of CoA and acyl-CoA on Ca(2+)-permeability of endoplasmic-reticulum membranes from rat liver. Biochem J 1995; 306 ( Pt 3):703-8. [PMID: 7702563 PMCID: PMC1136578 DOI: 10.1042/bj3060703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have studied the effects of CoA and palmitoyl-CoA on Ca2+ movements and GTP-dependent vesicle fusion in rat liver microsomes. (1) Inhibition of membrane fusion by CoA depends on esterification of CoA to long-chain acyl-CoA using endogenous non-esterified fatty acids. (2) Binding of long-chain acyl-CoA to microsomal membranes is inhibited by BSA, which also relieves inhibition of membrane fusion. (3) Under conditions where acyl-CoA binding is inhibited, CoA causes increased Ca2+ accumulation, apparently by decreasing the Ca2+ leak rate. (4) Conversely, palmitoyl-CoA, in the presence of BSA, causes Ca2+ efflux. (5) The decrease in Ca(2+)-permeability caused by CoA does not depend on the presence of ATP or GTP, and is irreversible in the short term. (6) Using 14C-labelled CoA we show that CoA derivatives can be formed from endogenous components of microsomal membranes in the absence of ATP. (7) The results are interpreted in terms of a Ca(2+)-permeability which is controlled by CoA and/or long-chain acyl-CoA esters.
Collapse
Affiliation(s)
- G T Rich
- School of Biological Sciences, University of East Anglia, Norwich, U.K
| | | | | | | |
Collapse
|
34
|
Dettbarn C, Betto R, Salviati G, Sabbadini R, Palade P. Involvement of ryanodine receptors in sphingosylphosphorylcholine-induced calcium release from brain microsomes. Brain Res 1995; 669:79-85. [PMID: 7712168 DOI: 10.1016/0006-8993(94)01234-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sphingosylphosphorylcholine (SPC) releases Ca2+ from brain microsomes. SPC-induced CA2+ release differs from IP3-induced Ca2+ release in that it is more extensive in the cerebrum than in the cerebellum. SPC has little effect on [3H] IP3 binding but enhances [3H] ryanodine binding, as expected for an activator of ryanodine receptors. SPC-induced Ca2+ release is inhibited by ryanodine receptor blockers but not by selective blockers of IP3 receptors. We conclude that SPC releases Ca2+ from brain microsomes by activating ryanodine receptors rather than IP3 receptors. Activation of an additional SPC-sensitive pathway for releasing Ca2+ is not precluded.
Collapse
Affiliation(s)
- C Dettbarn
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641
| | | | | | | | | |
Collapse
|
35
|
Rys-Sikora KE, Ghosh TK, Gill DL. Modification of GTP-activated calcium translocation by fatty acyl-CoA esters. Evidence for a GTP-induced prefusion event. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31737-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Connelly T, Ahern C, Sukhareva M, Coronado R. Removal of Mg2+ inhibition of cardiac ryanodine receptor by palmitoyl coenzyme A. FEBS Lett 1994; 352:285-90. [PMID: 7925988 DOI: 10.1016/0014-5793(94)00969-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
45Ca2+ fluxes and planar bilayer recordings indicated that the fatty acid metabolite palmitoyl coenzyme A, but not free coenzyme A or palmitic acid, stimulated the cardiac ryanodine receptor channel of pig heart sarcoplasmic reticulum. Palmitoyl CoA reactivated channels inhibited by concentrations of cytoplasmic free Mg2+ in the physiological range. Reactivation by palmitoyl CoA in the presence of Mg2+ was stimulated by myoplasmic free Ca2+ in the micromolar range. Acyl coenzyme A derivatives may be utilized by cardiac muscle cells to compensate for the severe Mg2+ inhibition of ryanodine receptors which would otherwise leave Ca2+ stores unresponsive to Ca2+ and to other cytosolic ligands involved in signal transduction.
Collapse
Affiliation(s)
- T Connelly
- Department of Anesthesiology, University of Wisconsin School of Medicine, Madison 53706
| | | | | | | |
Collapse
|