1
|
Silva-Brea D, de Sancho D, Lopez X. Influence of metal binding on the conformational landscape of neurofilament peptides. Phys Chem Chem Phys 2023; 25:26429-26442. [PMID: 37551731 DOI: 10.1039/d3cp03179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
In order to understand the preferred modes of chelation in metal-binding peptides, quantum mechanical calculations can be used to compute energies, resulting in a hierarchy of binding affinities. These calculations often produce increasing stabilization energies the higher the coordination of the complex. However, as the coordination of a metal increases, the conformational freedom of the polypeptide chain is inevitably reduced, resulting in an entropic penalty. Estimating the magnitude of this penalty from the many different degrees of freedom of biomolecular systems is very challenging, and as a result this contribution to the free energy is often ignored. Here we explore this problem focusing on a family of phosphorylated neuropeptides that bind to aluminum. We find that there is a general negative correlation between both stabilization energy and entropy. Our results suggest that a subtle interplay between enthalpic and entropic forces will determine the population of the most favourable species. Additionally, we discuss the requirements for a possible "Metal Ion Hypothesis" based on our findings.
Collapse
Affiliation(s)
- David Silva-Brea
- Donostia International Physics Center (DIPC), PK 1072, 20080 Donostia San-Sebastian, Spain.
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU, Spain
| | - David de Sancho
- Donostia International Physics Center (DIPC), PK 1072, 20080 Donostia San-Sebastian, Spain.
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU, Spain
| | - Xabier Lopez
- Donostia International Physics Center (DIPC), PK 1072, 20080 Donostia San-Sebastian, Spain.
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU, Spain
| |
Collapse
|
2
|
Gaur A, Nayak P, Ghosh S, Sengupta T, Sakthivadivel V. Aluminum as a Possible Cause Toward Dyslipidemia. Indian J Occup Environ Med 2023; 27:112-119. [PMID: 37600652 PMCID: PMC10434801 DOI: 10.4103/ijoem.ijoem_349_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/24/2022] [Indexed: 08/22/2023] Open
Abstract
Aluminum, the third most abundant metal present in the earth's crust, is present almost in all daily commodities we use, and exposure to it is unavoidable. The interference of aluminum with various biochemical reactions in the body leads to detrimental health effects, out of which aluminum-induced neurodegeneration is widely studied. However, the effect of aluminum in causing dyslipidemia cannot be neglected. Dyslipidemia is a global health problem, which commences to the cosmic of non-communicable diseases. The interference of aluminum with various iron-dependent enzymatic activities in the tri-carboxylic acid cycle and electron transport chain results in decreased production of mitochondrial adenosine tri-phosphate. This ultimately contributes to oxidative stress and iron-mediated lipid peroxidation. This mitochondrial dysfunction along with modulation of α-ketoglutarate and L-carnitine perturbs lipid metabolism, leading to the atypical accumulation of lipids and dyslipidemia. Respiratory chain disruption because of the accumulation of reduced nicotinamide adenine di-nucleotide as a consequence of oxidative stress and the stimulatory effect of aluminum exposure on glycolysis causes many health issues including fat accumulation, obesity, and other hepatic disorders. One major factor contributing to dyslipidemia and enhanced pro-inflammatory responses is estrogen. Aluminum, being a metalloestrogen, modulates estrogen receptors, and in this world of industrialization and urbanization, we could corner down to metals, particularly aluminum, in the development of dyslipidemia. As per PRISMA guidelines, we did a literature search in four medical databases to give a holistic view of the possible link between aluminum exposure and various biochemical events leading to dyslipidemia.
Collapse
Affiliation(s)
- Archana Gaur
- Department of Physiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Prasunpriya Nayak
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sutirtha Ghosh
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Trina Sengupta
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Varatharajan Sakthivadivel
- Department of General Medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Grande-Aztatzi R, Formoso E, Mujika JI, de Sancho D, Lopez X. Theoretical characterization of Al(III) binding to KSPVPKSPVEEKG: Insights into the propensity of aluminum to interact with key sequences for neurofilament formation. J Inorg Biochem 2020; 210:111169. [PMID: 32679460 DOI: 10.1016/j.jinorgbio.2020.111169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/15/2022]
Abstract
Classical molecular dynamic simulations and density functional theory are used to unveil the interaction of aluminum with various phosphorylated derivatives of the fragment KSPVPKSPVEEKG (NF13), a major multiphosphorylation domain of human neurofilament medium (NFM). Our calculations reveal the rich coordination chemistry of the resultant structures with a clear tendency of aluminum to form multidentate structures, acting as a bridging agent between different sidechains and altering the local secondary structure around the binding site. Our evaluation of binding energies allows us to determine that phosphorylation has an increase in the affinity of these peptides towards aluminum, although the interaction is not as strong as well-known chelators of aluminum in biological systems. Finally, the presence of hydroxides in the first solvation layer has a clear damping effect on the binding affinities. Our results help in elucidating the potential structures than can be formed between this exogenous neurotoxic metal and key sequences for the formation of neurofilament tangles, which are behind of some of the most important degenerative diseases.
Collapse
Affiliation(s)
| | - Elena Formoso
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Farmazia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz, Euskadi, Spain
| | - Jon I Mujika
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - David de Sancho
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Euskadi, Spain.
| |
Collapse
|
4
|
Dalla Torre G, Mujika JI, Lachowicz JI, Ramos MJ, Lopez X. The interaction of aluminum with catecholamine-based neurotransmitters: can the formation of these species be considered a potential risk factor for neurodegenerative diseases? Dalton Trans 2019; 48:6003-6018. [PMID: 30688329 DOI: 10.1039/c8dt04216k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The potential neurotoxic role of Al(iii) and its proposed link with the insurgence of Alzheimer's Disease (AD) have attracted increasing interest towards the determination of the nature of bioligands that are propitious to interact with aluminum. Among them, catecholamine-based neurotransmitters have been proposed to be sensitive to the presence of this non-essential metal ion in the brain. In the present work, we characterize several aluminum-catecholamine complexes in various stoichiometries, determining their structure and thermodynamics of formation. For this purpose, we apply a recently validated computational protocol with results that show a remarkably good agreement with the available experimental data. In particular, we employ Density Functional Theory (DFT) in conjunction with continuum solvation models to calculate complexation energies of aluminum for a set of four important catecholamines: l-DOPA, dopamine, noradrenaline and adrenaline. In addition, by means of the Quantum Theory of Atoms in Molecules (QTAIM) and Energy Decomposition Analysis (EDA) we assessed the nature of the Al-ligand interactions, finding mainly ionic bonds with an important degree of covalent character. Our results point at the possibility of the formation of aluminum-catecholamine complexes with favorable formation energies, even when proton/aluminum competition is taken into account. Indeed, we found that these catecholamines are better aluminum binders than catechol at physiological pH, because of the electron withdrawing effect of the positively-charged amine that decreases their deprotonation penalty with respect to catechol. However, overall, our results show that, in an open biological environment, the formation of Al-catecholamine complexes is not thermodynamically competitive when compared with the formation of other aluminum species in solution such as Al-hydroxide, or when considering other endogenous/exogenous Al(iii) ligands such as citrate, deferiprone and EDTA. In summary, we rule out the possibility, suggested by some authors, that the formation of Al-catecholamine complexes in solution might be behind some of the toxic roles attributed to aluminum in the brain. An up-to-date view of the catecholamine biosynthesis pathway with sites of aluminum interference (according to the current literature) is presented. Alternative mechanisms that might explain the deleterious effects of this metal on the catecholamine route are thoroughly discussed, and new hypotheses that should be investigated in future are proposed.
Collapse
Affiliation(s)
- Gabriele Dalla Torre
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain.
| | | | | | | | | |
Collapse
|
5
|
Igbokwe IO, Igwenagu E, Igbokwe NA. Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol 2019; 12:45-70. [PMID: 32206026 PMCID: PMC7071840 DOI: 10.2478/intox-2019-0007] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Aluminium (Al) is frequently accessible to animal and human populations to the extent that intoxications may occur. Intake of Al is by inhalation of aerosols or particles, ingestion of food, water and medicaments, skin contact, vaccination, dialysis and infusions. Toxic actions of Al induce oxidative stress, immunologic alterations, genotoxicity, pro-inflammatory effect, peptide denaturation or transformation, enzymatic dysfunction, metabolic derangement, amyloidogenesis, membrane perturbation, iron dyshomeostasis, apoptosis, necrosis and dysplasia. The pathological conditions associated with Al toxicosis are desquamative interstitial pneumonia, pulmonary alveolar proteinosis, granulomas, granulomatosis and fibrosis, toxic myocarditis, thrombosis and ischemic stroke, granulomatous enteritis, Crohn's disease, inflammatory bowel diseases, anemia, Alzheimer's disease, dementia, sclerosis, autism, macrophagic myofasciitis, osteomalacia, oligospermia and infertility, hepatorenal disease, breast cancer and cyst, pancreatitis, pancreatic necrosis and diabetes mellitus. The review provides a broad overview of Al toxicosis as a background for sustained investigations of the toxicology of Al compounds of public health importance.
Collapse
Affiliation(s)
- Ikechukwu Onyebuchi Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Ephraim Igwenagu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Nanacha Afifi Igbokwe
- Department Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
6
|
DEMIR EA, BILGIC Y. Chia seed (Salvia hispanica L.) supplementation may contribute to raising the levels of vitamin B12: An option for the vegan diet. REV NUTR 2019. [DOI: 10.1590/1678-9865201932e180249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Objective The chia seed, an ancient pseudocereal, is rich in omega-3 fatty acids and polyphenols, and has been suggested to possess several health benefits. Although it has gained popularity among nutritionists, little is known about the systemic effects of chia and their interactions. Hence, hepatorenal indicators and plasma vitamin concentrations in chia-supplemented aluminum-exposed rats were investigated. Methods Wistar albino rats were either fed on a chia-rich- or standard-diet for 21 days and exposed to aluminum. Liver function tests (Alanine Aminotransferase, Aspartate Aminotransferase, Alkaline Phosphatase, Lactate Dehydrogenase), kidney function tests (Urea Nitrogen, Creatinine), and vitamin B12 and folic acid measurements were performed by using an automated analyzer. Results Aluminum exposure had no influence on renal function, as did chia supplementation. However, liver function was disturbed with the exposure to Aluminum and chia was of no use against it. Surprisingly, it was found that the animals fed on a chia-rich diet displayed higher concentrations of vitamin B12 which was not the case for folic acid. Conclusion It was deduced that a chia-rich diet has no effect on the renal function and is not able to reverse aluminum-induced hepatotoxicity; however, it may be of benefit against vitamin B12 insufficiency and thus, it may offer a novel treatment option which is particularly important in the vegan diet.
Collapse
|
7
|
Formoso E, Grande-Aztatzi R, Lopez X. Does phosphorylation increase the binding affinity of aluminum? A computational study on the aluminum interaction with serine and O-phosphoserine. J Inorg Biochem 2018; 192:33-44. [PMID: 30594864 DOI: 10.1016/j.jinorgbio.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 11/28/2022]
Abstract
Several toxic effects arise from aluminum's presence in living systems, one of these effects is to alter the natural role of enzymes and non-enzyme proteins. Aluminum promotes the hyperphosphorylation of normal proteins. In order to assess the aluminum-binding abilities of phosphorylated proteins and peptides, the interaction of aluminum at different pH with serine and phosphoserine is studied by a Density Functional Theory study, combined with polarizable continuum models to account for bulk solvent effects, and the electronic structure of selected complexes are analyzed by Quantum Theory of "Atoms in Molecules". Our results confirm the high ability of aluminum to bind polypeptides as the pH lowers. Moreover, the phosphorylation of the building blocks increases the affinity for aluminum, in particular at physiological pH. Finally, aluminum shows a tendency to be chelated forming different size rings.
Collapse
Affiliation(s)
- Elena Formoso
- Farmazia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz, Euskadi, Spain; Donostia International Physics Centre (DIPC), Donostia 20018, Euskadi, Spain.
| | | | - Xabier Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Euskadi, Spain; Donostia International Physics Centre (DIPC), Donostia 20018, Euskadi, Spain
| |
Collapse
|
8
|
Exley C. The Chemistry of Human Exposure to Aluminium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1091:33-37. [DOI: 10.1007/978-981-13-1370-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Dalla Torre G, Mujika JI, Formoso E, Matito E, Ramos MJ, Lopez X. Tuning the affinity of catechols and salicylic acids towards Al(iii): characterization of Al–chelator interactions. Dalton Trans 2018; 47:9592-9607. [DOI: 10.1039/c8dt01341a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aluminum is a non-essential element in the human body with unclear harmful effects; therefore, the design and tuning of new and efficient Al(iii) chelating agents is a subject of paramount importance nowadays.
Collapse
Affiliation(s)
- Gabriele Dalla Torre
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea UPV/EHU
- and Donostia International Physics Center (DIPC)
- Euskadi
- Spain
| | - Jon I. Mujika
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea UPV/EHU
- and Donostia International Physics Center (DIPC)
- Euskadi
- Spain
| | - Elena Formoso
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea UPV/EHU
- and Donostia International Physics Center (DIPC)
- Euskadi
- Spain
| | - Eduard Matito
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea UPV/EHU
- and Donostia International Physics Center (DIPC)
- Euskadi
- Spain
| | - Maria J. Ramos
- UCIBIO/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- Porto
| | - Xabier Lopez
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea UPV/EHU
- and Donostia International Physics Center (DIPC)
- Euskadi
- Spain
| |
Collapse
|
10
|
Formoso E, Lopez X. A computational study on interaction of aluminum withd-glucose 6-phosphate for various stoichiometries. RSC Adv 2017. [DOI: 10.1039/c6ra27037a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interaction of aluminum with glucose 6-phosphate is thought to disrupt key processes of the glucide metabolism in cells. Complex and rich aluminum chelation chemistry is found in Aluminum-glucose 6-phosphate speciation study.
Collapse
Affiliation(s)
- Elena Formoso
- Donostia International Physics Center (DIPC)
- 20018 Donostia
- Spain
| | - Xabier Lopez
- Donostia International Physics Center (DIPC)
- 20018 Donostia
- Spain
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU)
| |
Collapse
|
11
|
Grande-Aztatzi R, Formoso E, Mujika JI, Ugalde JM, Lopez X. Phosphorylation promotes Al(iii) binding to proteins: GEGEGSGG as a case study. Phys Chem Chem Phys 2016; 18:7197-207. [DOI: 10.1039/c5cp06379e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aluminum, the third most abundant element in the Earth's crust and one of the key industrial components of our everyday life, has been associated with several neurodegenerative diseases due to its ability to promote neurofilament tangles and β-amyloid peptide aggregation.
Collapse
Affiliation(s)
- Rafael Grande-Aztatzi
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia Internacional Physics Center (DIPC)
- 20080 Donostia
- Spain
| | - Elena Formoso
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia Internacional Physics Center (DIPC)
- 20080 Donostia
- Spain
| | - Jon I. Mujika
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia Internacional Physics Center (DIPC)
- 20080 Donostia
- Spain
| | - Jesus M. Ugalde
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia Internacional Physics Center (DIPC)
- 20080 Donostia
- Spain
| | - Xabier Lopez
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia Internacional Physics Center (DIPC)
- 20080 Donostia
- Spain
| |
Collapse
|
12
|
Aluminum and its effect in the equilibrium between folded/unfolded conformation of NADH. J Inorg Biochem 2015; 152:139-46. [PMID: 26346779 DOI: 10.1016/j.jinorgbio.2015.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 11/22/2022]
Abstract
Nicotinamide adenine dinucleotide (NADH) is one of the most abundant cofactor employed by proteins and enzymes. The molecule is formed by two nucleotides that can lead to two main conformations: folded/closed and unfolded/open. Experimentally, it has been determined that the closed form is about 2 kcal/mol more stable than the open formed. Computationally, a correct description of the NADH unfolding process is challenging due to different reasons: 1) The unfolding process shows a very low energy difference between the two conformations 2) The molecule can form a high number of internal hydrogen bond interactions 3) Subtle effects such as dispersion may be important. In order to tackle all these effects, we have employed a number of different state of the art computational techniques, including: a) well-tempered metadynamics, b) geometry optimizations, and c) Quantum Theory of Atoms in Molecules (QTAIM) calculations, to investigate the conformational change of NADH in solution and interacting with aluminum. All the results indicate that aluminum indeed favors the closed conformation of NADH, due mainly to the formation of a more rigid structure through key hydrogen bond interactions.
Collapse
|
13
|
McCormick NE, Jakeman DL. On the mechanism of phosphoenolpyruvate synthetase (PEPs) and its inhibition by sodium fluoride: potential magnesium and aluminum fluoride complexes of phosphoryl transfer. Biochem Cell Biol 2015; 93:236-40. [DOI: 10.1139/bcb-2014-0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphoenolpyruvate synthase (PEPs) catalyzes the conversion of pyruvate to phosphoenolpyruvate (PEP) using a two-step mechanism invoking a phosphorylated-His intermediate. Formation of PEP is an initial step in gluconeogenesis, and PEPs is essential for growth of Escherichia coli on 3-carbon sources such as pyruvate. The production of PEPs has also been linked to bacterial virulence and antibiotic resistance. As such, PEPs is of interest as a target for antibiotic development, and initial investigations of PEPs have indicated inhibition by sodium fluoride. Similar inhibition has been observed in a variety of phospho-transfer enzymes through the formation of metal fluoride complexes within the active site. Herein we quantify the inhibitory capacity of sodium fluoride through a coupled spectrophotometric assay. The observed inhibition provides indirect evidence for the formation of a MgF3−complex within the enzyme active site and insight into the phospho-transfer mechanism of PEPs. The effect of AlCl3on PEPs enzyme activity was also assessed and found to decrease substrate binding and turnover.
Collapse
Affiliation(s)
- Nicole E. McCormick
- College of Pharmacy, Dalhousie University, 5968 College St., Halifax, NS B3H 4R2, Canada
| | - David L. Jakeman
- College of Pharmacy, Dalhousie University, 5968 College St., Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, 6274 Coberg Rd., Halifax, NS B3H 4R2, Canada
| |
Collapse
|
14
|
Exley C. Why industry propaganda and political interference cannot disguise the inevitable role played by human exposure to aluminum in neurodegenerative diseases, including Alzheimer's disease. Front Neurol 2014; 5:212. [PMID: 25386158 PMCID: PMC4209859 DOI: 10.3389/fneur.2014.00212] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/05/2014] [Indexed: 12/02/2022] Open
Abstract
In the aluminum age, it is clearly unpalatable for aluminum, the globe’s most successful metal, to be implicated in human disease. It is unpalatable because for approximately 100 years human beings have reaped the rewards of the most abundant metal of the Earth’s crust without seriously considering the potential consequences for human health. The aluminum industry is a pillar of the developed and developing world and irrespective of the tyranny of human exposure to aluminum it cannot be challenged without significant consequences for businesses, economies, and governments. However, no matter how deep the dependency or unthinkable the withdrawal, science continues to document, if not too slowly, a burgeoning body burden of aluminum in human beings. Herein, I will make the case that it is inevitable both today and in the future that an individual’s exposure to aluminum is impacting upon their health and is already contributing to, if not causing, chronic diseases such as Alzheimer’s disease. This is the logical, if uncomfortable, consequence of living in the aluminum age.
Collapse
Affiliation(s)
- Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University , Stoke-on-Trent , UK
| |
Collapse
|
15
|
Shaw CA, Li D, Tomljenovic L. Are there negative CNS impacts of aluminum adjuvants used in vaccines and immunotherapy? Immunotherapy 2014; 6:1055-71. [DOI: 10.2217/imt.14.81] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In spite of a common view that aluminum (Al) salts are inert and therefore harmless as vaccine adjuvants or in immunotherapy, the reality is quite different. In the following article we briefly review the literature on Al neurotoxicity and the use of Al salts as vaccine adjuvants and consider not only direct toxic actions on the nervous system, but also the potential impact for triggering autoimmunity. Autoimmune and inflammatory responses affecting the CNS appear to underlie some forms of neurological disease, including developmental disorders. Al has been demonstrated to impact the CNS at every level, including by changing gene expression. These outcomes should raise concerns about the increasing use of Al salts as vaccine adjuvants and for the application as more general immune stimulants.
Collapse
Affiliation(s)
- Christopher A Shaw
- Neural Dynamics Research Group, 828 W. 10th Ave, Vancouver, BC, V5Z 1L8, Canada
| | - Dan Li
- Neural Dynamics Research Group, 828 W. 10th Ave, Vancouver, BC, V5Z 1L8, Canada
| | - Lucija Tomljenovic
- Neural Dynamics Research Group, 828 W. 10th Ave, Vancouver, BC, V5Z 1L8, Canada
| |
Collapse
|
16
|
Mujika JI, Ugalde JM, Lopez X. Aluminum Interaction with Glutamate and α-Ketoglutarate: A Computational Study. J Phys Chem B 2014; 118:6680-6. [DOI: 10.1021/jp502724w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. I. Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea
(UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - J. M. Ugalde
- Kimika Fakultatea, Euskal Herriko Unibertsitatea
(UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - X. Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea
(UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| |
Collapse
|
17
|
From coordination chemistry to biological chemistry of aluminium. J Inorg Biochem 2013; 128:156-63. [DOI: 10.1016/j.jinorgbio.2013.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022]
|
18
|
Biological Water Dynamics and Entropy: A Biophysical Origin of Cancer and Other Diseases. ENTROPY 2013. [DOI: 10.3390/e15093822] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Wang X, Li L, Wang Y, Xu C, Zhao B, Yang X. Application of reduced graphene oxide and carbon nanotube modified electrodes for measuring the enzymatic activity of alcohol dehydrogenase. Food Chem 2013; 138:2195-200. [DOI: 10.1016/j.foodchem.2012.11.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 01/24/2023]
|
20
|
Zatta PF, Cervellin D, Zambenedetti P. Effects of the aluminium speciation on the morphology of rabbit erythrocytes: a toxicological model. Toxicol In Vitro 2012; 12:287-93. [PMID: 20654411 DOI: 10.1016/s0887-2333(97)00120-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/1997] [Indexed: 11/26/2022]
Abstract
The great majority of papers dealing with aluminium (Al) experimental toxicology in vivo and/or in vitro, do not consider the relevance of the metal chemical speciation as a conditio sine qua non to a correct interpretation of aluminium toxicological data. In fact, different aluminium compounds such as salts, stable, metastable, lipophilic or hydrophilic complexes with different thermodynamics and kinetics properties are indifferently utilized by most laboratories. In this connection, the molecular bases that explain Al toxicity are largely uninterpretable. The aim of this study, therefore, is to demonstrate how relevant is the issue of aluminium speciation to the understanding of the toxic properties of the metal ion. In our experimentation we used, as a heuristic model, rabbit erythrocytes (RBC) (Sheetz and Singer, 1974), because these animals are well known for their sensitivity to Al intoxication (Wisniewski and Sturman, 1989). Results reported herein show how the metal chemical speciation can paradigmatically modify the RBC morphology in a metal speciation-dependent manner. Finally, a new toxicological protocol that, by simplifying the methodology of aluminium solution preparation, could standardize the study of aluminium toxicity is also proposed.
Collapse
Affiliation(s)
- P F Zatta
- Centro CNR-Metalloproteine at the University of Padova, Italy
| | | | | |
Collapse
|
21
|
Mailloux RJ, Lemire J, Appanna VD. Hepatic response to aluminum toxicity: dyslipidemia and liver diseases. Exp Cell Res 2011; 317:2231-8. [PMID: 21787768 DOI: 10.1016/j.yexcr.2011.07.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
Aluminum (Al) is a metal toxin that has been implicated in the etiology of a number of diseases including Alzheimer's, Parkinson's, dialysis encephalopathy, and osteomalacia. Al has been shown to exert its effects by disrupting lipid membrane fluidity, perturbing iron (Fe), magnesium, and calcium homeostasis, and causing oxidative stress. However, the exact molecular targets of aluminum's toxicity have remained elusive. In the present review, we describe how the use of a systems biology approach in cultured hepatoblastoma cells (HepG2) allowed the identification of the molecular targets of Al toxicity. Mitochondrial metabolism is the main site of the toxicological action of Al. Fe-dependent and redox sensitive enzymes in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) are dramatically decreased by Al exposure. In an effort to compensate for diminished mitochondrial function, Al-treated cells stabilize hypoxia inducible factor-1α (HIF-1α) to increase ATP production by glycolysis. Additionally, Al toxicity leads to an increase in intracellular lipid accumulation due to enhanced lipogenesis and a decrease in the β-oxidation of fatty acids. Central to these effects is the alteration of α-ketoglutarate (KG) homeostasis. In Al-exposed cells, KG is preferentially used to quench ROS leading to succinate accumulation and HIF-1α stabilization. Moreover, the channeling of KG to combat oxidative stress leads to a reduction of l-carnitine biosynthesis and a concomitant decrease in fatty acid oxidation. The fluidity and interaction of these metabolic modules and the implications of these findings in liver-related disorders are discussed herein.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Laurentian University, Department of Chemistry and Biochemistry, Canada
| | | | | |
Collapse
|
22
|
de Souza Oliveira RP, Rivas Torres B, Zilli M, de Araújo Viana Marques D, Basso LC, Converti A. Use of sugar cane vinasse to mitigate aluminum toxicity to Saccharomyces cerevisiae. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:488-494. [PMID: 19184166 DOI: 10.1007/s00244-009-9287-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/08/2009] [Indexed: 05/27/2023]
Abstract
Owing to its toxicity, aluminum (Al), which is one of the most abundant metals, inhibits the productivity of many cultures and affects the microbial metabolism. The aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Al on cell growth, viability, and budding, as the likely result of possible chelating action. For this purpose, Fleischmann's yeast (Saccharomyces cerevisiae) was used in growth tests performed in 125-mL Erlenmeyer flasks containing 30 mL of YED medium (5.0 g/L yeast extract plus 20 g/L glucose) supplemented with the selected amounts of either vinasse or Al in the form of AlCl(3) . H(2)O. Without vinasse, the addition of increasing levels of Al up to 54 mg/L reduced the specific growth rate by 18%, whereas no significant reduction was observed in its presence. The toxic effect of Al on S. cerevisiae growth and the mitigating effect of sugar cane vinasse were quantified by the exponential model of Ciftci et al. (Biotechnol Bioeng 25:2007-2023, 1983). The cell viability decreased from 97.7% at the start to 84.0% at the end of runs without vinasse and to 92.3% with vinasse. On the other hand, the cell budding increased from 7.62% at the start to 8.84% at the end of runs without vinasse and to 17.8% with vinasse. These results demonstrate the ability of this raw material to stimulate cell growth and mitigate the toxic effect of Al.
Collapse
Affiliation(s)
- Ricardo Pinheiro de Souza Oliveira
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, São Paulo University, Av Prof Lineu Prestes, 580, Bl. 16, 05508-900 Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Nehru B, Bhalla P, Garg A. Evidence for centrophenoxine as a protective drug in aluminium induced behavioral and biochemical alteration in rat brain. Mol Cell Biochem 2006; 290:33-42. [PMID: 16969689 DOI: 10.1007/s11010-006-9125-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 01/09/2006] [Indexed: 11/29/2022]
Abstract
Potential use of various nootropic drugs have been a burning area of research on account of various physical and chemical insult in brain under different toxicological conditions. One of the nootropic drug centrophenoxine, also known as an anti-aging drug has been exploited in the present experiment under aluminium toxic conditions. Aluminium was administered by oral gavage at a dose level of 100 mg/Kg x b x wt/day for a period of six weeks. To elucidate the region specific response, study was carried out in two different regions of brain namely cerebrum and cerebellum. Following aluminium exposure, a significant decrease in the activities of enzymes namely Hexokinase, Lactate dehydrogenase, Succinate dehydrogenase, Mg(2+) dependent ATPase was observed in both the regions. Moreover, the activity of acetylcholinesterase was also reported to be significantly decreased. Post-treatment with centrophenoxine was able to restore the altered enzyme activities and the effect was observed in both the regions of brain although the activity of lactate dehydrogenase and acetylcholinesterase did not register significant increase in the cerebellum region. Further, centrophenoxine was able to improve the altered short-term memory and cognitive performance resulted from aluminium exposure. From the present study, it can be concluded that centrophenoxine has a potential and can be exploited in other toxicological conditions also.
Collapse
Affiliation(s)
- Bimla Nehru
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
| | | | | |
Collapse
|
24
|
Khan A, Ashcroft AE, Higenell V, Korchazhkina OV, Exley C. Metals accelerate the formation and direct the structure of amyloid fibrils of NAC. J Inorg Biochem 2006; 99:1920-7. [PMID: 16087241 DOI: 10.1016/j.jinorgbio.2005.06.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/16/2022]
Abstract
Non-beta amyloid component of Alzheimer's disease amyloid or NAC is a highly amyloidogenic peptide consisting of 35 amino acids which was first identified associated with senile plaques in the Alzheimer's disease brain. It is a fragment of the presynaptic protein alpha-synuclein and, as such, it is implicated in the aetiologies of both Alzheimer's (AD) and Parkinson's (PD) disease. Metals are involved in the aggregation of amyloidogenic peptides such as beta amyloid (Abeta), British amyloid peptide (ABri) and alpha-synuclein though nothing is yet known about how they might influence the aggregation of NAC. We show herein that NAC will form beta-pleated conformers at a peptide concentration of only 2.0 microM and that metals, and Zn(II) and Cu(II) in particular, accelerate the formation of these fibrils. Cu(II) and Zn(II) did not influence the diameter or general structure of the fibrils which were formed though many more shorter fibrils were observed in their presence and these shorter fibrils were highly thioflavin T positive and they were efficient catalysts of the redox cycling of added Fe(II). By way of contrast, beta-pleated conformers of NAC which were formed in the presence of Al(III) showed much lower levels of thioflavin T fluorescence and were poorer catalysts of the redox cycling of added Fe(II) and these properties were commensurate with an increased abundance of a novel amyloid morphology which consisted of twisted fibrils with a periodicity of about 100 nm. These spirals of twisted fibrils were especially abundant in the presence of added Al(III) and it is speculated that NAC binding of Al(III) may be important in their formation and subsequent stability.
Collapse
Affiliation(s)
- Ayesha Khan
- Birchall Centre for Inorganic Chemistry and Materials Science, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG, UK
| | | | | | | | | |
Collapse
|
25
|
Romero CS, Olmo R, Teijón C, Blanco MD, Teijón JM, Romero A. Structural and functional implications of the hexokinase-nickel interaction. J Inorg Biochem 2005; 99:2395-402. [PMID: 16256202 DOI: 10.1016/j.jinorgbio.2005.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 09/12/2005] [Accepted: 09/16/2005] [Indexed: 11/27/2022]
Abstract
The interaction between nickel and yeast hexokinase was studied. The binding of nickel showed a positive cooperativity, and saturation was not reached. The nickel binding induced modifications in the secondary structure of the protein; thus, a lost of alpha helix and beta turns, as well as an increase of the random structure and beta sheet was observed. The monomer/dimmer equilibrium of the protein was modified in the presence of nickel, and the monomer state was mainly obtained at the highest nickel concentrations studied. These changes on the protein structure caused a decrease in the enzyme activity. According to kinetic studies, nickel caused a non-competitive inhibition when glucose was the variable substrate and a linear competitive inhibition when ATP was the variable substrate.
Collapse
Affiliation(s)
- C S Romero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Yang X, Bi S, Wang X, Liu J, Bai Z. Multimethod characterization of the interaction of aluminum ion with alpha-ketoglutaric acid in acidic aqueous solutions. ANAL SCI 2003; 19:273-9. [PMID: 12608759 DOI: 10.2116/analsci.19.273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has recently been reported that aluminum plays a very important role in reducing the activity of Krebs-cycle enzymes and glutamate dehydrogenase in rat brain homogenate. Therefore, it is necessary to identify the aluminum binding ability with the pivotal substrate alpha-ketoglutarate in biological systems. The interactions of aluminum with alpha-ketoglutarate were studied with pH-potentiometry, cyclic voltammetry, UV-vis, 1H, 27Al-NMR and Raman spectra multi-analytical techniques in acidic aqueous solution to measure the stoichiometries and stability constants of the complexes and its keto-enol tautomerism. The alpha-ketoglutarate was found to bind Al in a bidentate manner at the carboxylate and carbonyl moieties. The mononuclear 1:1 (AlLH(-1), AIL+, AlHL2+) and 2:1 (AlL2-, AlL2H(-2)3-) species, and dinuclear 2:1 (Al2L4+) species were found in acidic aqueous solution. Meanwhile, Al can promote alpha-KG tautomerize to its enolic-structure compounds in solutions. These findings may help to further understand the influence of Al on GDH enzyme reactions in biological systems.
Collapse
Affiliation(s)
- Xiaodi Yang
- State Key Laboratory of Coordination Chemistry, Department of Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | | | | | | | | |
Collapse
|
27
|
Rubini P, Lakatos A, Champmartin D, Kiss T. Speciation and structural aspects of interactions of Al(III) with small biomolecules. Coord Chem Rev 2002. [DOI: 10.1016/s0010-8545(01)00467-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
The reaction of aluminium with silicic acid in acidic solution: an important mechanism in controlling the biological availability of aluminium? Coord Chem Rev 2002. [DOI: 10.1016/s0010-8545(02)00077-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Jugdaohsingh R, Salim N, McCrohan CR, White KN, Thompson RP, Powell JJ. Rapid non-equilibrium aluminium-ligand interactions: studies on the precipitation of aluminium by laser light scattering, ultrafiltration and centrifugation. J Inorg Biochem 2001; 87:29-35. [PMID: 11709210 DOI: 10.1016/s0162-0134(01)00311-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The study aimed to develop simple assays to study aluminium-ligand interactions in natural/biological systems where equilibrium is rarely reached and thus where the initial seconds or hours of interactions are important. The immediate and non-equilibrium precipitation of aluminium hydroxide, in aqueous solution at neutral pH, was therefore studied by laser light scattering (diffraction), ultrafiltration and centrifugation. The interaction of weak ligands, present in the gastrointestinal lumen, on the precipitation of aluminium hydroxide was also investigated. The initial kinetics and particle sizes of precipitated aluminium hydroxide were sensitive to a number of external factors, including the presence of weak ligand (bicarbonate), sheer force (stirring), electrolyte concentration and initial (i.e. added) aluminium concentration. However, after a few seconds (no weak ligand), or several hundred seconds (with weak ligand), the subsequent observed changes to the solid phase were of small magnitude and occurred slowly. Thus, a 25-min window, within 5 and 30 min of pH adjustment, can be used to study the interactions of aluminium-ligand. This may approximate better to most natural systems where unperturbed aluminium-ligand equilibrium must rarely exist.
Collapse
Affiliation(s)
- R Jugdaohsingh
- Gastrointestinal Laboratory, Rayne Institute, St. Thomas' Hospital, London SE1 7EH, UK
| | | | | | | | | | | |
Collapse
|
30
|
Schneider C, Exley C. Silicic acid (Si(OH)(4)) is a significant influence upon the atomic absorption signal of aluminium measured by graphite furnace atomic absorption spectrometry (GFAAS). J Inorg Biochem 2001; 87:45-50. [PMID: 11709212 DOI: 10.1016/s0162-0134(01)00313-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have identified silicic acid (Si(OH)(4)) as an important modifier of the absorbance signal of aluminium measured by graphite furnace atomic absorption spectrometry (GFAAS). The presence of Si(OH)(4) enhanced the signal by as much as 50%. The extent of the enhancement was dependent upon both [Al] and [Si(OH)(4)] and was maximal when [Al]< or =4.44 micromol dm(-3) and [Si(OH)(4)]> or =0.50 mmol dm(-3). The enhancement of the Al absorbance signal was not linearly related to [Si(OH)(4)] and the effect was, generally, saturated, for all [Al] tested, at [Si(OH)(4)]> or =0.50 mmol dm(-3). Si(OH)(4) was significantly more effective in enhancing the Al absorbance signal than Mg(NO(3))(2). However, the co-occurrence of 10 mmol dm(-3) Mg(NO(3))(2) and 2 mmol dm(-3) Si(OH)(4) in samples abolished the enhancement due to Si(OH)(4). The presence of Si(OH)(4) in samples could result in an overestimation of the Al content of those samples by as much as 50%. Errors in the measurement of Al in samples containing Si(OH)(4) could be prevented using matrix-matched calibration standards. Our observation could have serious implications for the determination of Al in aqueous samples of both geochemical and biological interest. It may also point towards the application of Si(OH)(4) as a novel and effective matrix modifier in the determination of Al by GFAAS since the inclusion of Si(OH)(4) in standards and samples improved the limit of detection of Al from ca 8 nmol dm(-3) to 3 nmol dm(-3).
Collapse
Affiliation(s)
- C Schneider
- Birchall Centre for Inorganic Chemistry and Materials Science, School of Chemistry and Physics, Keele University, Staffordshire ST5 5BG, UK
| | | |
Collapse
|
31
|
Teijón C, Olmo R, Socorro J, Blanco M, Romero A, Teijón J. Lead-yeast hexokinase interaction: modifications to protein structure caused by the metal. POLYM INT 2001. [DOI: 10.1002/pi.703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Exley C, Korchazhkina OV. Promotion of formation of amyloid fibrils by aluminium adenosine triphosphate (AlATP). J Inorg Biochem 2001; 84:215-24. [PMID: 11374584 DOI: 10.1016/s0162-0134(01)00171-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The formation of amyloid fibrils is considered to be an important step in the aetiology of Alzheimer's disease and other amyloidoses. Fibril formation in vitro has been shown to depend on many different factors including modifications to the amino acid profile of fibrillogenic peptides and interactions with both large and small molecules of physiological significance. How these factors might contribute to amyloid fibril formation in vivo is not clear as very little is known about the promotion of fibril formation in undersaturated solutions of amyloidogenic peptides. We have used thioflavin T fluorescence and reverse phase high performance liquid chromatography to show that ATP, and in particular AlATP, promoted the formation of thioflavin T-reactive fibrils of beta amyloid and, an unrelated amyloidogenic peptide, amylin. Evidence is presented that induction of fibril formation followed the complexation of AIATP by one or more monomers of the respective peptide. However, the complex formed could not be identified directly and it is suggested that AlATP might be acting as a chaperone in the assembly of amyloid fibrils. The effect of AlATP was not mimicked by either AlADP or AlAMP. However, it was blocked by suramin, a P2 ATP receptor antagonist, and this has prompted us to speculate that the precursor proteins to beta amyloid and amylin may be substrates or receptors for ATP in vivo.
Collapse
Affiliation(s)
- C Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, School of Chemistry and Physics, Keele University, Staffordshire, UK.
| | | |
Collapse
|
33
|
Zatta P, Lain E, Cagnolini C. Effects of aluminum on activity of krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3049-55. [PMID: 10806405 DOI: 10.1046/j.1432-1033.2000.01328.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aluminum is a neurotoxic agent for animals and humans that has been implicated as an etiological factor in several neurodegenerative diseases and as a destabilizer of cell membranes. Due to its high reactivity, Al3+ is able to interfere with several biological functions, including enzymatic activities in key metabolic pathways. In this paper we report that, among the enzymes that constitute the Krebs cycle, only two are activated by aluminum: alpha-ketoglutarate dehydrogenase and succinate dehydrogenase. In contrast, aconitase, shows decreased activity in the presence of the metal ion. Al3+ also inhibits glutamate dehydrogenase, an allosteric enzyme that is closely linked to the Krebs cycle. A possible correlation between aluminum, the Krebs cycle and aging processes is discussed.
Collapse
Affiliation(s)
- P Zatta
- CNR Center on Metalloproteins, and Department of Pharmacological Sciences, University of Padova, Italy.
| | | | | |
Collapse
|
34
|
Socorro JM, Olmo R, Teijón C, Blanco MD, Teijón JM. Analysis of aluminum-yeast hexokinase interaction: modifications on protein structure and functionality. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:199-208. [PMID: 10981812 DOI: 10.1023/a:1007055719926] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aluminum and yeast hexokinase interaction was studied. Structural changes were correlated with variations in protein functionality. Results show two different behaviors: At low metal concentrations preferential adsorption of metal (and water exclusion) induces aggregate formation. No significant changes in the protein structure occur, but there is a continuous loss of activity (from the first concentration). At large salt concentrations a monomerization process and a conformational change in the secondary structure as well as in the three-dimensional structure take place. This change reduces the percentage of alpha-helix conformation, gives thermal stability to the protein, and allows the exposure of some tryptophan residue and hydrophobic regions. The protein inhibition increases. Conformational change and monomerization may allow access of the metal to the substrate site, mainly the ATP site. The inhibition in any case is of mixed type with a competitive component.
Collapse
Affiliation(s)
- J M Socorro
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Spain.
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- A Y Louie
- Department of Biology, Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
36
|
Korchazhkina O, Wright G, Exley C. No effect of aluminium upon the hydrolysis of ATP in the coronary circulation of the isolated working rat heart. J Inorg Biochem 1999; 76:121-6. [PMID: 10612064 DOI: 10.1016/s0162-0134(99)00123-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Adenosine 5'-triphosphate (ATP) is now recognised as an important extracellular signalling molecule. Its action at a number of specific receptors is mediated by the activity of ectonucleotidases. We have optimised a high performance liquid chromatography (HPLC) method to allow the simultaneous determination of ATP, and the products of its hydrolysis, in the coronary effluent of an isolated working rat heart. The method is extremely sensitive allowing picomolar quantities of product to be determined. We have used this method to investigate the influence of aluminium on the hydrolysis of ATP by an ecto-ATPase located in the luminal surface of the coronary endothelium of the rat heart. Aluminium did not influence the hydrolysis of ATP by this enzyme.
Collapse
Affiliation(s)
- O Korchazhkina
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Staffordshire, UK.
| | | | | |
Collapse
|
37
|
Reffitt DM, Jugdaohsingh R, Thompson RP, Powell JJ. Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem 1999; 76:141-7. [PMID: 10612067 DOI: 10.1016/s0162-0134(99)00126-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Silicon (Si), as silicic acid, is suggested to be the natural antidote to aluminium (Al) toxicity, and was recently shown to promote the urinary excretion of Al from body stores. The metabolism of Si in man, however, remains poorly investigated. Here we report on the pharmacokinetics and metabolism of Si in healthy volunteers following ingestion of orthosilicic acid (27-55 mg/l Si) in water. We also investigated whether orthosilicic acid promotes the urinary excretion of endogenous Al. Minimum, median uptake of Si from the ingested dose was 50.3% (range: 21.9-74.7%, n = 8) based on urinary analysis following dosing. Significant correlations were observed between creatinine clearance and Si levels in serum or urine (r = 0.95 and 0.99, respectively). Renal clearance of Si was 82-96 ml/min suggesting high renal filterability. These results suggest that orthosilicic acid is readily absorbed from the gastrointestinal tract of man and then readily excreted in urine. There was no significant increase in Al excretion, over 32 h, following ingestion of the orthosilicic acid dose (P = 0.5; n = 5).
Collapse
Affiliation(s)
- D M Reffitt
- Gastrointestinal Laboratory, Rayne Institute, St Thomas' Hospital, London, UK.
| | | | | | | |
Collapse
|
38
|
Bellés M, Albina ML, Sánchez DJ, Domingo JL. Lack of protective effects of dietary silicon on aluminium-induced maternal and developmental toxicity in mice. PHARMACOLOGY & TOXICOLOGY 1999; 85:1-6. [PMID: 10426156 DOI: 10.1111/j.1600-0773.1999.tb01055.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, it has been demonstrated that oral aluminium (Al) exposure can produce growth retardation, delayed ossification and an increased incidence of foetal abnormalities in rats and mice. On the other hand, it has been also suggested that silicon may have a protective effect in limiting oral Al absorption. The aim of the present study was to assess whether dietary silicon could prevent against Al-induced maternal and developmental toxicity in mice. On gestation days 6-15, Al nitrate nonahydrate (398 mg/kg/day) was given by gavage to three groups of pregnant animals, which also received silicon in drinking water at concentrations of 0, 118 and 236 mg/l on days 7-18 of gestation. Three additional groups of pregnant mice received respectively: 270.6 mg/kg of sodium nitrate (gavage), and silicon in drinking water at 118 and 236 mg/l. Although silicon administration at 236 mg/l significantly reduced the percentage of Al-induced deaths, abortions and early deliveries, neither 118 nor 236 mg/l of silicon produced significant ameliorations on Al-induced foetotoxicity. Under the current experimental conditions dietary silicon was not effective in protecting against Al-induced developmental toxicity.
Collapse
Affiliation(s)
- M Bellés
- Laboratory of Toxicology and Environmental Health, School of Medicine, Rovira i Virgili University, San Lorenzo, Reus, Spain
| | | | | | | |
Collapse
|
39
|
Abstract
OBJECTIVES In dialysis patients both aluminum (AI) and silicon (Si) may accumulate. Whereas the toxic effects of AI within this population are clearly established, little is known on the role of Si in the development/protection of particular dialysis-related diseases. A clear insight in the protein binding and speciation of trace elements is important to better understand the mechanisms underlying their toxicity/essentiality. Research in this field however is complex and often prone to analytical difficulties and inaccuracies. DESIGN AND METHODS In the first part of this review techniques used for speciation studies of AI and Si in biological fluids are discussed. Notwithstanding recent technical advances (a) extraneous metal contamination, (b) unrecognized aspecific binding of metals to proteins, and (c) unwanted interactions with separation equipment such as chromatography columns and ultrafiltration membranes remain important pitfalls and often lead to erroneous conclusions. The factors that determine the speciation of AI and Si and their ultimate tissue distribution and toxicity are dealt with in the second part. Here, experimental data obtained with various speciation techniques are linked to in vivo data on the tissue distribution, localization/toxicity of both elements. CONCLUSIONS A model in which the AI tissue distribution/toxicity is mediated by either its citrate or transferrin bound form is proposed.
Collapse
|
40
|
Exley C. Does antiperspirant use increase the risk of aluminium-related disease, including Alzheimer's disease? MOLECULAR MEDICINE TODAY 1998; 4:107-9. [PMID: 9575492 DOI: 10.1016/s1357-4310(98)01209-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aluminium salts are the major constituent of many widely used antiperspirant products. The use of such antiperspirants has been linked with the systemic accumulation of aluminium and an increased risk of Alzheimer's disease. But can the frequent use of aluminium-based antiperspirants lead to the accumulation of toxic levels of aluminium? And are there measures that we can take to reduce such accumulation without reducing the effectiveness of antiperspirants?
Collapse
Affiliation(s)
- C Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, Dept of Chemistry, Keele University, Staffordshire, UK.
| |
Collapse
|
41
|
Abstract
ATP is an important extracellular messenger in the coronary vasculature of the heart. To be effective its extracellular concentration must be tightly controlled and this is achieved via ectonucleotidases located in the luminal surface of the coronary endothelium. Al-ATP is a potent inhibitor of the hydrolysis of ATP and we speculated that Al-ATP released by cells into the blood would disrupt the signalling function of extracellular ATP. We tested this hypothesis by perfusing isolated working Wistar rat hearts with buffers containing either ATP or Al-ATP. The functional parameters measured were, coronary flow, heart rate and pulsatile power. A number of control perfusions including adenosine, ATP-gamma-S and Al were used to identify those effects which might be specific to ATP and Al-ATP. Al-ATP did not appear to inhibit the function of the endothelial ectonucleotidases. Both ATP and Al-ATP produced a significant increase in coronary flow and this could be attributed to a coronary vasodilation. Interestingly, whilst the effect of ATP was reversible that of Al-ATP was not. ATP caused a reduction in heart rate which was potentiated by aluminium. The negatively chronotropic effect of Al-ATP was mediated via a mechanism which was either distinct from or in addition to the similar response known to be caused by adenosine. We have demonstrated for the first time an influence of Al-ATP on heart function. Perhaps more pertinently we present the first evidence that Al-ATP may influence the function of ATP-specific receptors.
Collapse
Affiliation(s)
- O Korchazhkina
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Staffordshire, UK.
| | | | | |
Collapse
|
42
|
Abstract
Amyloidosis is implicated in the aetiology of a number of disorders of human health. The factors that influence its instigation and subsequent rate of progress are the subject of a considerable research effort. The peptide fragment A beta(25-35) is amyloidogenic and has proven to be a useful model of the processes involved in amyloidosis. It is demonstrated herein that the assembly of A beta(25-35) into thioflavin T-reactive fibrils and their subsequent rearrangement into advanced glycation endproducts is accelerated by ATP. Aluminium potentiated these effects of ATP, suggesting a possible link with the aetiology of amyloidoses in vivo.
Collapse
Affiliation(s)
- C Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Staffordshire, UK
| |
Collapse
|
43
|
|
44
|
Kiss T. Interaction of aluminum with biomolecules — any relevance to Alzheimer's disease? Arch Gerontol Geriatr 1995; 21:99-112. [PMID: 15374229 DOI: 10.1016/0167-4943(95)00642-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/1994] [Revised: 12/05/1994] [Accepted: 03/30/1995] [Indexed: 11/17/2022]
Abstract
The possible involvement of aluminum in Alzheimer's disease (AD) is discussed focusing, on the one hand, on a critical review of the analytical results concerning the brain aluminum content of AD patients, and on the other hand, on the in vitro interactions of AI(III) with biologically relevant potential AI(III) binders occurring in intracellular and/or extracellular fluids. The biomolecules considered are such as amino acids, organic and inorganic phosphates, nucleotides, catecholamines and transferrin. It is quite clear from the results that definition of the actual AI(III) species present in the biological systems is essentially important in any studies of the neurotoxic role of aluminum.
Collapse
Affiliation(s)
- T Kiss
- Department of Inorganic and Analytical Chemistry, Kossuth University, H-4010 Debrecen, POB. 21, Hungary
| |
Collapse
|