1
|
Guyot C, Malaret T, Touani Kameni F, Cerruti M, Lerouge S. How to Design Catechol-Containing Hydrogels for Cell Encapsulation Despite Catechol Toxicity. ACS APPLIED BIO MATERIALS 2023. [PMID: 37339251 DOI: 10.1021/acsabm.3c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Catechol (cat) is a highly adhesive diphenol that can be chemically grafted to polymers such as chitosan (CH) to make them adhesive as well. However, catechol-containing materials experimentally show a large variability of toxicity, especially in vitro. While it is unclear how this toxicity emerges, most concerns are directed toward the oxidation of catechol into quinone that releases reactive oxygen species (ROS) which can, in turn, cause cell apoptosis through oxidative stress. To better understand the mechanisms at play, we examined the leaching profiles, hydrogen peroxide (H2O2) production, and in vitro cytotoxicity of several cat-chitosan (cat-CH) hydrogels that were prepared with different oxidation levels and cross-linking methods. To create cat-CH with different propensities toward oxidation, we grafted either hydrocaffeic acid (HCA, more prone to oxidation) or dihydrobenzoic acid (DHBA, less prone to oxidation) to the backbone of CH. Hydrogels were cross-linked either covalently, using sodium periodate (NaIO4) to trigger oxidative cross-linking, or physically, using sodium bicarbonate (SHC). While using NaIO4 as a cross-linker increased the oxidation levels of the hydrogels, it also significantly reduced in vitro cytotoxicity, H2O2 production, and catechol and quinone leaching in the media. For all gels tested, cytotoxicity could be directly related to the release of quinones rather than H2O2 production or catechol release, showing that oxidative stress may not be the main reason for catechol cytotoxicity, as other pathways of quinone toxicity come into play. Results also suggest that the indirect cytotoxicity of cat-CH hydrogels fabricated through carbodiimide chemistry can be reduced if (i) catechol groups are chemically bound to the polymer backbone to prevent leaching or (ii) the chosen cat-bearing molecule has a high resistance to oxidation. Coupled with the use of other cross-linking chemistries or more efficient purification methods, these strategies can be adopted to synthesize various types of cytocompatible cat-containing scaffolds.
Collapse
Affiliation(s)
- Capucine Guyot
- Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal H3C 1K3, Canada
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| | - Tommy Malaret
- Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal H3C 1K3, Canada
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| | - Francesco Touani Kameni
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| | - Marta Cerruti
- Biointerface Lab, Department of Materials Engineering, McGill University, Montreal H3A 2B2, Canada
| | - Sophie Lerouge
- Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal H3C 1K3, Canada
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| |
Collapse
|
2
|
Valenzuela B, Benavides A, Leyton F, Moreno F, Cortés M, Ibacache JA. Evaluation of bactericidal activity of 7-arylaminoisoquinolin-5,8-quinones against Piscirickettsia salmonis. JOURNAL OF FISH DISEASES 2023; 46:85-89. [PMID: 36179045 DOI: 10.1111/jfd.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Beatriz Valenzuela
- Environmental Sciences Department, Chemistry and Biology Faculty, Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, University of Santiago of Chile, Santiago, Chile
| | - Almendra Benavides
- Environmental Sciences Department, Chemistry and Biology Faculty, Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, University of Santiago of Chile, Santiago, Chile
| | - Francisco Leyton
- Environmental Sciences Department, Chemistry and Biology Faculty, Organic Synthesis Laboratory, University of Santiago of Chile, Santiago, Chile
| | - Franco Moreno
- Environmental Sciences Department, Chemistry and Biology Faculty, Organic Synthesis Laboratory, University of Santiago of Chile, Santiago, Chile
| | - Marcos Cortés
- Biology Department, Chemistry and Biology Faculty, Immunology Laboratory, Aquatic Biotechnology Center, University of Santiago of Chile, Santiago, Chile
| | - Juana A Ibacache
- Environmental Sciences Department, Chemistry and Biology Faculty, Organic Synthesis Laboratory, University of Santiago of Chile, Santiago, Chile
| |
Collapse
|
3
|
Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS OMEGA 2022; 7:45882-45909. [PMID: 36570217 PMCID: PMC9773346 DOI: 10.1021/acsomega.2c05852] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The clinical need for photodynamic therapy (PDT) has been growing for several decades. Notably, PDT is often used in oncology to treat a variety of tumors since it is a low-risk therapy with excellent selectivity, does not conflict with other therapies, and may be repeated as necessary. The mechanism of action of PDT is the photoactivation of a particular photosensitizer (PS) in a tumor microenvironment in the presence of oxygen. During PDT, cancer cells produce singlet oxygen (1O2) and reactive oxygen species (ROS) upon activation of PSs by irradiation, which efficiently kills the tumor. However, PDT's effectiveness in curing a deep-seated malignancy is constrained by three key reasons: a tumor's inadequate PS accumulation in tumor tissues, a hypoxic core with low oxygen content in solid tumors, and limited depth of light penetration. PDTs are therefore restricted to the management of thin and superficial cancers. With the development of nanotechnology, PDT's ability to penetrate deep tumor tissues and exert desired therapeutic effects has become a reality. However, further advancement in this field of research is necessary to address the challenges with PDT and ameliorate the therapeutic outcome. This review presents an overview of PSs, the mechanism of loading of PSs, nanomedicine-based solutions for enhancing PDT, and their biological applications including chemodynamic therapy, chemo-photodynamic therapy, PDT-electroporation, photodynamic-photothermal (PDT-PTT) therapy, and PDT-immunotherapy. Furthermore, the review discusses the mechanism of ROS generation in PDT advantages and challenges of PSs in PDT.
Collapse
|
4
|
Nguyen HT, Nguyen Thi QG, Nguyen Thi TH, Thi PH, Le-Nhat-Thuy G, Dang Thi TA, Le-Quang B, Pham-The H, Van Nguyen T. Synthesis and biological activity, and molecular modelling studies of potent cytotoxic podophyllotoxin-naphthoquinone compounds. RSC Adv 2022; 12:22004-22019. [PMID: 36043070 PMCID: PMC9361925 DOI: 10.1039/d2ra03312g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 12/20/2022] Open
Abstract
A new approach for the synthesis of podophyllotoxin-naphthoquinone compounds using microwave-assisted three-component reactions is reported in this study. Novel podophyllotoxin-naphthoquinone derivatives with modification on ring E were synthesized. All the synthetic compounds were assessed in terms of their cytotoxicity profile against four cancer cell lines (KB, HepG2, A549, and MCF7), and noncancerous Hek-293 cell lines. Notably, treatment of SK-LU-1 cells with compounds 5a and 5b resulted in G2/M phase arrest of the cell cycle, caspase-3/7 activation, and apoptosis. Additionally, molecular docking studies were performed and showed important interaction of two compounds against residues in the colchicine-binding-site of tubulin as well. Taken together, compounds 5a and 5b were identified as potent anticancer agents. A new approach for the synthesis of podophyllotoxin-naphthoquinone compounds using microwave-assisted three-component reactions is reported in this study.![]()
Collapse
Affiliation(s)
- Ha Thanh Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Quynh Giang Nguyen Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Thu Ha Nguyen Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Phuong Hoang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Giang Le-Nhat-Thuy
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Tuyet Anh Dang Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Bao Le-Quang
- Hanoi Unviversity of Pharmacy 13-15 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| | - Hai Pham-The
- Hanoi Unviversity of Pharmacy 13-15 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| | - Tuyen Van Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| |
Collapse
|
5
|
Ali K, Mishra P, Kumar A, Reddy DN, Chowdhury S, Panda G. Reactivity vs. selectivity of quinone methides: synthesis of pharmaceutically important molecules, toxicity and biological applications. Chem Commun (Camb) 2022; 58:6160-6175. [PMID: 35522910 DOI: 10.1039/d2cc00838f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quinone methides (QMs) are considered to be highly reactive intermediates because of their aromatization both in chemical and biological systems. Being highly accessible, quinone methides (QMs) have been widely exploited and their concurrent use has been manifested for the synthesis of tertiary and quaternary carbon centers of bioactives, drugs and drug-like molecules. In this feature article, the synthetic routes, structure-reactivity relationships and synthetic applications of quinone methides are discussed. Formation of the intermediates during bioactivation of different chemical entities and possible chemical manifestations leading to their toxicity in biological systems are also covered.
Collapse
Affiliation(s)
- Kasim Ali
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India. .,Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| | - Prajjval Mishra
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India.
| | - Awnish Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India.
| | - Damodara N Reddy
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India. .,Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| | - Sushobhan Chowdhury
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India.
| | - Gautam Panda
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India. .,Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| |
Collapse
|
6
|
Ribeiro RCB, Ferreira PG, Borges ADA, Forezi LDSM, da Silva FDC, Ferreira VF. 1,2-Naphthoquinone-4-sulfonic acid salts in organic synthesis. Beilstein J Org Chem 2022; 18:53-69. [PMID: 35047082 PMCID: PMC8744465 DOI: 10.3762/bjoc.18.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
Several low molecular weight naphthoquinones are very useful in organic synthesis. These compounds have given rise to thousands of other naphthoquinones that have been tested against various microorganisms and pharmacological targets, including being used in the preparation of several drugs that are on the pharmaceutical market. Among these naphthoquinones, the series of compounds prepared from 1,2-naphthoquinone-4-sulfonic acid salts (β-NQS) stands out. In addition to being used in organic synthesis, they are excellent analytical derivatization reagents to spectrophotometrically determine drugs containing primary and secondary amino groups. This review summarizes the literature involving β-NQS.
Collapse
Affiliation(s)
- Ruan Carlos B Ribeiro
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Patricia G Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, 24241-000, Niterói-RJ, Brazil
| | - Amanda de A Borges
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Fernando de Carvalho da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, 24020-150, Niterói-RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, 24241-000, Niterói-RJ, Brazil
| |
Collapse
|
7
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
8
|
Faúndes J, Muñoz-Osses M, Morales P, Tasca F, Loyola CZ, Faúndez M, Mascayano C, Ibacache JA. Effect of substituents and chain length in amino-1,4-naphthoquinones on glutathione-S-transferase inhibition: molecular docking and electrochemical perspectives: a structure–activity study. NEW J CHEM 2022. [DOI: 10.1039/d2nj04079d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The highlights of structure–activity relationship in GST inhibition.
Collapse
Affiliation(s)
- Judith Faúndes
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago, 9170022, Chile
| | - Michelle Muñoz-Osses
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago, 9170022, Chile
| | - Pilar Morales
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago, 9170022, Chile
| | - Federico Tasca
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago, 9170022, Chile
| | - César Zúñiga Loyola
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago, 9170022, Chile
| | - Mario Faúndez
- Pontificia Universidad Católica de Chile, Facultad de Química, Departamento de Farmacia, Laboratorio de Toxicología, Vicuña Mackenna 4860, 7820436, Macul, Santiago, Chile
| | - Carolina Mascayano
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago, 9170022, Chile
| | - Juana A. Ibacache
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago, 9170022, Chile
| |
Collapse
|
9
|
Pedra-Rezende Y, Bombaça ACS, Menna-Barreto/ RFS. Is the mitochondrion a promising drug target in trypanosomatids? Mem Inst Oswaldo Cruz 2022; 117:e210379. [PMID: 35195164 PMCID: PMC8862782 DOI: 10.1590/0074-02760210379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
|
10
|
Lee WS, Ham W, Kim J. Roles of NAD(P)H:quinone Oxidoreductase 1 in Diverse Diseases. Life (Basel) 2021; 11:life11121301. [PMID: 34947831 PMCID: PMC8703842 DOI: 10.3390/life11121301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023] Open
Abstract
NAD(P)H:quinone oxidoreductase (NQO) is an antioxidant flavoprotein that catalyzes the reduction of highly reactive quinone metabolites by employing NAD(P)H as an electron donor. There are two NQO enzymes—NQO1 and NQO2—in mammalian systems. In particular, NQO1 exerts many biological activities, including antioxidant activities, anti-inflammatory effects, and interactions with tumor suppressors. Moreover, several recent studies have revealed the promising roles of NQO1 in protecting against cardiovascular damage and related diseases, such as dyslipidemia, atherosclerosis, insulin resistance, and metabolic syndrome. In this review, we discuss recent developments in the molecular regulation and biochemical properties of NQO1, and describe the potential beneficial roles of NQO1 in diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (W.-S.L.); (J.K.); Tel.: +82-2-6299-1419 (W.-S.L.); +82-2-6299-1397 (J.K.)
| | - Woojin Ham
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: (W.-S.L.); (J.K.); Tel.: +82-2-6299-1419 (W.-S.L.); +82-2-6299-1397 (J.K.)
| |
Collapse
|
11
|
Yu J, Li S, Zeng X, Song J, Hu S, Cheng S, Chen C, Luo H, Pan W. Design, synthesis, and evaluation of proliferation inhibitory activity of novel L-shaped ortho-quinone analogs as anticancer agents. Bioorg Chem 2021; 117:105383. [PMID: 34656969 DOI: 10.1016/j.bioorg.2021.105383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
In this study, we present the design and synthesis of novel fully synthetic L-shaped ortho-quinone analogs with tanshinone IIA as the lead compoud, which is a molecule with numerous pharmacological benefits and potential to treat life-threatening diseases, such as cancer and viral infections. 24 L-shaped ortho-quinone analogs were designed and synthesized via click chemistry and introduced 1,2,3-triazole at the C-2 terminal of the furan ring. The cytotoxicity of these analogs toward different cancer cell lines was investigated in vitro. The new TD compounds showed potent inhibitory activities toward prostate cancer (PC3), leukemia (K562), breast cancer (MDA-231), lung cancer (A549), and cervical cancer (Hela) cell lines. Among them, TD1, TD11, and TD17 showed excellent broad-spectrum cytotoxic effects on five cancer cell lines by inducing apoptosis and arresting the cell cycle phase. Besides, TD1, TD11, and TD17 could target-bind with NQO1 protein in the prostate cancer cells PC3 leukemia cells K562. The results showed that removing the methyl group at C-3 and introducing 1,2,3-triazoles at the C-2 terminal of the furan ring were effective strategies for improving the broad-spectrum anticancer activity of L-shaped ortho-quinone analogs.
Collapse
Affiliation(s)
- Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Shengyou Li
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Xueyi Zeng
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Junrong Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Shengcao Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Chao Chen
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| | - Weidong Pan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| |
Collapse
|
12
|
Rashid MH, Babu D, Siraki AG. Interactions of the antioxidant enzymes NAD(P)H: Quinone oxidoreductase 1 (NQO1) and NRH: Quinone oxidoreductase 2 (NQO2) with pharmacological agents, endogenous biochemicals and environmental contaminants. Chem Biol Interact 2021; 345:109574. [PMID: 34228969 DOI: 10.1016/j.cbi.2021.109574] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 01/11/2023]
Abstract
NAD(P)H Quinone Oxidoreductase 1 (NQO1) is an antioxidant enzyme that catalyzes the two-electron reduction of several different classes of quinone-like compounds (quinones, quinone imines, nitroaromatics, and azo dyes). One-electron reduction of quinone or quinone-like metabolites is considered to generate semiquinones to initiate redox cycling that is responsible for the generation of reactive oxygen species and oxidative stress and may contribute to the initiation of adverse drug reactions and adverse health effects. On the other hand, the two-electron reduction of quinoid compounds appears important for drug activation (bioreductive activation) via chemical rearrangement or autoxidation. Two-electron reduction decreases quinone levels and opportunities for the generation of reactive species that can deplete intracellular thiol pools. Also, studies have shown that induction or depletion (knockout) of NQO1 were associated with decreased or increased susceptibilities to oxidative stress, respectively. Moreover, another member of the quinone reductase family, NRH: Quinone Oxidoreductase 2 (NQO2), has a significant functional and structural similarity with NQO1. The activity of both antioxidant enzymes, NQO1 and NQO2, becomes critically important when other detoxification pathways are exhausted. Therefore, this article summarizes the interactions of NQO1 and NQO2 with different pharmacological agents, endogenous biochemicals, and environmental contaminants that would be useful in the development of therapeutic approaches to reduce the adverse drug reactions as well as protection against quinone-induced oxidative damage. Also, future directions and areas of further study for NQO1 and NQO2 are discussed.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Institute of Food and Radiation Biology, Bangladesh Atomic Energy Commission, Bangladesh
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
13
|
Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol 2021; 41:101950. [PMID: 33774477 PMCID: PMC8027776 DOI: 10.1016/j.redox.2021.101950] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we summarize the multiple functions of NQO1, its established roles in redox processes and potential roles in redox control that are currently emerging. NQO1 has attracted interest due to its roles in cell defense and marked inducibility during cellular stress. Exogenous substrates for NQO1 include many xenobiotic quinones. Since NQO1 is highly expressed in many solid tumors, including via upregulation of Nrf2, the design of compounds activated by NQO1 and NQO1-targeted drug delivery have been active areas of research. Endogenous substrates have also been proposed and of relevance to redox stress are ubiquinone and vitamin E quinone, components of the plasma membrane redox system. Established roles for NQO1 include a superoxide reductase activity, NAD+ generation, interaction with proteins and their stabilization against proteasomal degradation, binding and regulation of mRNA translation and binding to microtubules including the mitotic spindles. We also summarize potential roles for NQO1 in regulation of glucose and insulin metabolism with relevance to diabetes and the metabolic syndrome, in Alzheimer's disease and in aging. The conformation and molecular interactions of NQO1 can be modulated by changes in the pyridine nucleotide redox balance suggesting that NQO1 may function as a redox-dependent molecular switch.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
14
|
Ferreira VF, de Carvalho AS, da Rocha DR. Strategies for the Synthesis of Mono- and Bis-Thionaphthoquinones. Curr Org Synth 2021; 18:535-546. [PMID: 33655837 DOI: 10.2174/1570179418666210224124603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
The subclass of compounds that have the nucleus 1,4-naphthoquinone is the most diverse of the class of quinones, which have a large number of substances and several that have useful applications ranging from medicinal chemistry to application in materials with special properties. The introduction of one or two substituents with the sulfur heteroatom in the naphthoquinone nucleus generates products containing alkyl and aryl groups that amplify certain biological properties against bacteria, viruses and fungi. There are several methods of preparing these compounds, mainly from low molecular weight naphthoquinones with two electrophilic sites capable of reacting with sulfides generating diversity and new classes of compounds, including new sulfur heterocycles and sulfur heterocycles fused with naphthoquinones. These compounds have been shown to be bioactive against several biological targets. This review will describe the methods of their synthesis and, when applicable, their biological activities.
Collapse
Affiliation(s)
- Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, Rua Doutor Mário Viana, 523, Santa Rosa, 24241-000, Niterói-RJ. Brazil
| | - Alcione S de Carvalho
- Universidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Outeiro de São João Batista, s/n, Centro 24020-141 Niterói-RJ. Brazil
| | - David R da Rocha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Outeiro de São João Batista, s/n, Centro 24020-141 Niterói-RJ. Brazil
| |
Collapse
|
15
|
Beck J, Fuhr O, Nieger M, Bräse S. A versatile Diels-Alder approach to functionalized hydroanthraquinones. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200626. [PMID: 33391783 PMCID: PMC7735338 DOI: 10.1098/rsos.200626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
The synthesis of highly substituted hydroanthraquinone derivatives with up to three stereogenic centres via a Diels-Alder reaction, starting from easily accessible 2-substituted naphthoquinones, is described. The [4+2]-cycloaddition is applicable for a broad range of substrates, runs under mild conditions and results in high yields. The highly regioselective outcome of the reactions is enabled by a benzoyl substituent at C2 of the dienophiles. The obtained hydroanthraquinones can be further modified and represent ideal substrates for follow-up intramolecular coupling reactions to create unique bicyclo[3.3.1] or -[3.2.2]nonane ring systems which are important natural product skeletons.
Collapse
Affiliation(s)
- Janina Beck
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT) and Karlsruhe Nano-Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, PO Box 55 (A.I. Virtasen aukio 1), 00014 Helsinki, Finland
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Huang CH, Xu D, Qin L, Li PL, Tang TS, Zhu BZ. Unusual Two-Step Claisen-type Rearrangement Reaction under Physiological Conditions. J Org Chem 2020; 85:14945-14953. [DOI: 10.1021/acs.joc.0c01675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pei-Lin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tian-Shu Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Beijing 100085, P. R. China
| |
Collapse
|
17
|
Synthesis and biological evaluation of β-lapachone-monastrol hybrids as potential anticancer agents. Eur J Med Chem 2020; 203:112594. [DOI: 10.1016/j.ejmech.2020.112594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023]
|
18
|
da Silva Júnior EN, de Carvalho RL, Almeida RG, Rosa LG, Fantuzzi F, Rogge T, Costa PMS, Pessoa C, Jacob C, Ackermann L. Ruthenium(II)-Catalyzed Double Annulation of Quinones: Step-Economical Access to Valuable Bioactive Compounds. Chemistry 2020; 26:10981-10986. [PMID: 32212283 DOI: 10.1002/chem.202001434] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Double ruthenium(II)-catalyzed alkyne annulations of quinones were accomplished. Thus, a strategy is reported that provides step-economical access to valuable quinones with a wide range of applications. C-H/N-H activations for alkyne annulations of naphthoquinones provided challenging polycyclic quinoidal compounds by forming four new bonds in one step. The singular power of the thus-obtained compounds was reflected by their antileukemic activity.
Collapse
Affiliation(s)
- Eufrânio N da Silva Júnior
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Renato L de Carvalho
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Renata G Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Luisa G Rosa
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Pedro M S Costa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-270, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-270, Brazil
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland, 66123, Saarbrücken, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Potsdamer Strasse 58, 10785, Berlin, Germany
| |
Collapse
|
19
|
Intelligence Way from Eco-friendly Synthesis Strategy of New Heterocyclic Pyrazolic Carboxylic α-Amino Esters. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0173-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Zhou Y, Zhang J, Wang K, Han W, Wang X, Gao M, Wang Z, Sun Y, Yan H, Zhang H, Xu X, Yang DH. Quercetin overcomes colon cancer cells resistance to chemotherapy by inhibiting solute carrier family 1, member 5 transporter. Eur J Pharmacol 2020; 881:173185. [PMID: 32422185 DOI: 10.1016/j.ejphar.2020.173185] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/26/2020] [Accepted: 05/09/2020] [Indexed: 01/08/2023]
Abstract
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) remains a significant impediment to the success of cancer chemotherapy. The natural flavonoid Quercetin (Que) has been reported to be able to inhibit P-gp-mediated MDR in various cancer cells. However, the MDR reversal effect of Que on human colon cancer cells and its mechanism at the metabolic level requires further clarification. This study was designed to provide a better understanding of the MDR reversal effect of Que. Our present results showed that 33 μM of Que significantly improved the cytotoxicity of doxorubicin (Dox) to P-gp-overexpressed SW620/Ad300 cells by proliferation and apoptpsis assay. Further mechanism studies demonstrated that Que inhibited the ATP-driven transport activity of P-gp, which in turn increased the intracellular accumulation of Dox. The metabolomics studies based on UPLC-MS/MS analysis revealed that Que could reverse the MDR by significantly blocking D-glutamine and D-glutamate metabolism, and the underlying mechanism is that Que down-regulated the expression of the glutamine transporter solute sarrier family 1, member 5 (SLC1A5) in SW620/Ad300 cells. This is the first time to report that Que was a SLC1A5 inhibitor, which could be served as a template compound to potentially develop novel P-gp-mediated MDR reversal modulators in cancer chemotherapy.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Junhong Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Kaili Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Wenchao Han
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Xinying Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Ming Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Zihan Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yaxin Sun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hao Yan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, JamaicaNY, 11439, USA.
| |
Collapse
|
21
|
Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Front Pharmacol 2020; 11:151. [PMID: 32184727 PMCID: PMC7058590 DOI: 10.3389/fphar.2020.00151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from Larrea tridentata, the creosote bush found in Mexico and USA deserts, that has been used in traditional medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular, immunological, and neurological disorders, and even aging. NDGA presents two catechol rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and this may explain part of its therapeutic action. Additional effects include inhibition of lipoxygenases (LOXs) and activation of signaling pathways that impinge on the transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2). On the other hand, the oxidation of the catechols to the corresponding quinones my elicit alterations in proteins and DNA that raise safety concerns. This review describes the current knowledge on NDGA, its targets and side effects, and its synthetic analogs as promising therapeutic agents, highlighting their mechanism of action and clinical projection towards therapy of neurodegenerative, liver, and kidney disease, as well as cancer.
Collapse
Affiliation(s)
- Gina Manda
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| | - Elena Martínez-Klimova
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Antonio Cuadrado
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| |
Collapse
|
22
|
Ibacache JA, Valderrama JA, Faúndes J, Danimann A, Recio FJ, Zúñiga CA. Green Synthesis and Electrochemical Properties of Mono- and Dimers Derived from Phenylaminoisoquinolinequinones. Molecules 2019; 24:E4378. [PMID: 31801190 PMCID: PMC6930604 DOI: 10.3390/molecules24234378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
In the search for new quinoid compounds endowed with potential anticancer activity, the synthesis of novel heterodimers containing the cytotoxic 7-phenylaminoisoquinolinequinone and 2-phenylaminonaphthoquinone pharmacophores, connected through methylene and ethylene spacers, is reported. The heterodimers were prepared from their respective isoquinoline and naphthoquinones and 4,4'-diaminodiphenyl alkenes. The access to the target heterodimers and their corresponding monomers was performed both through oxidative amination reactions assisted by ultrasound and CeCl3·7H2O catalysis "in water". This eco-friendly procedure was successfully extended to the one-pot synthesis of homodimers derived from the 7-phenylaminoisoquinolinequinone pharmacophore. The electrochemical properties of the monomers and dimers were determined by cyclic and square wave voltammetry. The number of electrons transferred during the oxidation process, associated to the redox potential EI1/2, was determined by controlled potential coulometry.
Collapse
Affiliation(s)
- Juana Andrea Ibacache
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, casilla 40, Santiago 9170022, Chile; (J.F.); (A.D.)
| | - Jaime A. Valderrama
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, casilla 121, Iquique 1100000, Chile
| | - Judith Faúndes
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, casilla 40, Santiago 9170022, Chile; (J.F.); (A.D.)
| | - Alex Danimann
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, casilla 40, Santiago 9170022, Chile; (J.F.); (A.D.)
| | - Francisco J. Recio
- Facultad de Química y Farmacia, Universidad Católica de Chile, casilla 306, Santiago 7820436, Chile; (F.J.R.); (C.A.Z.)
| | - César A. Zúñiga
- Facultad de Química y Farmacia, Universidad Católica de Chile, casilla 306, Santiago 7820436, Chile; (F.J.R.); (C.A.Z.)
| |
Collapse
|
23
|
da Silva Júnior EN, Jardim GAM, Jacob C, Dhawa U, Ackermann L, de Castro SL. Synthesis of quinones with highlighted biological applications: A critical update on the strategies towards bioactive compounds with emphasis on lapachones. Eur J Med Chem 2019; 179:863-915. [PMID: 31306817 DOI: 10.1016/j.ejmech.2019.06.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023]
Abstract
Naphthoquinones are of key importance in organic synthesis and medicinal chemistry. In the last few years, various synthetic routes have been developed to prepare bioactive compounds derived or based on lapachones. In this sense, this review is mainly focused on the synthetic aspects and strategies used for the design of these compounds on the basis of their biological activities for the development of drugs against the neglected diseases leishmaniases and Chagas disease and also cancer. Three strategies used to develop bioactive quinones are discussed and categorized: (i) C-ring modification, (ii) redox centre modification and (iii) A-ring modification. Framed within these strategies for the development of naphthoquinoidal compounds against T. cruzi. Leishmania and cancer, reactions including copper-catalyzed azide-alkyne cycloaddition (click chemistry), palladium-catalysed cross couplings, C-H activation reactions, Ullmann couplings and heterocyclisations reported up to July 2019 will be discussed. The aim of derivatisation is the generation of novel molecules that can potentially inhibit cellular organelles/processes, generate reactive oxygen species and increase lipophilicity to enhance penetration through the plasma membrane. Modified lapachones have emerged as promising prototypes for the development of drugs against leishmaniases, Chagas disease and cancer.
Collapse
Affiliation(s)
- Eufrânio N da Silva Júnior
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| | - Guilherme A M Jardim
- Laboratory of Synthetic and Heterocyclic Chemistry, Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, D-66123, Saarbruecken, Germany
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Solange L de Castro
- Laboratory of Cell Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| |
Collapse
|
24
|
Teixeira RI, Goulart JS, Corrêa RJ, Garden SJ, Ferreira SB, Netto-Ferreira JC, Ferreira VF, Miro P, Marin ML, Miranda MA, de Lucas NC. A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives. RSC Adv 2019; 9:13386-13397. [PMID: 35519567 PMCID: PMC9063979 DOI: 10.1039/c9ra01939a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023] Open
Abstract
The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives (1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently quenched by l-tryptophan methyl ester hydrochloride, l-tyrosine methyl ester hydrochloride, N-acetyl-l-tryptophan methyl ester and N-acetyl-l-tyrosine methyl ester, substituted phenols and indole (k q ∼109 L mol-1 s-1). For all these quenchers new transients were formed in the quenching process. These were assigned to the corresponding radical pairs that resulted from a coupled electron/proton transfer from the phenols, indole, amino acids, or their esters, to the excited state of the quinone. The proton coupled electron transfer (PCET) mechanism is supported by experimental rate constants, isotopic effects and theoretical calculations. The calculations revealed differences between the hydrogen abstraction reactions of phenol and indole substrates. For the latter, the calculations indicate that electron transfer and proton transfer occur as discrete steps.
Collapse
Affiliation(s)
- Rodolfo I Teixeira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Juliana S Goulart
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Rodrigo J Corrêa
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Simon J Garden
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Sabrina B Ferreira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | | | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmaceûtica Niterói Santa Rosa Brazil
| | - Paula Miro
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - M Luisa Marin
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Miguel A Miranda
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Nanci C de Lucas
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| |
Collapse
|
25
|
Gu J, Wu W, Stuyver T, Danovich D, Hoffmann R, Tsuji Y, Shaik S. Cross Conjugation in Polyenes and Related Hydrocarbons: What Can Be Learned from Valence Bond Theory about Single-Molecule Conductance? J Am Chem Soc 2019; 141:6030-6047. [DOI: 10.1021/jacs.9b01420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Junjing Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Thijs Stuyver
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
- Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - David Danovich
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Roald Hoffmann
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Yuta Tsuji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sason Shaik
- Department of Organic Chemistry and the Lise Meitner-Minerva Centre for Computational Quantum Chemistry, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
26
|
Zhong S, Li C, Han X, Li X, Yang YG, Wang H. Idarubicin Stimulates Cell Cycle- and TET2-Dependent Oxidation of DNA 5-Methylcytosine in Cancer Cells. Chem Res Toxicol 2019; 32:861-868. [PMID: 30816036 DOI: 10.1021/acs.chemrestox.9b00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The topoisomerase II inhibitor idarubicin (Ida) is an effective anticancer anthracycline drug and has been used for clinical therapies of multiple cancers. It is well-known that Ida and its analogues can induce DNA double strand breakage (DSB) by inhibiting topoisomer II and kill tumor cells. To date, it remains unknown whether they alter DNA epigenomes. Here, we show that Ida significantly stimulates the oxidation of a key epigenetic mark DNA 5-methyl-2'-deoxycytidine (5mC), which results in elevation of 5-hydroxymethyl-2'-deoxycytidine (5hmC) in four tested cell lines. Similarly, Ida analogues also display elevated 5hmC. DSB-causing topoisomer II inhibitor etopside fails to induce 5hmC change even at very high dose, which suggests the independence of the DSB. Moreover, the structure comparison supports that the histone eviction-associated amino sugar moiety is a characteristic of the anthracyclines required to promote the 5hmC elevation. Noteworthy, we also found that the 5mC oxidation is also cell-cycle dependent and mainly occurs during the S and G2/M phases. TET2 depletion diminishes the observed 5hmC elevation, which suggests that the Ida stimulation of 5hmC formation is mainly TET2-dependent. Deep-sequencing shows that 5hmC increases in all regions of the tested genome of T47D cells. The observation of a novel effect of Ida as well as other anthracycline compounds on epigenetic DNA modifications may help to further elucidate their biological and clinical effects.
Collapse
Affiliation(s)
- Shangwei Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicoogy , Research Center for Eco-Environmental Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Cuiping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicoogy , Research Center for Eco-Environmental Sciences , Beijing 100085 , China
| | - Xiao Han
- University of Chinese Academy of Sciences , Beijing 100049 , China.,Key Laboratory of Genomics and Precision Medicine , Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101 , China.,Sino-Danish College , University of Chinese Academy of Sciences , Beijing 101408 , China
| | - Xiangjun Li
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yun-Gui Yang
- Key Laboratory of Genomics and Precision Medicine , Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101 , China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicoogy , Research Center for Eco-Environmental Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
27
|
Skrzyńska A, Romaniszyn M, Pomikło D, Albrecht Ł. The Application of 2-Benzyl-1,4-naphthoquinones as Pronucleophiles in Aminocatalytic Synthesis of Tricyclic Derivatives. J Org Chem 2018; 83:5019-5026. [DOI: 10.1021/acs.joc.8b00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anna Skrzyńska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| | - Marta Romaniszyn
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| | - Dominika Pomikło
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
28
|
Ibacache JA, Faundes J, Montoya M, Mejías S, Valderrama JA. Preparation of Novel Homodimers Derived from Cytotoxic Isoquinolinequinones. A Twin Drug Approach. Molecules 2018; 23:molecules23020439. [PMID: 29462956 PMCID: PMC6100386 DOI: 10.3390/molecules23020439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 11/16/2022] Open
Abstract
The synthesis of five novel homodimers is reported based on the anilinoisoquinolinequinone scaffold. In these twin-drug derivatives, two units of the anilinoquinone pharmacophores are linked through a methylene spacer. The formation of dimers was achieved by reaction of isoquinolinequinones with 4, 4'-diaminodiphenylmethane via a sequence of two oxidative amination reactions. A preliminary in vitro screening of the homodimers reveals moderate to high cytotoxic activities against MDA-MB-21 breast adenocarcinoma and B16-F10 murine metastatic melanoma cell lines. The asymmetrical homodimer 15 stands out due to its cytotoxic potencies at submicromolar concentrations and high selectivity index (mean IC50 = 0.37 μM; SI = 6.97) compared to those of etoposide (mean IC50 = 3.67; SI = 0.32) and taxol (mean IC50 = 0.35; SI = 0.91) employed as reference anticancer drugs.
Collapse
Affiliation(s)
- Juana Andrea Ibacache
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Santiago 9170022, Chile.
| | - Judith Faundes
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Santiago 9170022, Chile.
| | - Margarita Montoya
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Santiago 9170022, Chile.
| | - Sophia Mejías
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Santiago 9170022, Chile.
| | - Jaime A Valderrama
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile.
| |
Collapse
|
29
|
Dias GG, Rogge T, Kuniyil R, Jacob C, Menna-Barreto RFS, da Silva Júnior EN, Ackermann L. Ruthenium-catalyzed C–H oxygenation of quinones by weak O-coordination for potent trypanocidal agents. Chem Commun (Camb) 2018; 54:12840-12843. [DOI: 10.1039/c8cc07572g] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
C–H oxygenation of quinones by weak O-coordination was achieved by versatile ruthenium(ii) catalysis with ample substrate scope and trypanocidal compounds were also identified.
Collapse
Affiliation(s)
- Gleiston G. Dias
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- MG
- Brazil
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie
- Georg-August-Universität
- Göttingen
- 37077 Göttingen
- Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie
- Georg-August-Universität
- Göttingen
- 37077 Göttingen
- Germany
| | - Claus Jacob
- Division of Bioorganic Chemistry
- School of Pharmacy
- University of Saarland
- D-66123 Saarbruecken
- Germany
| | | | | | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie
- Georg-August-Universität
- Göttingen
- 37077 Göttingen
- Germany
| |
Collapse
|
30
|
Astudillo-Sánchez PD, Morales-Martínez D, Sánchez A, Rocha-Ortiz G, Salas-Reyes M. Electrochemical study of the interactions between anionic species of menadione and alkylated nucleobases in dimethylsulfoxide. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Hueso-Falcón I, Amesty Á, Anaissi-Afonso L, Lorenzo-Castrillejo I, Machín F, Estévez-Braun A. Synthesis and biological evaluation of naphthoquinone-coumarin conjugates as topoisomerase II inhibitors. Bioorg Med Chem Lett 2016; 27:484-489. [PMID: 28040393 DOI: 10.1016/j.bmcl.2016.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022]
Abstract
Based on previous Topoisomerase II docking studies of naphthoquinone derivatives, a series of naphthoquinone-coumarin conjugates was synthesized through a multicomponent reaction from aromatic aldehydes, 4-hydroxycoumarin and 2-hydroxynaphthoquinone. The hybrid structures were evaluated against the α isoform of human topoisomerase II (hTopoIIα), Escherichia coli DNA Gyrase and E. coli Topoisomerase I. All tested compounds inhibited the hTopoIIα-mediated relaxation of negatively supercoiled circular DNA in the low micromolar range. This inhibition was specific since neither DNA Gyrase nor Topoisomerase I were affected. Cleavage assays pointed out that naphthoquinone-coumarins act by catalytically inhibiting hTopoIIα. ATPase assays and molecular docking studies further pointed out that the mode of action is related to the hTopoIIα ATP-binding site.
Collapse
Affiliation(s)
- Idaira Hueso-Falcón
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206, Spain
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206, Spain
| | - Laura Anaissi-Afonso
- Unidad de Investigación Hospital Universitario Nuestra Señora de La Candelaria, 38010 Tenerife, Spain
| | | | - Félix Machín
- Unidad de Investigación Hospital Universitario Nuestra Señora de La Candelaria, 38010 Tenerife, Spain.
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206, Spain.
| |
Collapse
|
32
|
Benites J, Valderrama JA, Ríos D, Lagos R, Monasterio O, Calderon PB. Inhibition of cancer cell growth and migration by dihydroxynaphthyl aryl ketones. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0028-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Bolton JL, Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem Res Toxicol 2016; 30:13-37. [PMID: 27617882 PMCID: PMC5241708 DOI: 10.1021/acs.chemrestox.6b00256] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose-response curve.
Collapse
Affiliation(s)
- Judy L Bolton
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Tareisha Dunlap
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
34
|
Synthesis and Cytotoxic Activity on Human Cancer Cells of Novel Isoquinolinequinone-Amino Acid Derivatives. Molecules 2016; 21:molecules21091199. [PMID: 27617997 PMCID: PMC6274474 DOI: 10.3390/molecules21091199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/16/2022] Open
Abstract
A variety of aminoisoquinoline-5,8-quinones bearing α-amino acids moieties were synthesized from 3-methyl-4-methoxycarbonylisoquinoline-5,8-quinone and diverse l- and d-α-amino acid methyl esters. The members of the series were evaluated for their cytotoxic activity against normal and cancer cell lines by using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. From the current investigation, structure–activity relationships demonstrate that the location and structure of the amino acid fragment plays a significant role in the cytotoxic effects. Moderate to high cytotoxic activity was observed and four members, derived from l-alanine, l-leucine, l-phenylalanine, and d-phenylalanine, were selected as promising compounds by their IC50 ranging from 0.5 to 6.25 μM and also by their good selectivity indexes (≥2.24).
Collapse
|
35
|
|
36
|
Otto C, Hahlbrock T, Eich K, Karaaslan F, Jürgens C, Germer CT, Wiegering A, Kämmerer U. Antiproliferative and antimetabolic effects behind the anticancer property of fermented wheat germ extract. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:160. [PMID: 27245162 PMCID: PMC4888675 DOI: 10.1186/s12906-016-1138-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fermented wheat germ extract (FWGE) sold under the trade name Avemar exhibits anticancer activity in vitro and in vivo. Its mechanisms of action are divided into antiproliferative and antimetabolic effects. Its influcence on cancer cell metabolism needs further investigation. One objective of this study, therefore, was to further elucidate the antimetabolic action of FWGE. The anticancer compound 2,6-dimethoxy-1,4-benzoquinone (DMBQ) is the major bioactive compound in FWGE and is probably responsible for its anticancer activity. The second objective of this study was to compare the antiproliferative properties in vitro of FWGE and the DMBQ compound. METHODS The IC50 values of FWGE were determined for nine human cancer cell lines after 24 h of culture. The DMBQ compound was used at a concentration of 24 μmol/l, which is equal to the molar concentration of DMBQ in FWGE. Cell viability, cell cycle, cellular redox state, glucose consumption, lactic acid production, cellular ATP levels, and the NADH/NAD(+) ratio were measured. RESULTS The mean IC50 value of FWGE for the nine human cancer cell lines tested was 10 mg/ml. Both FWGE (10 mg/ml) and the DMBQ compound (24 μmol/l) induced massive cell damage within 24 h after starting treatment, with changes in the cellular redox state secondary to formation of intracellular reactive oxygen species. Unlike the DMBQ compound, which was only cytotoxic, FWGE exhibited cytostatic and growth delay effects in addition to cytotoxicity. Both cytostatic and growth delay effects were linked to impaired glucose utilization which influenced the cell cycle, cellular ATP levels, and the NADH/NAD(+) ratio. The growth delay effect in response to FWGE treatment led to induction of autophagy. CONCLUSIONS FWGE and the DMBQ compound both induced oxidative stress-promoted cytotoxicity. In addition, FWGE exhibited cytostatic and growth delay effects associated with impaired glucose utilization which led to autophagy, a possible previously unknown mechanism behind the influence of FWGE on cancer cell metabolism.
Collapse
|
37
|
Guan X. Metabolic Activation and Drug Targeting. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
38
|
Jardim GAM, da Silva Júnior EN, Bower JF. Overcoming naphthoquinone deactivation: rhodium-catalyzed C-5 selective C-H iodination as a gateway to functionalized derivatives. Chem Sci 2016; 7:3780-3784. [PMID: 30155019 PMCID: PMC6013821 DOI: 10.1039/c6sc00302h] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 01/26/2023] Open
Abstract
We report a Rh-catalyzed method for the C-5 selective C-H iodination of naphthoquinones and show that complementary C-2 selective processes can be achieved under related conditions. C-C bond forming derivatizations of the C-5 iodinated products provide a gateway to previously inaccessible A-ring analogues. The present study encompasses the first catalytic directed ortho-functionalizations of simple (non-bias) naphthoquinones. The strategic considerations outlined here are likely to be applicable to C-H functionalizations of other weakly coordinating and/or redox sensitive substrates.
Collapse
Affiliation(s)
- Guilherme A M Jardim
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK . .,Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , MG 31270-901 , Brazil .
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , MG 31270-901 , Brazil .
| | - John F Bower
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK .
| |
Collapse
|
39
|
Rajendran M. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods. Photodiagnosis Photodyn Ther 2016; 13:175-187. [DOI: 10.1016/j.pdpdt.2015.07.177] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/28/2023]
|
40
|
Dang Thi TA, Decuyper L, Thi Phuong H, Vu Ngoc D, Thanh Nguyen H, Thanh Nguyen T, Do Huy T, Huy Nguyen H, D’hooghe M, Van Nguyen T. Synthesis and cytotoxic evaluation of novel dihydrobenzo[h]cinnoline-5,6-diones. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.08.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Valderrama JA, Ríos D, Muccioli GG, Buc Calderon P, Brito I, Benites J. Hetero-annulation reaction between 2-acylnaphthoquinones and 2-aminobenzothiazoles. A new synthetic route to antiproliferative benzo[g]benzothiazolo[2,3-b]quinazoline-7,12-quinones. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Singh VK, Verma SK, Kadu R, Mobin SM. Identification of unusual C–Cl⋯π contacts in 2-(alkylamino)-3-chloro-1,4-naphthoquinones: effect of N-substituents on crystal packing, fluorescence, redox and anti-microbial properties. RSC Adv 2015. [DOI: 10.1039/c5ra02295a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
XRD study demonstrates the opening of unusual C–Cl⋯π synthon in 2-(alkylamino)-3-chloro-1,4-naphthoquinone. Notably, compound holding N-pyridylmethyl exhibits enhanced activity against S. aureus and proved to be more potent than ciprofloxacin.
Collapse
Affiliation(s)
- Vinay K. Singh
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| | - Sanjay K. Verma
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| | - Rahul Kadu
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| | - Shaikh M. Mobin
- National Single Crystal X-ray Diffraction Facility
- IIT Bombay
- Mumbai 400 076
- India
| |
Collapse
|
43
|
Jardim GAM, Reis WJ, Ribeiro MF, Ottoni FM, Alves RJ, Silva TL, Goulart MOF, Braga AL, Menna-Barreto RFS, Salomão K, de Castro SL, da Silva Júnior EN. On the investigation of hybrid quinones: synthesis, electrochemical studies and evaluation of trypanocidal activity. RSC Adv 2015. [DOI: 10.1039/c5ra16213k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thirty-eight compounds were evaluated against T. cruzi and six were found to be more potent against trypomastigotes than benznidazole.
Collapse
Affiliation(s)
| | - Wallace J. Reis
- Institute of Exact Sciences
- Department of Chemistry
- UFMG
- Belo Horizonte
- Brazil
| | - Matheus F. Ribeiro
- Institute of Exact Sciences
- Department of Chemistry
- UFMG
- Belo Horizonte
- Brazil
| | | | | | | | | | | | | | - Kelly Salomão
- Laboratory of Cellular Biology
- IOC
- FIOCRUZ
- Rio de Janeiro
- Brazil
| | | | | |
Collapse
|
44
|
Verma SK, Singh VK. Synthesis, electrochemical, fluorescence and antimicrobial studies of 2-chloro-3-amino-1,4-naphthoquinone bearing mononuclear transition metal dithiocarbamate complexes [M{κ2S,S-S2C–piperazine–C2H4N(H)ClNQ}n]. RSC Adv 2015. [DOI: 10.1039/c5ra08065g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new series of transition metal dithiocarbamate complexes displayed medium to very strong fluorescence bands, redox and interesting antimicrobial properties.
Collapse
Affiliation(s)
- Sanjay K. Verma
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| | - Vinay K. Singh
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| |
Collapse
|
45
|
Understanding the cytotoxicity or cytoprotective effects of biological and synthetic quinone derivatives by redox mechanism. J Mol Model 2014; 20:2541. [DOI: 10.1007/s00894-014-2541-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023]
|
46
|
Ramos-Pérez C, Lorenzo-Castrillejo I, Quevedo O, García-Luis J, Matos-Perdomo E, Medina-Coello C, Estévez-Braun A, Machín F. Yeast cytotoxic sensitivity to the antitumour agent β-lapachone depends mainly on oxidative stress and is largely independent of microtubule- or topoisomerase-mediated DNA damage. Biochem Pharmacol 2014; 92:206-19. [DOI: 10.1016/j.bcp.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 01/15/2023]
|
47
|
Yuan X, Miller CJ, Pham AN, Waite TD. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone. Free Radic Biol Med 2014; 71:291-302. [PMID: 24681336 DOI: 10.1016/j.freeradbiomed.2014.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/19/2014] [Accepted: 03/15/2014] [Indexed: 11/23/2022]
Abstract
Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral pH indicated good agreement between thermodynamic and kinetic considerations for various key reactions involved, further validating the proposed mechanisms involved in both the autoxidation and the copper-catalyzed oxidation of NH2Q in circumneutral pH solutions.
Collapse
Affiliation(s)
- Xiu Yuan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher J Miller
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - A Ninh Pham
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
48
|
Polychlorinated biphenyl quinone-induced genotoxicity, oxidative DNA damage and γ-H2AX formation in HepG2 cells. Chem Biol Interact 2014; 212:47-55. [DOI: 10.1016/j.cbi.2014.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/08/2014] [Accepted: 01/25/2014] [Indexed: 11/17/2022]
|
49
|
Ríos D, Benites J, Torrejón F, Theoduloz C, Valderrama JA. Synthesis and in vitro antiproliferative evaluation of 3-acyl-2-arylamino-1,4-naphthoquinones. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0991-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Abstract
Quinones are widely distributed in nature, and some quinone compounds are used as therapeutic agents such as anti-cancer, anti-malarial or anti-bacterial drugs. However, their therapeutic use is limited in some cases because the use of most quinones is accompanied by adverse effects derived from their cytotoxicity, especially for hepatocytes. Two mechanisms have been proposed to explain quinone toxicity: oxidative stress via redox cycle and the arylation/alkylation of intracellular nucleophiles. A drug metabolizing enzyme, cytochrome P450 is closely involved in the hepatotoxicity of therapeutic agents in general, but quinone hepatotoxicity has been considered not to contribute to cytochrome P450 because the structure of quinone is not modified by cytochrome P450 and thus quinone compounds are thought to be metabolized mainly via a conjugation process. However, we have recently shown that quinone hepatotoxicity is enhanced under conditions of cytochrome P450 inhibition, indicating clearly the involvement of cytochrome P450 in quinone hepatotoxicity. Here, we revisit the generally accepted mechanisms of quinone hepatotoxicity and propose the importance of cytochrome P450 systems in quinone-induced hepatotoxicity on the basis of our recent work.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan.
| |
Collapse
|