1
|
Mishin V, Heck DE, Laskin DL, Laskin JD. The amplex red/horseradish peroxidase assay requires superoxide dismutase to measure hydrogen peroxide in the presence of NAD(P)H. Free Radic Res 2020; 54:620-628. [PMID: 32912004 PMCID: PMC7874521 DOI: 10.1080/10715762.2020.1821883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/08/2023]
Abstract
A sensitive fluorescence assay based on Amplex Red (AR) oxidation by horseradish peroxidase (AR/HRP) is described which continuously monitor rates of H2O2 production by microsomal enzymes in the presence of relatively high concentrations of NADPH. NADPH and NADH are known to interact with HRP and generate significant quantities of superoxide anion, a radical that spontaneously dismutates to form H2O2 which interferes with the AR/HRP assay. Microsomal enzymes generate H2O2 as a consequence of electron transfer from NADPH to cytochrome P450 hemoproteins with subsequent oxygen activation. We found that superoxide anion formation via the interaction of NADPH with HRP was inhibited by superoxide dismutase (SOD) without affecting H2O2 generation by microsomal enzymes. Using SOD in enzyme assays, we consistently detected rates of H2O2 production using microgram quantities of microsomal proteins (2.62 ± 0.20 picomol/min/µg protein for liver microsomes from naïve female rats, 12.27 ± 1.29 for liver microsomes from dexamethasone induced male rats, and 2.17 ± 0.25 picomol/min/µg protein for human liver microsomes). This method can also be applied to quantify rates of H2O2 production by oxidases where superoxide anion generation by NADH or NADPH and HRP can interfere with enzyme assays.
Collapse
Affiliation(s)
- Vladimir Mishin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Diane E Heck
- Department of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, Valhalla, New York 10595
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey 08854
| |
Collapse
|
2
|
Zhou H, Yang L, Wang C, Li Z, Ouyang Z, Shan M, Gu J, Wei Y. CYP2D1 Gene Knockout Reduces the Metabolism and Efficacy of Venlafaxine in Rats. Drug Metab Dispos 2019; 47:1425-1432. [PMID: 31658948 DOI: 10.1124/dmd.119.088526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Rat CYP2D1 has been considered as an ortholog of human CYP2D6 To assess the role of CYP2D1 in physiologic processes and drug metabolism, a CYP2D1-null rat model was generated with a CRISPR/Cas9 method. Seven base pairs were deleted from exon 4 of CYP2D1 of Sprague-Dawley wild-type (WT) rats. The CYP2D1-null rats were viable and showed no abnormalities in general appearance and behavior. The metabolism of venlafaxine (VLF) was further studied in CYP2D1-null rats. The V max and intrinsic clearance of the liver microsomes in vitro from CYP2D1-null rats were decreased (by ∼46% and ∼57% in males and ∼47% and ∼58% in females, respectively), while the Michaelis constant was increased (by ∼24% in males and ∼25% in females) compared with WT rats. In the pharmacokinetic studies, compared with WT rats, VLF in CYP2D1-null rats had significantly lower apparent total clearance and apparent volume of distribution (decreased by ∼36% and ∼48% in males and ∼23% and ∼25% in females, respectively), significantly increased area under the curve (AUC) from the time of administration to the last time point, AUC from the start of administration to the theoretical extrapolation, and C max (increased by ∼64%, ∼59%, and ∼26% in males and ∼43%, ∼35%, and ∼15% in females, respectively). In addition, O-desmethyl venlafaxine formation was reduced as well in CYP2D1-null rats compared with that in WT rats. Rat depression models were developed with CYP2D1-null and WT rats by feeding them separately and exposing them to chronic mild stimulation. VLF showed better efficacy in the WT depression rats compared with that in the CYP2D1-null rats. In conclusion, a CYP2D1-null rat model was successfully generated, and CYP2D1 was found to play a certain role in the metabolism and efficacy of venlafaxine. SIGNIFICANCE STATEMENT: A novel CYP2D1-null rat model was generated using CRISPR/Cas9 technology, and it was found to be a valuable tool in the study of the in vivo function of human CYP2D6. Moreover, our data suggest that the reduced O-desmethyl venlafaxine formation was associated with a lower VLF efficacy in rats.
Collapse
Affiliation(s)
- Hongqiu Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Li Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Changsuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Zhiqiang Li
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Mangting Shan
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Jun Gu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| |
Collapse
|
3
|
Carvalho RK, Andersen ML, Mazaro-Costa R. The effects of cannabidiol on male reproductive system: A literature review. J Appl Toxicol 2019; 40:132-150. [PMID: 31313338 DOI: 10.1002/jat.3831] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Cannabidiol (CBD) is one of the most abundant phytocannabinoids present in the plant Cannabis sativa (marijuana). There have been several studies of CBD in the last few decades, mainly focused on its neuroprotective properties, particularly after the identification of the endocannabinoid system and its participation in the central nervous system. On the other hand, the peripheral effects of CBD, particularly on reproductive physiology, were also evidenced. A narrative review was conducted using the PubMed database to identify studies that analyzed the pharmacological effects of CBD on the male reproductive system of vertebrates and invertebrates. Thirty-two citations (in vivo and in vitro) were identified. Among the vertebrates, the studies were carried out with men, monkeys, rats and mice. Studies with invertebrates are centered exclusively on the sea urchin. The CBD treatment periods include mostly acute and subacute evaluations. Exposure to CBD is associated with a reduction in mammalian testis size, the number of germ and Sertoli cells in spermatogenesis, fertilization rates, and plasma concentrations of hypothalamic, pituitary and gonadal hormones. Moreover, chronic doses of CBD have impaired sexual behavior in mice. From the studies identified in this review, it is possible to conclude that CBD has negative effects on the reproductive system of males. However, knowledge is still limited, and additional research is required to elucidate fully the mechanisms of action, as well as the reversibility of CBD effects on the reproductive system.
Collapse
Affiliation(s)
- Renata K Carvalho
- Department of Pharmacology, Laboratory of Physiology and Pharmacology of Reproduction, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Renata Mazaro-Costa
- Department of Pharmacology, Laboratory of Physiology and Pharmacology of Reproduction, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
4
|
Ye H, Sui D, Liu W, Yuan Y, Ouyang Z, Wei Y. Effects of CYP2C11 gene knockout on the pharmacokinetics and pharmacodynamics of warfarin in rats. Xenobiotica 2019; 49:1478-1484. [PMID: 30724651 DOI: 10.1080/00498254.2019.1579006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1. CYP2C11 is the most abundant isoform of cytochrome P450s (CYPs) in male rats and is considered the main enzyme for warfarin metabolism. 2. To further access the in vivo function of CYP2C11 in warfarin metabolism and efficacy, a CYP2C11-null rat model was used to study warfarin metabolism with both in vitro and in vivo approaches. Prothrombin time (PT) of warfarin was also determined. 3. The maximum rate of metabolism (Vmax) and intrinsic clearance (CLint) of liver microsomes from CYP2C11-null males were reduced by 37 and 64%, respectively, compared to those in Sprague Dawley (S-D) rats. The Km of liver microsomes from CYP2C11-null males was increased by 73% compared to that of S-D rats. The time to reach the maximum plasma concentration (Tmax) of warfarin in CYP2C11-null males was significantly delayed compared to that in S-D males, and the CL rate was also reduced. The PT of CYP2C11-null rats was moderately longer than that of S-D rats. 4. In conclusion, the clearance rate of warfarin was mildly decreased and its anticoagulant effect was moderately increased in male rats following CYP2C11 gene knockout. CYP2C11 played a certain role in the clearance and efficacy of warfarin, while it did not seem to be essential.
Collapse
Affiliation(s)
- Huanying Ye
- School of Pharmacy, Jiangsu University , Zhenjiang , PR China
| | - Danjuan Sui
- School of Pharmacy, Jiangsu University , Zhenjiang , PR China
| | - Wei Liu
- School of Pharmacy, Jiangsu University , Zhenjiang , PR China
| | - Yuannan Yuan
- School of Pharmacy, Jiangsu University , Zhenjiang , PR China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University , Zhenjiang , PR China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University , Zhenjiang , PR China
| |
Collapse
|
5
|
Haduch A, Daniel WA. The engagement of brain cytochrome P450 in the metabolism of endogenous neuroactive substrates: a possible role in mental disorders. Drug Metab Rev 2019; 50:415-429. [PMID: 30501426 DOI: 10.1080/03602532.2018.1554674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current state of knowledge indicates that the cerebral cytochrome P450 (CYP) plays an important role in the endogenous metabolism in the brain. Different CYP isoenzymes mediate metabolism of many endogenous substrates such as monoaminergic neurotransmitters, neurosteroids, cholesterol, vitamins and arachidonic acid. Therefore, these enzymes may affect brain development, susceptibility to mental and neurodegenerative diseases and may contribute to their pathophysiology. In addition, they can modify the therapeutic effects of psychoactive drugs at the place of their target action in the brain, where the drugs can act by affecting the metabolism of endogenous substrates. The article focuses on the role of cerebral CYP isoforms in the metabolism of neurotransmitters, neurosteroids, and cholesterol, and their possible involvement in animal behavior, as well as in stress, depression, schizophrenia, cognitive processes, learning, and memory. CYP-mediated alternative pathways of dopamine and serotonin synthesis may have a significant role in the local production of these neurotransmitters in the brain regions where the disturbances of these neurotransmitter systems are observed in depression and schizophrenia. The local alternative synthesis of neurotransmitters may be of great importance in the brain, since dopamine and serotonin do not pass the blood-brain barrier and cannot be supplied from the periphery. In vitro studies indicate that human CYP2D6 catalyzing dopamine and serotonin synthesis is more efficient in these reactions than the rat CYP2D isoforms. It suggests that these alternative pathways may have much greater significance in the human brain but confirmation of these assumptions requires further studies.
Collapse
Affiliation(s)
- Anna Haduch
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| | - Władysława Anna Daniel
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| |
Collapse
|
6
|
Metabolism of 4-methylimidazole in Fischer 344 rats and B6C3F1 mice. Food Chem Toxicol 2019; 123:181-194. [DOI: 10.1016/j.fct.2018.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 11/23/2022]
|
7
|
Yang JD, Liu SH, Liao MH, Chen RM, Liu PY, Ueng TH. Effects of tebuconazole on cytochrome P450 enzymes, oxidative stress, and endocrine disruption in male rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:899-907. [PMID: 29923317 DOI: 10.1002/tox.22575] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 05/19/2023]
Abstract
The major objective of the present study was to determine the ability of a triazole fungicide tebuconazole to induce cytochrome P450-dependent monooxygenases, oxidative stress, and endocrine-disrupting activity using male rats treated with tebuconazole at 10, 25, and 50 mg/kg p.o. once daily for 28 days. In liver, tebuconazole dose-dependently increased microsomal contents of cytochrome P450 and cytochrome b5 and the activities of NADPH-cytochrome P450 reductase, 7-ethoxyresorufin O-deethylase, methoxyresorufin O-demethylase, pentoxyresorufin O-dealkylase, 7-ethoxycoumarin O-deethylase, aniline hydroxylase, and erythromycin N-demethylase. In kidney, tebuconazole increased 7-ethoxycoumarin O-deethylase activity without affecting other monooxygenase activities. In marked contrast to liver and kidney, tebuconazole decreased testicular 7-ethoxyresorufin O-deethylase, methoxyresorufin O-demethylase, 7-ethoxycoumarin O-deethylase, aniline hydroxylase, and erythromycin N-demethylase activities. The results of immunoblot analysis of liver microsomes of controls and tebuconazole-treated rats revealed that tebuconazole induced CYP1A1/2, CYP2B1/2, CYP2E1, and CYP3A proteins in liver. Additions of tebuconazole to liver microsomes inhibited microsomal 7-ethoxycoumarin O-deethylase activity in vitro (IC50 = 1.50-1.69 µM). Treatment of rats with tebuconazole decreased glutathione content and increased glutathione S-transferase, superoxide dismutase, catalase, and glutathione peroxidase activities in liver; increased superoxide dismutase activities in kidney and testis; but decreased glutathione S-transferase activity in testis. Treatments with tebuconazole decreased serum testosterone concentration and cauda epididymal sperm count. The present study demonstrates that tebuconazole induces a multiplicity of CYPs and oxidative stress in liver; inhibits testicular P450 and glutathione S-transferase activities; and produces anti-androgenic effects in male rats.
Collapse
Affiliation(s)
- Jr-Di Yang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Mei-Hsiu Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Pei-Yu Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Tzuu-Huei Ueng
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
8
|
Wei Y, Yang L, Zhang X, Sui D, Wang C, Wang K, Shan M, Guo D, Wang H. Generation and Characterization of a CYP2C11-Null Rat Model by Using the CRISPR/Cas9 Method. Drug Metab Dispos 2018; 46:525-531. [PMID: 29444903 DOI: 10.1124/dmd.117.078444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
CYP2C11 is involved in the metabolism of many drugs in rats. To assess the roles of CYP2C11 in physiology and drug metabolism, a CYP2C11-null rat model was generated using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9method. A 2-base pair insertion was added to exon 6 of CYP2C11 in Sprague-Dawley rats. CYP2C11 was not detected by western blotting in liver microsomes of CYP2C11-null rats. No off-target effects were found at 11 predicted sites of the knockout model. The CYP2C11-null rats were viable and had no obvious abnormalities, with the exception of reduced fertility. Puberty in CYP2C11-null rats appeared to be delayed by ∼20 days, and the average litter size fell by 43%. Tolbutamide was used as a probe in this drug metabolism study. In the liver microsomes of CYP2C11-null rats, the Vmax and intrinsicclearance values decreased by 22% and 47%, respectively, compared with those of wild-type rats. The Km values increased by 47% compared with that of wild types. However, our pharmacokinetics study showed no major differences in any parameters between the two strains, in both males and females. In conclusion, a CYP2C11-null rat model was successfully generated and is a valuable tool to study the in vivo function of CYP2C11.
Collapse
Affiliation(s)
- Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Li Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Xiaoyan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Danjuan Sui
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Changsuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Kai Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Mangting Shan
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Dayong Guo
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| | - Hongyu Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (Y.W., L.Y., X.Z., D.S., C.W., K.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China (D.G., H.W.)
| |
Collapse
|
9
|
Nakanishi K, Uehara S, Uno Y, Inoue T, Sasaki E, Yamazaki H. Progesterone hydroxylation by cytochromes P450 2C and 3A enzymes in marmoset liver microsomes. Xenobiotica 2017; 48:757-763. [DOI: 10.1080/00498254.2017.1363444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kazuyuki Nakanishi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, Japan,
| | - Takashi Inoue
- Department of Applied Developmental Biology Central Institute for Experimental Animals, Kawasaki, Japan,
| | - Erika Sasaki
- Center of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan,
- Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| |
Collapse
|
10
|
Das RK, Banerjee S, Shapiro BH. Growth hormone: a newly identified developmental organizer. J Endocrinol 2017; 232:377-389. [PMID: 27980003 PMCID: PMC5241097 DOI: 10.1530/joe-16-0471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 01/23/2023]
Abstract
The sexually dimorphic expression of cytochromes P450 (CYP) drug-metabolizing enzymes has been reported in all species examined. These sex differences are only expressed during adulthood and are solely regulated by sex differences in circulating growth hormone (GH) profiles. Once established, however, the different male- and female-dependent CYP isoform profiles are permanent and immutable, suggesting that adult CYP expression requires imprinting. As the hormone that regulates an adult function is likely the same hormone that imprints the function, we selectively blocked GH secretion in some newborn male rats, whereas others received concurrent physiologic replacement of rat GH. The results demonstrate that adult male GH activation of the signal transduction pathway regulating expression of the principal CYP2C11 isoform is obligatorily dependent on perinatal GH imprinting, without which CYP2C11 and drug metabolism would be permanently and profoundly suppressed. As there are other adult metabolic functions also regulated by GH, pediatric drug therapy known to disrupt GH secretion could unintentionally impair adult health.
Collapse
Affiliation(s)
| | | | - Bernard H Shapiro
- Department of Biomedical SciencesUniversity of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Fukuno S, Nagai K, Kasahara K, Mizobata Y, Omotani S, Hatsuda Y, Myotoku M, Konishi H. Altered tolbutamide pharmacokinetics by a decrease in hepatic expression of CYP2C6/11 in rats pretreated with 5-fluorouracil. Xenobiotica 2017; 48:53-59. [PMID: 28051340 DOI: 10.1080/00498254.2017.1278808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. We investigated the change in the pharmacokinetic profile of tolbutamide (TB), a substrate for CYP2C6/11, 4 days after single administration of 5-fluorouracil (5-FU), and the hepatic gene expression and activity of CYP2C6/11 were also examined in 5-FU-pretreated rats. 2. Regarding the pharmacokinetic parameters of the 5-FU group, the area under the curve (AUC) was significantly increased, and correspondingly, the elimination rate constant at the terminal phase (ke) was significantly decreased without significant change in the volume of distribution at the steady state (Vdss). 3. The metabolic production of 4-hydroxylated TB in hepatic microsomes was significantly reduced by the administration of 5-FU. 4. The expression level of mRNAs for hepatic CYP2C6 and CYP2C11 was significantly lower than in the control group when the rats were pretreated with 5-FU. 5. These results demonstrated that the pharmacokinetic profile of TB was altered by the treatment with 5-FU through a metabolic process, which may be responsible for the decreased CYP2C6/11 expression at mRNA levels.
Collapse
Affiliation(s)
- Shuhei Fukuno
- a Laboratory of Clinical Pharmacy and Therapeutics , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan and
| | - Katsuhito Nagai
- a Laboratory of Clinical Pharmacy and Therapeutics , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan and.,b Laboratory of Practical Pharmacy and Pharmaceutical Care , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan
| | - Keita Kasahara
- a Laboratory of Clinical Pharmacy and Therapeutics , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan and
| | - Yuki Mizobata
- a Laboratory of Clinical Pharmacy and Therapeutics , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan and
| | - Sachiko Omotani
- b Laboratory of Practical Pharmacy and Pharmaceutical Care , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan
| | - Yasutoshi Hatsuda
- b Laboratory of Practical Pharmacy and Pharmaceutical Care , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan
| | - Michiaki Myotoku
- b Laboratory of Practical Pharmacy and Pharmaceutical Care , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan
| | - Hiroki Konishi
- a Laboratory of Clinical Pharmacy and Therapeutics , Faculty of Pharmacy, Osaka Ohtani University , Tondabayashi , Japan and
| |
Collapse
|
12
|
Low LK, Lambert CE, Meeks JR, Naro PA, Mackerer CR. Tissue-Specific Metabolism of Benzene in Zymbal Gland and Other Solid Tumor Target Tissues in Rats. ACTA ACUST UNITED AC 2016. [DOI: 10.3109/10915819509008680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In vitro studies were carried out to investigate whether target organ susceptibility to benzene-induced solid tumor formation is governed by tissue-specific differences in metabolism. The ability of several target and nontarget tissues to deconjugate and conjugate polar metabolites, to metabolize benzene to phenolic metabolites, to carry out peroxidative biotransformations, and to trap tissue glutathione was evaluated. The Zymbal gland, the organ most sensitive to benzene-induced tumorigenicity, showed extensive phenyl- and aryl-sulfatase activity but no phenol sulfoconjugating activity. Similarly, oral cavity tissue, mammary gland, and bone marrow showed sulfatase activity but lacked sulfotransferase activity. Sulfatase-mediated hydrolysis such as that observed in the Zymbal gland may represent an important pathway by which polar metabolites are shunted from urinary or biliary excretion as their sulfates to delivery to target tissues as phenolic or potentially reactive metabolite(s). Zymbal gland, nasal and oral cavity, and mammary gland tissue homogenates (10,000 g supernatant) all possess oxidative capability to metabolize benzene to phenol, hydroquinone, and catechol. Nasal cavity homogenates produced two-to eightfold higher levels of phenol, hydroquinone, and catechol from benzene than did liver homogenates. Zymbal gland, bone marrow, and oral cavity homogenates, when incubated with hydroquinone and glutathione, produced high levels of 2-(S-glutathionyl)hydroquinone, indirectly indicating the production of 1,4-benzoquinone, a reactive intermediate implicated in benzene toxicity. Peroxidases have been proposed to mediate the oxidation of p-hydroquinone to 1,4-benzoquinone. The Zymbal gland, nasal and oral cavities, mammary gland, and bone marrow all were found to possess greater peroxidase activity than contrasting nontarget tissues did. The metabolic capabilities of target tissues, including the ability to hydrolyze sulfate conjugates to free phenolic compounds, to oxidize benzene to phenolic metabolites, to bioactivate hydroquinone to a reactive intermediate, and to carry out peroxidative reactions may offer possible explanations for the greater susceptibility of these sites to benzene-induced tumorigenicity. Transport of sulfate conjugates and their release via hydrolysis (e.g., through sulfatase action) (“sulfate shunting”) and subsequent oxidation (e.g., through peroxidase action) may represent a novel mechanistic pathway by which potentially reactive benzene metabolites can gain access to target sites and initiate critical genotoxic events.
Collapse
Affiliation(s)
| | | | - J. Ralph Meeks
- Environmental Health and Safety Department, Mobil Oil Corporation, Princeton, New Jersey, U.S.A
| | - Paul A. Naro
- Stonybrook Laboratories Inc., Princeton, New Jersey, U.S.A
| | | |
Collapse
|
13
|
Iba MM, Alam J. Heme oxygenase-1 mRNA levels, metallothionein mRNA levels, lipid peroxidation and microsomal CYP1A activities in rats treated with 3,3-dichlorobenzidine and some other inducers of P450. Redox Rep 2016; 1:279-86. [DOI: 10.1080/13510002.1995.11746998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Parkinson A. An Overview of Current Cytochrome P450 Technology for Assessing the Safety and Efficacy of New Materials. Toxicol Pathol 2016. [DOI: 10.1177/019262339602400107] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies of xenobiotic biotransformation by in vitro techniques are destined to play an increasingly important role in assessing the safety and efficacy of drugs and other new chemical entities. The first part of this article summarizes some of the in vitro techniques that have been developed to evaluate xenobiotics as inducers of liver microsomal cytochrome P450. The second part provides an overview of reaction phenotyping, an in vitro technology for determining which human P450 enzyme or enzymes are involved in the biotransformation of xenobiotics.
Collapse
Affiliation(s)
- Andrew Parkinson
- Department of Pharmacology, Toxicology and Therapeutics, Center for Environmental and Occupational Health, University of Kansas Medical Center, Kansas City, Kansas 66160-7417, XenoTech L.L.C., 3800 Cambridge, Kansas City, Kansas 66103
| |
Collapse
|
15
|
Banerjee S, Das RK, Giffear KA, Shapiro BH. Permanent uncoupling of male-specific CYP2C11 transcription/translation by perinatal glutamate. Toxicol Appl Pharmacol 2015; 284:79-91. [PMID: 25697375 PMCID: PMC4374021 DOI: 10.1016/j.taap.2015.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/12/2015] [Accepted: 02/06/2015] [Indexed: 01/29/2023]
Abstract
Perinatal exposure of rats and mice to the typically reported 4mg/g bd wt dose of monosodium glutamate (MSG) results in a complete block in GH secretion as well as obesity, growth retardation and a profound suppression of several cytochrome P450s, including CYP2C11, the predominant male-specific isoform--all irreversible effects. In contrast, we have found that a lower dose of the food additive, 2mg/g bd wt on alternate days for the first 9days of life results in a transient neonatal depletion of plasma GH, a subsequent permanent overexpression of CYP2C11 as well as subnormal (mini) GH pulse amplitudes in an otherwise normal adult masculine episodic GH profile. The overexpressed CYP2C11 was characterized by a 250% increase in mRNA, but only a 40 to 50% increase in CYP2C11 protein and its catalytic activity. Using freshly isolated hepatocytes as well as primary cultures exposed to the masculine-like episodic GH profile, we observed normal induction, activation, nuclear translocation and binding to the CYP2C11 promoter of the GH-dependent signal transducers required for CYP2C11 transcription. The disproportionately lower expression levels of CYP2C11 protein were associated with dramatically high expression levels of an aberrant, presumably nontranslated CYP2C11 mRNA, a 200% increase in CYP2C11 ubiquitination and a 70-80% decline in miRNAs associated, at normal levels, with a suppression of CYP2C expression. Whereas the GH-responsiveness of CYP2C7 and CYP2C6 as well as albumin was normal in the MSG-derived hepatocytes, the abnormal expression of CYP2C11 was permanent and irreversible.
Collapse
Affiliation(s)
- Sarmistha Banerjee
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Rajat Kumar Das
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Kelly A Giffear
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Bernard H Shapiro
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA.
| |
Collapse
|
16
|
Quesnot N, Bucher S, Fromenty B, Robin MA. Modulation of metabolizing enzymes by bisphenol a in human and animal models. Chem Res Toxicol 2014; 27:1463-73. [PMID: 25142872 DOI: 10.1021/tx500087p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xenobiotics, such as contaminants and drugs, can be converted to potentially toxic reactive metabolites by phase 1 oxidizing enzymes. These metabolites are further detoxified by phase 2 conjugating enzymes and eliminated from cells by phase 3 transporters. Moreover, many of these xenobiotics are also able to induce or inhibit these enzymes, potentially modulating their own toxicity or that of other chemicals. The present review is focused on bisphenol A, a synthetic monomer used for many industrial applications and exhibiting xenoestrogen properties. The impact of this contaminant on all major classes of metabolizing enzymes (i.e., cytochromes P450, glutathione-S-transferases, sulfotransferases, UDP-glucuronyltransferases, and transporters) was reviewed, with a highlight on the modulation of cytochromes P450 involved in steroid metabolism. Interestingly, most of the studies reported in this review show that BPA is able to induce or inhibit metabolizing enzymes at high doses but also at doses compatible with human exposure.
Collapse
|
17
|
Das RK, Banerjee S, Shapiro BH. Irreversible perinatal imprinting of adult expression of the principal sex-dependent drug-metabolizing enzyme CYP2C11. FASEB J 2014; 28:4111-22. [PMID: 24942648 DOI: 10.1096/fj.13-248864] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/02/2014] [Indexed: 01/17/2023]
Abstract
We proposed to determine whether, like other sexual dimorphisms, drug metabolism is permanently imprinted by perinatal hormones, resulting in its irreversible sex-dependent expression. We treated newborn male rats with monosodium glutamate (MSG), a total growth hormone (GH) blocker, and, using cultured hepatocytes, examined expression of adult CYP2C11, the predominant cytochrome-P450 expressed only in males, as well as the signal transduction pathway by which episodic GH solely regulates the isoform's expression. In addition, adolescent hypophysectomized (hypox) male rats served as controls in which GH was eliminated after the critical imprinting period. Whereas renaturalization of the masculine episodic GH profile restored normal male-like levels of CYP2C11, as well as CYP2C12, in hepatocytes from hypox rats, the cells derived from the MSG-treated rats were completely unresponsive. Moreover, GH exposure of hepatocytes from hypox rats resulted in normal induction, activation, nuclear translocation, and binding to the CYP2C11 promoter of the signal transducers mediating GH regulation of CYP2C11 expression, which dramatically contrasted with the complete unresponsiveness of the MSG-derived hepatocytes, also associated with hypermethylation of GH-response elements in the CYP2C11 promoter. Lastly, neonatal MSG treatment had no adverse effect on postnatal and adult testosterone levels. The results demonstrate that the sexually dimorphic expression of CYP2C11 is irreversibly imprinted shortly after birth by a hormone other than the customary testosterone, but likely by GH.
Collapse
Affiliation(s)
- Rajat Kumar Das
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Sarmistha Banerjee
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Bernard H Shapiro
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Gilibili RR, Vogl AW, Chang TKH, Bandiera SM. Localization of Cytochrome P450 and Related Enzymes in Adult Rat Testis and Downregulation by Estradiol and Bisphenol A. Toxicol Sci 2014; 140:26-39. [DOI: 10.1093/toxsci/kfu070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Wójcikowski J, Haduch A, Daniel WA. Effect of antidepressant drugs on cytochrome P450 2C11 (CYP2C11) in rat liver. Pharmacol Rep 2013; 65:1247-55. [DOI: 10.1016/s1734-1140(13)71482-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/11/2013] [Indexed: 12/20/2022]
|
20
|
Yang S, Lee YS, Oh E. Pharmacokinetics of drugs in spontaneously or secondary hypertensive rats. Xenobiotica 2013; 44:77-88. [PMID: 23808362 DOI: 10.3109/00498254.2013.809616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Spontaneously hypertensive rats (SHRs) and deoxycorticosterone acetate-salt-induced hypertensive rats (DOCA-salt rats) have been developed as animal models for human essential (idiopathic or primary) and secondary hypertensions, respectively. 2. In order to identify pharmacokinetic changes (mainly non-renal clearance, CLNR) in 16-week-old SHRs due to hereditary characteristics and/or neither the hypertensive state itself, we reviewed the pharmacokinetics of drugs in 6- (blood pressure within a normotensive range) and 16-week-old SHRs and 16-week-old DOCA-salt rats compared with respective control rats. 3. We reviewed changes in CLNRs of drugs which are primarily metabolized via hepatic microsomal cytochrome P 450 enzymes (CYPs) based mainly on data from hypertensive rats, and present the data in terms of changes in in vitro hepatic intrinsic clearance (CLint), free fraction in plasma (fp) and hepatic blood flow rate (QH) depending on the hepatic excretion ratios of drugs. In general, changes in the CLNRs of drugs in this category were well-explained by the above-described factors. 4. We also reviewed and discussed the mechanism of urinary excretion of drugs (i.e. glomerular filtration and active renal secretion or reabsorption) in hypertensive rats.
Collapse
Affiliation(s)
- Sihyung Yang
- Department of Pharmaceutical Chemistry, The University of Kansas , Lawrence, KS , USA
| | | | | |
Collapse
|
21
|
Puccinelli E, Gervasi PG, Pelosi G, Puntoni M, Longo V. Modulation of cytochrome P450 enzymes in response to continuous or intermittent high-fat diet in pigs. Xenobiotica 2013; 43:686-98. [PMID: 23360109 DOI: 10.3109/00498254.2012.756558] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. To date, no information has been available on the modulation of cytochrome P450 enzymes (CYPs) following the administration of a hyperlipidemic diet in pigs. 2. We investigated the potential modulation of xenobiotic-metabolizing CYPs in liver, heart and duodenum of pigs subjected to a high-fat/high-cholesterol diet for 2 months continuously (C-HFD) or on alternate weeks (A-HFD). 3. The administration of the high-fat diet resulted in considerably increased plasma cholesterol levels although the animals were still able to manage the lipid overload efficiently, and no sign of effective tissue inflammation occurred in livers. Plasma lipid profile and liver histology indicated a better adaptive response of the A-HFD pigs compared to the C-HFD group. We showed a post-transcriptional induction of hepatic CYP2E1 activity in C-HFD pigs and a transcriptional induction of hepatic CYP3As - especially in the A-HFD group. No further CYP modulation was observed in either liver or extra-hepatic tissues. 4. In conclusion, the administration of a high-fat diet in pigs resulted in limited effects on the drug metabolism system. The better adaptive response of A-HFD pigs compared to C-HFD pigs is a very interesting observation since the intermittent administration of the diet reflects the mode of human behavior more closely.
Collapse
|
22
|
Haduch A, Wójcikowski J, Daniel WA. Effect of neuroleptics on cytochrome P450 2C11 (CYP2C11) in rat liver. Pharmacol Rep 2011; 63:1491-9. [PMID: 22358097 DOI: 10.1016/s1734-1140(11)70713-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/02/2011] [Indexed: 10/25/2022]
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | | | | |
Collapse
|
23
|
Leveelahti L, Leskinen P, Leder EH, Waser W, Nikinmaa M. Responses of threespine stickleback (Gasterosteus aculeatus, L) transcriptome to hypoxia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:370-81. [PMID: 21885357 DOI: 10.1016/j.cbd.2011.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/03/2011] [Accepted: 08/08/2011] [Indexed: 01/27/2023]
Abstract
Hypoxia is a naturally occurring phenomenon in aquatic systems. Its occurrence is potentiated by eutrophication caused by human actions and it may be made even more severe as a result of increasing temperatures due to climate change. Threespine stickleback (Gasterosteus aculeatus) has previously been used by ecologists and evolutionary biologists, but has great potential also for physiological studies. We subjected threespine sticklebacks to hypoxia (air saturation 24-28%) or normoxia for 3 and 48 h. To study changes in the transcriptome, microarray determinations were carried out for the 48 h treatments and complementary real-time quantitative PCR was run on selected transcripts at both time points. The microarray results suggest downregulation of genes encoding proteins with functions typically inhibited by hypoxia, i.e., cell proliferation, DNA replication and repair, and protein degradation, and upregulation of transcripts with products having oxygenase and oxidase activities including two 2-oxoglutarate-deoxygenases. These transcripts encode for JmjC domain containing proteins JMJD6 and JMJD2C. JMJD6 transcription has not earlier been characterized to change in hypoxia. Cyp1A2 mRNA was also increased in the microarray and the upregulation could be confirmed on protein level by measuring ethoxyresorufin-O-deethlyase (EROD)-activity.
Collapse
Affiliation(s)
- L Leveelahti
- Centre of Excellence in Evolutionary Genetics and Physiology at the University of Turku, University of Turku, Department of Biology, Division of Physiology and Genetics, LT 1, FI-20014 Turku, Finland.
| | | | | | | | | |
Collapse
|
24
|
Erratico CA, Moffatt SC, Bandiera SM. Comparative oxidative metabolism of BDE-47 and BDE-99 by rat hepatic microsomes. Toxicol Sci 2011; 123:37-47. [PMID: 21673328 DOI: 10.1093/toxsci/kfr155] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals that have become ubiquitous environmental pollutants. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) are among the most prevalent PBDEs detected in humans, wildlife, and abiotic environmental matrices. The purpose of this study was to investigate the oxidative metabolism of BDE-47 and BDE-99 in rat hepatic microsomes by comparing metabolite formation rates, kinetic parameters associated with metabolite formation, and the effects of prototypical cytochrome P450 (CYP) inducers. The CYP enzymes involved were also identified. Incubation of BDE-47 with hepatic microsomes from phenobarbital-treated rats generated a total of five hydroxylated (OH-BDE) metabolites, among which 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether (4'-OH-BDE-49) and 3-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (3-OH-BDE-47) were the major metabolites, as identified using authentic standards and quantified by liquid chromatography/mass spectrometry. Incubations of BDE-99 with hepatic microsomes from dexamethasone-treated rats produced a total of seven hydroxylated metabolites, among which 4-hydroxy-2,2',3,4',5-pentabromodiphenyl ether (4-OH-BDE-90) and 6'-hydroxy-2,2',4,4',5-pentabromodiphenyl ether (6'-OH-BDE-99) were the major metabolites. Although the overall rate of oxidative metabolism of BDE-99 by hepatic microsomes was greater than that of BDE-47, para-hydroxylation involving a National Institutes of Health shift mechanism represented a major metabolic pathway for both PBDE congeners. Among the rat recombinant CYP enzymes tested, CYP2A2 and CYP3A1 were the most active in BDE-47 and BDE-99 metabolism, respectively. However, CYP1A1 exhibited the highest activity for 4'-OH-BDE-49 and 6'-OH-BDE-99 formation, and CYP3A1 exhibited the highest activity for 3-OH-BDE-47 and 4-OH-BDE-90 formation. Collectively, the results demonstrate that oxidative metabolism of BDE-47 and BDE-99 is mediated by distinct but overlapping sets of CYP enzymes and represents a key process that determines the bioaccumulation of BDE-47 and BDE-99 in mammals.
Collapse
Affiliation(s)
- Claudio A Erratico
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
25
|
Sverko A, Sobočanec S, Kušić B, Mačak-Šafranko Z, Sarić A, Leniček T, Kraus O, Andrišić L, Korolija M, Balog T, Sunjić SB, Marotti M. Superoxide dismutase and cytochrome P450 isoenzymes might be associated with higher risk of renal cell carcinoma in male patients. Int Immunopharmacol 2011; 11:639-45. [PMID: 21238623 DOI: 10.1016/j.intimp.2010.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/21/2010] [Accepted: 12/24/2010] [Indexed: 11/24/2022]
Abstract
Literature data support the hypothesis that oxidative stress and the accompanying antioxidant defense might play an important role in renal cell carcinoma (RCC) growth and progression. It is also known that the incidence of renal tumors is two times higher in men than in women. Thus, the aim of this study was to determine whether the oxidant/antioxidant profile of renal cell carcinoma tissue, adjacent to tumor tissue and nontumor tissue was different in male and female patients. Significantly higher lipid peroxidation (LPO) in renal cell carcinoma tissue compared to nontumor tissue was demonstrated only in male patients. Besides, gender-related difference in copper zinc superoxide dismutase (CuZnSOD) and manganese superoxide dismutase (MnSOD) in nontumor and renal cell carcinoma tissue was obtained at the level of transcription, translation and activity of these antioxidant isoenzymes. Morever, we demonstrated that the gene expression of 3 CYPs out of 7 was altered; CYP2D6 mRNA was decreased in both sexes while gender-related suppression of mRNA for CYP2E1 (women) and CYP2C19 (men) was observed. Taken together, these parameters might be potentially responsible for higher risk of renal cell carcinoma in men than in women.
Collapse
Affiliation(s)
- Ana Sverko
- University Hospital Sestre Milosrdnice, Department of Radiology, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cisplatin induced toxicity in rat tissues: The protective effect of Lisosan G. Food Chem Toxicol 2011; 49:233-7. [DOI: 10.1016/j.fct.2010.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 12/24/2022]
|
27
|
Behera D, Damre A, Varghese A, Addepalli V. In vitro evaluation of hepatic and extra-hepatic metabolism of coumarins using rat subcellular fractions: correlation of in vitro clearance with in vivo data. ACTA ACUST UNITED AC 2010; 23:329-50. [PMID: 19326776 DOI: 10.1515/dmdi.2008.23.3-4.329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
7-Ethoxycoumarin (7-EC) and 7-hydroxycoumarin (7-HC) were chosen as model compounds to study hepatic and extra-hepatic metabolism in rat tissue subcellular (microsomal and S9) fractions and to scale the observed in vitro clearance to in vivo plasma clearance. 7-EC and 7-HC showed significant metabolic degradation in liver subcellular fractions as compared to subcellular fractions obtained from intestine, kidney, lung and brain. The total in vitro metabolic clearance for 7-EC and 7-HC was determined by adding the individual in vitro organ clearance values obtained in hepatic and extra-hepatic microsomes or S9 fractions. The predicted in vivo clearance for 7-HC was 63.6 and 81.6 ml/min/kg by in vitro scaling from microsomes and S9 fractions, respectively. For 7-EC, the values were 78.5 and 76.8 ml/min/kg, respectively. The predicted clearance was found to be reasonably accurate with slight over- and underprediction. Interestingly, the relative contribution of hepatic and extra-hepatic metabolism to the total clearance of 7-EC and 7-HC was remarkably high, ranging from 62-77% and 22-38%, respectively, of the total metabolic clearance. It is concluded that the model of multi-organ subcellular fractions is a useful in vitro tool for the prediction of in vivo metabolic clearance, as it can provide information about the relative contribution of extra-hepatic and hepatic metabolism to total metabolic clearance.
Collapse
Affiliation(s)
- Dayanidhi Behera
- School of Pharmacy and Technology Management, NMIMS University, Mumbai, India
| | | | | | | |
Collapse
|
28
|
Lee JH, Yang SH, Oh JM, Lee MG. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol 2010; 62:1-23. [DOI: 10.1211/jpp.62.01.0001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Objectives
In rats with diabetes mellitus induced by alloxan (DMIA) or streptozocin (DMIS), changes in the cytochrome P450 (CYP) isozymes in the liver, lung, kidney, intestine, brain, and testis have been reported based on Western blot analysis, Northern blot analysis, and various enzyme activities. Changes in phase II enzyme activities have been reported also. Hence, in this review, changes in the pharmacokinetics of drugs that were mainly conjugated and metabolized via CYPs or phase II isozymes in rats with DMIA or DMIS, as reported in various literature, have been explained. The changes in the pharmacokinetics of drugs that were mainly conjugated and mainly metabolized in the kidney, and that were excreted mainly via the kidney or bile in DMIA or DMIS rats were reviewed also. For drugs mainly metabolized via hepatic CYP isozymes, the changes in the total area under the plasma concentration–time curve from time zero to time infinity (AUC) of metabolites, AUCmetabolite/AUCparent drug ratios, or the time-averaged nonrenal and total body clearances (CLNR and CL, respectively) of parent drugs as reported in the literature have been compared.
Key findings
After intravenous administration of drugs that were mainly metabolized via hepatic CYP isozymes, their hepatic clearances were found to be dependent on the in-vitro hepatic intrinsic clearance (CLint) for the disappearance of the parent drug (or in the formation of the metabolite), the free fractions of the drugs in the plasma, or the hepatic blood flow rate depending on their hepatic extraction ratios. The changes in the pharmacokinetics of drugs that were mainly conjugated and mainly metabolized via the kidney in DMIA or DMIS rats were dependent on the drugs. However, the biliary or renal CL values of drugs that were mainly excreted via the kidney or bile in DMIA or DMIS rats were faster.
Summary
Pharmacokinetic studies of drugs in patients with type I diabetes mellitus were scarce. Moreover, similar and different results for drug pharmacokinetics were obtained between diabetic rats and patients with type I diabetes mellitus. Thus, present experimental rat data should be extrapolated carefully in humans.
Collapse
Affiliation(s)
- Joo H Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Gastroenterology and Metabolism Products Division, Pharmaceutical Safety Bureau, Korea Food & Drug Administration, Seoul, South Korea
| | - Si H Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jung M Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Myung G Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
29
|
Verreault J, Letcher RJ, Sonne C, Dietz R. In vitro metabolism of polychlorinated biphenyls and cytochrome P450 monooxygenase activities in dietary-exposed Greenland sledge dogs. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:91-100. [PMID: 19303460 DOI: 10.1016/j.cbpc.2009.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/13/2009] [Accepted: 03/14/2009] [Indexed: 11/29/2022]
Abstract
The in vitro metabolism of a polychlorinated biphenyl (PCB) mixture was examined using hepatic microsomes of dietary-exposed Greenland sledge dogs (Canis familiaris) to an organohalogen-rich diet (Greenland minke whale blubber: EXP cohort) or a control diet (pork fat: CON cohort). The associations between in vitro PCB metabolism, activity of oxidative hepatic microsomal cytochrome P450 (CYP) isoenzymes and concentrations of PCBs and hydroxylated metabolites were investigated. The CON dogs exhibited a 2.3-fold higher depletion percentage for the PCB congeners having at least two pairs of vicinal meta-para Cl-unsubstituted carbons (PCB-18 and -33) relative to the EXP dogs. This depletion discrepancy suggests that there exist substrates in liver of the organohalogen-contaminated EXP dogs that can competitively bind and/or interfere with the active sites of CYP isoenzymes, leading to a lower metabolic efficiency for these PCBs. Testosterone (T) hydroxylase activity, determined via the formation of 6beta-OH-T, 16alpha-OH-T, 16beta-OH-T and androstenedione, was strongly correlated with the depletion percentages of PCB-18 and -33 in both cohorts. Based on documented hepatic microsomal CYP isoenzyme substrate specificities in canines, present associations suggest that primarily CYP2B/2C and CYP3A were inducible in sledge dogs and responsible for the in vitro metabolism of PCB-18 and -33.
Collapse
Affiliation(s)
- Jonathan Verreault
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|
30
|
Messina A, Chirulli V, Gervasi PG, Longo V. Purification, molecular cloning, heterologous expression and characterization of pig CYP1A2. Xenobiotica 2009; 38:1453-70. [PMID: 18949657 DOI: 10.1080/00498250802474437] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Porcine cytochrome P450 (CYP) 1A2 was purified to electrophoretic homogeneity from the hepatic microsomes of beta-naphthoflavone-treated male pigs. In a reconstituted system, this enzyme showed a good catalytic activity towards caffeine, acetanilide, and methoxyresorufin, all known markers of mammalian CYP1A2. Using 3'- and 5'-rapid amplification of coding DNA (cDNA) ends (RACE), we amplified from the liver RNA of control pigs a full-length 1827 bp cDNA containing an open reading frame of 1548 bp which encoded a putative CYP1A2 protein of 516 amino acids and an estimated Mr of 58 380 Da. Reverse transcriptase-polymerase chain reaction (RT-PCR) experiments showed that the messenger RNA (mRNA) of CYP1A2 was expressed in liver, heart and nasal mucosa but not in lung, small intestine, kidney and brain. Using the pCW vector containing a N-terminal modified cDNA, pig CYP1A2 was expressed in Escherichia coli. 3-[(3-Chloroamidopropyl)dimethylmmonio]-1-propane-sulfonate (CHAPS)-solubilized E. coli preparations expressing CYP1A2 produced a functionally isoform which, in a reconstituted system, was catalytically active toward ethoxyresorufin and methoxyresorufin showing K(m)'s similar to those obtained with CYP1A2 purified from pig liver or human recombinant CYP1A2. Taken together, these results demonstrate that domestic pigs have a functionally active CYP1A2 gene well expressed in the liver with biochemical properties quite similar to those corresponding to the human enzyme.
Collapse
Affiliation(s)
- A Messina
- Istituto di Fisiologia Clinica, Area della Ricerca CNR, Pisa, Italy
| | | | | | | |
Collapse
|
31
|
Neafsey P, Ginsberg G, Hattis D, Johns DO, Guyton KZ, Sonawane B. Genetic polymorphism in CYP2E1: Population distribution of CYP2E1 activity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:362-388. [PMID: 20183527 DOI: 10.1080/10937400903158359] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cytochrome P-450 2E1 (CYP2E1) is a key enzyme in the metabolic activation of a variety of toxicants including nitrosamines, benzene, vinyl chloride, and halogenated solvents such as trichloroethylene. CYP2E1 is also one of the enzymes that metabolizes ethanol to acetaldehyde, and is induced by recent ethanol ingestion. There is evidence that interindividual variability in the expression and functional activity of this cytochrome (CYP) may be considerable. Genetic polymorphisms in CYP2E1 were identified and linked to altered susceptibility to hepatic cirrhosis induced by ethanol and esophageal and other cancers in some epidemiological studies. Therefore, it is important to evaluate how such polymorphisms affect CYP2E1 function and whether it is possible to construct a population distribution of CYP2E1 activity based upon the known effects of these polymorphisms and their frequency in the population. This analysis is part of the genetic polymorphism database project described in the lead article in this series and followed the approach described in that article (Ginsberg et al., 2009, this issue). Review of the literature found that there are a variety of CYP2E1 variant alleles but the functional significance of these variants is still unclear. Some, but not all, studies suggest that several upstream 5' flanking mutations affect gene expression and response to inducers such as ethanol or obesity. None of the coding-region variants consistently affects enzyme function. Part of the reason for conflicting evidence regarding genotype effect on phenotype may be due to the wide variety of exposures such as ethanol or dietary factors and physiological factors including body weight or diabetes that modulate CYP2E1 expression. In conclusion, evidence is too limited to support the development of a population distribution of CYP2E1 enzyme activity based upon genotypes. Health risk assessments may best rely upon data reporting interindividual variability in CYP2E1 function for input into physiologically based pharmacokinetic (PBPK) models involving CYP2E1 substrates.
Collapse
|
32
|
Storme T, Deroussent A, Mercier L, Prost E, Re M, Munier F, Martens T, Bourget P, Vassal G, Royer J, Paci A. New ifosfamide analogs designed for lower associated neurotoxicity and nephrotoxicity with modified alkylating kinetics leading to enhanced in vitro anticancer activity. J Pharmacol Exp Ther 2008; 328:598-609. [PMID: 19017849 DOI: 10.1124/jpet.108.144170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ifosfamide is a well known prodrug for cancer treatment with cytochrome P450 metabolism. It is associated with both antitumor activity and toxicities. Isophosphoramide mustard is the bisalkylating active metabolite, and acrolein is a urotoxic side product. Because acrolein toxicity is limited by coadministration of sodium mercaptoethanesulfonate, the incidence of urotoxicity has been lowered. Current evidence suggests that chloroacetaldehyde, a side-chain oxidation metabolite, is responsible for neurotoxicity and nephrotoxicity. The aim of our research is to prevent chloroacetaldehyde formation using new enantioselectively synthesized ifosfamide analogs, i.e., C7,C9-dimethyl-ifosfamide. We hypothesize that reduced toxicogenic catabolism may induce less toxicity without changing anticancer activity. Metabolite determinations of the dimethyl-ifosfamide analogs were performed using liquid chromatography and tandem mass spectrometry after in vitro biotransformation by drug-induced rat liver microsomes and human microsomes expressing the main CYP3A4 and minor CYP2B6 enzymes. Both human and rat microsomes incubations produced the same N-deschloroalkylated and 4-hydroxylated metabolites. A coculture assay of 9L rat glioblastoma cells and rat microsomes was performed to evaluate their cytotoxicity. Finally, a mechanistic study using (31)P NMR kinetics allowed estimating the alkylating activity of the modified mustards. The results showed that C7,C9-dimethyl-ifosfamide exhibited increased activities, although they were still metabolized through the same N-deschloroalkylation pathway. Analogs were 4 to 6 times more cytotoxic than ifosfamide on 9L cells, and the generated dimethylated mustards were 28 times faster alkylating agents than ifosfamide mustards. Among these new ifosfamide analogs, the 7S,9R-enantiomer will be assessed for further in vivo investigations for its anticancer activity and its toxicological profile.
Collapse
Affiliation(s)
- Thomas Storme
- Unité Mixte de Recherche 8638 Centre National de Recherche Scientifique Medicinal Chemistry Laboratory-Faculty of Pharmacy, University Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kania-Korwel I, Hrycay EG, Bandiera SM, Lehmler HJ. 2,2',3,3',6,6'-Hexachlorobiphenyl (PCB 136) atropisomers interact enantioselectively with hepatic microsomal cytochrome P450 enzymes. Chem Res Toxicol 2008; 21:1295-303. [PMID: 18494506 DOI: 10.1021/tx800059j] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2,2',3,3',6,6'-Hexachlorobiphenyl (PCB 136) is a chiral and highly neurotoxic PCB congener of environmental relevance. (+)-PCB 136 was previously shown to be enriched in tissues from mice treated with racemic PCB 136. We investigated the spectral interactions of (+)-, (-)-, and (+/-)-PCB 136 with mouse and rat hepatic microsomal cytochrome P450 (P450) enzymes to test the hypothesis that enantioselective binding to specific P450 enzymes causes the enrichment of (+)-PCB 136 in vivo. Hepatic microsomes prepared from C57BL/6 mice or Long Evans rats treated with beta-naphthoflavone or 3-methylcholanthrene, phenobarbital, and dexamethasone (prototypical inducers of CYP1A, CYP2B, and CYP3A, respectively) were used to determine first, whether the (+)-PCB 136 atropisomer binds to hepatic microsomal P450 enzymes to a greater extent than does the (-)-PCB 136 atropisomer and second, whether P450 enzymes of one subfamily bind the two PCB 136 atropisomers more efficiently than do P450 enzymes of other subfamilies. Increasing concentrations of (+)-, (-)-, or (+/-)-PCB 136 were added to hepatic microsomes, and the difference spectrum and maximal absorbance change, a measure of PCB binding to P450 enzymes, were measured. A significantly larger absorbance change was observed with (+)-PCB 136 than with (-)-PCB 136 with all four hepatic microsomal preparations in mice and rats, indicating that (+)-PCB 136 interacted with microsomal P450 enzymes to a greater degree than did (-)-PCB 136. In addition, binding of the PCB 136 atropisomers was greatest in microsomes from PB-treated mice and rats and was inhibited by CYP2B antibodies, indicating the involvement of CYP2B enzymes. Together, these results suggest preferential binding of (+)-PCB 136 to P450 enzymes (such as CYP2B and CYP3A) in hepatic microsomes, an observation that may explain the enantioselective enrichment of the (+)-PCB 136 atropisomer in tissues of mice.
Collapse
Affiliation(s)
- Izabela Kania-Korwel
- Department of Occupational and Environmental Health, University of Iowa, 100 Oakdale Campus #124 IREH, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
34
|
Chou CP, Lu SY, Ueng TH. Modulation of serum concentrations and hepatic metabolism of 17β-estradiol and testosterone by amitraz in rats. Arch Toxicol 2008; 82:729-37. [DOI: 10.1007/s00204-008-0288-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/29/2008] [Indexed: 11/29/2022]
|
35
|
Concomitant changes in progesterone catabolic enzymes, cytochrome P450 2C and 3A, with plasma insulin concentrations in ewes supplemented with sodium acetate or sodium propionate. Animal 2008; 2:1223-9. [DOI: 10.1017/s1751731108002462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
36
|
Vaccaro E, Salvetti A, Del Carratore R, Nencioni S, Longo V, Gervasi PG. Cloning, tissue expression, and inducibility of CYP 3A79 from sea bass (Dicentrarchus labrax). J Biochem Mol Toxicol 2007; 21:32-40. [PMID: 17366542 DOI: 10.1002/jbt.20153] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiple members of the CYP3A subfamily have been identified and intensively studied in mammals as they represent prominent CYP enzymes involved in drug metabolism. Also in fish, some CYP3A genes have been identified by cDNA cloning and immunological techniques, but relatively little is known about their function, distribution, and inducibility. In this study, a novel CYP3A, designated as CYP3A79 was isolated from adult male sea bass, an economically valuable species in fisheries. The sea bass CYP3A79 that was cloned contained an open-reading frame of 1512 bp that encoded a 504 amino acid protein and shared a high-sequence identity with medaka, killifish, and trout CYP3As. Interestingly, CYP3A79 also shares five of six substrate recognition sites (SRS) with the SRS of other fish CYP3As, suggesting an evolutionary conservation of the function of these enzymes. In this fish, we also investigated the expression of CYP3A79 and its susceptibility to induction by various compounds including clotrimazole and dehydroepiandrosterone, two strong ligands of zebrafish PXR. The expression of CYP3A79 mRNA was detected by RT-PCR only in the intestine and liver. The immunoblot analysis by antitrout CYP3A27 confirmed the presence of a CYP3A-like protein in the microsomes of these tissues, but, in addition, a immunoreactive protein with this antibody was also observed in the heart microsomes, suggesting the presence of other CYP3A isoforms in this fish. Accordingly, the southern blot analysis of genomic DNA indicated that multiple CYP 3As may be present in sea bass. All attempts to induce 6beta-testosterone hydroxylase, as a marker of CYP3A79, by dexametasone, 17beta-estradiol, pregnenolone 16alpha-carbonitrile, corticosterone, clotrimazole, and dehydroepiandrosterone failed. On the contrary, the administration of 17beta-estradiol, pregnenolone 16alpha-carbonitrile, and corticosterone strongly inhibited this activity and, in parallel, reduced the expression of CYP3A79 transcript. Thus, the sea bass CYP3A79 appears to be resistant to induction, suggesting that this enzyme and likely other CYP3As are regulated differently compared to those of mammals.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Bass/genetics
- Bass/metabolism
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- Cytochrome P-450 CYP3A/biosynthesis
- Cytochrome P-450 CYP3A/chemistry
- Cytochrome P-450 CYP3A/genetics
- Cytochrome P-450 CYP3A/metabolism
- DNA, Complementary/genetics
- Enzyme Induction
- Gene Expression Profiling
- Genome/genetics
- Liver/enzymology
- Male
- Microsomes, Liver/enzymology
- Molecular Sequence Data
- Oxidoreductases, N-Demethylating/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- E Vaccaro
- Laboratory of Pharmacogenetic and Drug Metabolism, Istituto di Fisiologia Clinica, CNR, via Moruzzi 1 56100 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Chirulli V, Marvasi L, Zaghini A, Fiorio R, Longo V, Gervasi PG. Inducibility of AhR-regulated CYP genes by β-naphthoflavone in the liver, lung, kidney and heart of the pig. Toxicology 2007; 240:25-37. [PMID: 17804143 DOI: 10.1016/j.tox.2007.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 07/04/2007] [Accepted: 07/07/2007] [Indexed: 11/30/2022]
Abstract
The presence and inducibility of CYP enzymes belonging to the family 1 (CYP 1A1, 1A2 and 1B1) and AhR have been studied in liver, lung, kidney and heart of control and beta-naphthoflavone (beta NF)-treated pigs. Segments of so far undescribed genes for porcine CYP 1A2, 1B1 and AhR were identified by RT-PCR and their sequences found to be highly homologous to those of the corresponding human genes. The mRNA level of CYP 1A1 was induced by beta NF, although to a different extent, in liver, lung, kidney and heart. This transcriptional activation of CYP 1A1 was accompanied in microsomes of all these organs by an induction of 7-ethoxyresorufin deethylase activity (a marker of this isoform) and an increase in a protein band immunoreactive with anti-rat CYP 1A1. An increase in CYP 1A2 transcription and in activity of microsomal 7-methoxyresorufin demethylase and acetanilide 4-hydroxylase (both markers of 1A2) was observed in the liver and, to a very small extent, in the lung but not in kidney and heart. As to CYP 1B1, its transcription was detected in liver, lung and heart only following the beta NF treatment; however this mRNA expression did result in any detectable microsomal 17beta-estradiol 4-hydroxylase activity (a marker of this isoform). The CYPs induced by beta NF were further investigated by using some other marker activities. It was found that porcine CYP 1A1 and 1A2, unlike the human counterparts, could only deethylate 7-ethoxycomarin to a very small extent, if at all, whereas 7-ethoxy 4-trifluoromethylcoumarin was a good substrate for pig CYP 1A1. Overall, our results demonstrated a differential expression and regulation of the AhR-mediated CYP genes in liver, lung, kidney and heart of the pig.naphthoflavone.
Collapse
Affiliation(s)
- Vera Chirulli
- Istituto di Fisiologia Clinica, CNR, via Moruzzi 1, 56100 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Kienhuis AS, Wortelboer HM, Maas WJ, van Herwijnen M, Kleinjans JCS, van Delft JHM, Stierum RH. A sandwich-cultured rat hepatocyte system with increased metabolic competence evaluated by gene expression profiling. Toxicol In Vitro 2007; 21:892-901. [PMID: 17336492 DOI: 10.1016/j.tiv.2007.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 01/12/2007] [Accepted: 01/13/2007] [Indexed: 11/18/2022]
Abstract
A rapid decline of cytochrome P450 (CYP450) enzyme activities remains a drawback of rat hepatocyte-based in vitro cultures. Consequently, judgment of the toxic potential of compounds that need bioactivation by CYP450s may not be adequate using this model. In the present study, an improved hepatocyte-based in vitro system was developed with special focus on metabolic competence. Therefore, a mixture of CYP450 inducers, phenobarbital, dexamethasone and beta-naphthoflavone, was added to culture medium of sandwich-cultured rat hepatocytes. The resulting modified model was evaluated by comparing its genome-wide expression profiles with liver and a standard model without the inducer mixture. Metabolic capacity for CYP450 enzymes showed that the modified model resembled more closely the in vivo situation. Gene expression results revealed large differences between in vivo and both in vitro models. The slight differences between the two sandwich models were predominantly represented by gene expression changes in CYP450s. Importantly, in the modified model, expression ratios of the phase I and the majority of phase II genes more closely resembled liver in vivo. The CYP450 enzyme activities corresponded with gene expression data. In conclusion, for toxicological applications using sandwich-cultured hepatocytes, the modified model may be preferred.
Collapse
Affiliation(s)
- A S Kienhuis
- Business Unit Biosciences, TNO Quality of Life, P.O. Box 360, 3700 AJ, Zeist, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Edwards PR, Hrycay EG, Bandiera SM. Differential inhibition of hepatic microsomal alkoxyresorufin O-dealkylation activities by tetrachlorobiphenyls. Chem Biol Interact 2007; 169:42-52. [PMID: 17586480 DOI: 10.1016/j.cbi.2007.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 11/29/2022]
Abstract
Polychlorinated biphenyls (PCBs) elicit a spectrum of biochemical and toxic effects in exposed animals. In the present study, we assessed the effect of PCB structure, using four symmetrically-substituted PCBs, on cytochrome P450 (CYP)-mediated methoxy-, ethoxy- and benzyloxyresorufin O-dealkylase (MROD, EROD and BROD, respectively) activities. We found that 2,2',4,4'-tetrachlorobiphenyl (PCB 47), 2,2',5,5'-tetrachlorobiphenyl (PCB 52), 2,2',6,6'-tetrachlorobiphenyl (PCB 54) and 3,3',4,4'-tetrachlorobiphenyl (PCB 77) inhibited alkoxyresorufin O-dealkylase activities in hepatic microsomes from 3-methylcholanthrene (MC) or phenobarbital (PB)-treated rats. Measurement of the in vitro inhibitory potencies of the tetrachlorobiphenyls revealed that MROD, EROD and BROD activities were differentially inhibited and the degree of inhibition was determined by the chlorination pattern of the PCB. PCB 77 was more potent than PCB 47 or PCB 52 at inhibiting MROD and EROD activities in hepatic microsomes from MC-treated rats, while no inhibition of either activity was observed with PCB 54. In contrast, BROD activity measured in hepatic microsomes from PB-treated rats was inhibited by PCB 47, PCB 52 and PCB 54 but not by PCB 77. The mode of inhibition for each activity was also evaluated statistically. Inhibition of the alkoxyresorufin O-dealkylase activities could not be discerned in hepatic microsomes from corn oil-treated rats because the activities were inherently too low. No evidence for mechanism-based inhibition of MROD, EROD or BROD activities or an effect via CYP reductase was found. The results demonstrate that relatively coplanar PCBs such as PCB 77 preferentially inhibit EROD and MROD activities, whereas noncoplanar PCBs such as PCB 54 preferentially inhibit BROD activity.
Collapse
Affiliation(s)
- Patrick R Edwards
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
40
|
Murray M. Role of signalling systems in the effects of dietary factors on the expression of mammalian CYPs. Expert Opin Drug Metab Toxicol 2007; 3:185-96. [PMID: 17428150 DOI: 10.1517/17425255.3.2.185] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Changes in mammalian diets alter the hepatic expression of CYP drug-metabolising enzymes and endobiotic oxidases. Thus, dietary constituents may significantly influence the duration of action of chemicals in tissues. Recent improvements in the mechanistic information on the regulation of constitutive and inducible expression of CYPs has facilitated our understanding as to how dietary factors modulate expression. Altered regulation appears to occur either by direct activation of transcription factors or by indirect modulation of signal transduction pathways. For example, dietary lipid directly activates PPAR-alpha, or other nuclear hormone receptors, to elicit CYP induction, and vitamin A deficiency downregulates the growth hormone-responsive CYP2C11 by perturbing Janus kinase-signal transducers and activators of transcription signalling. This article focuses on the present understanding of the regulation of CYP genes by dietary nutrients.
Collapse
Affiliation(s)
- Michael Murray
- University of Sydney, Pharmacogenomics and Drug Development Group, Faculty of Pharmacy, NSW 2006, Australia.
| |
Collapse
|
41
|
Itokawa D, Nishioka T, Fukushima J, Yasuda T, Yamauchi A, Chuman H. Quantitative Structure–Activity Relationship Study of Binding Affinity of Azole Compounds with CYP2B and CYP3A. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/qsar.200610136] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Cherala G, Shapiro BH, D'mello AP. Effect of Perinatal Low Protein Diets on the Ontogeny of Select Hepatic Cytochrome P450 Enzymes and Cytochrome P450 Reductase in the Rat. Drug Metab Dispos 2007; 35:1057-63. [PMID: 17392395 DOI: 10.1124/dmd.106.013748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we administered two low protein diets (LPDs) to rats during pregnancy and lactation and determined their effect on the ontogeny of select hepatic cytochrome P450 (P450) isoforms in their offspring. The L93 and LM76 LPDs were derived from the American Society of Nutrition recommended AIN93G and a modified version of the AIN76A purified control diets, respectively. The LPDs contained 8% crude protein in the form of casein, whereas the purified control diets contained 19% casein. A regular cereal-based diet (NP) was also included, and, therefore, a total of five groups were tested. Pups in all five groups were weaned onto a regular NP diet on postnatal day 28. Perinatal LPD altered the activities of a number of P450 isoforms in 28-day-old male and female offspring. However, nutritional rehabilitation abolished most of these changes as evidenced by lack of differences between the five groups in the activities of P450 isoforms in either 65- or 150-day-old offspring. Interestingly, 58-day-old female offspring in the LM76 group but not those in the L93 group exhibited shorter hexobarbital sleep time than the purified control group. However, hexobarbital hydroxylase activity and the amount of CYP2C12 protein, an important P450 isoform involved in hexobarbital metabolism in females, were unchanged. This suggests that the decrease in hexobarbital sleep time in this group is not due to an increase in the activity of hexobarbital-metabolizing enzymes. In summary, perinatal LPDs produced transient alterations in activities of select hepatic P450s and resulted in a gender- and diet-dependent long-term alteration in hexobarbital pharmacodynamics.
Collapse
Affiliation(s)
- Ganesh Cherala
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Nannelli A, Messina A, Marini S, Trasciatti S, Longo V, Gervasi PG. Effects of the anticancer dehydrotarplatin on cytochrome P450 and antioxidant enzymes in male rat tissues. Arch Toxicol 2007; 81:479-87. [PMID: 17364183 DOI: 10.1007/s00204-007-0184-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 01/15/2007] [Indexed: 10/23/2022]
Abstract
The effect of dehydrotarplatin (DTP), a new antineoplastic drug analogous to cisplatin, and its metabolite (Triacid) on the hepatic, renal and testicular CYP and antioxidant enzymes of male rats was investigated. The rats were treated i.p. with a single dose of DTP (25 mg kg(-1) day(-1)) or Triacid (17.5 mg kg(-1) day(-1)) and analysed 3 or 7 days post treatment. Three days after treatment, both drugs reduced body and liver weights, which partially recovered the control level after 7 days. DTP and, to a less extent, Triacid caused a depletion of plasmatic testosterone content and a down regulation in the liver of androgen dependent male specific CYP 2C11, but not of CYP 1A and 2E1, as determined by a significant decrease of 2alpha- and 16alpha-testosterone hydroxylase activities (markers for CYP 2C11) and of apoprotein immunoreactive with anti-rat CYP 2C11 antibodies. However, the activity of testicular 17alpha-progesterone hydroxylase, a key reaction in steroidogenesis, was not altered by these drugs. The DTP and Triacid administration did not cause any alteration of the plasmatic urea nitrogen and creatinine, known as markers of kidney toxicity. However, treatment with DTP, not Triacid, either 3 and 7 days post treatment, caused in the kidney microsomes a significant increase of the total CYP content, the CYP 4A-dependent (omega)- and (omega - 1)-lauric acid hydroxylase activities and apoprotein immunoreactive with anti-rat CYP 4A1. The present study also examined the enzymatic antioxidant status of kidney and liver. Neither DTP nor Triacid administration induced, with respect to control values, any alteration of hepatic and renal glutathione reductase, glutathione S-transferase, catalase, superoxide dismutase activities, hepatic GSH level and renal microsomal lipid peroxidation level. Among the antioxidant enzymes assayed, only the renal activity of glutathione peroxidase was significantly increased after DTP but not Triacid treatment. These results indicate that DTP at a dose of 25 mg/kg and Triacid cause a feminization of the CYP enzymes in male rat liver similar to that reported for cisplatin when administered at a low dose (5 mg/kg). However, unlike cisplatin, DTP and its metabolite were unable to enhance BUN and creatinine and cause any depression of CYP activities and antioxidant enzymes in the kidney, suggesting that DTP may have low or even no potential in inducing nephrotoxicity.
Collapse
Affiliation(s)
- Annalisa Nannelli
- Istituto di Fisiologia Clinica, Area della Ricerca CNR, via Moruzzi 1, 56100 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Kool J, van Liempd SM, van Rossum H, van Elswijk DA, Irth H, Commandeur JNM, Vermeulen NPE. Development of three parallel cytochrome P450 enzyme affinity detection systems coupled on-line to gradient high-performance liquid chromatography. Drug Metab Dispos 2007; 35:640-8. [PMID: 17251308 DOI: 10.1124/dmd.106.012245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A high resolution screening (HRS) technology is described, in which gradient high-performance liquid chromatography (HPLC) is connected on-line to three parallel placed bioaffinity detection systems containing mammalian cytochromes P450 (P450s). The three so-called enzyme affinity detection (EAD) systems contained, respectively, liver microsomes from rats induced by beta-naphthoflavone (CYP1A activity), phenobarbital (CYP2B activity), and dexamethasone (CYP3A activity). Each P450-EAD system was optimized for enzyme, substrate, and organic modifier (isopropyl alcohol, methanol, and acetonitrile) in flow injection analysis mode. Characteristic P450 ligands were used to validate the P450-EAD systems. IC(50) values of the ligands were measured and found to be similar to those obtained with conventional microtiter plate reader assays. Detection limits (n = 3; signal-to-noise ratio = 3) of potent inhibitors ranged from 1 to 3 pmol for CYP1A activity, 4 to 17 pmol for CYP2B activity, and 4 to 15 pmol for CYP3A activity. The three optimized P450-EAD systems were subsequently coupled to gradient HPLC and used to screen compound mixtures for individual ligands. Finally, to increase analysis efficiency, a HRS system was constructed in which all three P450-EAD systems were coupled on-line and in parallel to gradient HPLC. The triple parallelized P450-EAD system was shown to enable rapid profiling of individual components in complex mixtures for inhibitory activity to three different P450s.
Collapse
Affiliation(s)
- Jeroen Kool
- Vrije Universiteit, Department of Pharmacochemistry, LACDR-Division of Molecular Toxicology, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Lewis DFV. Computer-Assisted methods in the evaluation of chemical toxicity. REVIEWS IN COMPUTATIONAL CHEMISTRY 2007. [DOI: 10.1002/9780470125809.ch4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
46
|
Chan PK, Lu SY, Liao JW, Wei CF, Tsai Y, Ueng TH. Induction and inhibition of cytochrome P450-dependent monooxygenases of rats by fungicide bitertanol. Food Chem Toxicol 2006; 44:2047-57. [PMID: 16971034 DOI: 10.1016/j.fct.2006.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 06/15/2006] [Accepted: 07/06/2006] [Indexed: 11/15/2022]
Abstract
The effects of fungicide bitertanol on cytochrome P450-dependent monooxygenases were studied using rats treated intraperitoneally with the N-substituted triazole for 4 days. Treatment with 10, 25, and 100 mg/kg bitertanol produced 2-, 4-, and 14-fold increases of 7-ethoxyresorufin O-deethylation activity in liver microsomes, respectively. Immunoblot analysis of microsomal proteins revealed that 25 mg/kg bitertanol increased CYP1A1 protein in the liver, kidney, and lung by 10-, 13-, and 17-fold, respectively. Bitertanol produced smaller increases of CYP2B and CYP3A catalytic activity and protein than that of CYP1A1 in liver. RT-PCR analysis of total RNA indicated that bitertanol-induced CYP1A1, CYP2B, and CYP3A mRNA. Additions of 0.01-100 microM bitertanol to liver microsomes from rats treated with 25 mg/kg bitertanol or 3-methylcholanthrene inhibited microsomal 7-ethoxyresorufin O-deethylation activity (IC(50)=0.8 or 0.9 microM). Bitertanol at 100 mg/kg increased liver UDP-glucuronosyltransferase and glutathione S-transferase activities by 2-fold. Bitertanol at 25 mg/kg produced a minor increase in metabolic activation of benzo[a]pyrene by liver S-9 fraction in the Ames mutagenicity test while the increase was blocked by addition of 100 microM bitertanol. These findings show that bitertanol is an inducer of CYP1A1, CYP2B, and CYP3A in vivo and an inhibitor of CYP1A catalytic activity in vitro.
Collapse
Affiliation(s)
- Ping-Kun Chan
- Institute of Toxicology, College of Medicine, National Taiwan University, 1 Jen Ai Road, Section 1, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
47
|
Daniel WA, Haduch A, Syrek M, Boksa J. Direct and indirect interactions between antidepressant drugs and CYP2C6 in the rat liver during long-term treatment. Eur Neuropsychopharmacol 2006; 16:580-7. [PMID: 16503401 DOI: 10.1016/j.euroneuro.2006.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/22/2005] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
The aim of the present study was to investigate the influence of tricyclic antidepressants (TADs: imipramine, amitriptyline, clomipramine, desipramine), selective serotonin reuptake inhibitors (SSRIs: fluoxetine, sertraline) and novel antidepressant drugs (mirtazapine, nefazodone) on the activity of CYP2C6 measured as a rate of warfarin 7-hydroxylation. The reaction was studied in control liver microsomes in the presence of the antidepressants, as well as in microsomes of rats treated intraperitoneally (i.p.) for one day or two weeks with pharmacological doses of the drugs (imipramine, amitriptyline, clomipramine, nefazodone at 10 mg/kg i.p.; desipramine, fluoxetine, sertraline at 5mg/kg i.p.; mirtazapine at 3mg/kg i.p.), in the absence of the antidepressants in vitro. Some of the investigated antidepressant drugs added to liver microsomes of control rats inhibited the rate of 7-hydroxylation of warfarin. The obtained K(i) values indicated that nefazodone and fluoxetine were the most potent inhibitors of the studied reaction (K(i)=13 and 23microM, respectively), while tricyclic antidepressants and sertraline were weak in this respect (K(i)=70-127microM). A one-day (i.e. 24h) exposure to fluoxetine and mirtazapine resulted in a significant increase in the rate of the 7-hydroxylation of warfarin in rat liver microsomes. The other studied antidepressants did not significantly affect the rate of the CYP2C6-specific reaction. After two-week treatment with the investigated antidepressants, the increase in CYP2C6 activity observed after 24-h exposure to fluoxetine and mirtazapine was more pronounced. Moreover, unlike after one-day exposure, imipramine and sertraline significantly increased the activity of the enzyme. The other tricyclic antidepressants or nefazodone did not produce any significant effect when administered in vivo. The above-described enhancement of CYP2C6 activity correlated positively with the simultaneously observed increases in the enzyme protein level, which indicates the enzyme induction. The studied antidepressants increased the CYP2C6 protein level in the liver microsomes of rats after chronic treatment: imipramine to 174.6+/-18.3%, fluoxetine to 159.1+/-13.7%, sertraline to 135.3+/-11.2% and mirtazapine to 138.4+/-10.2% of the control. In summary, two different mechanisms of the antidepressant-CYP2C6 interaction have been found to operate in the rat liver: 1) direct inhibition of CYP2C6 shown in vitro mainly for nefazodone and fluoxetine, with their inhibitory effects being somewhat more potent than their action on human CYP2C9; 2) the in vivo induction of CYP2C6 by imipramine, fluoxetine, sertraline and mirtazapine.
Collapse
Affiliation(s)
- W A Daniel
- Polish Academy of Sciences, Institute of Pharmacology, Smetna 12, 31-343 Kraków, Poland.
| | | | | | | |
Collapse
|
48
|
Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 2006; 21:257-76. [PMID: 16946553 DOI: 10.2133/dmpk.21.257] [Citation(s) in RCA: 421] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens and metabolized by a variety of xenobiotic-metabolizing enzymes such as cytochrome P450 (P450 or CYP), epoxide hydrolase, glutathione transferase, UDP-glucuronosyltransferase, sulfotransferase, NAD(P)H quinone oxidoreductase 1, and aldo-keto reductase. These enzymes mainly participate in the conversion of PAHs to more polar and water-soluble metabolites, and the resultant metabolites are readily excreted from the body. However, during the course of metabolism, a variety of unstable and reactive intermediates of PAHs are formed, and these metabolites attack DNA, causing cell toxicity and transformation. P450s and epoxide hydrolase convert PAHs to proximate carcinogenic metabolites, PAH-diols, and these products are further metabolized by P450s to ultimate carcinogenic metabolites, PAH diol-epoxides, or by aldo-keto reductase to reactive PAH o-quinones. PAHs are also activated by P450 and peroxidases to reactive radical cations that bind covalently to DNA. The oxygenated and reactive metabolites of PAHs are usually converted to more polar and detoxified products by phase II enzymes. Inter-individual differences exist in levels of expression and catalytic activities of a variety of enzymes that activate and/or detoxify PAHs in various organs of humans and these phenomena are thought to be critical in understanding the basis of individual differences in response to PAHs. Factors affecting such variations include induction and inhibition of enzymes by diverse chemicals and, more importantly, genetic polymorphisms of enzymes in humans.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Chemical Biology, Osaka City University Medical School, Osaka, Japan.
| |
Collapse
|
49
|
Goodin MG, Bray BJ, Rosengren RJ. Sex- and strain-dependent effects of epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) in the mouse. Food Chem Toxicol 2006; 44:1496-504. [PMID: 16762473 DOI: 10.1016/j.fct.2006.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 08/18/2005] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
We have previously demonstrated that 50mg/kg of epigallocatechin gallate (EGCG) is hepatotoxic to female Swiss Webster mice, while lower doses of EGCG and epicatechin gallate (ECG) modulate various cytochrome P450 (CYP) isoforms. Therefore, this study was designed to further investigate the role of strain and sex in catechin-mediated enzyme modulation and hepatotoxicity in mice. Male and female BALB/c and male Swiss Webster mice were treated with either ECG or EGCG (25 and 50 mg/kg, ip) for 7 days. The results demonstrated that EGCG (50 mg/kg) produced severe hepatic necrosis, elevated ALT activities and a 20% mortality rate in male Swiss Webster mice and mild hepatotoxicity in male BALB/c mice. In female BALB/c mice the mortality rate was 20%, which correlated with extensive hepatic necrosis. Of the two catechins, only ECG significantly inhibited CYP isoforms. Specifically, prostatic aromatase activity decreased by 31+/-2%, while CYP1A catalytic activity and polypeptide levels were decreased 29+/-6% and 25+/-4%, respectively. However, CYP2E1 and CYP3A activity remained unchanged following ECG administration. Additionally, EGCG did not alter aromatase, CYP1A, CYP3A or CYP2E1 in male Swiss Webster mice. In conclusion, EGCG (50 mg/kg) elicits mortality in both male and female Swiss Webster mice, as well as female BALB/c mice. ECG significantly inhibits both aromatase and CYP1A in male Swiss Webster mice. Therefore, sex-specific modulation of CYP isoforms occurs following administration of EGCG and ECG in Swiss Webster mice.
Collapse
Affiliation(s)
- M G Goodin
- Department of Pharmacology and Toxicology, University of Otago, 18 Frederick Street, Adams Building, Dunedin, New Zealand
| | | | | |
Collapse
|
50
|
Magnusson MO, Karlsson MO, Sandström R. A mechanism-based integrated pharmacokinetic enzyme model describing the time course and magnitude of phenobarbital-mediated enzyme induction in the rat. Pharm Res 2006; 23:521-32. [PMID: 16525862 DOI: 10.1007/s11095-005-9571-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Accepted: 11/21/2005] [Indexed: 11/26/2022]
Abstract
PURPOSE To characterize the magnitude, time course, and specificity of phenobarbital (PB)-mediated enzyme induction, and further, to develop an integrated pharmacokinetic (PK)-enzyme model describing the changes in the activities of CYP enzymes as well as in the PK of PB. METHODS PB plasma concentrations and in vitro activities of several CYP enzymes were measured in rats treated with PB between 0 and 14 days. A PB PK-enzyme induction model was developed using the program NONMEM: . RESULTS PB treatment both induces and reduces the activity of CYP enzymes by stimulating the enzymes' formation or elimination rates. Certain CYP enzymes affected the PB PK through autoinduction. The half-life of the induction process was estimated to be 2 days for CYP1A2, CYP3A1/2, and CYP2B1/2, and 3 days for androstenedione producing enzymes. The CYP2C11 activity was rapidly reduced by PB treatment. A lag time for the PB autoinduction was observed. This lag time is explained by the rate difference between induction and reduction in CYP activities. CONCLUSION To our knowledge, this is the first example of an induction model that simultaneously describes plasma PK and in vitro data. It does so by integrating the bidirectional interaction between drug and enzymes in a mechanistic manner.
Collapse
Affiliation(s)
- Mats O Magnusson
- Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden.
| | | | | |
Collapse
|