1
|
Sinchak K, Wagner EJ. Estradiol signaling in the regulation of reproduction and energy balance. Front Neuroendocrinol 2012; 33:342-63. [PMID: 22981653 PMCID: PMC3496056 DOI: 10.1016/j.yfrne.2012.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/18/2012] [Accepted: 08/22/2012] [Indexed: 12/14/2022]
Abstract
Our knowledge of membrane estrogenic signaling mechanisms and their interactions that regulate physiology and behavior has grown rapidly over the past three decades. The discovery of novel membrane estrogen receptors and their signaling mechanisms has started to reveal the complex timing and interactions of these various signaling mechanisms with classical genomic steroid actions within the nervous system to regulate physiology and behavior. The activation of the various estrogenic signaling mechanisms is site specific and differs across the estrous cycle acting through both classical genomic mechanisms and rapid membrane-initiated signaling to coordinate reproductive behavior and physiology. This review focuses on our current understanding of estrogenic signaling mechanisms to promote: (1) sexual receptivity within the arcuate nucleus of the hypothalamus, (2) estrogen positive feedback that stimulates de novo neuroprogesterone synthesis to trigger the luteinizing hormone surge important for ovulation and estrous cyclicity, and (3) alterations in energy balance.
Collapse
Affiliation(s)
- Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840-9502, United States.
| | | |
Collapse
|
2
|
Wendler A, Baldi E, Harvey BJ, Nadal A, Norman A, Wehling M. Position paper: Rapid responses to steroids: current status and future prospects. Eur J Endocrinol 2010; 162:825-30. [PMID: 20194525 DOI: 10.1530/eje-09-1072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Steroids exert their actions through several pathways. The classical genomic pathway, which involves binding of steroids to receptors and subsequent modulation of gene expression, is well characterized. Besides this, rapid actions of steroids have been shown to exist. Since 30 years, research on rapid actions of steroids is an emerging field of science. Today, rapid effects of steroids are well established, and are shown to exist for every type of steroid. The classical steroid receptors have been shown to be involved in rapid actions, but there is also strong evidence that unrelated structures mediate these rapid effects. Despite increasing knowledge about the mechanisms and structures which mediate these actions, there is still no unanimous acceptance of this category. This article briefly reviews the history of the field including current controversies and challenges. It is not meant as a broad review of literature, but should increase the awareness of the endocrinology society for rapid responses to steroids. As members of the organizing committee of the VI International Meeting on Rapid Responses to Steroid Hormones 2009, we propose a research agenda focusing on the identification of new receptoral structures and the identification of mechanisms of actions at physiological steroid concentrations. Additionally, efforts for the propagation of translational studies, which should finally lead to clinical benefit in the area of rapid steroid action research, should be intensified.
Collapse
Affiliation(s)
- Alexandra Wendler
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
3
|
Yu LL, Zhang JH, He YP, Huang P, Yue LM. Fast action of estrogen on intracellular calcium in dormant mouse blastocyst and its possible mechanism. Fertil Steril 2009; 91:611-5. [DOI: 10.1016/j.fertnstert.2007.11.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 11/27/2022]
|
4
|
Berg KA, Patwardhan AM, Sanchez TA, Silva YM, Hargreaves KM, Clarke WP. Rapid modulation of micro-opioid receptor signaling in primary sensory neurons. J Pharmacol Exp Ther 2007; 321:839-47. [PMID: 17347322 DOI: 10.1124/jpet.106.116681] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Management of pain by opioid analgesics is confounded by central adverse effects that limit clinical dosages. Consequently, there is considerable interest to understand peripheral analgesic effects of opioids. The actions of opioids on peripheral sensory neurons have been difficult to study because of a general lack of effect of opioid agonists on nociceptor function in culture despite documented presence of opioid receptors. In this study, the micro-opioid receptor agonist, [D-Ala(2),N-MePhe(4),Gly-ol(5)]-enkephalin (DAMGO), did not alter guanosine 5'-O-(3-[(35)S]thio)-triphosphate (GTPgamma[(35)S]) binding, adenylyl cyclase activity, or neuropeptide release in primary cultures of rat trigeminal ganglion (TG). However, after brief exposure to bradykinin (BK), DAMGO stimulated GTPgamma[(35)S] binding and inhibited both prostaglandin E(2) (PGE(2))-stimulated adenylyl cyclase activity and BK/PGE(2)-stimulated neuropeptide release. The effect of BK was blocked by the B(2) antagonist HOE 140 [D-Arg[Hyp(3),Thi(5),D-Tic(7),Oic(8)]-bradykinin], but not by the B(1) antagonist, Lys-[Leu8]des-Arg9-BK, and was mimicked by the protease-activated receptor-2 agonist, Ser-Leu-Ile-Gly-Arg-Leu-NH(2), and by activation of protein kinase C (PKC) or by administration of arachidonic acid (AA). The enhanced responsiveness of micro-opioid receptor signaling by BK priming was blocked by both cyclooxygenase and PKC inhibitors; however, the effect of AA was blocked only by a cyclooxygenase inhibitor. The results indicate that micro-opioid receptor signaling in primary sensory TG neurons is enhanced by activation of phospholipase C-coupled receptors via a cyclooxygenase-dependent AA metabolite that is downstream of PKC.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Arachidonic Acid/pharmacology
- Bradykinin/pharmacology
- Calcitonin Gene-Related Peptide/metabolism
- Capsaicin/pharmacology
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclooxygenase Inhibitors/pharmacology
- Dinoprostone/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enzyme Inhibitors/pharmacology
- Gene Expression/drug effects
- Inositol Phosphates/metabolism
- Male
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Phorbol 12,13-Dibutyrate/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Bradykinin B2/agonists
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Receptor, PAR-2/agonists
- Receptor, PAR-2/metabolism
- Receptors, Opioid, mu/analysis
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Kelly A Berg
- Department of Pharmacology, MS 7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
5
|
Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, Wehling M. Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 2003; 83:965-1016. [PMID: 12843413 DOI: 10.1152/physrev.00003.2003] [Citation(s) in RCA: 393] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Steroids may exert their action in living cells by several ways: 1). the well-known genomic pathway, involving hormone binding to cytosolic (classic) receptors and subsequent modulation of gene expression followed by protein synthesis. 2). Alternatively, pathways are operating that do not act on the genome, therefore indicating nongenomic action. Although it is comparatively easy to confirm the nongenomic nature of a particular phenomenon observed, e.g., by using inhibitors of transcription or translation, considerable controversy exists about the identity of receptors that mediate these responses. Many different approaches have been employed to answer this question, including pharmacology, knock-out animals, and numerous biochemical studies. Evidence is presented for and against both the participation of classic receptors, or proteins closely related to them, as well as for the involvement of yet poorly understood, novel membrane steroid receptors. In addition, clinical implications for a wide array of nongenomic steroid actions are outlined.
Collapse
Affiliation(s)
- Ralf M Losel
- Institut für klinische Pharmakologie, Klinikum Mannheim, Theodor-Kutzer-Ufer, D-68167 Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Machado JD, Alonso C, Morales A, Gómez JF, Borges R. Nongenomic regulation of the kinetics of exocytosis by estrogens. J Pharmacol Exp Ther 2002; 301:631-7. [PMID: 11961067 DOI: 10.1124/jpet.301.2.631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of nongenomic action of estrogens on elicited catecholamine secretion and exocytosis kinetics was studied in perfused rat adrenals and in cultured bovine chromaffin cells. 17beta-Estradiol as well as the estrogen receptor modulators raloxifene and LY117018, but not 17alpha-estradiol, inhibited at the micromolar range the catecholamine output elicited by acetylcholine or high potassium. However, these agents failed to modify the secretion elicited by high Ca(2+) in glands treated with the ionophore A-23187 (calcimycin), suggesting that estrogens did not directly act on the secretory machinery. At the single cell level, estrogens modified the kinetics of exocytosis at nanomolar range. All of the drugs tested except 17alpha-estradiol produced a profound slowing down of the exocytosis as measured by amperometry. LY117018 also reduced the granule content of catecholamines. 17beta-Estradiol reduced the intracellular free Ca(2+) but only at micromolar concentrations, whereas nanomolar concentrations increased the cAMP levels. These effects were reproduced with the nonpermeable drug 17beta-estradiol-horseradish peroxidase and antagonized with nanomolar concentrations of the antiestrogen ICI 182,780 (fulvestrant). Our data suggest the presence of membrane sites that regulate both the exocytotic phenomenon and the total catecholamine release with high and low affinity, respectively.
Collapse
Affiliation(s)
- José D Machado
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
7
|
Wilson MP, Sun Y, Cao L, Majerus PW. Inositol 1,3,4-trisphosphate 5/6-kinase is a protein kinase that phosphorylates the transcription factors c-Jun and ATF-2. J Biol Chem 2001; 276:40998-1004. [PMID: 11533064 DOI: 10.1074/jbc.m106605200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of inositol 1,3,4-trisphosphate by inositol 1,3,4-trisphosphate 5/6-kinase is the first committed step in the formation of higher phosphorylated forms of inositol. We have shown that the eight proteins called the COP9 signalosome complex copurify with calf brain 5/6-kinase. Because the complex has been shown to phosphorylate c-Jun in vitro, we tested both the complex and 5/6-kinase and found that both are able to phosphorylate c-Jun and ATF-2 on serine/threonine residues. These findings establish a link between two major signal transduction systems: the inositol phosphates and the stress response system.
Collapse
Affiliation(s)
- M P Wilson
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- A Revelli
- Department of Obstetrical and Gynecological Sciences, University of Torino, Italy
| | | | | |
Collapse
|
9
|
Beyer C, Raab H. Nongenomic effects of oestrogen: embryonic mouse midbrain neurones respond with a rapid release of calcium from intracellular stores. Eur J Neurosci 1998; 10:255-62. [PMID: 9753134 DOI: 10.1046/j.1460-9568.1998.00045.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evidence is emerging that oestrogen, besides acting via classical nuclear receptors, can rapidly influence the physiology of nerve cells through other mechanisms. Oestrogens have been shown to modulate the differentiation and function of embryonic midbrain dopaminergic neurones by stimulating neurite outgrowth, expression of tyrosine hydroxylase mRNA, dopamine uptake and release in spite of the fact that dopaminergic cells in the prenatal midbrain do not express the classical oestrogen receptor. This study therefore intended to unravel possible signal transduction pathways activated by oestrogen which might be associated with the above oestrogen effects. As a physiological second-messenger mechanism, we studied the influence of oestrogen on fluctuations of intracellular Ca2+ levels [Ca2+]i by microspectrofluorimetry of the Ca2+-sensitive indicator Fura-2, in primary cultures from embryonic mouse midbrains. 17Beta-estradiol (10 nM-1 pM) but not 17alpha-estradiol increased [Ca2+]i within 1-3 s in a dose-dependent way. Removal of extracellular Ca2+ abrogated K+-stimulated Ca2+ rise but did not affect 17beta-estradiol stimulation. Pretreatment of cells with thapsigargin (1 microM, 10 min), an inhibitor of Ca2+-pumping ATPases in the endoplasmic reticulum, abolished the 17beta-estradiol effect but not the K+-stimulated [Ca2+]i rise. Oestrogen effects on [Ca2+]i were completely mimicked by using a membrane-impermeant oestrogen-BSA construct. In order to identify oestrogen-sensitive cells, some cultures were subsequently immunostained for microtubule-associated protein II, tyrosine hydroxylase, or GABA. All oestrogen-sensitive cells were immunocytochemically characterized as neurones, and about half of these responsive neurones was found to be dopaminergic or GABAergic. These results demonstrate that 17beta-estradiol is capable of rapidly modulating physiological parameters of developing midbrain neurones by directly interacting with specific membrane binding sites coupled to a signal transduction mechanism that causes a calcium release from intracellular Ca2+ stores. It is suggested that oestrogen effects on differentiation and function of midbrain dopaminergic neurones are mediated by intracellular Ca2+ signalling.
Collapse
Affiliation(s)
- C Beyer
- Abteilung Anatomie und Zellbiologie, Universität Ulm, Germany.
| | | |
Collapse
|
10
|
Stanimirovic D, Morley P, Ball R, Hamel E, Mealing G, Durkin JP. Angiotensin II-induced fluid phase endocytosis in human cerebromicrovascular endothelial cells is regulated by the inositol-phosphate signaling pathway. J Cell Physiol 1996; 169:455-67. [PMID: 8952695 DOI: 10.1002/(sici)1097-4652(199612)169:3<455::aid-jcp6>3.0.co;2-n] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The involvement of the early signaling messengers, inositol tris-phosphate (IP3), intracellular calcium, [Ca2+]i, and protein kinase C (PKC), in angiotensin II (AII)-induced fluid phase endocytosis was investigated in human brain capillary and microvascular endothelial cells (HCEC). ALL (0.01-10 microM) stimulated the uptake of Lucifer yellow CH, an inert dye used as a marker for fluid phase endocytosis, in HCEC by 50-230%. AII also triggered a fast accumulation of IP3 and a rapid increase in [Ca2+]i in cells loaded with the Ca(2+)-responsive fluorescent dye fura-2. The prompt AII-induced [Ca2+]i spike was not affected by incubating HCEC in Ca(2+)-free medium containing 2 mM EGTA or by pretreating the cultures with the Ca2+ channel blockers, methoxyverapamil (D600; 50 microM), nickel (1 mM), or lanthanum (1 mM), suggesting that the activation of AII receptors on HCEC triggers the release of Ca2+ from intracellular stores. The AII-triggered increases in IP3, [Ca2+]i, and Lucifer yellow uptake were inhibited by the nonselective AII receptor antagonist, Sar1, Val5, Ala8-AII (SVA-AII), and by the phospholipase C (PLC) inhibitors, neomycin and U-73122. By contrast, the protein kinase C (PKC) inhibitors, staurosporine and calphostin C, failed to affect any of these AII-induced events. This study demonstrates that increased fluid phase endocytotosis induced by AII in human brain capillary endothelium, an event thought to be linked to the observed increases in blood-brain barrier permeability in acute hypertension, is likely dependent on PLC-mediated changes in [Ca2+]i and independent of PKC.
Collapse
Affiliation(s)
- D Stanimirovic
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Prestwich GD. Touching All the Bases: Synthesis of Inositol Polyphosphate and Phosphoinositide Affinity Probes from Glucose. Acc Chem Res 1996. [DOI: 10.1021/ar960136v] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Glenn D. Prestwich
- Departments of Chemistry and Biochemistry & Cell Biology, University at Stony Brook, Stony Brook, New York 11794-3400
| |
Collapse
|
12
|
Wilson MP, Majerus PW. Isolation of inositol 1,3,4-trisphosphate 5/6-kinase, cDNA cloning and expression of the recombinant enzyme. J Biol Chem 1996; 271:11904-10. [PMID: 8662638 DOI: 10.1074/jbc.271.20.11904] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Inositol 1,3,4-trisphosphate 5/6-kinase was purified 12,900-fold from calf brain using chromatography on heparin-agarose and affinity elution with inositol hexakisphosphate. The final preparation contained proteins of 48 and 36-38 kDa. All of these proteins had the same amino-terminal sequence and were enzymatically active. The smaller species represent proteolysis products with carboxyl-terminal truncation. The Km of the enzyme for inositol 1,3,4-trisphosphate was 80 nM with a Vmax of 60 nmol of product/min/mg of protein. The amino acid sequence of the tryptic peptide HSKLLARPAGGLVGERTCNAXP matched the protein sequence encoded by a human expressed sequence tag clone (GB T09063) at 16 of 22 residues. The expressed sequence tag clone was used to screen a human fetal brain cDNA library to obtain a cDNA clone of 1991 base pairs (bp) that predicts a protein of 46 kDa. The clone encodes the amino-terminal amino acid sequence obtained from the purified calf brain preparation, suggesting that it represents its human homologue. The cDNA was expressed as a fusion protein in Escherichia coli and was found to have inositol 1,3,4-trisphosphate 5/6-kinase activity. Remarkably, both the purified calf brain and recombinant proteins produced both inositol 1,3,4,6-tetrakisphosphate and inositol 1,3,4,5-tetrakisphosphate as products in a ratio of 2.3-5:1. This finding proves that a single kinase phosphorylates inositol in both the D5 and D6 positions. Northern blot analysis identified a transcript of 3.6 kilobases in all tissues with the highest levels in brain. The composite cDNA isolated contains 3054 bp with a poly(A) tail, suggesting that 500-600 bp of 5' sequence remains to be identified.
Collapse
Affiliation(s)
- M P Wilson
- Division of Hematology-Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
13
|
Ohmori Y, Imahori Y, Ueda S, Fujii R, Wakita K, Inoue M, Tazawa S. Radioiodinated diacylglycerol analogue: a potential imaging agent for single-photon emission tomographic investigations of cerebral ischaemia. EUROPEAN JOURNAL OF NUCLEAR MEDICINE 1996; 23:280-9. [PMID: 8599959 DOI: 10.1007/bf00837626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phospholipid metabolism is closely related to membrane perturbation in cerebral ischaemia. We investigated in vivo topographical lipid metabolism using an iodine-123-labelled diacylglycerol analogue, (1-(15-(4-iodine-123-iodophenyl)-pentadecanoyl)-2-stearoyl-rac-gly cerol) (123I-labelled DAG), in a middle cerebral artery (MCA) occlusion model with the aim of positive imaging of ischaemic insult. Sprague-Dawley rats underwent coagulation of the MCA to induce permanent occlusion. MCA occlusion times prior to injection of 123I-labelled DAG ranged from 15 min to 14 days. Each rat was injected with 11-37 MBq of 123I-labelled DAG via a tail vein. After 30 min, in vivo autoradiographs were reconstructed. Scanning of the living rat brain in this MCA occlusion model was performed using a gamma camera with a pinhole collimator. Cerebral infarctions were recognized in the frontal cortex, the parietal cortex and the lateral portion of the caudate-putamen by 2,3,5-triphenyltetrazolium hydrochloride staining. In infarcted regions (region 1), 123I-labelled DAG incorporation showed a slight decrease up to 12 h; it then increased up to 6 days and decreased thereafter. In peri-infarcted regions (region 2), the incorporation showed almost no change up to 12 h, then increased up to 5-6 days and decreased thereafter. In other regions (region 3), the incorporation showed no change. Lipid analysis showed that 123I-labelled DAG was metabolized to 15-(4-iodine-123-iodophenyl)-pentadecanoic acid by DAG lipase and to 123I-labelled phosphatidylcholine. Scanning of the ischaemic region showed higher accumulation than on the non-lesioned side. We established a method to visualize ischaemic foci as positive images. The early changes in 123I-labelled DAG incorporation were closely related to DAG lipase, which degraded the accumulated intrinsic DAG, and increased 123I-labelled DAG incorporation in the chronic stage involves several aspects of neural destruction in the process of autolysis. It is concluded that the reported method could have a clinical future.
Collapse
Affiliation(s)
- Y Ohmori
- Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Walsh JP, Suen R, Glomset JA. Arachidonoyl-diacylglycerol kinase. Specific in vitro inhibition by polyphosphoinositides suggests a mechanism for regulation of phosphatidylinositol biosynthesis. J Biol Chem 1995; 270:28647-53. [PMID: 7499383 DOI: 10.1074/jbc.270.48.28647] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We previously described the purification of a membrane-bound diacylglycerol kinase highly selective for sn-1-acyl-2-arachidonoyl diacylglycerols (Walsh, J. P., Suen, R., Lemaitre, R. N., and Glomset, J. A. (1994) J. Biol. Chem. 269, 21155-21164). This enzyme appears to be responsible for the rapid clearance of the arachidonate-rich pool of diacylglycerols generated during stimulus-induced phosphoinositide turnover. We have now shown phosphatidylinositol 4,5-bisphosphate to be a potent and specific inhibitor of arachidonoyl-diacylglycerol kinase. Kinetic analyses indicated a Ki for phosphatidylinositol 4,5-bisphosphate of 0.04 mol %. Phosphatidic acid also was an inhibitor with a Ki of 0.7 mol %. Other phospholipids had only small effects at these concentrations. A series of multiply phosphorylated lipid analogs also inhibited the enzyme, indicating that the head group phosphomonoesters are the primary determinants of the polyphosphoinositide effect. However, these compounds were not as potent as phosphatidylinositol 4,5-bisphosphate, indicating some specificity for the polyphosphoinositide additional to its total charge. Five other diacylglycerol kinases were activated to varying degrees by phosphatidylinositol 4,5-bisphosphate and phosphatidic acid, suggesting that inhibition by acidic lipids may be specific for the arachidonoyl-DAG kinase isoform. Given the presumed role of arachidonoyl-diacylglycerol kinase in the phosphoinositide cycle, this inhibition may represent a mechanism for polyphosphoinositides to regulate their own synthesis.
Collapse
Affiliation(s)
- J P Walsh
- Department of Medicine, Indiana University, Indianapolis 46202-5111, USA
| | | | | |
Collapse
|
15
|
Lee MW, Kraemer FB, Severson DL. Characterization of a partially purified diacylglycerol lipase from bovine aorta. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1254:311-8. [PMID: 7857971 DOI: 10.1016/0005-2760(94)00193-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A partially-purified diacylglycerol (DG) lipase from bovine aorta has been characterized with respect to the effects of lipid metabolites and two lipase inhibitors, phenylboronic acid and tetrahydrolipstatin (THL). DG lipase activity was determined by the hydrolysis of the sn-1 position of 1-[1-14C]palmitoyl-2-oleoyl-sn-glycerol. The products of the lipase reaction, 2-monoacylglycerol (2-monoolein) and non-esterified fatty acids (oleate, archidonate) produced a concentration-dependent (20-200 microM) inhibition of DG lipase activity. Oleoyl-CoA and dioleoylphosphatidic acid also inhibited aortic DG lipase activity, but lysophosphatidylcholine had little or no effect. The inhibition of aortic DG lipase by phenylboronic acid was competitive, with a Ki of approx. 4 mM. THL was a very potent inhibitor of aortic DG lipase; the concentration required for inhibition to 50% of control was 2-6 nM. THL inhibition was reduced when the concentration of substrate in the assay was increased. Attempts to identify the aortic DG lipase by covalent-labelling with [14C]THL were unsuccessful. Immunoblotting experiments revealed that hormone-sensitive triacylglycerol lipase (HSL) could not be detected in bovine aorta.
Collapse
Affiliation(s)
- M W Lee
- MRC Signal Transduction Group, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
16
|
Mistry R, Wilke R, Challiss RA. Modulation of NMDA effects on agonist-stimulated phosphoinositide turnover by memantine in neonatal rat cerebral cortex. Br J Pharmacol 1995; 114:797-804. [PMID: 7773540 PMCID: PMC1510213 DOI: 10.1111/j.1476-5381.1995.tb13275.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The ability of memantine (1-amino-3,5-dimethyladamantane) to antagonize the modulatory effects of N-methyl-D-aspartate (NMDA) on phosphoinositide turnover stimulated by muscarinic cholinoceptor- and metabotropic glutamate receptor-agonists has been examined in neonatal rat cerebral cortex slices. 2. Memantine antagonized the inhibitory effect of NMDA (100 microM) on both total [3H]-inositol phosphate ([3H]-InsPx) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) mass accumulations stimulated by carbachol (1 mM) with EC50 values of 21 and 16 microM respectively. 3. Memantine concentration-dependently antagonized (IC50 24 microM) the ability of NMDA (10 microM) to potentiate [3H]-InsPx accumulation in response to a sub-maximal concentration of the metabotropic glutamate receptor agonist, 1S,3R-ACPD (10 microM). 4. The small (approx. 3 fold), concentration-dependent increase in [3H]-InsPx accumulation stimulated by NMDA was completely antagonized by the prototypic NDMA receptor-channel blocker, MK-801 (1 microM) at all concentrations of NDMA studied (1-1000 microM). In contrast, antagonism by memantine (100 microM) was observed only at low concentrations of NMDA (1-10 microM), whilst [3H]-InsPx accumulation stimulated by high concentrations of NMDA (300-1000 microM) was markedly enhanced by memantine. 5. Assessment of the incorporation of [3H]-inositol into inositol phospholipids revealed that memantine (100 microM) caused an approximate 2 fold increase in the labelling of phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. 6H.p.l.c. separation of [3H]-inositol (poly)phosphates demonstrated that whilst memantine (100 microM)alone had no significant effect on the accumulation of any isomer, it substantially altered the profile of accumulation stimulated by NMDA (1 mM), greatly facilitating accumulation of Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4).7.These data provide evidence that memantine can antagonize the actions of NMDA in neonatal rat cerebral cortex slices in a manner consistent with this agent acting as a NMDA receptor-channel blocker. In addition, at least two further actions of memantine can be proposed. Memantine increases the rate of [3H]-inositol incorporation into the cellular inositol phospholipid fraction, without significantly stimulating phosphoinositide turnover. Furthermore, memantine can substantially alter patterns of inositol (poly)phosphates stimulated by NMDA, promoting the accumulation of the established and putative second messengers Ins(1,4,5)P3 and Ins(1,3,4,5)P4 which are not increased by NMDA in the absence of memantine. It is unknown whether these latter loci of memantine action contribute to known therapeutic actions of this agent.
Collapse
Affiliation(s)
- R Mistry
- Department of Cell Physiology and Pharmacology, University of Leicester, Germany
| | | | | |
Collapse
|
17
|
|
18
|
Safrany ST, Nahorski SR. A comparison between muscarinic receptor occupancy, inositol 1,4,5-trisphosphate accumulation and Ca2+ mobilization in permeabilized SH-SY5Y neuroblastoma cells. Neuropharmacology 1994; 33:837-46. [PMID: 7969802 DOI: 10.1016/0028-3908(94)90179-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electrically permeabilized SH-SY5Y neuroblastoma cells have been used to examine the relationship between receptor occupation by muscarinic agonists, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) accumulation and Ca2+ mobilization from intracellular stores. The kinetics, concentration-dependence and guanine nucleotide-sensitivity of these responses have been characterized for the agonists, carbachol, arecoline and oxotremorine. Carbachol stimulated Ins(1,4,5)P3 accumulation and Ca2+ mobilization with an EC50 value approximately 50 microM, only slightly lower than the apparent affinity of this agonist for the "free" receptor (100 microM). Arecoline and oxotremorine were partial agonists, mobilizing 45 and 21% of the Ca2+ mobilized by carbachol, and yielded EC50 values for both Ins(1,4,5)P3 and Ca2+ responses, similar to their binding affinity. Guanosine 5'-O-3 thio-triphosphate (GTP gamma S) markedly enhanced the responses elicited by all three agonists. Carbachol became significantly more potent for both Ins(1,4,5)P3 accumulation (EC50 = 4.1 microM) and Ca2+ mobilization (EC50 = 0.25 microM), revealing a separation of the dose-response relationships. GTP gamma S caused a smaller separation of the responses elicited by arecoline (Ca2+ mobilization EC50 = 0.9 microM; Ins(1,4,5)P3 accumulation EC50 = 3.6 microM), and only enhanced maximal responses for oxotremorine. These data reveal that the functional coupling of muscarinic receptors to activation of phosphoinositidase C and subsequent Ca2+ mobilization from intracellular stores is maintained after electrical permeabilization. Furthermore, this model has been used to reveal differences in the relative activities of muscarinic agonists and how they are influenced by a hydrolysis-resistant guanine nucleotide.
Collapse
Affiliation(s)
- S T Safrany
- Department of Cell Physiology and Pharmacology, University of Leicester, U.K
| | | |
Collapse
|
19
|
Abstract
Agonist-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate, which generates inositol 1,4,5-trisphosphate and sn-1,2-diacylglycerol, is thought to be one of the major mechanisms underlying pharmacomechanical coupling in airway smooth muscle. This article is a review of the currently available information on phosphoinositide and inositol 1,4,5-trisphosphate metabolism in this tissue and includes data on inositol 1,4,5-trisphosphate-induced Ca2+ release and the receptor mediating this effect. The final section outlines the potential mechanisms underlying physiological regulation of phosphoinositide metabolism by other second-messenger pathways operative in this tissue.
Collapse
Affiliation(s)
- E R Chilvers
- Department of Medicine (RIE), Rayne Laboratory, University of Edinburgh, Medical School, U.K
| | | | | |
Collapse
|
20
|
Purkiss JR, Wilkinson GF, Boarder MR. Differential regulation of inositol 1,4,5-trisphosphate by co-existing P2Y-purinoceptors and nucleotide receptors on bovine aortic endothelial cells. Br J Pharmacol 1994; 111:723-8. [PMID: 8019751 PMCID: PMC1910100 DOI: 10.1111/j.1476-5381.1994.tb14797.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. We have examined the inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) responses in bovine aortic endothelial (BAE) cells to purines (ATP, ADP and analogues) and the pyrimidine, uridine triphosphate (UTP). 2. Exchange of medium on BAE cells in the absence of agonist was found to be a stimulus for Ins(1,4,5)P3 generation. BAE cells stimulated with 100 microM ATP, 30 microM 2MeSATP (an agonist at P2Y-purinoceptors but not nucleotide receptors) or 100 microM UTP (an agonist at nucleotide receptors but not P2Y-purinoceptors) gave Ins(1,4,5)P3 responses above that caused by exchange of medium. The time course was rapid, with peak response within the first 5 s and levels returning close to basal after 30 s of stimulation. 3. Significant differences in Ins(1,4,5)P3 responses to 100 microM UTP and 30 microM 2MeSATP stimulation were observed. The response to UTP was reproducibly more sustained than that to 2MeSATP. 4. Stimulation of BAE cells with 100 microM UTP plus 30 microM 2MeSATP produced a response statistically indistinguishable from that predicted by addition of the responses to the two agonists in isolation. 5. The Ins(1,4,5)P3 response to UTP was attenuated to 25% of control by pretreatment of BAE cells with pertussis toxin. Responses to 2MeSATP and ADP were essentially unaffected. ATP stimulation was reduced to 65% of control. 6. Activation of protein kinase C with tetradecanoyl phorbol acetate (TPA) profoundly inhibited Ins(1,4,5)P3 responses to 2MeSATP and ADP but had no effect on UTP stimulation. The protein kinase C inhibitor, Ro 31-8220, enhanced responses to 2MeSATP, ADP and ATP but no effect was observed on UTP stimulation. 7. These observations show that nucleotide and P2Y-receptors mobilise the second messenger Ins(1,4,5)P3 by separate routes resulting in different patterns of generation and suggest that while ATP activates both receptors, ADP principally influences these cells by interacting with the P2Y-purinoceptors.
Collapse
Affiliation(s)
- J R Purkiss
- Department of Pharmacology & Therapeutics, University of Leicester
| | | | | |
Collapse
|
21
|
Lee MW, Severson DL. Partial purification of a diacylglycerol lipase from bovine aorta. Biochem J 1994; 298 ( Pt 1):213-9. [PMID: 8129721 PMCID: PMC1138003 DOI: 10.1042/bj2980213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A diacylglycerol (DG) lipase has been purified from a soluble subcellular fraction of bovine aorta by (NH4)2SO4 precipitation in the presence of 5.0% (w/v) Triton X-100, followed by chromatography on DEAE-Sephacel, heparin-Sepharose and octyl-Sepharose in the presence of either CHAPS or Triton X-100 detergents. Under basal conditions, the hydrolysis of a short-chain [3H]dioctanoylglycerol ([3H]diC8) substrate was much greater than that of a long-chain 1-[1-14C]palmitoyl-2-oleoyl-sn-glycerol (1-[14C]POG) substrate. Lipase activity measured with 1-[14C]POG was markedly enhanced by Triton X-100. In the presence of 0.1% Triton X-100, specific enzyme activities in the octyl-Sepharose fraction determined with 1-[14C]POG or 1-stearoyl-2-[1-14C]-arachidonoyl-sn-glycerol as substrates were the same as that measured with [3H]diC8. MgCl2 (5mM) or CaCl2 (2 mM) also selectively stimulated lipase activity (up to 10-13-fold) measured with the long-chain (1-[14C]POG) substrate only. The increase in relative specific activity in the octyl-Sepharose fraction was 60-fold and 155-fold, based on hydrolysis of [3H]diC8 and 1-[14C]POG (+ Triton X-100), respectively. Unlabelled diC8 was a competitive inhibitor of 1-[14C]POG hydrolysis, suggesting that a single lipase hydrolyses both the short-chain and long-chain DG substrates; selective stimulatory effects of non-ionic detergents and bivalent cations on the hydrolysis of 1-[14C]POG may be due to effects on the physical properties of the substrate preparation. Monoacylglycerol lipase, DG kinase and cholesterol esterase activities could not be detected in the partially purified lipase preparation.
Collapse
Affiliation(s)
- M W Lee
- MRC Signal Transduction Group, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
22
|
DeLisle S, Radenberg T, Wintermantel MR, Tietz C, Parys JB, Pittet D, Welsh MJ, Mayr GW. Second messenger specificity of the inositol trisphosphate receptor: reappraisal based on novel inositol phosphates. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C429-36. [PMID: 8141257 DOI: 10.1152/ajpcell.1994.266.2.c429] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To further understand how the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] interacts with its intracellular receptor, we injected 47 highly purified inositol phosphate (InsP) positional isomers in Xenopus oocytes and compared their potency in releasing intracellular Ca2+. The potency of the Ca(2+)-releasing InsPs spanned four orders of magnitude. Seven compounds, including the novel inositol 1,2,4,5-tetrakisphosphate [D/L-Ins (1,2,4,5)P4] and D/L-Ins(1,4,6)P3, had a very high potency. All of these highly active InsPs shared the following structure: two D-trans-equatorial phosphates (eq-P) and one equatorial hydroxyl (eq-OH) attached to ring carbons D-4, D-5, and D-6 (or to the structurally equivalent D-1, D-6, and D-5 carbons). This permissive structure was not sufficient for Ca2+ release, because it was also found in two inactive compounds, Ins(1,6)P2 and Ins(1,3,6)P3. To be active, InsPs also required the structural equivalent of a D-3 eq-OH and/or a D-1 eq-P. Together, our data reveal how the structure of the InsP molecule affects its ability to release Ca2+.
Collapse
Affiliation(s)
- S DeLisle
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Balla T, Sim SS, Baukal AJ, Rhee SG, Catt KJ. Inositol polyphosphates are not increased by overexpression of Ins(1,4,5)P3 3-kinase but show cell-cycle dependent changes in growth factor-stimulated fibroblasts. Mol Biol Cell 1994; 5:17-27. [PMID: 8186462 PMCID: PMC301006 DOI: 10.1091/mbc.5.1.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
NIH 3T3 fibroblasts were stably transfected with rat brain inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) 3-kinase to explore the relationship between increased production of Ins(1,3,4,5)P4 and the formation of InsP5 and InsP6. Mass measurements of InsP5 and InsP6 revealed no significant difference between kinase- and vector-transfected fibroblasts. However, such 3-kinase-transfected cells, when labeled with [3H]inositol for 48-72 h, showed lower levels of [3H]InsP5 and [3H]InsP6, as well as [3H]Ins(1,3,4,6)P4 and D/L[3H]Ins(1,4,5,6)P4, than their vector-transfected counterparts. Because Ins(1,4,5)P3 3-kinase-transfected cells grew less rapidly than vector-transfected controls, we determined whether the synthesis of InsP5 and InsP6 was related to a specific phase of the cell cycle. When NIH 3T3 cells prelabeled with [3H]inositol were synchronized by serum deprivation followed by stimulation with platelet-derived growth factor (PDGF), the amounts of labeled InsP5 and InsP6 began to increase only after 12 h of stimulation, when cells entered the S-phase as indicated by increased [3H]thymidine incorporation. The enhanced synthesis of these inositol polyphosphates was preceded by an early increase in Ins(1,4,5)P3 and its metabolites that was no longer evident by the fifth hour of PDGF action. There was also a prominent and biphasic increase in the level of D/L-Ins(1,4,5,6)P4 with an early peak at approximately 3 h and a second rise that paralleled the increases in InsP5 and InsP6. These results indicate that the formation of highly phosphorylated inositols is not tightly coupled to the receptor-mediated formation of Ins(1,4,5)P3 and its metabolites but is mainly determined by other factors that operate at specific points of the cell cycle.
Collapse
Affiliation(s)
- T Balla
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
24
|
Wilcox RA, Whitham EM, Liu C, Potter BV, Nahorski SR. Myo-inositol 1,3,4,5-tetrakisphosphate can independently mobilise intracellular calcium, via the inositol 1,4,5-trisphosphate receptor: studies with myo-inositol 1,4,5-trisphosphate-3-phosphorothioate and myo-inositol hexakisphosphate. FEBS Lett 1993; 336:267-71. [PMID: 8262243 DOI: 10.1016/0014-5793(93)80817-e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] acts as a full agonist for Ca2+ release in saponin-permeabilised SH-SY5Y neuroblastoma cells. Studies were conducted in the presence of myo-inositol hexakisphosphate (InsP6, 10 microM), to inhibit the Ins(1,3,4,5)P(4)-3-phosphatase catalysed back conversion of Ins(1,3,4,5)P4 to Ins(1,4,5)P3. HPLC analysis confirmed that Ins(1,3,4,5)P4 releases the entire content of Ins(1,4,5)P3-sensitive intracellular Ca2+ stores, independent of 3-phosphatase activity. Further we utilised racemic myo-inositol 1,4,5-trisphosphate-3-phosphorothioate [DL-Ins(1,3,4,5)P(4)-3S], a novel intrinsically Ins(1,3,4,5)P(4)-3-phosphatase resistant Ins(1,3,4,5)P4 analogue. DL-Ins(1,3,4,5)P(4)-3S specifically displaced [3H]Ins(1,4,5)P3 from bovine adrenal cortex Ins(1,4,5)P3 binding sites (IC50 = 889 nM, compared to Ins(1,4,5)P3, IC50 = 4.4 nM and Ins(1,3,4,5)P4, IC50 = 152 nM). DL-Ins(1,3,4,5)P(4)-3S was a full agonist for Ca2+ release (EC50 = 4.7 microM), being 90- and 2-fold less potent than Ins(1,4,5)P3 and Ins(1,3,4,5)P4 (with InsP6), respectively. DL-Ins(1,3,4,5)P(4)-3S will be an important tool for identification of potentially exclusive Ins(1,3,4,5)P4 second messenger functions, since its resistance to 3-phosphatase action precludes the inconvenient artefact of steady state Ins(1,4,5)P3 generation.
Collapse
Affiliation(s)
- R A Wilcox
- Department of Cell Physiology and Pharmacology, University of Leicester, UK
| | | | | | | | | |
Collapse
|
25
|
Stephens L, Jackson TR, Hawkins PT. Activation of phosphatidylinositol 4,5-bisphosphate supply by agonists and non-hydrolysable GTP analogues. Biochem J 1993; 296 ( Pt 2):481-8. [PMID: 8257441 PMCID: PMC1137720 DOI: 10.1042/bj2960481] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PtdIns(4,5)P2 serves as a precursor of a diverse family of signalling molecules, including diacylglycerol (and hence phosphatidic acid), Ins(1,4,5)P3 [and hence Ins(1,3,4,5)P4] and PtdIns(3,4,5)P3. The production of these messengers can be activated by agonists, and therefore the rate of utilization of PtdIns(4,5)P2 can vary dramatically. Although cells can only meet these large changes in demand for PtdIns(4,5)P2 by increasing its synthesis and/or by continuously cycling it at a rate that exceeds its potential consumption (avoiding the need for a co-ordinated activation mechanism), no satisfactory explanation for how this is achieved in agonist-stimulated cells has yet been provided. We show here that, in streptolysin-O-permeabilized neutrophils, N-formylmethionyl-leucyl-phenylalanine (FMLP), platelet-activating factor (PAF) and non-hydrolysable GTP analogues can cause large activations of PtdIns4P 5-kinase, suggesting that cells can accommodate agonist-activated rates of consumption of PtdIns(4,5)P2 without having to sustain continuous, comparably rapid and energetically expensive 'futile cycling' reactions.
Collapse
Affiliation(s)
- L Stephens
- Department of Development and Signalling, AFRC Babraham Institute, Cambridge, U.K
| | | | | |
Collapse
|
26
|
Chuang M, Lee MW, Zhao D, Severson DL. Metabolism of a long-chain diacylglycerol by permeabilized A10 smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:C927-33. [PMID: 8238317 DOI: 10.1152/ajpcell.1993.265.4.c927] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regulatory effects of diacylglycerol (DAG) second messengers will be terminated by metabolism. A long-chain DAG, 1-palmitoyl-2-[1-14C]oleoyl-sn-glycerol (2-[14C]POG), was metabolized by cultured A10 smooth muscle cells after permeabilization by preincubation with 340 U/ml alpha-toxin from Staphylococcus aureus. In contrast to results with the cell-permeable DAG analogue, dioctanoyl-glycerol ([3H]diC8), no appreciable 2-[14C]POG degradation could be detected in control A10 cells not treated with alpha-toxin. With permeabilized A10 cells, 2-[14C]POG was mainly converted into lipolytic products of a lipase pathway, monoacylglycerol (MG) and fatty acid (FA); very little radioactivity was incorporated into triacylglycerol (TG) or phospholipid (PL) via reactions catalyzed by either DAG acyltransferase, cholinephosphotransferase, or DAG kinase. Similar results were obtained in experiments with 1-stearoyl-2-[1-14C]arachidonoyl-sn-glycerol. The conversion of 2-[14C]POG into PL and TG was not enhanced by the addition of 1 mM ATP-MgCl2, 1 mM CDP-choline, or 1 mM oleoyl-CoA to the alpha-toxin-treated A10 cells. The formation of FA and MG by permeabilized A10 cells was inhibited by DAG lipase inhibitors, U-57,908 (50 microM) and tetrahydrolipstatin (1-25 nM). The predominant contribution of the lipase pathway to the metabolism of a long-chain DAG, 2-[14C]POG, by alpha-toxin-treated A10 cells is similar to results for the degradation of [3H]diC8 by intact A10 cells.
Collapse
Affiliation(s)
- M Chuang
- Medical Research Council Signal Transduction Group, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
27
|
Pyne S, Pyne NJ. Differential effects of B2 receptor antagonists upon bradykinin-stimulated phospholipase C and D in guinea-pig cultured tracheal smooth muscle. Br J Pharmacol 1993; 110:477-81. [PMID: 8220910 PMCID: PMC2175983 DOI: 10.1111/j.1476-5381.1993.tb13835.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Guinea-pig tracheal smooth muscle cells were isolated and maintained in culture for 14-21 days prior to the study of the effect of a selective bradykinin B1 agonist and B2 antagonists upon bradykinin-stimulated phospholipase C and D activities. 2. Bradykinin-stimulated phospholipase C activity was determined by mass measurement of inositol (1,4,5)trisphosphate (Ins(1,4,5)P3) in unlabelled cells, whereas phospholipase D activity was assayed by the accumulation of [3H]-phosphatidylbutanol ([3H]-PtdBut) in [3H]-palmitate-labelled cells, which were stimulated in the presence of butan-1-o1 (0.3%, v/v). 3. Bradykinin elicited the rapid and transient formation of Ins(1,4,5)P3, in a concentration-dependent manner (log EC50 = -7.55 +/- 0.1 M, N = 3). Bradykinin also rapidly activated the concentration-dependent (log EC50 = -8.3 +/- 0.4 M, n = 3) phospholipase D-catalysed accumulation of [3H]-PtdBut; the accumulation of [3H]-PtdBut was sustained. These effects were not inhibited by pretreatment of the cells with indomethacin (1 microM). 4. The bradykinin B1 agonist, desArg9-bradykinin (1 microM) was without effect upon phospholipase C or phospholipase D activity. Bradykinin-stimulated (10 nM, EC40) Ins(1,4,5)P3 formation was inhibited by B2 receptor antagonists, D-Arg-[Hyp3,D-Phe7]-bradykinin (NPC 567) and D-Arg-[Hyp3,Thi5,8,D-Phe7]-bradykinin (NPC 349), with log IC50 values of -6.3 +/- 0.5 M and -6.3 +/- 0.4 M, respectively. However, bradykinin-stimulated (10 nM, EC100) [3H]-PtdBut accumulation was poorly inhibited and with low potency by each B2 receptor antagonist and bradykinin-stimulated phospholipase D activity persisted at concentrations of antagonist that completely blocked bradykinin-stimulated Ins(1,4,5)P3 formation (30 microM). 5. These observations suggest that the activation of phospholipase C by bradykinin may be mediated through a bradykinin B2 receptor population, whereas bradykinin-stimulated phospholipase D may be activated via a distinct population of bradykinin receptors that do not appear to be either B1 or B2 receptor types, based upon pharmacological specificity. The mechanism of the activation of phospholipase D by bradykinin and the role of the putative B3 bradykinin receptor are discussed.
Collapse
Affiliation(s)
- S Pyne
- Department of Physiology and Pharmacology, University of Strathclyde, Royal College, Glasgow
| | | |
Collapse
|
28
|
Morley P, Whitfield JF. The differentiation inducer, dimethyl sulfoxide, transiently increases the intracellular calcium ion concentration in various cell types. J Cell Physiol 1993; 156:219-25. [PMID: 8393876 DOI: 10.1002/jcp.1041560202] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dimethyl sulfoxide (DMSO) initiates a coordinated differentiation program in various cell types but the mechanism(s) by which DMSO does this is not understood. In this study, the effect of DMSO on intracellular calcium ion concentration ([Ca2+]i) was determined in primary cultures of chicken ovarian granulosa cells from the two largest preovulatory follicles of laying hens, and in three cell lines: undifferentiated P19 embryonal carcinoma cells, 3T3-L1 fibroblasts, and Friend murine erythroleukemia (MEL) cells. [Ca2+]i was measured in cells loaded with the Ca(2+)-specific fluoroprobe Fura-2. There was an immediate (i.e., within 5 sec), transient, two to sixfold increase in [Ca2+]i after exposing all cell types to 1% DMSO. DMSO was effective between 0.2 and 1%. The prompt DMSO-induced [Ca2+]i spike in all of the cell types was not prevented by incubating the cells in Ca(2+)-free medium containing 2 mM EGTA or by pretreating them with the Ca(2+)-channel blockers methoxyverapamil (D600; 100 microM), nifedipine (20 microM), or cobalt (5 mM). However, when granulosa cells, 3T3-L1 cells, or MEL cells were pretreated with lanthanum (La3+; 1 mM), which blocks both Ca2+ channels and membrane Ca2+ pumps, there was a sustained increase in [Ca2+]i in response to 1% DMSO. By contrast, pretreating P19 cells with La3+ (1 mM) did not prolong the DMSO-triggered [Ca2+]i transient. In all cases, the DMSO-induced [Ca2+]i surge was unaffected by pretreating the cells with the inhibitors of inositol phospholipid hydrolysis, neomycin (1.5 mM) or U-73, 122 (2.5 microM). These results suggest that DMSO almost instantaneously triggers the release of Ca2+ from intracellular stores through a common mechanism in cells in primary cultures and in cells of a variety of established lines, but this release is not mediated through phosphoinositide breakdown. This large, DMSO-induced Ca2+ spike may play a role in the induction of cell differentiation by DMSO.
Collapse
Affiliation(s)
- P Morley
- Cell Signals Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario
| | | |
Collapse
|
29
|
Abstract
The role of protein kinase C in insulin signal transduction is controversial. It has been postulated that protein kinase C is activated by insulin and that the kinase is directly involved in insulin-mediated metabolic processes. In opposition to this view is the hypothesis that protein kinase C is not activated by insulin and, more importantly, may be responsible for attenuation of the insulin signal. The evidence for and against protein kinase C as a mediator of the insulin signal will be put in perspective followed by discussion of the possible role of the kinase in the pathogenesis of insulin resistance in type II diabetes.
Collapse
Affiliation(s)
- R V Considine
- Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | |
Collapse
|
30
|
Rajendran S, Prakash V. Kinetics and thermodynamics of the mechanism of interaction of sodium phytate with alpha-globulin. Biochemistry 1993; 32:3474-8. [PMID: 7681690 DOI: 10.1021/bi00064a035] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The precipitation mechanism of alpha-globulin in the presence of myo-inositol hexaphosphate (sodium phytate) was studied in detail. The maximum interaction was found at pH 2.3 where the protein was in a dissociated state having an 8.3S aggregate and a 1.5S monomer. This interaction was predominantly dependent upon the sodium phytate to protein ratio. Velocity sedimentation studies indicated polymer formation due to preferential progressive binding of ligand to polymer, whose size and concentration increased with an increase in sodium phytate concentration. The polymer formation was shown to be ligand mediated and exists independently in solution along with the monomer. The binding isotherm by equilibrium dialysis confirmed differential binding of sodium phytate to the polymer and the monomer as indicated by two sets of binding sites, one having 7 +/- 2 sites of a K value 1.3 x 10(-4) mol-1 and the other having 56 +/- 3 sites with a K value of 2.8 x 10(-3) mol-1. Binding resulted in perturbation of chromophores of protein due to charge effects. The kinetics of the polymer formation was shown to be a pseudo-first-order reaction having two steps. The initial fast reaction involving conformational changes has rate constants of k1 = 52.4 x 10(-3) s-1 and k' = 67.5 x 10(-3) s-1, followed by a slow reaction step of rate constants k2 = 4.3 x 10(-3) s-1 and k'2 = 2.9 x 10(-3) s-1 at sodium phytate concentrations of 1 x 10(-4) M and 5 x 10(-4) M, respectively.
Collapse
Affiliation(s)
- S Rajendran
- Biophysical Chemistry Unit, Central Food Technological Research Institute, Mysore, India
| | | |
Collapse
|
31
|
Measurement of Inositol 1,4,5-Trisphosphate, Inositol 1,3,4,5-Tetrakisphosphate, and Phosphatidylinositol 4,5-Bisphosphate in Brain. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/b978-0-12-185285-6.50027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Oliver K, Buller R, Hughes P, Putney J, Palumbo G. Inhibition of agonist-induced activation of phospholipase C following poxvirus infection. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Boarder MR, Challiss RA. Role of protein kinase C in the regulation of histamine and bradykinin stimulated inositol polyphosphate turnover in adrenal chromaffin cells. Br J Pharmacol 1992; 107:1140-5. [PMID: 1467836 PMCID: PMC1907951 DOI: 10.1111/j.1476-5381.1992.tb13420.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. The possibility that bradykinin- or histamine-stimulated inositol polyphosphate accumulation may be regulated by protein kinase C (PKC) in bovine adrenal chromaffin cells has been addressed. 2. Initial experiments confirmed that the phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) dramatically inhibited agonist-stimulated [3H]-inositol phosphate accumulations in [3H]-inositol prelabelled cells. In contrast, the PKC inhibitor, Ro 31-8220, did not affect this response. 3. Histamine (100 microM) or bradykinin (100 nM) evoked rapid increases in inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) mass accumulations (maximal accumulations within 10 s and 30 s, respectively) which declined towards basal values over a 10 min incubation period. TPA (1 microM) significantly attenuated the peak Ins(1,4,5)P3 response to bradykinin and histamine by 30% and 70% respectively. In contrast, TPA did not significantly affect agonist-stimulated Ins(1,3,4,5)P4 responses. 4. Ro 31-8220 (10 microM) significantly enhanced the maximal Ins(1,4,5)P3 accumulations elicited by both bradykinin and histamine. 5. The results indicate that the initial Ins(1,4,5)P3 response to either bradykinin or histamine in bovine adrenal chromaffin cells can be attenuated by PKC activation by phorbol ester and enhanced by PKC inhibition by Ro 31-8220. In contrast, agonist-stimulated Ins(1,3,4,5)P4 accumulation does not appear to be affected by these manipulations of PKC activity. Possible bases for differential modulation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 are discussed.
Collapse
Affiliation(s)
- M R Boarder
- Department of Pharmacology and Therapeutics, University of Leicester
| | | |
Collapse
|
34
|
Jenkinson S, Challiss RA, Nahorski SR. Evidence for lithium-sensitive inositol 4,5-bisphosphate accumulation in muscarinic cholinoceptor-stimulated cerebral-cortex slices. Biochem J 1992; 287 ( Pt 2):437-42. [PMID: 1445202 PMCID: PMC1133184 DOI: 10.1042/bj2870437] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stimulation of [3H]inositol-prelabelled rat cerebral-cortex slices with carbachol results in the accumulation of four [3H]inositol bisphosphate isomeric species, Ins(1,3)P2, Ins(1,4)P2, Ins(3,4)P2 and Ins(4,5)P2. Although the last isomer ran as a minor peak on h.p.l.c., its accumulation was dramatically enhanced in the presence of Li+ (1 mM), such that at 30 min it represented almost 35% of the total bisphosphate fraction. The accumulation of Ins(4,5)P2 appeared to be very sensitive to Li+ (EC50 = 94 +/- 3 microM), strongly implicating a Li(+)-sensitive metabolism. Evidence for this is provided from the rapid but Li(+)-sensitive decay of Ins(4,5)P2 when muscarinic-receptor stimulation is antagonized by atropine at a time when accumulations have reached a new steady state. Manipulation of phospholipase D by activators and inhibitors of protein kinase C did not suggest a role for phospholipase D hydrolysis of PtdInsP2 in the formation of Ins(4,5)P2. Attempts to reveal Ins(4,5)P2 metabolism, or indeed its synthesis from Ins(1,4,5)P3, were not successful with broken cell preparations and strongly suggest discrete compartmentation of inositol phosphate metabolism in the intact cell.
Collapse
Affiliation(s)
- S Jenkinson
- Department of Pharmacology and Therapeutics, University of Leicester, U.K
| | | | | |
Collapse
|
35
|
Marecek JF, Estevez VA, Prestwich GD. New tetherable derivatives of myo-inositol 2,4,5- and 1,3,4-trisphosphates. Carbohydr Res 1992; 234:65-73. [PMID: 1468081 DOI: 10.1016/0008-6215(92)85039-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
(+/-)-myo-Inositol 1-(3-aminopropyl hydrogen phosphate) 3,4-bis(disodium phosphate) (5) and (+/-)-myo-inositol 2-(3-aminopropyl hydrogen phosphate) 4,5-bis(disodium phosphate) (11) have been synthesized by conventional procedures. Each derivative has been immobilized on a polymeric resin in order to give a bioaffinity matrix.
Collapse
Affiliation(s)
- J F Marecek
- Department of Chemistry, State University of New York, Stony Brook 11794-3400
| | | | | |
Collapse
|
36
|
McConnell FM, Stephens LR, Shears SB. Multiple isomers of inositol pentakisphosphate in Epstein-Barr-virus- transformed (T5-1) B-lymphocytes. Identification of inositol 1,3,4,5,6-pentakisphosphate, D-inositol 1,2,4,5,6-pentakisphosphate and L-inositol 1,2,4,5,6-pentakisphosphate. Biochem J 1991; 280 ( Pt 2):323-9. [PMID: 1660712 PMCID: PMC1130549 DOI: 10.1042/bj2800323] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Substantial amounts of three [3H]InsP5 isomers were detected in [3H]inositol-labelled human lymphoblastoid (T5-1) cells. Their structures were determined by h.p.l.c. [Phillippy & Bland (1988) Anal. Biochem. 175, 162-166], and by utilizing a stereospecific D-inositol 1,2,4,5,6-pentakisphosphate 3-kinase from Dictyostelium discoideum [Stephens & Irvine (1990) Nature (London) 346, 580-583]. The structures were: inositol 1,3,4,5,6-pentakisphosphate, D-inositol 1,2,4,5,6-pentakisphosphate and L-inositol 1,2,4,5,6-pentakisphosphate. The relative proportions of these isomers (approx. 73:14:14 respectively) were unaffected by cross-linking anti-IgD receptors. The T5-1 cells also contained InsP6 and three Ins P4s, which were identified as the 1,3,4,5, 1,3,4,6 and 3,4,5,6 isomers. In incubations with permeabilized T5-1 cells, both 1,3,4,6 and 3,4,5,6 isomers of InsP4 were phosphorylated solely to Ins(1,3,4,5,6)P5. Permeabilized cells also dephosphorylated InsP6, even in the presence of a large excess of glucose 6-phosphate to saturate non-specific phosphatases. In the latter experiments the following isomers of InsP5 accumulated: D- and/or L-Ins(1,2,3,4,5)P5, plus D- and/or L-Ins(1,2,4,5,6)P5. This demonstration that multiple isomers of InsP5 may be formed in vivo and in vitro by a transformed lymphocyte cell line adds a new level of complexity to the study of inositol polyphosphate metabolism and function.
Collapse
Affiliation(s)
- F M McConnell
- Regional Primate Research Center, University of Washington, Seattle 98195
| | | | | |
Collapse
|
37
|
Abstract
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is a soluble intracellular messenger formed rapidly after activation of a variety of cell-surface receptors that stimulate phosphoinositidase C activity. The initial response to Ins(1,4,5)P3 is a rapid Ca2+ efflux from nonmitochondrial intracellular stores which are probably specialized subcompartments of the endoplasmic reticulum, although their exact identities remain unknown. This initial response is followed by more complex Ca2+ signals: regenerative Ca2+ waves propagate across the cell, repetitive Ca2+ spikes occur, and stimulated Ca2+ entry across the plasma membrane contributes to the sustained Ca2+ signal. The mechanisms underlying these complex Ca2+ signals are unknown, although Ins(1,4,5)P3 is clearly involved. The intracellular receptor that mediates Ins(1,4,5)P3-stimulated Ca2+ mobilization has been purified and functionally reconstituted, and its amino acid sequence deduced from its cDNA sequence. These studies demonstrate that the Ins(1,4,5)P3 receptor has an integral Ca2+ channel separated from the Ins(1,4,5)P3 binding site by a long stretch of residues some of which form binding sites for allosteric regulators, and some of which are substrates for phosphorylation. In this review, we discuss the ligand recognition characteristics of Ins(1,4,5)P3 receptors, and their functional properties in their native environment and after purification, and we relate these properties to what is known of the structure of the receptor. In addition to regulation by Ins(1,4,5)P3, the Ins(1,4,5)P3 receptor is subject to many additional regulatory influences which include Ca2+, adenine nucleotides, pH and phosphorylation by protein kinases. Many of the functional and structural characteristics of the Ins(1,4,5)P3 receptor show striking similarities to another intracellular Ca2+ channel, the ryanodine receptor. These properties of the Ins(1,4,5)P3 are discussed, and their possible roles in contributing to the complex Ca2+ signals evoked by extracellular stimuli are considered.
Collapse
Affiliation(s)
- C W Taylor
- Department of Pharmacology, Cambridge, U.K
| | | |
Collapse
|