1
|
Spontaneous changes in brain striatal dopamine synthesis and storage dynamics ex vivo reveal end-product feedback-inhibition of tyrosine hydroxylase. Neuropharmacology 2022; 212:109058. [DOI: 10.1016/j.neuropharm.2022.109058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
|
2
|
Kleppe R, Waheed Q, Ruoff P. DOPA Homeostasis by Dopamine: A Control-Theoretic View. Int J Mol Sci 2021; 22:12862. [PMID: 34884667 PMCID: PMC8657751 DOI: 10.3390/ijms222312862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Dopamine (DA) is an important signal mediator in the brain as well as in the periphery. The term "dopamine homeostasis" occasionally found in the literature refers to the fact that abnormal DA levels can be associated with a variety of neuropsychiatric disorders. An analysis of the negative feedback inhibition of tyrosine hydroxylase (TH) by DA indicates, with support from the experimental data, that the TH-DA negative feedback loop has developed to exhibit 3,4-dihydroxyphenylalanine (DOPA) homeostasis by using DA as a derepression regulator. DA levels generally decline when DOPA is removed, for example, by increased oxidative stress. Robust DOPA regulation by DA further implies that maximum vesicular DA levels are established, which appear necessary for a reliable translation of neural activity into a corresponding chemical transmitter signal. An uncontrolled continuous rise (windup) in DA occurs when Levodopa treatment exceeds a critical dose. Increased oxidative stress leads to the successive breakdown of DOPA homeostasis and to a corresponding reduction in DA levels. To keep DOPA regulation robust, the vesicular DA loading requires close to zero-order kinetics combined with a sufficiently high compensatory flux provided by TH. The protection of DOPA and DA due to a channeling complex is discussed.
Collapse
Affiliation(s)
- Rune Kleppe
- Norwegian Center for Maritime and Diving Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Qaiser Waheed
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway;
| | - Peter Ruoff
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway;
| |
Collapse
|
3
|
Personalized Medicine to Improve Treatment of Dopa-Responsive Dystonia-A Focus on Tyrosine Hydroxylase Deficiency. J Pers Med 2021; 11:jpm11111186. [PMID: 34834538 PMCID: PMC8625014 DOI: 10.3390/jpm11111186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Dopa-responsive dystonia (DRD) is a rare movement disorder associated with defective dopamine synthesis. This impairment may be due to the fact of a deficiency in GTP cyclohydrolase I (GTPCHI, GCH1 gene), sepiapterin reductase (SR), tyrosine hydroxylase (TH), or 6-pyruvoyl tetrahydrobiopterin synthase (PTPS) enzyme functions. Mutations in GCH1 are most frequent, whereas fewer cases have been reported for individual SR-, PTP synthase-, and TH deficiencies. Although termed DRD, a subset of patients responds poorly to L-DOPA. As this is regularly observed in severe cases of TH deficiency (THD), there is an urgent demand for more adequate or personalized treatment options. TH is a key enzyme that catalyzes the rate-limiting step in catecholamine biosynthesis, and THD patients often present with complex and variable phenotypes, which results in frequent misdiagnosis and lack of appropriate treatment. In this expert opinion review, we focus on THD pathophysiology and ongoing efforts to develop novel therapeutics for this rare disorder. We also describe how different modeling approaches can be used to improve genotype to phenotype predictions and to develop in silico testing of treatment strategies. We further discuss the current status of mathematical modeling of catecholamine synthesis and how such models can be used together with biochemical data to improve treatment of DRD patients.
Collapse
|
4
|
Low-cost, thin-film, mass-manufacturable carbon electrodes for detection of the neurotransmitter dopamine. Bioelectrochemistry 2020; 133:107480. [PMID: 32045862 DOI: 10.1016/j.bioelechem.2020.107480] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
A flexible, thin-film carbon electrode is reported for detection of the key neurotransmitter dopamine using standard electroanalytical techniques of cyclic voltammetry, differential pulse voltammetry and square wave voltammetry. The thin-film electrode has been explored as a possible low-cost solution to detect low concentrations of dopamine and its performance has been compared with a commercially available screen printed carbon electrode. It was found that the thin-film electrode is more sensitive than the screen printed electrode, and can faithfully detect dopamine between 50 pM and 1 mM concentrations. The electrode provides a limit of detection of ~50 pM, displays good selectivity between dopamine and ascorbic acid, and is able to show a level of differentiation between the two compounds in terms of peak currents as well as oxidative potentials at physiologically relevant concentrations. This is in contrast to the screen printed electrode which is unable to discriminate between dopamine and ascorbic acid at the same concentrations. The key advantages of the presented electrode system are its low-cost, flexible substrate, and the ability to achieve very low levels of dopamine detection without requiring any electrode surface modification steps, a key factor in reducing fabrication costs and overall device complexity.
Collapse
|
5
|
Abstract
The mass transport or flux of neurochemicals in the brain and how this flux affects chemical measurements and their interpretation is reviewed. For all endogenous neurochemicals found in the brain, the flux of each of these neurochemicals exists between sources that produce them and the sites that consume them all within μm distances. Principles of convective-diffusion are reviewed with a significant emphasis on the tortuous paths and discrete point sources and sinks. The fundamentals of the primary methods of detection, microelectrodes and microdialysis sampling of brain neurochemicals are included in the review. Special attention is paid to the change in the natural flux of the neurochemicals caused by implantation and consumption at microelectrodes and uptake by microdialysis. The detection of oxygen, nitric oxide, glucose, lactate, and glutamate, and catecholamines by both methods are examined and where possible the two techniques (electrochemical vs. microdialysis) are compared. Non-invasive imaging methods: magnetic resonance, isotopic fluorine MRI, electron paramagnetic resonance, and positron emission tomography are also used for different measurements of the above-mentioned solutes and these are briefly reviewed. Although more sophisticated, the imaging techniques are unable to track neurochemical flux on short time scales, and lack spatial resolution. Where possible, determinations of flux using imaging are compared to the more classical techniques of microdialysis and microelectrodes.
Collapse
Affiliation(s)
- David W Paul
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
6
|
Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data. Brain Res 2014; 1599:67-84. [PMID: 25527399 DOI: 10.1016/j.brainres.2014.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 11/22/2022]
Abstract
Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology.
Collapse
|
7
|
Saller S, Kunz L, Berg D, Berg U, Lara H, Urra J, Hecht S, Pavlik R, Thaler CJ, Mayerhofer A. Dopamine in human follicular fluid is associated with cellular uptake and metabolism-dependent generation of reactive oxygen species in granulosa cells: implications for physiology and pathology. Hum Reprod 2013; 29:555-67. [PMID: 24287819 DOI: 10.1093/humrep/det422] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Is the neurotransmitter dopamine (DA) in the human ovary involved in the generation of reactive oxygen species (ROS)? SUMMARY ANSWER Human ovarian follicular fluid contains DA, which causes the generation of ROS in cultured human granulosa cells (GCs), and alterations of DA levels in follicular fluid and DA uptake/metabolism in GCs in patients with polycystic ovary syndrome (PCOS) are linked to increased levels of ROS. WHAT IS KNOWN ALREADY DA is an important neurotransmitter in the brain, and the metabolism of DA results in the generation of ROS. DA was detected in human ovarian homogenates, but whether it is present in follicular fluid and plays a role in the follicle is not known. STUDY DESIGN, SIZE AND DURATION We used human follicular fluid from patients undergoing in vitro fertilization (IVF), GCs from patients with or without PCOS and also employed mathematical modeling to investigate the presence of DA and its effects on ROS. PARTICIPANTS/MATERIALS, SETTING AND METHODS DA in follicular fluid and GCs was determined by enzyme-linked immunosorbent assay. GC viability, apoptosis and generation of ROS were monitored in GCs upon addition of DA. Inhibitors of DA uptake and metabolism, an antioxidant and DA receptor agonists, were used to study cellular uptake and the mechanism of DA-induced ROS generation. Human GCs were examined for the presence and abundance of transcripts of the DA transporter (DAT; SLC6A3), the DA-metabolizing enzymes monoamine oxidases A/B (MAO-A/B) and catechol-O-methyltransferase and the vesicular monoamine transporter. A computational model was developed to describe and predict DA-induced ROS generation in human GCs. MAIN RESULTS AND ROLE OF CHANCE We found DA in follicular fluid of ovulatory follicles of the human ovary and in GCs. DAT and MAO-A/B, which are expressed by GCs, are prerequisites for a DA receptor-independent generation of ROS in GCs. Blockers of DAT and MAO-A/B, as well as an antioxidant, prevented the generation of ROS (P < 0.05). Agonists of DA receptors (D1 and D2) did not induce ROS. DA, in the concentration range found in follicular fluid, did not induce apoptosis of cultured GCs. Computational modeling suggested, however, that ROS levels in GCs depend on the concentrations of DA and on the cellular uptake and metabolism. In PCOS-derived follicular fluid, the levels of DA were higher (P < 0.05) in GCs, the transcript levels of DAT and MAO-A/B in GCs were 2-fold higher (P < 0.05) and the DA-induced ROS levels were found to be more than 4-fold increased (P < 0.05) compared with non-PCOS cells. Furthermore, DA at a high concentration induced apoptosis in PCOS-derived GCs. LIMITATIONS, REASONS FOR CAUTION While the results in IVF-derived follicular fluid and in GCs reveal for the first time the presence of DA in the human follicular compartment, functions of DA could only be studied in IVF-derived GCs, which can be viewed as a cellular model for the periovulatory follicular phase. The full functional importance of DA-induced ROS in small follicles and other compartments of the ovary, especially in PCOS samples, remains to be shown. WIDER IMPLICATIONS OF THE FINDINGS The results identify DA as a factor in the human ovary, which, via ROS generation, could play a role in ovarian physiology and pathology. The results obtained in samples from women with PCOS suggest the involvement of DA, acting via ROS, in this condition. STUDY FUNDING/COMPETING INTERESTS This work was supported by a grant from DFG MA1080/17-3 and in part MA1080/19-1. There are no competing interests.
Collapse
Affiliation(s)
- S Saller
- Anatomy III-Cell Biology, Ludwig Maximilian University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wallace LJ. Effects of amphetamine on subcellular distribution of dopamine and DOPAC. Synapse 2012; 66:592-607. [PMID: 22314940 DOI: 10.1002/syn.21546] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/03/2012] [Indexed: 02/02/2023]
Abstract
Amphetamine effects on distribution of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and amphetamine in vesicular, cytosolic, and extracellular compartments associated with a striatal varicosity were estimated through use of a computer simulation model. In addition, contribution to overall effects of amphetamine by each of five actions--transport by dopamine transporter (DAT), transport by vesicular monoamine transporter, stimulation of reverse transport, inhibition of monoamine oxidase (MAO), and slowing of dopamine cell firing rate--were evaluated. Amphetamine enters a varicosity almost entirely by DAT and accumulates to very high levels within the varicosity. Both reverse transport by DAT and passive diffusion contribute to continual amphetamine egress across the plasma membrane. Amphetamine enters storage vesicles by both transport and diffusion. The transport portion competes with dopamine storage, resulting in redistribution of approximately half of dopamine from vesicles to cytosol. The high concentration of amphetamine in the cytosol inhibits MAO, protecting cytosolic dopamine. A very small fraction of cytosolic dopamine is moved to extracellular compartment via reverse transport by DAT. The amount of dopamine moved by reverse transport is limited because of competition by very high cytosolic levels of amphetamine. In the presence of amphetamine, rate of dopamine transfer to extracellular compartment is less than control; however, high levels of extracellular dopamine are maintained because amphetamine occupies the DAT, thus limiting dopamine reuptake. Simulation output from a model using exchange-diffusion mechanism of reverse transport does not match all published data that were simulated, suggesting that inward transport of a substrate is not required to initiate reverse transport.
Collapse
Affiliation(s)
- Lane J Wallace
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
9
|
Best J, Nijhout HF, Reed M. Serotonin synthesis, release and reuptake in terminals: a mathematical model. Theor Biol Med Model 2010; 7:34. [PMID: 20723248 PMCID: PMC2942809 DOI: 10.1186/1742-4682-7-34] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/19/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. METHODS We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. RESULTS We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine. CONCLUSIONS Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.
Collapse
Affiliation(s)
- Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH 43210 USA
| | | | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC 27708 USA
| |
Collapse
|
10
|
Best JA, Nijhout HF, Reed MC. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model. Theor Biol Med Model 2009; 6:21. [PMID: 19740446 PMCID: PMC2755466 DOI: 10.1186/1742-4682-6-21] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 09/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine 1. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. METHODS We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. RESULTS We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed half-lives of extracellular dopamine under various treatment protocols. CONCLUSION Dopaminergic systems must respond robustly to important biological signals such as bursts, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of tyrosine hydroxylase, the dopamine transporters, and the dopamine autoreceptors.
Collapse
Affiliation(s)
- Janet A Best
- Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Verheij MMM, Cools AR. Mesolimbic alpha-, but not beta-adrenoceptors control the accumbal release of dopamine that is derived from reserpine-sensitive storage vesicles. Neuroscience 2009; 162:1163-73. [PMID: 19464350 DOI: 10.1016/j.neuroscience.2009.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 05/16/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
Abstract
Mesolimbic beta-, but not alpha-adrenoceptors control the accumbal release of dopamine that is derived from alpha-methyl-para-tyrosine-sensitive pools of newly synthesized neurotransmitter. The aim of this study was to investigate which of these adrenoceptors control the accumbal release of dopamine that is derived from reserpine-sensitive pools of previously stored neurotransmitter. Rats, that were divided in low-responders and high-responders to novelty, were pretreated with 1 mg/kg of reserpine before the alpha-adrenergic-agent phentolamine or the beta-adrenergic-agent isoproterenol was locally applied into the nucleus accumbens. The original finding that phentolamine and isoproterenol increased accumbal dopamine levels in low-responders and high-responders was replicated. Reserpine reduced the phentolamine-induced increase of accumbal dopamine in both types of rat. However, phentolamine could still increase accumbal dopamine levels in reserpine-treated high-responders, but not anymore in reserpine-treated low-responders. Reserpine did not reduce the isoproterenol-induced increase of accumbal dopamine in any type of rat. This study demonstrates that mesolimbic alpha-, but not beta-adrenoceptors control the accumbal release of dopamine that is derived from reserpine-sensitive storage vesicles. In addition, these data confirm our previous finding that dopamine can still be released from storage vesicles of reserpinized high-responders, but not of reserpinized low-responders. The collected data underline our notion that alpha- and beta-adrenergic drugs may have therapeutic effects in patients suffering from diseases in which accumbal dopamine is involved.
Collapse
Affiliation(s)
- M M M Verheij
- Radboud University Nijmegen Medical Center, Department of Cognitive Neuroscience, Division of Psychoneuropharmacology, 6525 EZ, Nijmegen, The Netherlands.
| | | |
Collapse
|
12
|
Robinson DL, Hermans A, Seipel AT, Wightman RM. Monitoring rapid chemical communication in the brain. Chem Rev 2008; 108:2554-84. [PMID: 18576692 PMCID: PMC3110685 DOI: 10.1021/cr068081q] [Citation(s) in RCA: 460] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Donita L Robinson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
13
|
Qi Z, Miller GW, Voit EO. Computational systems analysis of dopamine metabolism. PLoS One 2008; 3:e2444. [PMID: 18568086 PMCID: PMC2435046 DOI: 10.1371/journal.pone.0002444] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/29/2008] [Indexed: 11/18/2022] Open
Abstract
A prominent feature of Parkinson's disease (PD) is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease.
Collapse
Affiliation(s)
- Zhen Qi
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, Georgia, United States of America
- Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gary W. Miller
- Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Verheij MMM, Cools AR. Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges. Eur J Pharmacol 2008; 585:228-44. [PMID: 18423601 DOI: 10.1016/j.ejphar.2008.02.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/07/2008] [Accepted: 02/13/2008] [Indexed: 11/30/2022]
Abstract
Individual differences in the dopaminergic system of the nucleus accumbens of rats have extensively been reported. These individual differences have frequently been used to explain individual differences in response to environmental and pharmacological challenges. Remarkably, only little attention is paid to the factors that underlie these individual differences. This review gives an overview of the studies that have been performed in our institute during the last 20 years to investigate individual differences in accumbal dopamine release. Data are summarised demonstrating that individual differences in accumbal dopamine release are due to individual differences in: the functional reactivity of the noradrenergic system, the accumbal concentration of vesicular monoamine transporters and tyrosine hydroxylase as well as in the quantal size of the presynaptic pools of dopamine. Our data are embedded in the available literature to create a model that illustrates the putative hardware giving rise to the individual-specific release of accumbal dopamine. An important role is contributed to individual differences in the reactivity of the: hypothalamic-pituitary-adrenal axes, the reactivity of second messenger systems as well in the aminergic reactivity of the accumbens shell and core. The consequences of the individual-specific make-up and reactivity of the nucleus accumbens on the regulation of behaviour and the response to drugs of abuse will also be discussed. Apart from agents that interact with dopaminergic receptors, re-uptake or breakdown, noradrenergic agents as well as agents that interact with vesicular monoamine transporters or tyrosine hydroxylase are suggested to have therapeutic effects in subjects that are suffering from diseases in which the dopaminergic system is disturbed.
Collapse
Affiliation(s)
- Michel M M Verheij
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University Nijmegen Medical Centre, 6525 EZ, Nijmegen, The Netherlands.
| | | |
Collapse
|
15
|
Kaushik P, Gorin F, Vali S. Dynamics of tyrosine hydroxylase mediated regulation of dopamine synthesis. J Comput Neurosci 2007; 22:147-60. [PMID: 17053993 DOI: 10.1007/s10827-006-0004-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 08/02/2006] [Accepted: 08/02/2006] [Indexed: 02/02/2023]
Abstract
Tyrosine hydroxylase's catalysis of tyrosine to dihydroxyphenylalanine (DOPA) is the highly regulated, rate-limiting step catalyzing the synthesis of the catecholamine neurotransmitter dopamine. Phosphorylation, cofactor-mediated regulation, and the cell's redox status, have been shown to regulate the enzyme's activity. This paper incorporates these regulatory mechanisms into an integrated dynamic model that is capable of demonstrating relative rates of dopamine synthesis under various physiological conditions. Most of the kinetic equations and substrate parameters used in the model correspond with published experimental data, while a few which were not available in literature have been optimized based on explicit assumptions. This kinetic pathway model permits a comparison of the relative regulatory contributions made by variations in substrate, phosphorylation, and redox status on enzymatic activity and permits predictions of potential disease states. For example, the model correctly predicts the recent observation that individuals with haemochromatosis and having excessive iron accumulation are at increased risk for acquiring Parkinsonism, a defect in neuronal dopamine synthesis (Bartzokis et al., 2004; Costello et al., 2004). Alpha synuclein mediated regulation of tyrosine hydroxylase has also been incorporated in the model, allowing an insight into the overexpression and aggregation of alpha synuclein in Parkinson's disease.
Collapse
Affiliation(s)
- Poorvi Kaushik
- Cellworks Group Inc., 13962 Pierce Road, Saratoga, CA 95070, USA
| | | | | |
Collapse
|
16
|
Tuckwell HC. On reaction dynamics at dopamine synapses. Int J Neurosci 2007; 117:667-79. [PMID: 17464784 DOI: 10.1080/00207450600773905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Dopamine neurons play a key role in normal and pathological cognitive processes as well as in the effects of certain drugs of addiction. Models of the synapses of such neurons include transporter mechanisms and reaction dynamics. This article focuses attention on the fundamental reaction that converts tyrosine to DOPA, which involves a cofactor. The Michaelis-Menten formula for the rate of an enzymatic reaction is modified by the presence of cofactors, which may be either essential or nonessential. In the essential case, the reaction rate is found to depend on the relative magnitudes of the concentrations of the primary enzyme and the cofactor. The case of a nonessential cofactor is more complex and it is shown for the first time how this leads to reaction rate formulas that depend explicitly on the concentrations of the enzyme and cofactor. The extended Michaelis-Menten formulas are applied to the aforementioned reaction with tyrosine hydroxylase as enzyme and biopterin as cofactor. The results are useful in constructing accurate models of dopamine synapses.
Collapse
Affiliation(s)
- Henry C Tuckwell
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
| |
Collapse
|
17
|
Verheij MMM, Cools AR. Differential contribution of storage pools to the extracellular amount of accumbal dopamine in high and low responders to novelty: effects of reserpine. J Neurochem 2007; 100:810-21. [PMID: 17144901 DOI: 10.1111/j.1471-4159.2006.04259.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study examined the effects of reserpine on the extracellular concentration of accumbal dopamine in high responders (HR) and low responders (LR) to novelty rats. Reserpine reduced the baseline concentration of extracellular accumbal dopamine more in HR than in LR, indicating that the dopamine release is more dependent on reserpine-sensitive storage vesicles in non-challenged HR than in non-challenged LR. In addition, reserpine reduced the novelty-induced increase of the extracellular concentration of accumbal dopamine in LR, but not in HR, indicating that the dopamine release in response to novelty depends on reserpine-sensitive storage vesicles only in LR, not in HR. Our data clearly demonstrate that HR and LR differ in the characteristics of those monoaminergic storage vesicles that mediate accumbal dopamine release.
Collapse
Affiliation(s)
- M M M Verheij
- Department of Psychoneuropharmacology, Nijmegen Institute for Neurosciences, Faculty of Medicine, Radboud University of Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|
18
|
Meissner W, Ravenscroft P, Reese R, Harnack D, Morgenstern R, Kupsch A, Klitgaard H, Bioulac B, Gross CE, Bezard E, Boraud T. Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracelullar striatal dopamine. Neurobiol Dis 2006; 22:586-98. [PMID: 16531050 DOI: 10.1016/j.nbd.2006.01.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/03/2006] [Accepted: 01/05/2006] [Indexed: 10/24/2022] Open
Abstract
Since electrophysiological correlates of L-dopa-induced dyskinesia (LID) are almost unknown, changes of striatal dopamine (DA) transmission and electrophysiological activity of the substantia nigra pars reticulata (SNr) were recorded before and after acute L-dopa administration in sham-operated and 6-hydroxydopamine (6-OHDA)-lesioned rats that were previously treated with vehicle or L-dopa for 10 days. Abnormal involuntary movements occurred only in the L-dopa-primed 6-OHDA-lesioned rats that showed after acute l-dopa administration a decrease in firing rate, the highest local field potential power in the theta/alpha band, a consequent oscillatory activity in the same frequency band at the single neuron level and an excessive increase in striatal DA release associated with the lowest level of DA metabolism. These results suggest that increased synchronised afferent activity may drive SNr oscillations in the same frequency band and is associated with abnormal involuntary movements, further suggesting the potential use of desynchronising drugs for managing LID in Parkinson's disease.
Collapse
Affiliation(s)
- Wassilios Meissner
- Laboratoire de Physiologie et Physiopathologie de la Signalisation Cellulaire, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Reed B, Chen N, Justice JB. Dual-electrode voltammetry of catecholamine transport: simultaneous monitoring of uptake and efflux. J Neurosci Methods 2003; 126:127-35. [PMID: 12814837 DOI: 10.1016/s0165-0270(03)00073-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dual-electrode voltammetry is used to characterize induced efflux of dopamine by m-tyramine via the norepinephrine transporter, stably expressed in a LLC-PK(1) cell line. A rotating disk electrode measures solely the dopamine oxidation current, while a stationary electrode held at a higher potential measures both the dopamine and m-tyramine concentrations. The ratio of the rate of dopamine efflux to the rate of m-tyramine uptake exhibits a hyperbolic dependence on initial dopamine concentration (half-maximal initial concentration of 4 microM) and is independent of the concentration of m-tyramine used to induce efflux for the two concentrations of tyramine tested (3 and 10 microM). These results are consistent with the alternating access model of transport, in which the ratio is shown to be independent of the nature of the external substrate used to induce efflux. At a representative initial dopamine concentration of 1 microM, the ratio of efflux to uptake is approximately 0.15 at the time of external substrate addition (zero internal tyramine). The result suggests that at this point, the transporter reorients to the external facing configuration without dopamine approximately 85% of the time, or expressed differently, seven external substrate molecules are taken up, on average, for each one transported outward.
Collapse
Affiliation(s)
- Brian Reed
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| | | | | |
Collapse
|
20
|
Meissner W, Harnack D, Reese R, Paul G, Reum T, Ansorge M, Kusserow H, Winter C, Morgenstern R, Kupsch A. High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem 2003; 85:601-9. [PMID: 12694386 DOI: 10.1046/j.1471-4159.2003.01665.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
High-frequency stimulation of the subthalamic nucleus is believed to exert its main effects via the basal ganglia output structures. Previously, we have shown a concomitant increase in striatal dopamine (DA) metabolites in normal and 6-hydroxydopamine-lesioned rats. The present study was designed to determine whether this increase in striatal DA metabolites reflects enhanced intraneuronal DA turnover or, alternatively, is due to increased DA release with subsequent rapid and efficient reuptake and/or metabolism. Thus, high-frequency stimulation of the subthalamic nucleus was performed in normal rats after inhibition of DA reuptake, metabolism or DA depletion. Extracellular levels of striatal DA and its metabolites were assessed using microdialysis. Our data suggest that subthalamic high-frequency stimulation increases striatal DA release and activates independent striatal DA metabolism. Since such changes could be triggered by modification of either the activity or the gene expression of the rate-limiting enzyme tyrosine hydroxylase, an activity assay and RT-PCR of striatal and nigral samples were performed. Subthalamic stimulation increased striatal tyrosine hydroxylase activity without affecting gene expression. We, therefore, conclude that the application of subthalamic high-frequency stimulation could partially compensate for the DA deficit by inducing increased striatal DA release and metabolism.
Collapse
Affiliation(s)
- Wassilios Meissner
- Department of Neurology, Charité Campus Virchow, Humboldt-University Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Neill DB, Fenton H, Justice JB. Increase in accumbal dopaminergic transmission correlates with response cost not reward of hypothalamic stimulation. Behav Brain Res 2002; 137:129-38. [PMID: 12445719 DOI: 10.1016/s0166-4328(02)00288-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rats were trained to lever-press for intracranial self-stimulation (ICSS) of the lateral hypothalamus on either a fixed ratio (FR) 1 or 10 schedule. Their brains were removed after a 20 min session and tissue punches taken from the nucleus accumbens, olfactory tubercle, anterior striatum, or central striatum. These punches were assayed for content of dopamine (DA) and the major DA metabolite DOPAC. Compared with implanted controls, only the FR10 group showed significantly elevated DOPAC/DA ratios. These elevations were statistically significant in nucleus accumbens and central striatum and near significance in anterior striatum. They occurred to similar degrees in each hemisphere. In contrast, we found that stimulation of the ventral tegmental area of anesthetized rats asymmetrically increased the DOPAC/DA ratio, being most prominent in the ipsilateral accumbens. Because the FR10 group made only 58% of the responses of the FR1 group and received only 6% of the stimulations of the FR1 group, yet unlike the FR1 group showed a significant increase in the DOPAC/DA ratio, we suggest that the DA release was primarily influenced by the schedule, not the stimulation or the reward of the stimulation. These results were interpreted in terms of a model in which hypothalamic ICSS reward is largely dependent on non-dopaminergic mechanisms, with accumbal DA transmission being strongly dependent on the costs versus benefits of ongoing behavior.
Collapse
Affiliation(s)
- Darryl B Neill
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
22
|
Bergstrom BP, Schertz KE, Weirick T, Nafziger B, Takacs SA, Lopes KO, Massa KJ, Walker QD, Garris PA. Partial, graded losses of dopamine terminals in the rat caudate-putamen: an animal model for the study of compensatory adaptation in preclinical parkinsonism. J Neurosci Methods 2001; 106:15-28. [PMID: 11248337 DOI: 10.1016/s0165-0270(00)00372-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Procedures to lesion dopamine (DA) neurons innervating the rat caudate-putamen (CP) in a partial, graded fashion are described in this study. The goal is to provide a lesion model that supports intra-animal comparisons of voltammetric recordings used to investigate compensatory adaptation of DA neurotransmission. Lesions exploited the topography of mesostriatal DA neurons, microinjections of the neurotoxin 6-hydroxydopamine (6-OHDA) into the medial and lateral edges of the ventral mesencephalon containing DA cell bodies and microdissection of the CP into six regions. Analysis of tissue DA content in these regions by HPLC-EC demonstrated that 6-OHDA injected into the lateral substantia nigra results in a significantly greater loss of DA in lateral versus medial regions of the CP. The direction of the graded loss of DA was reversed (i.e. a medial to lateral lesion gradient) by the injection of 6-OHDA into the ventral tegmental area near the medial SN. Extracellular concentrations of electrically evoked DA could be measured across the mediolateral axis of the CP in a single animal using the technique of in vivo voltammetry. More importantly, graded decreases in the amplitude of evoked DA levels generally followed the direction of the tissue DA gradient in lesioned animals. These results suggest that the graded loss of DA terminals in the CP, coupled to a spatially and temporally resolved technique for monitoring extracellular DA, is a viable tool for investigating compensatory adaptation in the mesostriatal DA system.
Collapse
Affiliation(s)
- B P Bergstrom
- Department of Biological Sciences, Cellular and Integrative Physiology Section, Illinois State University, Normal, IL 61790-4120, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yadid G, Fitoussi N, Kinor N, Geffen R, Gispan I. Astrocyte line SVG-TH grafted in a rat model of Parkinson's disease. Prog Neurobiol 1999; 59:635-61. [PMID: 10845756 DOI: 10.1016/s0301-0082(99)00013-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present review describes gene transfer into the brain using extraneuronal cells with an ex vivo approach. The mild immunological reactions in the central nervous system to grafts provided the rationale and empirical basis for brain-transplantation, to replace dying cells, of potential clinical relevance. Fetal human astrocytes were genetically engineered to express tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines. These cells were also found to produce constitutively and secrete GDNF and interleukins. Therefore, these cells may prove as a drug-delivery system for the treatment of neurological degenerative conditions such as Parkinson's disease (PD). The field of neuronal reconstruction has reached a critical threshold and there is a need to evaluate the variables that will become critical as the field matures. One of the needs is to characterize the neurochemical alterations in the microenvironment in the context of grafted-host connectivity. This review discusses the functional effects of the pharmacologically-active construct, which consists of astrocytes producing L-DOPA and GDNF. The striatum in PD that lacks the dopaminergic projection from the substantia nigra metabolizes and releases dopamine differently from normal tissue and may react to different factors released by the grafted cells. Moreover, neurochemicals of the host tissue may effect grafted cells as well. An understanding of the way in which these neurochemicals are abnormal in PD and their role in the grafted brain is critical to the improvement of reconstructive strategies using cellular therapeutic strategies.
Collapse
Affiliation(s)
- G Yadid
- Faculty of Life Sciences, Neuropharmacology Section, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
24
|
Abstract
The ability of estrogen to modulate the expression of ventral and dorsal striatal dopamine receptors D(1), D(2,) and D(3) was examined in vivo using semi-quantitative in situ hybridization and ligand binding autoradiography. Two-week treatment with subcutaneous pellets of 17beta-estradiol (25 mg) downregulated D(2) dopamine receptor mRNA in both dorsal and ventral striatum (shell and core regions of nucleus accumbens). No significant changes in D(1) or D(3) mRNA expression were detected. Ligand binding autoradiography did not reveal changes in D(1), D(2,) or D(3) receptor protein expression. We also assessed the ability of 17beta-estradiol to regulate D(2) gene promoter activity in NB41A3 neuroblastoma cells that express this gene endogenously using co-transfections with an estrogen receptor expression vector. While a small fragment of the D(2) promoter could be activated 2.5-fold by estrogen, a larger portion of the D(2) gene was not regulated by this treatment. Estrogens do not appear to have a net effect on striatal dopamine receptor expression. The observed downregulation of D(2) receptor mRNA in the dorsal and ventral striatum in vivo could be secondary to the increased striatal dopamine release induced by estrogen. Synapse 34:222-227, 1999. Published 1999 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- C H Lammers
- Genetic Pharmacology Unit, Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kötter R, Schirok D. Towards an integration of biochemical and biophysical models of neuronal information processing: a case study in the nigro-striatal system. Rev Neurosci 1999; 10:247-66. [PMID: 10526890 DOI: 10.1515/revneuro.1999.10.3-4.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The experimental and theoretical study of intracellular biochemical signaling mechanisms lags considerably behind our understanding of electrical processes of neuronal membranes. Both signaling processes, however, are extensively intertwined and can be analyzed and modeled using formally similar mathematical tools. With the nigro-striatal system as an example, we review various formal approaches to describe metabotropic signaling in dopamine- and calcium-dependent pathways and their interactions with electrical membrane processes. These demonstrate the feasibility of synthetic modeling and afford insights into a variety of specific signaling mechanisms. Extending and linking hitherto isolated models has the potential to transcend descriptive levels and to provide a fuller understanding of the molecular basis of macroscopic information processing in the central nervous system.
Collapse
Affiliation(s)
- R Kötter
- C. & O. Vogt Brain Research Institute, Heinrich Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
26
|
Bergstrom BP, Garris PA. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum. J Neurosci Methods 1999; 87:201-8. [PMID: 11230817 DOI: 10.1016/s0165-0270(99)00009-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study evaluated tripolar stimulating electrodes for eliciting dopamine release in the rat brain in vivo. Stimulating electrodes were placed either in the medial forebrain bundle or in the ventral mesencephalon associated with the ventral tegmental area and substantia nigra. The concentration of extracellular dopamine was monitored in dopamine terminal fields at 100-ms intervals using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. To characterize the stimulated area, recordings were collected in several striatal regions including the caudate putamen and the core and shell of the nucleus accumbens. The tripolar electrode was equally effective in stimulating dopamine release in medial and lateral regions of the striatum. In contrast, responses evoked by a bipolar electrode were typically greater in one mediolateral edge versus the other. The added size of the tripolar electrode did not appear to cause complications as signals were stable over the course of the experiment (3 h). Subsets of mesostriatal dopamine neurons could also be selectively activated using the tripolar electrode in excellent agreement with previously described topography. Taken together, these results suggested that the tripolar stimulating electrode is well suited for studying the regulation of midbrain dopamine neurons in vivo.
Collapse
Affiliation(s)
- B P Bergstrom
- Department of Biological Sciences, Cellular and Integrative Physiology Section, Illinois State University, Normal, USA
| | | |
Collapse
|
27
|
Endres CJ, Swaminathan S, DeJesus OT, Sievert M, Ruoho AE, Murali D, Rommelfanger SG, Holden JE. Affinities of dopamine analogs for monoamine granular and plasma membrane transporters: implications for PET dopamine studies. Life Sci 1997; 60:2399-406. [PMID: 9199484 DOI: 10.1016/s0024-3205(97)00300-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Affinities of dopamine (DA) analogs to both granular and plasma membrane uptake transporters were measured in vitro by inhibition of [3H]DA uptake in bovine chromaffin granule ghosts and C6 glial cells transfected with cDNA for the rat presynaptic dopamine transporter, respectively. Five amines were studied: DA, 6-fluorodopamine (6FDA), m-tyramine (MTA), 6-fluoro-m-tyramine (6FMTA), and beta-fluoromethylene-m-tyramine (FMMTA). Direct uptake of 18F labeled 6FDA and 6FMTA was also measured in the chromaffin granule system and compared with [3H]DA uptake. Results show that the transporter affinities of 6FDA and MTA were similar to that of DA in both transport systems while affinities of 6FMTA and FMMTA were lower. Furthermore while the direct uptake of DA and FDA in chromaffin granules were essentially identical and significantly reserpine-inhibitable, the direct uptake of 6FMTA was about 15-fold less and only minimally sensitive to reserpine pretreatment. Thus, although vesicular protection and reuptake may influence the turnover of FDA in 6-fluoroDOPA studies, they are unlikely to be important determinants of the kinetics of the slowly clearing components in studies with either 6-fluoro-m-tyrosine (6FMT) or 6-fluoro-beta-fluoro-methylene-m-tyrosine (6FFMMT), the bioprecursors of 6FMTA and 6-fluoro-FMMTA, respectively. These results are consistent with the finding that the longterm component in 6FMT PET studies is 6-fluoro-hydroxyphenylacetic acid (6FHPAC), which can be explained by the lack of vesicular protection of 6FMTA from MAO oxidation.
Collapse
Affiliation(s)
- C J Endres
- Department of Medical Physics, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yavich L. Two simultaneously working storage pools of dopamine in mouse caudate and nucleus accumbens. Br J Pharmacol 1996; 119:869-76. [PMID: 8922734 PMCID: PMC1915921 DOI: 10.1111/j.1476-5381.1996.tb15753.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The dynamics of the decline of evoked dopamine overflow after repeated electrical stimulation (2 or 4 s train duration, 50 Hz) of the median forebrain bundle were investigated by means of in vivo voltammetry in mouse caudate and nucleus accumbens. An unexpected effect-slowing of the rate of dopamine decline after repeated stimulation at short (10 s or less) between-stimulation intervals, and an increase in the absolute amount of dopamine released at the beginning of the repeated stimulation-was found. 2. After the evoked dopamine overflow had been reduced by alpha-methyl-p-tyrosine (AMPT), repeated stimulation at intervals of 5 s increased dopamine release to each subsequent stimulation applied. 3. It is proposed that there are two compartments involved in dopamine storage. Both contribute to the release of dopamine, however, they may be separated artificially by either applying stimulation at short intervals or by depletion of intracellular dopamine. 4. The first releasable pool (newly synthesized, AMPT-sensitive) provides dopamine for the release after a single stimulation or repeated stimulation, being independent of whether the first stimulation is succeeded quickly by a second. It is also independent of between-stimulation interval. 5. The second pool (AMPT-insensitive storage pool) is progressively activated after repeated stimulation. The duration of the between-stimulation intervals is the crucial factor for the activation of this pool.
Collapse
Affiliation(s)
- L Yavich
- Department of Pharmacology and Toxicology, University of Kuopio, Finland
| |
Collapse
|
29
|
Reum T, Schönfuss D, Schäfer U, Marburger A, Drandarevski N, Morgenstern R. Fetal mesencephalic grafts decrease the rate of dopamine uptake in the non-lesioned striatum of unilaterally 6-OHDA lesioned rats: an in vivo voltammetric study. Neurosci Lett 1995; 198:218-22. [PMID: 8552325 DOI: 10.1016/0304-3940(95)12019-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present study the influence of intraventricular fetal mesencephalic grafts on the elimination rate of extracellular dopamine (DA) in the non-lesioned striatum of previously unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats was investigated. The elimination of DA was measured after electrical stimulation of the medial forebrain bundle in vivo before and after treatment with the high affinity uptake inhibitor GBR 12909 (20 mg/kg i.p.) using fast cyclic voltammetry (FCV). Rotational behavior induced by amphetamine (AMPH, 2 mg/kg i.p.) and tyrosine hydroxylase (TH) immunohistochemistry were used to prove the functional recovery and the ingrowth of the graft, respectively. After grafting, the number of rotations was decreased and TH-positive cells and fibers were found in the grafted striatum. Voltammetric measurements with the aid of a kinetic model revealed a smaller rate constant for the in vivo elimination of extracellular DA in the non-lesioned striatum of grafted rats compared to that of non-grafted controls. This effect was abolished after treatment with GBR 12909. Our results will be discussed in relation to the method used and according to recent investigations of the specific [3H]DA uptake into striatal synaptosomes in vitro. Based on these data we conclude that grafts, placed to the lesioned striatum, reduce the DA uptake rate in the non-lesioned striatum due to the reduction of the number of functional DA transporters.
Collapse
Affiliation(s)
- T Reum
- Institute of Pharmacology and Toxicology, Medical Faculty (Charité), Humboldt-University at Berlin, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Santiago M, Machado A, Cano J. 5-HT3 receptor agonist induced carrier-mediated release of dopamine in rat striatum in vivo. Br J Pharmacol 1995; 116:1545-50. [PMID: 8564217 PMCID: PMC1908904 DOI: 10.1111/j.1476-5381.1995.tb16371.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. In vivo microdialysis was used to study the effect of phenylbiguanide (PBG), a 5-hydroxytryptamine3 receptor agonist, on the extracellular output of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the corpus striatum. 2. PBG produced a dose-related (10-500 microM) increase in the release of dopamine (280-2000%). DOPAC and HVA output decreased with the perfusion of PBG. This decrease was similar with 50-500 microM PBG. 5-HIAA output was not affected by any PBG concentration used. 3. When nomifensine (5 microM) was included in the Ringer solution, the effect of PBG on the release of dopamine was ameliorated or inhibited. However, the effect of PBG (50-500 microM) on the extracellular output of DOPAC and HVA was similar in the absence and in the presence of nomifensine (5 microM). 4. Perfusion of MDL 72222, a 5-hydroxytryptamine3 receptor antagonist, at doses of 50 and 100 microM produced similar decreases (50% of controls) and increases (120% of controls) in the extracellular output of dopamine and DOPAC, respectively. HVA and 5-HIAA output levels were not affected by either concentration of MDL 72222. MDL 72222 (10 microM) produced a slight and transient increase in the release of dopamine and a decrease in the extracellular output of DOPAC. HVA and 5-HIAA extracellular output was not affected by MDL 72222 (10 microM) perfusion. 5. Co-perfusion of MDL 72222 (10 and 100 microM) or tetrodotoxin (1 microM) with PBG (50 microM) did not modify the effect produced by PBG (50 microM) alone on the release of dopamine. 6 These results suggest that the effect of PBG on the release of dopamine is mainly carrier-mediated.
Collapse
Affiliation(s)
- M Santiago
- Departamento de Bioquímica, Facultad de Farmacia, Sevilla, Spain
| | | | | |
Collapse
|
31
|
Dobrev D, Bergsträsser E, Fischer HD, Andreas K. Restriction and functional changes of dopamine release in rat striatum from young adult and old rats. Mech Ageing Dev 1995; 80:107-19. [PMID: 7564562 DOI: 10.1016/0047-6374(94)01564-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to investigate the age-related changes in dopaminergic activity in rats, we have utilized the K(+)- and veratridine-stimulated [14C]dopamine release from striatum in vitro as a functional index of responsiveness to these stimuli in aging. We found that the K(+)-stimulated dopamine release from old (12 months) rats decreased by more than 50% compared to that from young adult rats (3 months). Reserpine (5 mg/kg) led to a pronounced decrease of the K(+)-stimulated dopamine release of young adult as well as old rats. Whereas ouabain (10 mumol/l) decreased the K(+)-stimulated dopamine release from young adult rats, in old rats the K(+)-induced dopamine release was increased up to 250%. However, in old rats which were reserpine pretreated, ouabain was unable to stimulate the K(+)-induced dopamine release. In contrast, the veratridine-stimulated dopamine release of old rats was increased up to 200% compared to that of young adult rats and was highly sensitive to reserpine pretreatment but not to ouabain. However, reserpine did not alter this veratridine-stimulated dopamine release from young adult rats. The present data indicate that the age-related reduction of exocytosis-related, Ca(2+)-dependent release mechanisms (K+) are probably compensated via an increase in Ca(2+)-independent, uptake carrier-mediated release processes (veratridine).
Collapse
Affiliation(s)
- D Dobrev
- Institute of Pharmacology and Toxicology, Medical Faculty, Technical University Dresden, Germany
| | | | | | | |
Collapse
|
32
|
Nicholson C. Interaction between diffusion and Michaelis-Menten uptake of dopamine after iontophoresis in striatum. Biophys J 1995; 68:1699-715. [PMID: 7612814 PMCID: PMC1282074 DOI: 10.1016/s0006-3495(95)80348-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A quantitative description of the behavior of a neurotransmitter in the brain extracellular microenvironment requires an understanding of the relative importance of diffusion versus uptake processes. This paper models the behavior of dopamine released from a small iontophoresis electrode and its voltammetric detection by a carbon fiber sensor 100 microns away as a basis for developing a new paradigm for measuring dopamine kinetics in intact rat neostriatum. The diffusion equation incorporating uptake, characterized by a maximum velocity Vmax and a Michaelis-Menten constant Km, was transformed to an integral equation and solved numerically for the dopamine concentration, C. Analytical solutions were derived for limiting cases of a steady-state free-boundary problem when C >> Km and the linear time-dependent problem when C << Km. These solutions were compared with complete numerical solutions, both for normal uptake (Vmax = 0.2 or 0.8 microM s-1; Km = 0.15 microM), and in the presence of the uptake blocker nomifensine (Km = 6 microM). The results suggest that an experimental strategy for the quantitative analysis of dopamine, and other compounds, in living tissue is to fit a family of concentration versus time curves generated with different iontophoretic current strengths and recorded with a microsensor, to the numerical solution of the diffusion-uptake equation.
Collapse
Affiliation(s)
- C Nicholson
- Department of Physiology and Biophysics, New York University Medical Center 10016, USA
| |
Collapse
|
33
|
Williams JE, Wieczorek W, Willner P, Kruk ZL. Parametric analysis of the effects of cocaine and cocaine pretreatment on dopamine release in the nucleus accumbens measured by fast cyclic voltammetry. Brain Res 1995; 678:225-32. [PMID: 7620892 DOI: 10.1016/0006-8993(95)00188-v] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fast cyclic voltammetry was used to measure dopamine (DA) release in the nucleus accumbens of anaesthetized rats, in response to electrical sine-wave stimulation of the ventral tegmental area. Voltammetric signals followed increases in either frequency (50-100 Hz), intensity (50-100 microA) or duration (0.5-5.0 s) of the stimulus. Cocaine administration (10 mg/kg) preferentially increased DA release by weak electrical stimuli. Cocaine pretreatment (3 x 10 mg/kg, two weeks earlier) preferentially increased DA release by stronger stimuli, and the effects of acute cocaine were potentiated in these animals. The effects of increasing stimulus duration conformed to first order kinetics. Cocaine pretreatment selectively increased the kinetic parameter representing maximal release, while acute cocaine administration preferentially decreased the parameter representing the stimulus duration eliciting half maximal release. The lack of statistical interaction between these two effects suggests that sensitization of the response to acute cocaine by cocaine pretreatment may simply reflect an increase in the size of the releasable pool of DA.
Collapse
Affiliation(s)
- J E Williams
- Department of Pharmacology, Queen Mary and Westfield College, London, UK
| | | | | | | |
Collapse
|
34
|
Cadoni C, Pinna A, Russi G, Consolo S, Di Chiara G. Role of vesicular dopamine in the in vivo stimulation of striatal dopamine transmission by amphetamine: evidence from microdialysis and Fos immunohistochemistry. Neuroscience 1995; 65:1027-39. [PMID: 7617159 DOI: 10.1016/0306-4522(94)00507-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The role of vesicular and newly synthesized dopamine in the action of amphetamine was investigated by studying the effect of reserpine and alpha-methyl-p-tyrosine pretreatment on amphetamine-induced changes in extracellular dopamine and acetylcholine, estimated by brain microdialysis, and on c-fos expression, estimated by quantitative immunohistochemistry of the Fos antigene, in the dorsal caudate-putamen of rats. Blockade of dopamine synthesis by alpha-methyl-p-tyrosine pretreatment (1 or 2 h) only partially prevented the increase in extracellular dopamine concentrations elicited by 0.5 and 2 mg/kg s.c. of amphetamine. Inactivation of vesicular amine uptake by reserpine pretreatment (3 h) reduced the increase in extracellular dopamine by 2 mg/kg but not by 0.5 mg/kg of amphetamine. Combined pretreatment with reserpine (3 h) and alpha-methyl-p-tyrosine (1 h) drastically reduced the increase in extracellular dopamine by both doses of amphetamine (0.5 and 2 mg/kg s.c.). alpha-Methyl-p-tyrosine pretreatment reduced c-fos expression stimulated by amphetamine (2 mg/kg) in the dorsomedial and dorsolateral caudate-putamen while reserpine pretreatment reduced it only in the dorsolateral caudate-putamen. Amphetamine (2 mg/kg s.c.) stimulated acetylcholine release but this effect was not modified by reserpine or alpha-methyl-p-tyrosine pretreatment. The results indicate that blockade of dopamine synthesis, by itself, is insufficient to prevent the stimulation of dopamine transmission by amphetamine and, conversely, that inactivation of vesicular dopamine significantly reduces amphetamine effects at pre- and postsynaptic levels. Therefore, vesicular dopamine appears to contribute to the stimulation of dopamine transmission elicited by amphetamine in the dorsal caudate-putamen.
Collapse
Affiliation(s)
- C Cadoni
- Department of Toxicology and CNR Center for Neuropharmacology, University of Cagliari, Italy
| | | | | | | | | |
Collapse
|
35
|
De Séréville JE, Boer C, Rambert FA, Duteil J. Lack of pre-synaptic dopaminergic involvement in modafinil activity in anaesthetized mice: in vivo voltammetry studies. Neuropharmacology 1994; 33:755-61. [PMID: 7936113 DOI: 10.1016/0028-3908(94)90115-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Modafinil was compared to the indirect dopaminergic drugs, dexamphetamine and methylphenidate, using in vivo differential normal pulse voltammetry with carbon fibre electrodes located in the caudate nucleus to study extracellular catechol level in anaesthetized mice. Modafinil (16-256 mg kg-1) failed to modify the catechol oxidation peak height (peak 2). Dexamphetamine at low doses (2 and 4 mg kg-1) decreased, while at a higher dose (8 mg kg-1) did not modify peak 2 height. A low dose of methylphenidate (16 mg kg-1) did not display any effect, while higher doses (32 and 64 mg kg-1) increased peak 2 height. Pargyline-induced monoamine oxidase inhibition elicited a rapid and dramatic decrease in peak 2 height (related to the decrease of catechol levels). In these conditions modafinil (64 and 256 mg kg-1) did not modify, while dexamphetamine (2, 4 and 8 mg kg-1) and methylphenidate (16, 32 and 64 mg kg-1) increased peak 2 height in relation to synaptic dopamine level increase. This study, in mice, demonstrated the lack of effects of modafinil on nigro-striatal function, at the pre-synaptic level, as opposed to dexamphetamine and methylphenidate.
Collapse
|
36
|
Gross J, Lun A, Berndt C. Early postnatal hypoxia induces long-term changes in the dopaminergic system in rats. J Neural Transm (Vienna) 1993; 93:109-21. [PMID: 8105810 DOI: 10.1007/bf01245341] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A rat model of a mild, chronic, early postnatal hypoxia, characterized by long-term consequences in the behavioural outcome, was used to study long-term consequences in the dopaminergic system. Exposure of newborn rats to an early postnatal hypoxia (hypobaric hypoxia, 11 kPa pO2 in the inspiratory air, 2nd-10th day of life, 10 hours daily) brings about the following lasting neurochemical changes: an increased stimulated dopamine release rate from striatum slices by about 30%, an increased low affinity, high capacity dopamine uptake into striatum synaptosomes by about 100%. The critical period to produce an increased release rate of dopamine was estimated as day 2-6 postnatally. There are no long-term changes in the concentration of dopamine and its metabolites and in the tyrosine hydroxylase activity in consequences of this early postnatal hypoxia. Treatment of newborn animals with L-DOPA (10-50 micrograms/g body weight) previous to hypoxia normalizes the DA release rate.
Collapse
Affiliation(s)
- J Gross
- Institute of Pathological and Clinical Biochemistry, Medical School (Charité), Humboldt University, Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
37
|
McDermott JL. Effects of estrogen upon dopamine release from the corpus striatum of young and aged female rats. Brain Res 1993; 606:118-25. [PMID: 8461992 DOI: 10.1016/0006-8993(93)91578-g] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In vitro superfusion was used to examine the effects of estrogen administration upon striatal dopamine release in ovariectomized young and aged female Fischer 344 rats in response to 10 microM amphetamine or 30 mM potassium stimulation. Estrogen treatment increased basal dopamine and decreased DOPAC release in young and aged females (10 micrograms estradiol benzoate given subcutaneously 24 and 48 h prior to superfusion). Amphetamine-stimulated dopamine release was significantly decreased in aged estrogen-treated females, but did not differ in young females as a function of estrogen treatment. Conversely, young females treated with estrogen showed significantly decreased striatal dopamine release in response to potassium stimulation, while aged females showed no differences as a function of hormone treatment. Striatal dopamine content was significantly decreased in all estrogen-treated young and aged females. It appears that estrogen is altering dopamine uptake mechanisms in both age groups, since basal DOPAC release is decreased and dopamine is increased. This estrogen effect depletes the readily releasable dopamine storage pool to a greater extent in the aged female as evidenced by reduced amphetamine-stimulated dopamine release. By contrast, estrogen does not alter vesicular dopamine storage pools in aged females, which are mobilized by potassium. These results may have important implications regarding sex differences in expression and treatment of age-related movement disorders.
Collapse
Affiliation(s)
- J L McDermott
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44120
| |
Collapse
|
38
|
Werling LL, Jacocks HM, Rosenthal RE, Fiskum G. Dopamine release from canine striatum following global cerebral ischemia/reperfusion. Brain Res 1993; 606:99-105. [PMID: 8462009 DOI: 10.1016/0006-8993(93)91575-d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The elevation of extracellular dopamine (DA) levels in the striatum of experimental animals subjected to ischemic insult has been well documented. The contribution of excessive DA to neuronal damage can be inferred from the ability of DA antagonists, as well as selective destruction of dopaminergic tracts, to confer neuroprotection in models of ischemia. In the current study, we report an enhanced releasability of preloaded [3H]DA in response to either elevated potassium or N-methyl-D-aspartate (NMDA) from striatal slices of beagles that had experienced 10 min of ischemia induced by cardiac arrest. The elevation in sensitivity to potassium stimulation was transient, approaching control levels after 30 min of reperfusion. In contrast, release stimulated by NMDA was elevated immediately after cardiac arrest and remained elevated for as long as 24 h of reperfusion. Release stimulated by NMDA was enhanced by glycine (Gly) and inhibited by MK801, consistent with mediation through the NMDA receptor/channel complex. The increased sensitivity of DA release, coupled with the high levels of excitatory amino acids (EAAs), including glutamate (Glu), aspartate (Asp) and Gly in ischemic brain, probably contribute to the extensive neuronal cell damage.
Collapse
Affiliation(s)
- L L Werling
- Department of Pharmacology, George Washington University Medical Center, Washington, DC 20037
| | | | | | | |
Collapse
|
39
|
Kawagoe KT, Garris PA, Wiedemann DJ, Wightman RM. Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum. Neuroscience 1992; 51:55-64. [PMID: 1465186 DOI: 10.1016/0306-4522(92)90470-m] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synaptic overflow of dopamine in the striatum has been investigated during electrical stimulation of the medial forebrain bundle in anesthetized rats. Dopamine has been detected with Nafion-coated, carbon-fiber electrodes used with fast-scan voltammetry. In accordance with previous results, dopamine synaptic overflow is a function of the stimulation frequency and the anatomical position of the carbon-fiber electrode. In some positions the concentration of dopamine is found to respond instantaneously to the stimulus when the time-delay for diffusion through the Nafion film is accounted for. In these locations the measured rates of change of dopamine are sufficiently rapid such that extracellular diffusion is not apparent. The rate of dopamine overflow can be described by a model in which each stimulus pulse causes instantaneous release, and cellular uptake decreases the concentration between stimulus pulses. Uptake is found to be described by a constant set of Michaelis-Menten kinetics at each location for concentrations of dopamine from 100 nM to 15 microM. The concentration of dopamine released per stimulus pulse is found to be greatest at low frequency (< or = 10 Hz) with stimulus trains, and with single-pulse stimulations in nomifensine-treated animals. The frequency dependence of release is not an effect of dopamine receptor activation; haloperidol (2.5 mg/kg) causes a uniform increase in release at all frequencies. The absence of diffusional effects in the measurement locations means that the constants determined with the electrode are those operant inside intact striatal tissue during stimulated overflow. These values are then extrapolated to the case where a single neuron fires alone. The extrapolation shows that while the transient concentration of dopamine may be high (200 nM) at the interface of the synapse and the extrasynaptic region, it is normally very low (< 6 nM) in the bulk of extracellular fluid.
Collapse
Affiliation(s)
- K T Kawagoe
- Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290
| | | | | | | |
Collapse
|
40
|
Cumming P, Brown E, Damsma G, Fibiger H. Formation and clearance of interstitial metabolites of dopamine and serotonin in the rat striatum: an in vivo microdialysis study. J Neurochem 1992; 59:1905-14. [PMID: 1383428 DOI: 10.1111/j.1471-4159.1992.tb11026.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In vivo microdialysis was employed in order to characterize the steady-state kinetics of the turnover of specific dopamine and serotonin metabolites in the rat striatum 48 h after surgery. Inhibitors of monoamine oxidase (MAO; pargyline) and catechol-O-methyltransferase (COMT; Ro 40-7592) were administered, either separately or in conjunction, at doses sufficient to block these enzymes in the CNS. In some experiments, the acid metabolite carrier was blocked with probenecid. Temporal changes were then observed in the efflux of interstitial dopamine, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA). The fractional rate constants for the accumulation or disappearance of the metabolites could be determined after pharmacological blockade of catabolic enzymes or the acid metabolite carrier. Interstitial 5-HIAA was found to be cleared with a half-life of approximately 2 h. After blockade of either MAO or COMT, HVA disappeared with a half-life of 17 min. Experiments employing probenecid suggested that some of the interstitial HVA was cleared by the acid metabolite carrier, the remainder being cleared by a probenecid-insensitive process, possibly conjugation. After MAO inhibition, DOPAC disappeared with an apparent half-life of 11.3 min. The rate of 3-MT accumulation after pargyline indicated that the majority of interstitial HVA (> 95%) is formed from DOPAC rather than 3-MT. The formation of 3-MT from interstitial dopamine, calculated from the accumulation rate of 3-MT after pargyline, appeared to follow first-order kinetics (k = 0.1 min-1).
Collapse
Affiliation(s)
- P Cumming
- Montreal Neurological Institute, Positron Imaging Laboratory, Quebec, Canada
| | | | | | | |
Collapse
|
41
|
Manley LD, Kuczenski R, Segal DS, Young SJ, Groves PM. Effects of frequency and pattern of medial forebrain bundle stimulation on caudate dialysate dopamine and serotonin. J Neurochem 1992; 58:1491-8. [PMID: 1548482 DOI: 10.1111/j.1471-4159.1992.tb11369.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vivo microdialysis was employed to detect changes in extracellular dopamine and serotonin in the rat caudate in response to electrical stimulation of the medial forebrain bundle. Extracellular dopamine concentrations increased linearly as a function of the frequency (4-33 Hz) of evenly spaced stimuli in both the presence and absence of cocaine added to the dialysate. Because dopamine neurons are known to fire in single-spike and burst patterns, stimulation pulses were also delivered in a bursting pattern. The response of extracellular dopamine was augmented in both the presence and absence of cocaine when the same number of stimuli were delivered in bursts as compared to an evenly spaced pattern. Serotonin, which was only assessed in the presence of cocaine, similarly increased linearly with frequency, but, in contrast to the dopamine response, levels of serotonin were not augmented by stimuli presented in bursts. These results suggest that microdialysis can be used to detect physiological changes in synaptic transmitter concentrations.
Collapse
Affiliation(s)
- L D Manley
- Department of Psychiatry, University of California, San Diego, La Jolla 92093-0603
| | | | | | | | | |
Collapse
|
42
|
Konya H, Nagai K, Masuda H, Kakishita E. Endothelin-3 modification of dopamine release in anaesthetised rat striatum; an in vivo microdialysis study. Life Sci 1992; 51:499-506. [PMID: 1640798 DOI: 10.1016/0024-3205(92)90026-l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endothelin-3 (ET-3), a member of the vasoconstrictive peptide family, has recently been recognized as a neuropeptide. We used brain microdialysis and on-line HPLC to examine the effect of ET-3 on the basal outflow of monoamines and their metabolites in the ketamine-anaesthetised rat striatum in vivo. Although intrastriatal infusion of ET-3 (40 pmol/rat) did not change basal dopamine (DA) release, after perfusion of DA releasing agent (5 x 10(-5) M ouabain or 120 mM KCl), ET-3 could increase the DA level. Further, these effects of ET-3 were attenuated by calcium-free Ringer. These data indicated that ET-3 may act by modifying the exocytosis from the striatum of rat brain to enhance DA release after depolarization induced by an agent such as KCl or ouabain.
Collapse
Affiliation(s)
- H Konya
- 2nd Department of Internal Medicine, Hyogo College of Medicine, Japan
| | | | | | | |
Collapse
|
43
|
Sershen H, Harsing LG, Hashim A, Lajtha A. Ibogaine reduces amphetamine-induced locomotor stimulation in C57BL/6By mice, but stimulates locomotor activity in rats. Life Sci 1992; 51:1003-11. [PMID: 1522749 DOI: 10.1016/0024-3205(92)90498-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of ibogaine hydrochloride on locomotor stimulation induced by d-amphetamine sulfate was tested in male C57BL/6By mice and in female Sprague-Dawley rats. In mice, locomotor stimulation induced by d-amphetamine at 1 or 5 mg/kg s.c. was reduced by prior administration of one or two injections of ibogaine (40 mg/kg), given 2 or 18 hours earlier. This reduction in locomotor activity persisted for two days. Locomotor stimulation induced by a higher dose (10 mg/kg) of d-amphetamine was not reduced by such prior administration of ibogaine. A lower dose of ibogaine (20 mg/kg) did not reduce the subsequent locomotor activity induced by d-amphetamine. Ibogaine decreased striatal dopamine levels, while d-amphetamine increased them. Ibogaine treatment (2 x 40 mg/kg, 18 hours apart) induced a decrease by 30% in the level of striatal dopamine and its metabolites measured in tissue extracts 3 hours after the second ibogaine injection. One hour after d-amphetamine (5 mg/kg) administration, the level of striatal dopamine increased by 26%. Although the level of striatal dopamine was initially lower in the ibogaine-pretreated mice, d-amphetamine (5 mg/kg) administration induced an increase in striatal dopamine and its metabolites. The effect of ibogaine seems to be species specific, since in rats pretreated with ibogaine 18 hours before d-amphetamine, locomotor stimulation induced by d-amphetamine was further increased. In addition, the in vitro electrical-evoked release of [3H]dopamine from striatal tissue was either unchanged or inhibited in the presence of d-amphetamine, and after ibogaine pretreatment in vivo, the release of tritium in the presence of d-amphetamine was inhibited or stimulated in mice and rats, respectively.
Collapse
Affiliation(s)
- H Sershen
- Nathan S. Kline Institute for Psychiatric Research, Division of Neurochemistry, Orangeburg, NY 10962
| | | | | | | |
Collapse
|
44
|
Robinson TE, Camp DM. The effects of four days of continuous striatal microdialysis on indices of dopamine and serotonin neurotransmission in rats. J Neurosci Methods 1991; 40:211-22. [PMID: 1724788 DOI: 10.1016/0165-0270(91)90070-g] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of 4 days of continuous microdialysis with a small-diameter concentric-style probe on indices of striatal dopamine (DA) and serotonin neurotransmission were assessed. It was found that over 4 days of dialysis, there was a marked time-dependent decrease in the basal concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in dialysate and in amphetamine-stimulated DA release. In contrast, there was no decrease in basal DA or in the ability of cocaine to elevate the concentration of DA in dialysate over the same period of time. There were only very modest changes in dialysate levels of the serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), relative to the marked changes in DA metabolites. It is suggested that 4 days of continuous dialysis does not result in a non-specific decrease in diffusibility of these compounds into the dialysis probe, but that the changes are more likely due to probe-induced damage to the nigrostriatal DA system. It is also suggested that a "stable" basal concentration of DA in dialysate is an especially poor indicator of the integrity of the dopaminergic input to the striatum. The implications of these findings for within-subjects design microdialysis experiments are discussed.
Collapse
Affiliation(s)
- T E Robinson
- Department of Psychology, University of Michigan, Ann Arbor 48109
| | | |
Collapse
|
45
|
Gratzl M, Tarcali J, Pungor E, Juhász G. Local depletion of monoamines induced with in vivo voltammetry in the cat brain. Neuroscience 1991; 41:287-93. [PMID: 1711652 DOI: 10.1016/0306-4522(91)90217-c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A significant depletion of the electroactive monoamines and their metabolites in the vicinity of a carbon fiber microelectrode may be induced by in vivo staircase voltammetry in the brain, even if the duration of the voltammetric scans is relatively short (approximately 5 s). The variation of this depletion was determined in the extracellular fluid of the cat thalamus at different durations of the pauses separating consecutive measurements. Pauses not shorter than 5 min ensured a nearly full relaxation, so that at the beginning of each subsequent scan a virtually undisturbed environment surrounded the electrode. With pauses shorter than 5 min, it is still possible to monitor major changes in the monoamine concentration. Staircase scans separated with 45 s pauses, for example, were suitable to study the increase in monoamine levels after administration of reserpine, and release phenomena stimulated with KCl were monitored with frequently repeated voltammetric pulses. The electrochemically induced depletion, on the other hand, can be used for characterizing the dynamics of mass transport in the studied brain structure. This was demonstrated with staircase voltammetry alternated with pauses of 1-100 s, and with quasi-chronoamperometry. In vivo brain voltammetry is generally used for monitoring extracellular monoamine (including dopamine) levels. These may be significantly altered by the voltammetric measurement itself through depletion in the vicinity of the electrode. This effect can be minimized with appropriate selection of sampling intervals and other parameters of staircase voltammetry. Conversely, depletion and the following relaxation can be used for determining dynamic characteristics of the studied brain structure which would be difficult to obtain otherwise.
Collapse
Affiliation(s)
- M Gratzl
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106
| | | | | | | |
Collapse
|
46
|
The feasibility of repeated microdialysis for within-subjects design experiments: studies on the mesostriatal dopamine system. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/b978-0-444-81194-3.50014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
47
|
Arbuthnott GW, Fairbrother IS, Butcher SP. Brain microdialysis studies on the control of dopamine release and metabolism in vivo. J Neurosci Methods 1990; 34:73-81. [PMID: 2259247 DOI: 10.1016/0165-0270(90)90044-g] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper studies the actions of drugs known to release dopamine from brain tissue. Most of the theoretical background to this work has been developed in experiments on slices of brain in vitro but using in vivo microdialysis we have elaborated and extended the ideas from the in vitro experiments and been able to make a direct comparison of the mechanism of action and source of dopamine released by 5 different manipulations. The mode of action of tyramine, amphetamine, veratrine, ouabain and potassium is discussed in the light of the computer model of the nerve terminal published by Justice et al. (1988). The data may lend themselves to such an interpretation, but they could be compatible with several other models.
Collapse
Affiliation(s)
- G W Arbuthnott
- MRC Brain Metabolism Unit, University Department of Pharmacology, Edinburgh, U.K
| | | | | |
Collapse
|
48
|
Wightman RM, Zimmerman JB. Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1990; 15:135-44. [PMID: 2282449 DOI: 10.1016/0165-0173(90)90015-g] [Citation(s) in RCA: 248] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Advances in measurement techniques have enabled the extracellular concentration of dopamine to be monitored inside striatal structures during transient electrical stimulation of the medial forebrain bundle. The observed concentration changes can be accounted for by a mathematical model as a function of the frequency employed and the stimulus duration. Overflow curves can be described by 3 kinetic parameters: the concentration of dopamine released per stimulus pulse, and the Km and Vmax of uptake. In terms of this model, the kinetics of overflow during stimulation is found to be identical in the nucleus accumbens and caudate nucleus with the exception that the Vmax for uptake is lower in the former region. Maximal uptake is also found to be lower in animals with partial lesions of dopamine neurons. Measured concentrations vary with stimulation frequency from 10 to 60 Hz in a manner that can be predicted by the model. Competitive uptake inhibitors have their primary effect on overflow in the limit of low stimulus frequencies. In contrast, D2 antagonists, which increase the concentration of dopamine released per stimulus pulse, have a moderate effect in low and high frequency ranges, but cause a significant maximal increase in extracellular dopamine concentrations at a mid-range frequency. Both calculated response and experimental findings indicate that in the caudate nucleus, the upper frequency for observable uptake inhibition and the characteristic maximum frequency for the receptor-mediated response occur at higher values than in the nucleus accumbens. The model appears to be useful for predicting dopamine extracellular concentrations over a wide range of conditions, and its predictions may be valid when extended to more physiological situations.
Collapse
Affiliation(s)
- R M Wightman
- Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290
| | | |
Collapse
|
49
|
Arbuthnott GW, Fairbrother IS, Butcher SP. Dopamine release and metabolism in the rat striatum: an analysis by 'in vivo' brain microdialysis. Pharmacol Ther 1990; 48:281-93. [PMID: 2128125 DOI: 10.1016/0163-7258(90)90050-c] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brain microdialysis studies on the mechanisms underlying dopamine release in the rat striatum provide evidence that both exocytotic and carrier-dependent processes operate in vivo. While several releasers (potassium, veratrine, amphetamine, ouabain) utilize newly synthesized stores of dopamine, tyramine is uniquely sensitive to depletion of vesicular storage by reserpine. Extracellular DOPAC is closely associated with the newly synthesized pool of dopamine and experiments with selective monoamine oxidase inhibitors suggest that DOPAC is formed mainly by MAO-A. Recent work on the two dopamine receptors suggest that release by different mechanisms may selectively activate D1 or D2 receptor subtypes.
Collapse
Affiliation(s)
- G W Arbuthnott
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Summerhall, U.K
| | | | | |
Collapse
|
50
|
Leviel V, Gobert A, Guibert B. Direct observation of dopamine compartmentation in striatal nerve terminal by 'in vivo' measurement of the specific activity of released dopamine. Brain Res 1989; 499:205-13. [PMID: 2804675 DOI: 10.1016/0006-8993(89)90768-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rats were anesthetized with fluothane and implanted in the caudate nucleus with a push-pull cannula supplied with artificial CSF containing the tritiated precursor of dopamine (DA), [3H]tyrosine. Total DA and dihydroxyphenylacetic acid (DOPAC) were measured in successive 20 min fractions using high performance liquid chromatography and electrochemical detection. Radioisotopic counting of the peaks permitted the calculation of the specific activity of both DA and DOPAC released into the extracellular space. Local applications of potassium (8, 16 and 32 mM) induced a dose-dependent increase of the release of DA with a decrease of its specific activity as evidence of the involvement of a stored DA pool. Base release of DOPAC was increased by repeating potassium applications with a temporary decrease during the applications. Superfusion with alpha-methyl-p-tyrosine produced a decrease of both the [3H]DA and total DA with a simultaneous decrease of its specific activity. This decrease was considered to be an indicator of the involvement by synthesis inhibition of the stored amine, but the simultaneous decrease of the specific activity of DOPAC suggests that this release was intraterminal. These results constitute the first direct observation that DA terminals act with two separate pools (stored and releasable) and suggest that the stored amine is preferentially released intraterminally. Systemic injection of reserpine induced a decrease of the release of DA and DOPAC without alteration of DA-specific activity when the specific activity of DOPAC was lowered. From these results it is concluded that the releasable compartment of the amine is located, in part, in vesicles different in nature from the vesicles containing the stored amine.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V Leviel
- Departement de Neurophysiologie Appliquée, C.N.R.S. Gif sur Yvette, France
| | | | | |
Collapse
|