1
|
Hurwitz I, Tam S, Jing J, Chiel HJ, Susswein AJ. Repeated stimulation of feeding mechanoafferents in Aplysia generates responses consistent with the release of food. Learn Mem 2024; 31:a053880. [PMID: 38950976 PMCID: PMC11261209 DOI: 10.1101/lm.053880.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/19/2024] [Indexed: 07/03/2024]
Abstract
How does repeated stimulation of mechanoafferents affect feeding motor neurons? Monosynaptic connections from a mechanoafferent population in the Aplysia buccal ganglia to five motor followers with different functions were examined during repeated stimulus trains. The mechanoafferents produced both fast and slow synaptic outputs, which could be excitatory or inhibitory. In contrast, other Aplysia mechanoafferents produce only fast excitation on their followers. In addition, patterns of synaptic connections were different to the different motor followers. Some followers received both fast excitation and fast inhibition, whereas others received exclusively fast excitation. All followers showed strong decreases in fast postsynaptic potential (PSP) amplitude within a stimulus train. Fast and slow synaptic connections were of net opposite signs in some followers but not in others. For one follower, synaptic contacts were not uniform from all subareas of the mechanoafferent cluster. Differences in properties of the buccal ganglia mechanoafferents and other Aplysia mechanoafferents may arise because the buccal ganglia neurons innervate the interior of the feeding apparatus, rather than an external surface, and connect to motor neurons for muscles with different motor functions. Fast connection patterns suggest that these synapses may be activated when food slips, biasing the musculature to release food. The largest slow inhibitory synaptic PSPs may contribute to a delay in the onset of the next behavior. Additional functions are also possible.
Collapse
Affiliation(s)
- Itay Hurwitz
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Shlomit Tam
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School Life Sciences, Nanjing University, Jiangsu 210023, China
| | - Hillel J Chiel
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Abraham J Susswein
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
2
|
Hurwitz I, Tam S, Jing J, Chiel HJ, Gill J, Susswein AJ. Multiple changes in connectivity between buccal ganglia mechanoafferents and motor neurons with different functions after learning that food is inedible in Aplysia. Learn Mem 2024; 31:a053882. [PMID: 38950977 PMCID: PMC11261210 DOI: 10.1101/lm.053882.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/19/2024] [Indexed: 07/03/2024]
Abstract
Changes caused by learning that a food is inedible in Aplysia were examined for fast and slow synaptic connections from the buccal ganglia S1 cluster of mechanoafferents to five followers, in response to repeated stimulus trains. Learning affected only fast connections. For these, unique patterns of change were present in each follower, indicating that learning differentially affects the different branches of the mechanoafferents to their followers. In some followers, there were increases in either excitatory or inhibitory connections, and in others, there were decreases. Changes in connectivity resulted from changes in the amplitude of excitation or inhibition, or as a result of the number of connections, or of both. Some followers also exhibited changes in either within or between stimulus train plasticity as a result of learning. In one follower, changes differed from the different areas of the S1 cluster. The patterns of changes in connectivity were consistent with the behavioral changes produced by learning, in that they would produce an increase in the bias to reject or to release food, and a decrease in the likelihood to respond to food.
Collapse
Affiliation(s)
- Itay Hurwitz
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Shlomit Tam
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School Life Sciences, Nanjing University, Jiangsu 210023, China
| | - Hillel J Chiel
- Departments of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
- Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Jeffrey Gill
- Departments of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Abraham J Susswein
- Gonda (Goldschmied) Brain Res Center and Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
3
|
Ye H, Dima M, Hall V, Hendee J. Cellular mechanisms underlying carry-over effects after magnetic stimulation. Sci Rep 2024; 14:5167. [PMID: 38431662 PMCID: PMC10908793 DOI: 10.1038/s41598-024-55915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Magnetic fields are widely used for neuromodulation in clinical settings. The intended effect of magnetic stimulation is that neural activity resumes its pre-stimulation state right after stimulation. Many theoretical and experimental works have focused on the cellular and molecular basis of the acute neural response to magnetic field. However, effects of magnetic stimulation can still last after the termination of the magnetic stimulation (named "carry-over effects"), which could generate profound effects to the outcome of the stimulation. However, the cellular and molecular mechanisms of carry-over effects are largely unknown, which renders the neural modulation practice using magnetic stimulation unpredictable. Here, we investigated carry-over effects at the cellular level, using the combination of micro-magnetic stimulation (µMS), electrophysiology, and computation modeling. We found that high frequency magnetic stimulation could lead to immediate neural inhibition in ganglion neurons from Aplysia californica, as well as persistent, carry-over inhibition after withdrawing the magnetic stimulus. Carry-over effects were found in the neurons that fired action potentials under a variety of conditions. The carry-over effects were also observed in the neurons when the magnetic field was applied across the ganglion sheath. The state of the neuron, specifically synaptic input and membrane potential fluctuation, plays a significant role in generating the carry-over effects after magnetic stimulation. To elucidate the cellular mechanisms of such carry-over effects under magnetic stimulation, we simulated a single neuron under magnetic stimulation with multi-compartment modeling. The model successfully replicated the carry-over effects in the neuron, and revealed that the carry-over effect was due to the dysfunction of the ion channel dynamics that were responsible for the initiation and sustaining of membrane excitability. A virtual voltage-clamp experiment revealed a compromised Na conductance and enhanced K conductance post magnetic stimulation, rendering the neurons incapable of generating action potentials and, therefore, leading to the carry over effects. Finally, both simulation and experimental results demonstrated that the carry-over effects could be controlled by disturbing the membrane potential during the post-stimulus inhibition period. Delineating the cellular and ion channel mechanisms underlying carry-over effects could provide insights to the clinical outcomes in brain stimulation using TMS and other modalities. This research incentivizes the development of novel neural engineering or pharmacological approaches to better control the carry-over effects for optimized clinical outcomes.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Maria Dima
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Vincent Hall
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Jenna Hendee
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
4
|
Evans CG, Barry MA, Perkins MH, Jing J, Weiss KR, Cropper EC. Variable task switching in the feeding network of Aplysia is a function of differential command input. J Neurophysiol 2023; 130:941-952. [PMID: 37671445 PMCID: PMC10648941 DOI: 10.1152/jn.00190.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
Command systems integrate sensory information and then activate the interneurons and motor neurons that mediate behavior. Much research has established that the higher-order projection neurons that constitute these systems can play a key role in specifying the nature of the motor activity induced, or determining its parametric features. To a large extent, these insights have been obtained by contrasting activity induced by stimulating one neuron (or set of neurons) to activity induced by stimulating a different neuron (or set of neurons). The focus of our work differs. We study one type of motor program, ingestive feeding in the mollusc Aplysia californica, which can either be triggered when a single projection neuron (CBI-2) is repeatedly stimulated or can be triggered by projection neuron coactivation (e.g., activation of CBI-2 and CBI-3). We ask why this might be an advantageous arrangement. The cellular/molecular mechanisms that configure motor activity are different in the two situations because the released neurotransmitters differ. We focus on an important consequence of this arrangement, the fact that a persistent state can be induced with repeated CBI-2 stimulation that is not necessarily induced by CBI-2/3 coactivation. We show that this difference can have consequences for the ability of the system to switch from one type of activity to another.NEW & NOTEWORTHY We study a type of motor program that can be induced either by stimulating a higher-order projection neuron that induces a persistent state, or by coactivating projection neurons that configure activity but do not produce a state change. We show that when an activity is configured without a state change, it is possible to immediately return to an intermediate state that subsequently can be converted to any type of motor program.
Collapse
Affiliation(s)
- Colin G Evans
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Michael A Barry
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Matthew H Perkins
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Jian Jing
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Klaudiusz R Weiss
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Elizabeth C Cropper
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
5
|
Cellular mechanisms underlying state-dependent neural inhibition with magnetic stimulation. Sci Rep 2022; 12:12131. [PMID: 35840656 PMCID: PMC9287388 DOI: 10.1038/s41598-022-16494-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022] Open
Abstract
Novel stimulation protocols for neuromodulation with magnetic fields are explored in clinical and laboratory settings. Recent evidence suggests that the activation state of the nervous system plays a significant role in the outcome of magnetic stimulation, but the underlying cellular and molecular mechanisms of state-dependency have not been completely investigated. We recently reported that high frequency magnetic stimulation could inhibit neural activity when the neuron was in a low active state. In this paper, we investigate state-dependent neural modulation by applying a magnetic field to single neurons, using the novel micro-coil technology. High frequency magnetic stimulation suppressed single neuron activity in a state-dependent manner. It inhibited neurons in slow-firing states, but spared neurons from fast-firing states, when the same magnetic stimuli were applied. Using a multi-compartment NEURON model, we found that dynamics of voltage-dependent sodium and potassium channels were significantly altered by the magnetic stimulation in the slow-firing neurons, but not in the fast-firing neurons. Variability in neural activity should be monitored and explored to optimize the outcome of magnetic stimulation in basic laboratory research and clinical practice. If selective stimulation can be programmed to match the appropriate neural state, prosthetic implants and brain-machine interfaces can be designed based on these concepts to achieve optimal results.
Collapse
|
6
|
Domacena J, Ruan J, Ye H. Improving suction technology for nerve activity recording. J Neurosci Methods 2022; 365:109401. [PMID: 34728256 DOI: 10.1016/j.jneumeth.2021.109401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/10/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extracellular recording of nerve activities using suction electrodes is an easy yet powerful tool in characterizing neural activities in physiology and pathological conditions. The key factors that determine the quality of suction electrode recordings have not been fully investigated. New Methods: Here, we proposed a biophysical model to study the mechanisms underlying suction technology for axon recording. The model focuses on the interpretation of the recorded single neuron activity based on the location of the electrode, the integrity of the recorded tissue, and the tightness of the suction. To directly test these model predictions, we applied two channel recordings from the nerves in Aplysia californica, and analyzed the shape of the extracellularly recorded single neuron activity under various conditions. RESULTS We found that both the recording site and the integrity of the neural tissue impact the shape of the action potentials traveling along the axon. In practice, the tightness of the suction is the key parameter for high-quality recordings using a suction electrode. Comparison with Existing Methods: Experimental protocols that can improve precise positioning of the electrode tip to the target nerve, avoid tissue damage, enhance suction force, and maintain tightness are essential for high-quality suction recording from axons. Current methods have not emphasized on achieving and maintaining of the suction pressure during experimentation, and have sometimes ignored the impact of suction electrode position or tissue damage to the quality of the recorded neural signal. CONCLUSIONS A combined theoretical analysis and experimental approach is essential in improving neural recording technology. The work provides theoretical and practical guidelines to improve suction technology. This work also provides valuable insights to the improvement of several other extracellular recording technology in laboratory research or clinical settings.
Collapse
Affiliation(s)
- Justin Domacena
- Department of Biology, Loyola University Chicago, Chicago, USA
| | - Joyce Ruan
- Department of Biology, Loyola University Chicago, Chicago, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, USA.
| |
Collapse
|
7
|
Huan Y, Gill JP, Fritzinger JB, Patel PR, Richie JM, Valle ED, Weiland JD, Chestek CA, Chiel HJ. Carbon fiber electrodes for intracellular recording and stimulation. J Neural Eng 2021; 18:10.1088/1741-2552/ac3dd7. [PMID: 34826825 PMCID: PMC10729305 DOI: 10.1088/1741-2552/ac3dd7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/26/2021] [Indexed: 01/18/2023]
Abstract
Objective.To understand neural circuit dynamics, it is critical to manipulate and record many individual neurons. Traditional recording methods, such as glass microelectrodes, can only control a small number of neurons. More recently, devices with high electrode density have been developed, but few of them can be used for intracellular recording or stimulation in intact nervous systems. Carbon fiber electrodes (CFEs) are 8µm-diameter electrodes that can be assembled into dense arrays (pitches ⩾ 80µm). They have good signal-to-noise ratios (SNRs) and provide stable extracellular recordings both acutely and chronically in neural tissuein vivo(e.g. rat motor cortex). The small fiber size suggests that arrays could be used for intracellular stimulation.Approach.We tested CFEs for intracellular stimulation using the large identified and electrically compact neurons of the marine molluskAplysia californica. Neuron cell bodies inAplysiarange from 30µm to over 250µm. We compared the efficacy of CFEs to glass microelectrodes by impaling the same neuron's cell body with both electrodes and connecting them to a DC coupled amplifier.Main results.We observed that intracellular waveforms were essentially identical, but the amplitude and SNR in the CFE were lower than in the glass microelectrode. CFE arrays could record from 3 to 8 neurons simultaneously for many hours, and many of these recordings were intracellular, as shown by simultaneous glass microelectrode recordings. CFEs coated with platinum-iridium could stimulate and had stable impedances over many hours. CFEs not within neurons could record local extracellular activity. Despite the lower SNR, the CFEs could record synaptic potentials. CFEs were less sensitive to mechanical perturbations than glass microelectrodes.Significance.The ability to do stable multi-channel recording while stimulating and recording intracellularly make CFEs a powerful new technology for studying neural circuit dynamics.
Collapse
Affiliation(s)
- Yu Huan
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Jeffrey P Gill
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Johanna B Fritzinger
- Department of Neurosciences, University of Rochester, Rochester, NY, United States of America
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Julianna M Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Elena Della Valle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - James D Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States of America
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America
- Neurosciences Program, University of Michigan, Ann Arbor, MI, United States of America
- Robotics Program, University of Michigan, Ann Arbor, MI, United States of America
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
8
|
Abstract
Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the soma, and was sufficient in blocking the neuron's functional output. Biophysical modeling confirmed that the miniature coil induced a sufficient electric field in the vicinity of the targeted soma. Using a multi-compartment model of Aplysia ganglion neuron, we found that the high-frequency magnetic stimuli altered the ion channel dynamics that were essential for the sustained firing of action potentials in the soma. Results from this study produces several critical insights to further developing the miniature coil technology for neural control by targeting ganglion cells. The miniature coil provides an interesting neural modulation strategy in clinical applications and laboratory research.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Lauryn Barrett
- Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
9
|
Webster-Wood VA, Gill JP, Thomas PJ, Chiel HJ. Control for multifunctionality: bioinspired control based on feeding in Aplysia californica. BIOLOGICAL CYBERNETICS 2020; 114:557-588. [PMID: 33301053 PMCID: PMC8543386 DOI: 10.1007/s00422-020-00851-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Animals exhibit remarkable feats of behavioral flexibility and multifunctional control that remain challenging for robotic systems. The neural and morphological basis of multifunctionality in animals can provide a source of bioinspiration for robotic controllers. However, many existing approaches to modeling biological neural networks rely on computationally expensive models and tend to focus solely on the nervous system, often neglecting the biomechanics of the periphery. As a consequence, while these models are excellent tools for neuroscience, they fail to predict functional behavior in real time, which is a critical capability for robotic control. To meet the need for real-time multifunctional control, we have developed a hybrid Boolean model framework capable of modeling neural bursting activity and simple biomechanics at speeds faster than real time. Using this approach, we present a multifunctional model of Aplysia californica feeding that qualitatively reproduces three key feeding behaviors (biting, swallowing, and rejection), demonstrates behavioral switching in response to external sensory cues, and incorporates both known neural connectivity and a simple bioinspired mechanical model of the feeding apparatus. We demonstrate that the model can be used for formulating testable hypotheses and discuss the implications of this approach for robotic control and neuroscience.
Collapse
Affiliation(s)
- Victoria A Webster-Wood
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
| | - Jeffrey P Gill
- Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
| | - Peter J Thomas
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4901, USA
- Department of Biology, Department of Cognitive Science, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4901, USA
- Department of Electrical Computer and Systems Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4901, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
- Department of Neurosciences, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
- Department of Biomedical Engineering, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
| |
Collapse
|
10
|
Skach J, Conway C, Barrett L, Ye H. Axonal blockage with microscopic magnetic stimulation. Sci Rep 2020; 10:18030. [PMID: 33093520 PMCID: PMC7582966 DOI: 10.1038/s41598-020-74891-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Numerous neurological dysfunctions are characterized by undesirable nerve activity. By providing reversible nerve blockage, electric stimulation with an implanted electrode holds promise in the treatment of these conditions. However, there are several limitations to its application, including poor bio-compatibility and decreased efficacy during chronic implantation. A magnetic coil of miniature size can mitigate some of these problems, by coating it with biocompatible material for chronic implantation. However, it is unknown if miniature coils could be effective in axonal blockage and, if so, what the underlying mechanisms are. Here we demonstrate that a submillimeter magnetic coil can reversibly block action potentials in the unmyelinated axons from the marine mollusk Aplysia californica. Using a multi-compartment model of the Aplysia axon, we demonstrate that the miniature coil causes a significant local depolarization in the axon, alters activation dynamics of the sodium channels, and prevents the traveling of the invading action potentials. With improved biocompatibility and capability of emitting high-frequency stimuli, micro coils provide an interesting alternative for electric blockage of axonal conductance in clinical settings.
Collapse
Affiliation(s)
- Jordan Skach
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Catherine Conway
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Lauryn Barrett
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, IL, USA. .,Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| |
Collapse
|
11
|
Gill JP, Chiel HJ. Rapid Adaptation to Changing Mechanical Load by Ordered Recruitment of Identified Motor Neurons. eNeuro 2020; 7:ENEURO.0016-20.2020. [PMID: 32332081 PMCID: PMC7242813 DOI: 10.1523/eneuro.0016-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
As they interact with their environment and encounter challenges, animals adjust their behavior on a moment-to-moment basis to maintain task fitness. This dynamic process of adaptive motor control occurs in the nervous system, but an understanding of the biomechanics of the body is essential to properly interpret the behavioral outcomes. To study how animals respond to changing task conditions, we used a model system in which the functional roles of identified neurons and the relevant biomechanics are well understood and can be studied in intact behaving animals: feeding in the marine mollusc Aplysia We monitored the motor neuronal output of the feeding circuitry as intact animals fed on uniform food stimuli under unloaded and loaded conditions, and we measured the force of retraction during loaded swallows. We observed a previously undescribed pattern of force generation, which can be explained within the appropriate biomechanical context by the activity of just a few key, identified motor neurons. We show that, when encountering load, animals recruit identified retractor muscle motor neurons for longer and at higher frequency to increase retraction force duration. Our results identify a mode by which animals robustly adjust behavior to their environment, which is experimentally tractable to further mechanistic investigation.
Collapse
Affiliation(s)
- Jeffrey P Gill
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080
| | - Hillel J Chiel
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7080
| |
Collapse
|
12
|
McManus JM, Chiel HJ, Susswein AJ. Successful and unsuccessful attempts to swallow in a reduced Aplysia preparation regulate feeding responses and produce memory at different neural sites. ACTA ACUST UNITED AC 2019; 26:151-165. [PMID: 30992384 PMCID: PMC6478246 DOI: 10.1101/lm.048983.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/12/2019] [Indexed: 01/26/2023]
Abstract
Sensory feedback shapes ongoing behavior and may produce learning and memory. Motor responses to edible or inedible food in a reduced Aplysia preparation were examined to test how sensory feedback affects behavior and memory. Feeding patterns were initiated by applying a cholinomimetic onto the cerebral ganglion. Feedback from buccal muscles increased the response variability and response rate. Repeated application of the cholinomimetic caused decreased responses, expressed in part by lengthening protractions. Swallowing strips of "edible" food, which in intact animals induces learning that enhances ingestion, increased the response rate, and shortened the protraction length, reflecting more swallowing. Testing memory by repeating the procedure prevented the decrease in response rate observed with the cholinomimetic alone, and shortened protractions. Training with "inedible" food that in intact animals produces learning expressed by decreased responses caused lengthened protractions. Testing memory by repeating the procedure did not cause decreased responses or lengthened protractions. After training and testing with edible or inedible food, all preparations were exposed to the cholinomimetic alone. Preparations previously trained with edible food displayed memory expressed as decreased protraction length. Preparations previously trained with inedible food showed decreases in many response parameters. Memory for inedible food may arise in part via a postsynaptic decrease in response to acetylcholine released by afferents sensing food. The lack of change in response number, and in the time that responses are maintained during the two training sessions preceding application of the cholinomimetic alone suggests that memory expression may differ from behavioral changes during training.
Collapse
Affiliation(s)
- Jeffrey M McManus
- Departments of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Hillel J Chiel
- Departments of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA.,Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA.,Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Abraham J Susswein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel.,The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
13
|
Weisz HA, Wainwright ML, Mozzachiodi R. A novel in vitro analog expressing learning-induced cellular correlates in distinct neural circuits. ACTA ACUST UNITED AC 2017; 24:331-340. [PMID: 28716953 PMCID: PMC5516688 DOI: 10.1101/lm.045229.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/12/2017] [Indexed: 01/29/2023]
Abstract
When presented with noxious stimuli, Aplysia exhibits concurrent sensitization of defensive responses, such as the tail-induced siphon withdrawal reflex (TSWR) and suppression of feeding. At the cellular level, sensitization of the TSWR is accompanied by an increase in the excitability of the tail sensory neurons (TSNs) that elicit the reflex, whereas feeding suppression is accompanied by decreased excitability of B51, a decision-making neuron in the feeding neural circuit. The goal of this study was to develop an in vitro analog coexpressing the above cellular correlates. We used a reduced preparation consisting of buccal, cerebral, and pleural-pedal ganglia, which contain the neural circuits controlling feeding and the TSWR, respectively. Sensitizing stimuli were delivered in vitro by electrical stimulation of afferent nerves. When trained with sensitizing stimuli, the in vitro analog expressed concomitant increased excitability in TSNs and decreased excitability in B51, which are consistent with the occurrence of sensitization and feeding suppression induced by in vivo training. This in vitro analog expressed both short-term (15 min) and long-term (24 h) excitability changes in TSNs and B51, depending on the amount of training administered. Finally, in vitro application of serotonin increased TSN excitability without altering B51 excitability, mirroring the in vivo application of the monoamine that induces sensitization, but not feeding suppression.
Collapse
Affiliation(s)
- Harris A Weisz
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Marcy L Wainwright
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Riccardo Mozzachiodi
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| |
Collapse
|
14
|
Preparing the periphery for a subsequent behavior: motor neuronal activity during biting generates little force but prepares a retractor muscle to generate larger forces during swallowing in Aplysia. J Neurosci 2015; 35:5051-66. [PMID: 25810534 DOI: 10.1523/jneurosci.0614-14.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Some behaviors occur in obligatory sequence, such as reaching before grasping an object. Can the earlier behavior serve to prepare the musculature for the later behavior? If it does, what is the underlying neural mechanism of the preparation? To address this question, we examined two feeding behaviors in the marine mollusk Aplysia californica, one of which must precede the second: biting and swallowing. Biting is an attempt to grasp food. When that attempt is successful, the animal immediately switches to swallowing to ingest food. The main muscle responsible for pulling food into the buccal cavity during swallowing is the I3 muscle, whose motor neurons B6, B9, and B3 have been previously identified. By performing recordings from these neurons in vivo in intact, behaving animals or in vitro in a suspended buccal mass preparation, we demonstrated that the frequencies and durations of these motor neurons increased from biting to swallowing. Using the physiological patterns of activation to drive these neurons intracellularly, we further demonstrated that activating them using biting-like frequencies and durations, either alone or in combination, generated little or no force in the I3 muscle. When biting-like patterns preceded swallowing-like patterns, however, the forces during the subsequent swallowing-like patterns were significantly enhanced. Sequences of swallowing-like patterns, either with these neurons alone or in combination, further enhanced forces in the I3 muscle. These results suggest a novel mechanism for enhancing force production in a muscle, and may be relevant to understanding motor control in vertebrates.
Collapse
|
15
|
Cullins MJ, Shaw KM, Gill JP, Chiel HJ. Motor neuronal activity varies least among individuals when it matters most for behavior. J Neurophysiol 2014; 113:981-1000. [PMID: 25411463 DOI: 10.1152/jn.00729.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
How does motor neuronal variability affect behavior? To explore this question, we quantified activity of multiple individual identified motor neurons mediating biting and swallowing in intact, behaving Aplysia californica by recording from the protractor muscle and the three nerves containing the majority of motor neurons controlling the feeding musculature. We measured multiple motor components: duration of the activity of identified motor neurons as well as their relative timing. At the same time, we measured behavioral efficacy: amplitude of grasping movement during biting and amplitude of net inward food movement during swallowing. We observed that the total duration of the behaviors varied: Within animals, biting duration shortened from the first to the second and third bites; between animals, biting and swallowing durations varied. To study other sources of variation, motor components were divided by behavior duration (i.e., normalized). Even after normalization, distributions of motor component durations could distinguish animals as unique individuals. However, the degree to which a motor component varied among individuals depended on the role of that motor component in a behavior. Motor neuronal activity that was essential for the expression of biting or swallowing was similar among animals, whereas motor neuronal activity that was not essential for that behavior varied more from individual to individual. These results suggest that motor neuronal activity that matters most for the expression of a particular behavior may vary least from individual to individual. Shaping individual variability to ensure behavioral efficacy may be a general principle for the operation of motor systems.
Collapse
Affiliation(s)
- Miranda J Cullins
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Kendrick M Shaw
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jeffrey P Gill
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Hillel J Chiel
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
16
|
McManus JM, Lu H, Cullins MJ, Chiel HJ. Differential activation of an identified motor neuron and neuromodulation provide Aplysia's retractor muscle an additional function. J Neurophysiol 2014; 112:778-91. [PMID: 24805081 DOI: 10.1152/jn.00148.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a pool of identified neurons that activate different muscle regions. One I3 motor neuron, B38, is active in the protraction phase, rather than the retraction phase, suggesting the muscle has an additional function. We used intracellular, extracellular, and muscle force recordings in several in vitro preparations as well as recordings of nerve and muscle activity from intact, behaving animals to characterize B38's activation of the muscle and its activity in different behavior types. We show that B38 specifically activates the anterior region of I3 and is specifically recruited during one behavior, swallowing. The function of this protraction-phase jaw muscle contraction is to hold food; thus the I3 muscle has an additional function beyond mediating retraction. We additionally show that B38's typical activity during in vivo swallowing is insufficient to generate force in an unmodulated muscle and that intrinsic and extrinsic modulation shift the force-frequency relationship to allow contraction. Using methods that traverse levels from individual neuron to muscle to intact animal, we show how regional muscle activation, differential motor neuron recruitment, and neuromodulation are key components in Aplysia's generation of multifunctionality.
Collapse
Affiliation(s)
- Jeffrey M McManus
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Hui Lu
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Miranda J Cullins
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland, Ohio; Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio; and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
17
|
Duke AR, Jenkins MW, Lu H, McManus JM, Chiel HJ, Jansen ED. Transient and selective suppression of neural activity with infrared light. Sci Rep 2014; 3:2600. [PMID: 24009039 PMCID: PMC3764437 DOI: 10.1038/srep02600] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/19/2013] [Indexed: 11/09/2022] Open
Abstract
Analysis and control of neural circuitry requires the ability to selectively activate or inhibit neurons. Previous work showed that infrared laser light selectively excited neural activity in endogenous unmyelinated and myelinated axons. However, inhibition of neuronal firing with infrared light was only observed in limited cases, is not well understood and was not precisely controlled. Using an experimentally tractable unmyelinated preparation for detailed investigation and a myelinated preparation for validation, we report that it is possible to selectively and transiently inhibit electrically-initiated axonal activation, as well as to both block or enhance the propagation of action potentials of specific motor neurons. Thus, in addition to previously shown excitation, we demonstrate an optical method of suppressing components of the nervous system with functional spatiotemporal precision. We believe this technique is well-suited for non-invasive investigations of diverse excitable tissues and may ultimately be applied for treating neurological disorders.
Collapse
Affiliation(s)
- Austin R Duke
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lu H, McManus JM, Chiel HJ. Extracellularly identifying motor neurons for a muscle motor pool in Aplysia californica. J Vis Exp 2013. [PMID: 23568081 DOI: 10.3791/50189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation or in vivo. This process can also be applied in other motor pools in Aplysia or in other animal systems.
Collapse
Affiliation(s)
- Hui Lu
- Department of Biology, Case Western Reserve University, USA
| | | | | |
Collapse
|
19
|
McManus JM, Lu H, Chiel HJ. An in vitro preparation for eliciting and recording feeding motor programs with physiological movements in Aplysia californica. J Vis Exp 2012:e4320. [PMID: 23242322 DOI: 10.3791/4320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Multifunctionality, the ability of one peripheral structure to generate multiple, distinct behaviors(1), allows animals to rapidly adapt their behaviors to changing environments. The marine mollusk Aplysia californica provides a tractable system for the study of multifunctionality. During feeding, Aplysia generates several distinct types of behaviors using the same feeding apparatus, the buccal mass. The ganglia that control these behaviors contain a number of large, identified neurons that are accessible to electrophysiological study. The activity of these neurons has been described in motor programs that can be divided into two types, ingestive and egestive programs, based on the timing of neural activity that closes the food grasper relative to the neural activity that protracts or retracts the grasper(2). However, in isolated ganglia, the muscle movements that would produce these behaviors are absent, making it harder to be certain whether the motor programs observed are correlates of real behaviors. In vivo, nerve and muscle recordings have been obtained corresponding to feeding programs(2,3,4), but it is very difficult to directly record from individual neurons(5). Additionally, in vivo, ingestive programs can be further divided into bites and swallows(1,2), a distinction that is difficult to make in most previously described in vitro preparations. The suspended buccal mass preparation (Figure 1) bridges the gap between isolated ganglia and intact animals. In this preparation, ingestive behaviors - including both biting and swallowing - and egestive behaviors (rejection) can be elicited, at the same time as individual neurons can be recorded from and stimulated using extracellular electrodes(6). The feeding movements associated with these different behaviors can be recorded, quantified, and related directly to the motor programs. The motor programs in the suspended buccal mass preparation appear to be more similar to those observed in vivo than are motor programs elicited in isolated ganglia. Thus, the motor programs in this preparation can be more directly related to in vivo behavior; at the same time, individual neurons are more accessible to recording and stimulation than in intact animals. Additionally, as an intermediate step between isolated ganglia and intact animals, findings from the suspended buccal mass can aid in interpretation of data obtained in both more reduced and more intact settings. The suspended buccal mass preparation is a useful tool for characterizing the neural control of multifunctionality in Aplysia.
Collapse
|
20
|
Levitan D, Saada-Madar R, Teplinsky A, Susswein AJ. Localization of molecular correlates of memory consolidation to buccal ganglia mechanoafferent neurons after learning that food is inedible in Aplysia. Learn Mem 2012; 19:503-12. [DOI: 10.1101/lm.026393.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Cullins MJ, Chiel HJ. Electrode fabrication and implantation in Aplysia californica for multi-channel neural and muscular recordings in intact, freely behaving animals. J Vis Exp 2010:1791. [PMID: 20543773 DOI: 10.3791/1791] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Recording from key nerves and muscles of Aplysia during feeding behavior allows us to study the patterns of neural control in an intact animal. Simultaneously recording from multiple nerves and muscles gives us precise information about the timing of neural activity. Previous recording methods have worked for two electrodes, but the study of additional nerves or muscles required combining and averaging the recordings of multiple animals, which made it difficult to determine fine details of timing and phasing, because of variability from response to response, and from animal to animal. Implanting four individual electrodes has a very low success rate due to the formation of adhesions that prevent animals from performing normal feeding movements. We developed a new method of electrode fabrication that reduces the bulk of the electrodes inside the animal allowing for normal feeding movements. Using a combination of glues to attach the electrodes results in a more reliable insulation of the electrode which lasts longer, making it possible to record for periods as long as a week. The fabrication technique that we describe could be extended to incorporate several additional electrodes, and would be applicable to vertebrate animals.
Collapse
|
22
|
Distinct mechanisms produce functionally complementary actions of neuropeptides that are structurally related but derived from different precursors. J Neurosci 2010; 30:131-47. [PMID: 20053896 DOI: 10.1523/jneurosci.3282-09.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many bioactive neuropeptides containing RFamide at their C terminus have been described in both invertebrates and vertebrates. To obtain insight into the functional logic of RFamide signaling, we investigate it here in the feeding system of Aplysia. We focus on the expression, localization, and actions of two families of RFamide peptides, the FRFamides and FMRFamide, in the central neuronal circuitry and the peripheral musculature that generate the feeding movements. We describe the cloning of the FRFamide precursor protein and show that the FRFamides and FMRFamide are derived from different precursors. We map the expression of the FRFamide and FMRFamide precursors in the feeding circuitry using in situ hybridization and immunostaining and confirm proteolytic processing of the FRFamide precursor by mass spectrometry. We show that the two precursors are expressed in different populations of sensory neurons in the feeding system. In a representative feeding muscle, we demonstrate the presence of both FRFamides and FMRFamide and their release, probably from the processes of the sensory neurons in the muscle. Both centrally and in the periphery, the FRFamides and FMRFamide act in distinct ways, apparently through distinct mechanisms, and nevertheless, from an overall functional perspective, their actions are complementary. Together, the FRFamides and FMRFamide convert feeding motor programs from ingestive to egestive and depress feeding muscle contractions. We conclude that these structurally related peptides, although derived from different precursors, expressed in different neurons, and acting through different mechanisms, remain related to each other in the functional roles that they play in the system.
Collapse
|
23
|
Lu H, Chestek CA, Shaw KM, Chiel HJ. Selective extracellular stimulation of individual neurons in ganglia. J Neural Eng 2008; 5:287-309. [PMID: 18714126 DOI: 10.1088/1741-2560/5/3/003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Selective control of individual neurons could clarify neural functions and aid disease treatments. To target specific neurons, it may be useful to focus on ganglionic neuron clusters, which are found in the peripheral nervous system in vertebrates. Because neuron cell bodies are found primarily near the surface of invertebrate ganglia, and often found near the surface of vertebrate ganglia, we developed a technique for controlling individual neurons extracellularly using the buccal ganglia of the marine mollusc Aplysia californica as a model system. We experimentally demonstrated that anodic currents can selectively activate an individual neuron and cathodic currents can selectively inhibit an individual neuron using this technique. To define spatial specificity, we studied the minimum currents required for stimulation, and to define temporal specificity, we controlled firing frequencies up to 45 Hz. To understand the mechanisms of spatial and temporal specificity, we created models using the NEURON software package. To broadly predict the spatial specificity of arbitrary neurons in any ganglion sharing similar geometry, we created a steady-state analytical model. A NEURON model based on cat spinal motor neurons showed responses to extracellular stimulation qualitatively similar to those of the Aplysia NEURON model, suggesting that this technique could be widely applicable to vertebrate and human peripheral ganglia having similar geometry.
Collapse
Affiliation(s)
- Hui Lu
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
24
|
Neustadter DM, Herman RL, Drushel RF, Chestek DW, Chiel HJ. The kinematics of multifunctionality: comparisons of biting and swallowing in Aplysia californica. ACTA ACUST UNITED AC 2007; 210:238-60. [PMID: 17210961 DOI: 10.1242/jeb.02654] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
What are the mechanisms of multifunctionality, i.e. the use of the same peripheral structures for multiple behaviors? We studied this question using the multifunctional feeding apparatus of the marine mollusk Aplysia californica, in which the same muscles mediate biting (an attempt to grasp food) and swallowing (ingestion of food). Biting and swallowing responses were compared using magnetic resonance imaging of intact, behaving animals and a three-dimensional kinematic model. Biting is associated with larger amplitude protractions of the grasper (radula/odontophore) than swallowing, and smaller retractions. Larger biting protractions than in swallowing appear to be due to a more anterior position of the grasper as the behavior begins, a larger amplitude contraction of protractor muscle I2, and contraction of the posterior portion of the I1/I3/jaw complex. The posterior I1/I3/jaw complex may be context-dependent, i.e. its mechanical context changes the direction of the force it exerts. Thus, the posterior of I1/I3 may aid protraction near the peak of biting, whereas the entire I1/I3/jaw complex acts as a retractor during swallowing. In addition, larger amplitude closure of the grasper during swallowing allows an animal to exert more force as it ingests food. These results demonstrate that differential deployment of the periphery can mediate multifunctionality.
Collapse
Affiliation(s)
- David M Neustadter
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
25
|
Ye H, Morton DW, Chiel HJ. Neuromechanics of multifunctionality during rejection in Aplysia californica. J Neurosci 2006; 26:10743-55. [PMID: 17050713 PMCID: PMC6674742 DOI: 10.1523/jneurosci.3143-06.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
How are the same muscles and neurons used to generate qualitatively different behaviors? We studied this question by analyzing the biomechanical and neural mechanisms of rejection responses in the marine mollusk Aplysia californica and compared these mechanisms with those used to generate swallowing responses (Ye et al., 2006). During rejection, the central grasper of the feeding structure closes to push inedible food out of the buccal cavity. This contrasts with swallowing, during which the grasper is open as it moves toward the jaws (protracts). We examined how the shape change of the grasper during rejection mechanically reconfigured the surrounding musculature. Grasper shape change increased the effectiveness of protractor muscle I2. The closed grasper alters the function of another muscle, the hinge, which becomes capable of inducing ventral rotations of rejected material. In contrast, during large-amplitude swallows, the hinge muscle mediates dorsal rotations of ingested material. Finally, after the grasper opens, its change in shape induces a delay in the activation of other surrounding muscles, the I1/I3/jaw complex, whose premature activation would close the halves of the grasper and induce it to pull inedible material back inward. The delay in activation of the I1/I3/jaw complex is partially attributable to identified multiaction neurons B4/B5. The results suggest that multifunctionality emerges from a periphery in which flexible coalitions of muscles may perform different functions in different mechanical contexts and in which neural circuitry is capable of reorganizing to exploit these coalitions by changes in phasing, duration, and intensity of motor neuronal activation.
Collapse
Affiliation(s)
- Hui Ye
- Departments of Biomedical Engineering
| | | | - Hillel J. Chiel
- Departments of Biomedical Engineering
- Neurosciences, and
- Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080
| |
Collapse
|
26
|
Abstract
Bernstein (1967) hypothesized that preparation of the periphery was crucial for correct responses to motor output. To test this hypothesis in a behaving animal, we examined the roles of two identified motor neurons, B7 and B8, which contribute to feeding behavior in the marine mollusk Aplysia californica. Neuron B7 innervates a hinge muscle and has no overt behavioral effect during smaller-amplitude (type A) swallows, because the hinge muscle is too short to exert force. Neuron B8 activates a muscle (I4) that acts solely to grasp material during type A swallows. During larger-amplitude (type B) swallows, the behavioral actions of both motor neurons change, because the larger-amplitude anterior movement of the grasper sets up the periphery to respond differently to motor outputs. The larger anterior movement stretches the hinge muscle, so that activating neuron B7 mediates the initial retraction phase of swallowing. The changed position of the I4 muscle allows neuron B8 not only to induce grasping but also to pull material into the buccal cavity, contributing to retraction. Thus, larger-amplitude swallows are associated with the expression of two new degrees of freedom (use of the hinge to retract and use of the grasper to retract) that are essential for mediating type B swallows. These results provide a direct demonstration of Bernstein's hypothesis that properly positioning the periphery can be crucial for its ability to correctly respond to motor output and also demonstrate that biomechanical context can alter the functions of identified motor neurons.
Collapse
|
27
|
Zhurov Y, Proekt A, Weiss KR, Brezina V. Changes of internal state are expressed in coherent shifts of neuromuscular activity in Aplysia feeding behavior. J Neurosci 2005; 25:1268-80. [PMID: 15689565 PMCID: PMC6725969 DOI: 10.1523/jneurosci.3361-04.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The multitasking central pattern generator (CPG) that drives consummatory feeding behaviors of Aplysia can produce ingestive, egestive, and intermediate motor programs. External stimuli trigger the programs but, remarkably, do not directly specify which type of program is produced. Rather, recent work has proposed, the type of program is determined by the internal network state of the CPG that has developed in response to the previous history of the stimulation. Here we have tested a key prediction of this network-state hypothesis. If the network state has a real existence and governs real functional behavior, changes in the state should be seen as coherent, coordinated changes along many dimensions of interneuron and motor neuron activity, muscle contraction, and ultimately movement, that underlie functional behavior. In reduced neuromuscular preparations, we elicited repetitive motor programs by continued stimulation of the esophageal nerve while recording the firing of motor neurons B8, B15, B16, B4/5, and B48, and contractions of the accessory radula closer and I7-I10 muscles that respectively close and open the animal's food-grasping organ, the radula. Using sonomicrometric techniques, we similarly recorded the movement of the radula in the complete buccal mass. Successive esophageal nerve programs indeed exhibited clear progressive changes in motor neuron firing, muscle contractions, and the phasing of radula movements within each cycle, from an initially intermediate or even ingestive character to a strongly egestive character. We conclude that the Aplysia feeding CPG really has a coherent internal network state whose dynamics are likely to be reflected in the real behavior of the animal.
Collapse
Affiliation(s)
- Yuriy Zhurov
- Department of Physiology and Biophysics and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
28
|
Zhurov Y, Weiss KR, Brezina V. Tight or loose coupling between components of the feeding neuromusculature of Aplysia? J Neurophysiol 2005; 94:531-49. [PMID: 15917315 DOI: 10.1152/jn.01338.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Like other complex behaviors, the cyclical, rhythmic consummatory feeding behaviors of Aplysia-biting, swallowing, and rejection of unsuitable food-are produced by a complex neuromuscular system: the animal's buccal mass, with numerous pairs of antagonistic muscles, controlled by the firing of numerous motor neurons, all driven by the motor programs of a central pattern generator (CPG) in the buccal ganglia. In such a complex neuromuscular system, it has always been assumed that the activities of the various components must necessarily be tightly coupled and coordinated if successful functional behavior is to be produced. However, we have recently found that the CPG generates extremely variable motor programs from one cycle to the next, and so very variable motor neuron firing patterns and contractions of individual muscles. Here we show that this variability extends even to higher-level parameters of the operation of the neuromuscular system such as the coordination between entire antagonistic subsystems within the buccal neuromusculature. In motor programs elicited by stimulation of the esophageal nerve, we have studied the relationship between the contractions of the accessory radula closer (ARC) muscle, and the firing patterns of its motor neurons B15 and B16, with those of its antagonist, the radula opener (I7) muscle, and its motor neuron B48. There are two separate B15/B16-ARC subsystems, one on each side of the animal, and these are indeed very tightly coupled. Tight coupling can, therefore, be achieved in this neuromuscular system where required. Yet there is essentially no coupling at all between the contractions of the ARC muscles and those of the antagonistic radula opener muscle. We interpret this result in terms of a hypothesis that ascribes a higher-order benefit to such loose coupling in the neuromusculature. The variability, emerging in the successive feeding movements made by the animal, diversifies the range of movements and thereby implements a trial-and-error search through the space of movements that might be successful, an optimal strategy for the animal in an unknown, rapidly changing feeding environment.
Collapse
Affiliation(s)
- Yuriy Zhurov
- Department of Physiology and Biophysics, Box 1218, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, New York 10029, USA
| | | | | |
Collapse
|
29
|
Mozzachiodi R, Lechner HA, Baxter DA, Byrne JH. In vitro analog of classical conditioning of feeding behavior in aplysia. Learn Mem 2004; 10:478-94. [PMID: 14657259 PMCID: PMC305463 DOI: 10.1101/lm.65303] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The feeding behavior of Aplysia californica can be classically conditioned using tactile stimulation of the lips as a conditioned stimulus (CS) and food as an unconditioned stimulus (US). Moreover, several neural correlates of classical conditioning have been identified. The present study extended previous work by developing an in vitro analog of classical conditioning and by investigating pairing-specific changes in neuronal and synaptic properties. The preparation consisted of the isolated cerebral and buccal ganglia. Electrical stimulation of a lip nerve (AT4) and a branch of the esophageal nerve (En2) served as the CS and US, respectively. Three protocols were used: paired, unpaired, and US alone. Only the paired protocol produced a significant increase in CS-evoked fictive feeding. At the cellular level, classical conditioning enhanced the magnitude of the CS-evoked synaptic input to pattern-initiating neuron B31/32. In addition, paired training enhanced both the magnitude of the CS-evoked synaptic input and the CS-evoked spike activity in command-like neuron CBI-2. The in vitro analog of classical conditioning reproduced all of the cellular changes that previously were identified following behavioral conditioning and has led to the identification of several new learning-related neural changes. In addition, the pairing-specific enhancement of the CS response in CBI-2 indicates that some aspects of associative plasticity may occur at the level of the cerebral sensory neurons.
Collapse
Affiliation(s)
- Riccardo Mozzachiodi
- W.M. Keck Center for Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
30
|
Evans CG, Jing J, Proekt A, Rosen SC, Cropper EC. Frequency-Dependent Regulation of Afferent Transmission in the Feeding Circuitry of Aplysia. J Neurophysiol 2003; 90:3967-77. [PMID: 14507990 DOI: 10.1152/jn.00786.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During rhythmic behaviors, sensori-motor transmission is often regulated so that there are phasic changes in afferent input to follower neurons. We study this type of regulation in the feeding circuit of Aplysia. We characterize effects of the B4/5 interneurons on transmission from the mechanoafferent B21 to the radula closer motor neuron B8. In quiescent preparations, B4/5-induced postsynaptic potentials (PSPs) can block spike propagation in the lateral process of B21 and inhibit afferent transmission. B4/5 are, however, active during the retraction phase of motor programs, i.e., when mechanoafferent transmission to B8 presumably occurs. To determine whether mechanoafferent transmission is necessarily inhibited when B4/5 are active, we characterize the B4/5 firing frequency during retraction and show that, for the most part, it is low (below 15 Hz). There is, therefore, a low probability that spike propagation will be inhibited. The relative ineffectiveness of low frequency activity is not simply a consequence of insufficient PSP magnitude, because a single PSP can block spike propagation. Instead, it is related to the fact that PSPs have a short duration. When B4/5 fire at a low frequency, there is therefore a low probability that afferent transmission in the lateral process of B21 can be inhibited. In conclusion, we demonstrate that afferent transmission will not always be affected when a neuron that exerts inhibitory effects is active. Although a cell may be ineffective when it fires at a low frequency, ineffectiveness is not necessarily a consequence of spike frequency per se. Instead it may be due to spike timing.
Collapse
Affiliation(s)
- Colin G Evans
- Department of Physiology and Biophysics, Mt. Sinai School of Medicine, New York, 10029, USA
| | | | | | | | | |
Collapse
|
31
|
Neustadter DM, Drushel RF, Crago PE, Adams BW, Chiel HJ. A kinematic model of swallowing inAplysia californicabased on radula/odontophore kinematics andin vivomagnetic resonance images. J Exp Biol 2002; 205:3177-206. [PMID: 12235197 DOI: 10.1242/jeb.205.20.3177] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYA kinematic model of the buccal mass of Aplysia californica during swallowing has been developed that incorporates the kinematics of the odontophore, the muscular structure that underlies the pincer-like grasping structure, the radula. The model is based on real-time magnetic resonance images (MRIs) of the mid-sagittal cross section of the buccal mass during swallowing. Using kinematic relationships derived from isolated odontophores induced to perform feeding-like movements, the model generates predictions about movement of the buccal mass in the medio-lateral dimension during the feeding cycle that are well-matched to corresponding coronal MRIs of the buccal mass during swallowing. The model successfully reproduces changes in the lengths of the intrinsic (I) buccal muscles I2 and I3 measured experimentally. The model predicts changes in the length of the radular opener muscle I7 throughout the swallowing cycle, generates hypotheses about the muscular basis of radular opening prior to the onset of forward rotation during swallowing and suggests possible context-dependent functions for the I7 muscle, the radular stalk and the I5 (ARC) muscle during radular opening and closing.
Collapse
Affiliation(s)
- David M Neustadter
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | | | | | | | | |
Collapse
|
32
|
Morgan PT, Jing J, Vilim FS, Weiss KR. Interneuronal and peptidergic control of motor pattern switching in Aplysia. J Neurophysiol 2002; 87:49-61. [PMID: 11784729 DOI: 10.1152/jn.00438.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been proposed that a choice of specific behaviors can be mediated either by activation of behavior-specific higher order neurons or by distinct combinations of such neurons in different behaviors. We examined the role that two higher order neurons, CBI-2 and CBI-3, play in the selection of motor programs that correspond to ingestion and egestion, two stimulus-dependent behaviors that are generated by a single central pattern generator (CPG) of Aplysia. We found that CBI-2 could evoke either ingestive, egestive, or ambiguous motor programs depending on the regime of stimulation. When CBI-2 recruited CBI-3 firing via electrical coupling, the motor program tended to be ingestive. In the absence of CBI-3 activation, the program was usually egestive. When CBI-2 was stimulated to produce ingestive programs, hyperpolarization of CBI-3 converted the programs to egestive or ambiguous. When CBI-2 was stimulated to produce egestive or ambiguous programs, co-stimulation of CBI-3 converted them into ingestive. These findings are consistent with the idea that combinatorial commands are responsible for the choice of specific behaviors. Additional support for this view comes from the observations that appropriate stimulus conditions exist both for activation of CBI-2 together with CBI-3, and for activation of CBI-2 without a concomitant activation of CBI-3. The ability of CBI-3 to convert egestive and ambiguous programs into ingestive ones was mimicked by application of APGWamide, a neuropeptide that we have detected in CBI-3 by immunostaining. Thus combinatorial actions of higher order neurons that underlie pattern selection may involve the use of modulators released by specific higher order neurons.
Collapse
Affiliation(s)
- Peter T Morgan
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
33
|
The enterins: a novel family of neuropeptides isolated from the enteric nervous system and CNS of Aplysia. J Neurosci 2001. [PMID: 11588196 DOI: 10.1523/jneurosci.21-20-08247.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To identify neuropeptides that have a broad spectrum of actions on the feeding system of Aplysia, we searched for bioactive peptides that are present in both the gut and the CNS. We identified a family of structurally related nonapeptides and decapeptides (enterins) that are present in the gut and CNS of Aplysia, and most of which share the HSFVamide sequence at the C terminus. The structure of the enterin precursor deduced from cDNA cloning predicts 35 copies of 20 different enterins. Northern analysis, in situ hybridization, and immunocytochemistry show that the enterins are abundantly present in the CNS and the gut of Aplysia. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry we characterized the enterin-precursor processing, demonstrated that all of the precursor-predicted enterins are present, and determined post-translational modifications of various enterins. Enterin-positive neuronal somata and processes were found in the gut, and enterins inhibited contractions of the gut. In the CNS, the cerebral and buccal ganglia, which control feeding, contained the enterins. Enterin was also present in the nerve that connects these two ganglia. Enterins reduced the firing of interneurons B4/5 during feeding motor programs. Such enterin-induced reduction of firing also occurred when excitability of B4/5 was tested directly. Because reduction of B4/5 activity corresponds to a switch from egestive to ingestive behaviors, enterin may contribute to such program switching. Furthermore, because enterins are present throughout the nervous system, they may also play a regulatory role in nonfeeding behaviors of Aplysia.
Collapse
|
34
|
Abstract
The Aplysia multifunctional feeding central pattern generator (CPG) produces at least two types of motor programs, ingestion and egestion, that involve two sets of radula movements, protraction-retraction and opening-closing movements. In ingestion, the radula closes during retraction to pull food in, whereas in egestion, the radula closes during protraction to push inedible objects out. Thus, radula closure shifts the phase in which it occurs with respect to protraction-retraction in the two programs. To identify the central switching mechanisms, we compared activity of CPG neurons during the two types of motor programs elicited by a higher-order interneuron, cerebral-buccal interneuron-2 (CBI-2). Although CPG elements (B63, B34, and B64) that mediate the protraction-retraction sequence are active in both programs, two other CPG elements, B20 and B4/5, are preferentially active in egestive programs and play a major role in mediating CBI-2-elicited egestive programs. Both B20 and B4/5 control the phasing of radula closure motoneurons (B8 and B16) to ensure that, in egestive programs, these motoneurons fire and produce radula-closing movements only during protraction. Elsewhere, another higher-order interneuron, CBI-3, was shown to convert CBI-2-elicited egestion to ingestion. We show that CBI-3 switches the programs by suppressing the activity of B20 and B4/5. CBI-3, active only during protraction, accomplishes this through fast inhibition of B20 during protraction and slow inhibition of B4/5 during retraction. The slow inhibition is mimicked and occluded by APGWamide, a neuropeptide contained in CBI-3. Thus, fast conventional and slow peptidergic transmissions originating from the same interneuron act in concert to meet specific temporal requirements in pattern switching.
Collapse
|
35
|
Abstract
Feeding behavior in Aplysia californica can be classically conditioned using tactile stimulation of the lips as conditional stimulus (CS) and food as unconditional stimulus (US) [ (companion paper)]. Conditioning resulted in an increase in the number of CS-evoked bites that persisted for at least 24 hr after training. In this study, neurophysiological correlates of classical conditioning training were identified and characterized in an in vitro preparation of the cerebral and buccal ganglia. Stimulation of a lip nerve (AT(4)), which mediates mechanosensory information, resulted in a greater number of buccal motor patterns (BMPs) in ganglia isolated from animals that had received paired training than in ganglia from control animals. The majority of the evoked BMPs were classified as ingestion-like patterns. Intracellular recordings from pattern-initiating neuron B31/32 revealed that stimulation of AT(4) evoked greater excitatory input in B31/32 in preparations from animals that had received paired training than from control animals. In contrast, excitatory input to buccal neuron B4/5 in response to stimulation of AT(4) was not significantly increased by paired training. Moreover, correlates of classical conditioning were specific to stimulation of AT(4). The number of spontaneously occurring BMPs and the intrinsic properties of two buccal neurons (B4/5 and B31/32) did not differ between groups. These results suggest that appetitive classical conditioning of feeding resulted in the pairing-specific strengthening of the polysynaptic pathway between afferent fibers and pattern-initiating neurons of the buccal central pattern generator.
Collapse
|
36
|
Rosen SC, Miller MW, Evans CG, Cropper EC, Kupfermann I. Diverse synaptic connections between peptidergic radula mechanoafferent neurons and neurons in the feeding system of Aplysia. J Neurophysiol 2000; 83:1605-20. [PMID: 10712483 DOI: 10.1152/jn.2000.83.3.1605] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The buccal ganglion of Aplysia contains a heterogeneous population of peptidergic, radula mechanoafferent (RM) neurons. To investigate their function, two of the larger RM cells (B21, B22) were identified by morphological and electrophysiological criteria. Both are low-threshold, rapidly adapting, mechanoafferent neurons that responded to touch of the radula, the structure that grasps food during ingestive and egestive feeding movements. Sensory responses of the cells consisted of spike bursts at frequencies of 8-35 Hz. Each cell was found to make chemical, electrical, or combined synapses with other sensory neurons, motor neurons and interneurons involved in radula closure and/or protraction-retraction movements of the odontophore. Motor neurons receiving input included the following: B8a/b, B15, and B16, which innervate muscles contributing to radula closing; and B82, a newly identified neuron that innervates the anterodorsal region of the I1/I3 muscles of the buccal mass. B21 and B22 can affect buccal motor programs by way of their connections to interneurons such as B19 and B64. Fast, chemical, excitatory postsynaptic potentials (EPSPs) produced by RM neurons, such as B21, exhibited strong, frequency-dependent facilitation, a form of homosynaptic plasticity. Firing B21 also produced a slow EPSP in B15 that increased the excitability of the cell. Thus a sensory neuron mediating a behavioral response may have modulatory effects. The data suggest multiple functions for RM neurons including 1) triggering of phase transitions in rhythmic motor programs, 2) adjusting the force of radula closure, 3) switching from biting to swallowing or swallowing to rejection, and 4) enhancing food-induced arousal.
Collapse
Affiliation(s)
- S C Rosen
- Center for Neurobiology and Behavior, New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|