1
|
Molinero-Fernandez Á, Wang Q, Xuan X, Konradsson-Geuken Å, Crespo GA, Cuartero M. Demonstrating the Analytical Potential of a Wearable Microneedle-Based Device for Intradermal CO 2 Detection. ACS Sens 2024; 9:361-370. [PMID: 38175931 PMCID: PMC10825866 DOI: 10.1021/acssensors.3c02086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Monitoring of carbon dioxide (CO2) body levels is crucial under several clinical conditions (e.g., human intensive care and acid-base disorders). To date, painful and risky arterial blood punctures have been performed to obtain discrete CO2 measurements needed in clinical setups. Although noninvasive alternatives have been proposed to assess CO2, these are currently limited to benchtop devices, requiring trained personnel, being tedious, and providing punctual information, among other disadvantages. To the best of our knowledge, the literature and market lack a wearable device for real-time, on-body monitoring of CO2. Accordingly, we have developed a microneedle (MN)-based sensor array, labeled as CO2-MN, comprising a combination of potentiometric pH- and carbonate (CO32-)-selective electrodes together with the reference electrode. The CO2-MN is built on an epidermal patch that allows it to reach the stratum corneum of the skin, measuring pH and CO32- concentrations directly into the interstitial fluid (ISF). The levels for the pH-CO32- tandem are then used to estimate the PCO2 in the ISF. Assessing the response of each individual MN, we found adequate response time (t95 < 5s), sensitivity (50.4 and -24.6 mV dec-1 for pH and CO32-, respectively), and stability (1.6 mV h-1 for pH and 2.1 mV h-1 for CO32-). We validated the intradermal measurements of CO2 at the ex vivo level, using pieces of rat skin, and then, with in vivo assays in anesthetized rats, showing the suitability of the CO2-MN wearable device for on-body measurements. A good correlation between ISF and blood CO2 concentrations was observed, demonstrating the high potential of the developed MN sensing technology as an alternative to blood-based analysis in the near future. Moreover, these results open new horizons in the noninvasive, real-time monitoring of CO2 as well as other clinically relevant gases.
Collapse
Affiliation(s)
- Águeda Molinero-Fernandez
- Department
of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| | - Qianyu Wang
- Department
of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
| | - Xing Xuan
- Department
of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| | - Åsa Konradsson-Geuken
- Section
of Neuropharmacology and Addiction Research, Department of Pharmaceutical
Biosciences, Uppsala University, Uppsala 753 10, Sweden
| | - Gastón A. Crespo
- Department
of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| | - María Cuartero
- Department
of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| |
Collapse
|
2
|
Meng Q, Wu M, Shang Z, Zhang Z, Zhang R. Responsive gadolinium(III) complex-based small molecule magnetic resonance imaging probes: Design, mechanism and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Sona Khan M, Trenet W, Xing N, Sibley B, Abbas M, al-Rashida M, Rauf K, Mandyam CD. A Novel Sulfonamide, 4-FS, Reduces Ethanol Drinking and Physical Withdrawal Associated With Ethanol Dependence. Int J Mol Sci 2020; 21:E4411. [PMID: 32575871 PMCID: PMC7352747 DOI: 10.3390/ijms21124411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 01/11/2023] Open
Abstract
Carbonic anhydrase (CA) is abundant in glial cells in the brain and CA type II isoform (CA II) activity in the hippocampus plays an important role in buffering extracellular pH transients produced by neural activity. Chronic ethanol exposure results in respiratory and metabolic acidosis, producing shifts in extracellular pH in the brain and body. These neurophysiological changes by ethanol are hypothesized to contribute to the continued drinking behavior and physical withdrawal behavior in subjects consuming ethanol chronically. We explored whether chronic ethanol self-administration (ethanol drinking, 10% v/v; ED) without or under the influence of chronic intermittent ethanol vapor (CIE-ED) experience alters the expression of CA II in the hippocampus. Postmortem hippocampal tissue analyses demonstrated that CA II levels were enhanced in the hilus region of the hippocampus in ED and CIE-ED rats. We used a novel molecule-4-fluoro-N-(4-sulfamoylphenyl) benzenesulfonamide (4-FS)-a selective CA II inhibitor, to determine whether CA II plays a role in ethanol self-administration in ED and CIE-ED rats and physical withdrawal behavior in CIE-ED rats. 4-FS (20 mg/kg, i.p.) reduced ethanol self-administration in ED rats and physical withdrawal behavior in CIE-ED rats. Postmortem hippocampal tissue analyses demonstrated that 4-FS reduced CA II expression in ED and CIE-ED rats to control levels. In parallel, 4-FS enhanced GABAA receptor expression, reduced ratio of glutamatergic GluN2A/2B receptors and enhanced the expression of Fos, a marker of neuronal activation in the ventral hippocampus in ED rats. These findings suggest that 4-FS enhanced GABAergic transmission and increased activity of neurons of inhibitory phenotypes. Taken together, these findings support the role of CA II in assisting with negative affective behaviors associated with moderate to severe alcohol use disorders (AUD) and that CA II inhibitors are a potential therapeutic target to reduce continued drinking and somatic withdrawal symptoms associated with moderate to severe AUD.
Collapse
Affiliation(s)
- Muhammad Sona Khan
- Abbottabad Campus, COMSATS University Islamabad, Abbottabad, Khyber Pakhtunkhawa 22060, Pakistan;
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Wulfran Trenet
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
| | - Nancy Xing
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
| | - Britta Sibley
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science & Technology, Islamabad 44000, Pakistan;
| | - Mariya al-Rashida
- Department of Chemistry, Forman Christian College, A Chartered University, Ferozepur Road, Lahore 54600, Pakistan;
| | - Khalid Rauf
- Abbottabad Campus, COMSATS University Islamabad, Abbottabad, Khyber Pakhtunkhawa 22060, Pakistan;
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (W.T.); (N.X.); (B.S.)
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
4
|
Toljić Đ, Angelovski G. A low-molecular-weight ditopic MRI probe for ratiometric sensing of zwitterionic amino acid neurotransmitters. Chem Commun (Camb) 2019; 55:11924-11927. [DOI: 10.1039/c9cc06463j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The capability for cooperative binding of a ditopic Gd-based responsive MRI probe was used to advance the sensitivity towards the major excitatory (Glu) and inhibitory (GABA) neurotransmitters over their physiological competitor hydrogencarbonate.
Collapse
Affiliation(s)
- Đorđe Toljić
- MR Neuroimaging Agents
- Max Planck Institute for Biological Cybernetics
- Tübingen
- Germany
| | - Goran Angelovski
- MR Neuroimaging Agents
- Max Planck Institute for Biological Cybernetics
- Tübingen
- Germany
| |
Collapse
|
5
|
Ding F, O'Donnell J, Xu Q, Kang N, Goldman N, Nedergaard M. Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science 2016; 352:550-5. [PMID: 27126038 PMCID: PMC5441687 DOI: 10.1126/science.aad4821] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/24/2016] [Indexed: 12/29/2022]
Abstract
Wakefulness is driven by the widespread release of neuromodulators by the ascending arousal system. Yet, it is unclear how these substances orchestrate state-dependent, global changes in neuronal activity. Here, we show that neuromodulators induce increases in the extracellular K(+) concentration ([K(+)]e) in cortical slices electrically silenced by tetrodotoxin. In vivo, arousal was linked to AMPA receptor-independent elevations of [K(+)]e concomitant with decreases in [Ca(2+)]e, [Mg(2+)]e, [H(+)]e, and the extracellular volume. Opposite, natural sleep and anesthesia reduced [K(+)]e while increasing [Ca(2+)]e, [Mg(2+)]e, and [H(+)]e as well as the extracellular volume. Local cortical activity of sleeping mice could be readily converted to the stereotypical electroencephalography pattern of wakefulness by simply imposing a change in the extracellular ion composition. Thus, extracellular ions control the state-dependent patterns of neural activity.
Collapse
Affiliation(s)
- Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA. Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - John O'Donnell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qiwu Xu
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ning Kang
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nanna Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA. Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
6
|
Preserving GABAergic interneurons in acute brain slices of mice using the N-methyl-D-glucamine-based artificial cerebrospinal fluid method. Neurosci Bull 2015; 31:265-70. [PMID: 25648546 DOI: 10.1007/s12264-014-1497-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/20/2014] [Indexed: 10/24/2022] Open
Abstract
Defects in the function and development of GABAergic interneurons have been linked to psychiatric disorders, so preservation of these interneurons in brain slices is important for successful electrophysiological recording in various ex vivo methods. However, it is difficult to maintain the activity and morphology of neurons in slices from mice of >30 days old. Here we evaluated the N-methyl-D-glucamine (NMDG)-based artificial cerebrospinal fluid (aCSF) method for the preservation of interneurons in slices from mice of up to ∼6 months old and discussed the steps that may affect their quality during slicing. We found that the NMDG-aCSF method rescued more cells than sucrose-aCSF and successfully preserved different types of interneurons including parvalbumin- and somatostatin-positive interneurons. In addition, both the chemical and electrical synaptic signaling of interneurons were maintained. These results demonstrate that the NMDG-aCSF method is suitable for the preservation of interneurons, especially in studies of gap junctions.
Collapse
|
7
|
Andersson M, Chen G, Otikovs M, Landreh M, Nordling K, Kronqvist N, Westermark P, Jörnvall H, Knight S, Ridderstråle Y, Holm L, Meng Q, Jaudzems K, Chesler M, Johansson J, Rising A. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLoS Biol 2014; 12:e1001921. [PMID: 25093327 PMCID: PMC4122339 DOI: 10.1371/journal.pbio.1001921] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022] Open
Abstract
Spider silk fibers are produced from soluble proteins (spidroins) under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT) that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we found that the pH gradient in the silk gland is much broader than previously known. Surprisingly, the terminal domains respond in opposite ways when pH is decreased from 7 to 5: Urea denaturation and temperature stability assays show that NT dimers get significantly stabilized and then lock the spidroins into multimers, whereas CT on the other hand is destabilized and unfolds into ThT-positive β-sheet amyloid fibrils, which can trigger fiber formation. There is a high carbon dioxide pressure (pCO2) in distal parts of the gland, and a CO2 analogue interacts with buried regions in CT as determined by nuclear magnetic resonance (NMR) spectroscopy. Activity staining of histological sections and inhibition experiments reveal that the pH gradient is created by carbonic anhydrase. Carbonic anhydrase activity emerges in the same region of the gland as the opposite effects on NT and CT stability occur. These synchronous events suggest a novel CO2 and proton-dependent lock and trigger mechanism of spider silk formation.
Collapse
Affiliation(s)
- Marlene Andersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gefei Chen
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Martins Otikovs
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Michael Landreh
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Nordling
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Nina Kronqvist
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Knight
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Yvonne Ridderstråle
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lena Holm
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China
- * E-mail: (J.J.); (Q.M.); (A.R.)
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Mitchell Chesler
- Departments of Neurosurgery, Physiology and Neuroscience, New York University School of Medicine, New York, New York, United States of America
| | - Jan Johansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
- Institute of Mathematics and Natural Sciences, Tallinn University, Tallinn, Estonia
- * E-mail: (J.J.); (Q.M.); (A.R.)
| | - Anna Rising
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
- * E-mail: (J.J.); (Q.M.); (A.R.)
| |
Collapse
|
8
|
Abstract
H(+) ions are remarkably efficient modulators of neuronal excitability. This renders brain functions highly sensitive to small changes in pH which are generated "extrinsically" via mechanisms that regulate the acid-base status of the whole organism; and "intrinsically", by activity-induced transmembrane fluxes and de novo generation of acid-base equivalents. The effects of pH changes on neuronal excitability are mediated by diverse, largely synergistically-acting mechanisms operating at the level of voltage- and ligand-gated ion channels and gap junctions. In general, alkaline shifts induce an increase in excitability which is often intense enough to trigger epileptiform activity, while acidosis has the opposite effect. Brain pH changes show a wide variability in their spatiotemporal properties, ranging from long-lasting global shifts to fast and highly localized transients that take place in subcellular microdomains. Thirteen catalytically-active mammalian carbonic anhydrase isoforms have been identified, whereof 11 are expressed in the brain. Distinct CA isoforms which have their catalytic sites within brain cells and the interstitial fluid exert a remarkably strong influence on the dynamics of pH shifts and, consequently, on neuronal functions. In this review, we will discuss the various roles of H(+) as an intra- and extracellular signaling factor in the brain, focusing on the effects mediated by CAs. Special attention is paid on the developmental expression patterns and actions of the neuronal isoform, CA VII. Studies on the various functions of CAs will shed light on fundamental mechanisms underlying neuronal development, signaling and plasticity; on pathophysiological mechanisms associated with epilepsy and related diseases; and on the modes of action of CA inhibitors used as CNS-targeting drugs.
Collapse
Affiliation(s)
- Eva Ruusuvuori
- Department of Biosciences, University of Helsinki, Helsinki, Finland,
| | | |
Collapse
|
9
|
Sailasuta N, Harris KC, Tran TT, Abulseoud O, Ross BD. Impact of fasting on human brain acid-base homeostasis using natural abundance (13) C and (31) P MRS. J Magn Reson Imaging 2013; 39:398-401. [PMID: 23733582 DOI: 10.1002/jmri.24166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/13/2013] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To use (13) C magnetic resonance spectroscopy (MRS) and (31) P MRS to develop a direct assay for regional [HCO3-] in the human brain and to define brain pH and physiological response of [HCO3-] to fasting. MATERIALS AND METHODS Seven healthy subjects underwent MRS examinations on a 1.5T MRI scanner. Subjects were well fed with repeated examinations performed after 4 and 12 hours of fasting. Proton noise decoupling (13) C MRS were acquired using pulse and acquired acquisition while (31) P MRS were acquired using a 2D chemical shift imaging method with relaxation time (TR) of 2 seconds. RESULTS Fasting brain bicarbonate concentrations (6.7 ± 2.5 mM for 12-hour fasting, P = 0.002 and 8.3 ± 2.1 mM for 4-hour fasting, P = 0.015) are significantly reduced compared to fed state (11.6 ± 1.3 mM). However, no significant difference in brain pH was observed, confirming the critical role of pCO2 in intracerebral pH homeostasis. CONCLUSION We demonstrated that the intracellular HCO3- in human brain is readily modified by diet but appears to have no measurable effect on cerebral pH. Natural abundance (13) C can provide useful information relevant to human brain pH homeostasis by providing information for HCO3-.
Collapse
|
10
|
Monitoring ion activities in and around cells using ion-selective liquid-membrane microelectrodes. SENSORS 2013; 13:984-1003. [PMID: 23322102 PMCID: PMC3574717 DOI: 10.3390/s130100984] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/31/2012] [Accepted: 01/02/2013] [Indexed: 11/24/2022]
Abstract
Determining the effective concentration (i.e., activity) of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study.
Collapse
|
11
|
Affiliation(s)
- Donita L Robinson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
12
|
Gibson JR, Bartley AF, Huber KM. Role for the subthreshold currents ILeak and IH in the homeostatic control of excitability in neocortical somatostatin-positive inhibitory neurons. J Neurophysiol 2006; 96:420-32. [PMID: 16687614 DOI: 10.1152/jn.01203.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cortical circuitry reconfigures in response to chronic (1-3 days) changes in activity levels. To understand this process, we must know the role played by inhibitory neurons because they crucially influence network properties by controlling action potential generation and synaptic integration. Using pharmacological blockade of activity in neocortical organotypic slice cultures, we examined the activity-dependent regulation of membrane excitability in a specific inhibitory neuron subtype: the somatostatin-positive (SOM+) neuron. Chronic action potential blockade (TTX, 2.5 days) resulted in increased excitability in SOM+ neurons. This result is consistent with a homeostatic process to maintain the average firing rate of SOM+ neurons at a particular level. Excitability changes were not ascribed to changing cell size or alterations in voltage-dependent sodium current. Instead, the excitability increase was largely the result of a decrease in the density of two subthreshold currents: a passive leak current (ILeak) and H-current (IH). The downregulation of these currents increased excitability mostly through a decrease in membrane input conductance. The coadaptation of ILeak and IH enabled a change in input conductance while helping to preserve membrane potential. Evidence indicated that ILeak was probably mainly mediated by K+. At earlier culture ages, this adaptation was superimposed on developmental changes, whereas at older ages, the same types of induced alterations occurred but with no developmental component. Together with other studies, these data indicate that both inhibitory and excitatory neurons increase membrane excitability with chronic reduction in activity, but through different mechanisms.
Collapse
Affiliation(s)
- Jay R Gibson
- Center for Basic Neuroscience, Southwestern Medical Center, University of Texas, Dallas, TX 75390-9111, USA.
| | | | | |
Collapse
|
13
|
Tong CK, Chen K, Chesler M. Kinetics of activity-evoked pH transients and extracellular pH buffering in rat hippocampal slices. J Neurophysiol 2006; 95:3686-97. [PMID: 16611838 DOI: 10.1152/jn.01312.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kinetics of activity-dependent, extracellular alkaline transients, and the buffering of extracellular pH (pH(e)), were studied in rat hippocampal slices using a fluorescein-dextran probe. Orthodromic stimuli generated alkaline transients < or = 0.05 pH units that peaked in 273 +/- 26 ms and decayed with a half-time of 508 +/- 43 ms. Inhibition of extracellular carbonic anhydrase (ECA) with benzolamide increased the rate of rise by 25%, doubled peak amplitude, and prolonged the decay three- to fourfold. The slow decay in benzolamide allowed marked temporal summation, resulting in a severalfold increase in amplitude during long stimulus trains. Addition of exogenous carbonic anhydrase reduced the rate of rise, halved the peak amplitude, but had no effect on the normalized decay. A simulation of extracellular buffering kinetics generated recoveries from a base load consistent with the observed decay of the alkaline transient in the presence of benzolamide. Under control conditions, the model approximated the observed decays with an acceleration of the CO2 hydration-dehydration reactions by a factor of 2.5. These data suggest low endogenous ECA activity, insufficient to maintain equilibrium during the alkaline transients. Disequilibrium implies a time-dependent buffering capacity, with a CO2/HCO3- contribution that is small shortly after a base load. It is suggested that within 100 ms, extracellular buffering capacity is about 1% of the value at equilibrium and is provided mainly by phosphate. Accordingly, in the time frame of synaptic transmission, small base loads would generate relatively large changes in interstitial pH.
Collapse
Affiliation(s)
- Chi-Kun Tong
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Ave., New York, New York 10016, USA
| | | | | |
Collapse
|
14
|
Abstract
The regulation of pH is a vital homeostatic function shared by all tissues. Mechanisms that govern H+ in the intracellular and extracellular fluid are especially important in the brain, because electrical activity can elicit rapid pH changes in both compartments. These acid-base transients may in turn influence neural activity by affecting a variety of ion channels. The mechanisms responsible for the regulation of intracellular pH in brain are similar to those of other tissues and are comprised principally of forms of Na+/H+ exchange, Na+-driven Cl-/HCO3- exchange, Na+-HCO3- cotransport, and passive Cl-/HCO3- exchange. Differences in the expression or efficacy of these mechanisms have been noted among the functionally and morphologically diverse neurons and glial cells that have been studied. Molecular identification of transporter isoforms has revealed heterogeneity among brain regions and cell types. Neural activity gives rise to an assortment of extracellular and intracellular pH shifts that originate from a variety of mechanisms. Intracellular pH shifts in neurons and glia have been linked to Ca2+ transport, activation of acid extrusion systems, and the accumulation of metabolic products. Extracellular pH shifts can occur within milliseconds of neural activity, arise from an assortment of mechanisms, and are governed by the activity of extracellular carbonic anhydrase. The functional significance of these compartmental, activity-dependent pH shifts is discussed.
Collapse
Affiliation(s)
- Mitchell Chesler
- Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
15
|
Abstract
Population neuronal rhythms of various frequencies are observed in the rodent hippocampus during distinct behavioural states. However, the question of whether the hippocampus exhibits properties of spontaneous rhythms and population synchrony in isolation has not been definitively answered. To address this, we developed a novel preparation for studying neuronal rhythms in a relatively large hippocampal tissue in vitro. We isolated the whole hippocampus from mice up to 28 days postnatal age, removing the dentate gyrus while preserving the functional CA3-to-CA1 connections. Placing the hippocampal isolate in a perfusion chamber for electrophysiological assessment extracellular recordings from the CA1 revealed rhythmic field potential of 0.5 to </= 4 Hz that occurred spontaneously and propagated along the ventro-dorsal hippocampal axis. We provide convergent evidence, via measurements of extracellular pH and K(+), recordings of synaptic and intracellular activities and morphological assessments, verifying that these rhythms were not the consequence of hypoxia. Data obtained via simultaneous extracellular and patch clamp recordings suggest that the spontaneous rhythms represent a summation of GABAergic IPSPs originating from pyramidal neurons, which result from synchronous discharges of GABAergic inhibitory interneurons. Similar spontaneous field rhythms were also observed in the hippocampal isolate prepared from young gerbils and rats. Based on these data, we postulate that the spontaneous rhythms represent a fundamental oscillatory state of the hippocampal circuitry isolated from extra-hippocampal inputs.
Collapse
Affiliation(s)
- Chiping Wu
- Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada, M5T 2S8
| | | | | | | |
Collapse
|
16
|
Richerson GB, Wang W, Tiwari J, Bradley SR. Chemosensitivity of serotonergic neurons in the rostral ventral medulla. RESPIRATION PHYSIOLOGY 2001; 129:175-89. [PMID: 11738653 DOI: 10.1016/s0034-5687(01)00289-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The medullary raphé contains two subtypes of chemosensitive neuron: one that is stimulated by acidosis and another that is inhibited. Both types of neuron are putative chemoreceptors, proposed to act in opposite ways to modulate respiratory output and other pH sensitive brain functions. In this review, we will discuss the cellular properties of these chemosensitive raphé neurons when studied in vitro using brain slices and primary dissociated cell culture. Quantification of chemosensitivity of raphé neurons indicates that they are highly sensitive to small changes in extracellular pH (pH(o)) between 7.2 and 7.6. Stimulation by acidosis occurs only in the specific phenotypic subset of neurons within the raphé that are serotonergic. These serotonergic neurons also have other properties consistent with a specialized role in chemoreception. Homologous serotonergic neurons are present within the ventrolateral medulla (VLM), and may have contributed to localization of respiratory chemoreception to that region. Chemosensitivity of raphé neurons increases in the postnatal period in rats, in parallel with development of respiratory chemoreception in vivo. An abnormality of serotonergic neurons of the ventral medulla has been identified in victims of sudden infant death syndrome (SIDS). The cellular properties of serotonergic raphé neurons suggest that they play a role in the CNS response to hypercapnia, and that they may contribute to interactions between the sleep/wake cycle and respiratory control.
Collapse
Affiliation(s)
- G B Richerson
- Department of Neurology, Yale University School of Medicine, 15 York St, PO Box 208018, New Haven, CT 06520-8018, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Brain slices gain water when maintained in bicarbonate-buffered artificial cerebro-spinal fluid (ACSF) at 35 degrees C. We previously showed that this edema is linked to glutamate receptor activation and oxidative stress. An additional factor that may contribute to swelling is acidosis, which arises from high CO2 tension in brain slices. To examine the role of acidosis in slice edema, we added N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) to osmotically balanced ACSF (HEPES-ACSF), thereby increasing buffering capacity beyond that provided by bicarbonate/CO2. Water gain was markedly inhibited in HEPES-ACSF. After 3 h incubation in HEPES-ACSF at 35 degrees C, water gain was limited to that of fresh slices after 1 h recovery in ACSF at room temperature. The effect of HEPES in decreasing slice water gain was concentration dependent from 0.3 to 20 mM. The inhibition of water gain by HEPES suggests that tissue acidosis is a contributing factor in brain slice edema.
Collapse
Affiliation(s)
- D G MacGregor
- Department of Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
18
|
Ransom BR. Glial modulation of neural excitability mediated by extracellular pH: a hypothesis revisited. PROGRESS IN BRAIN RESEARCH 2001; 125:217-28. [PMID: 11098659 DOI: 10.1016/s0079-6123(00)25012-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- B R Ransom
- University of Washington School of Medicine, Department of Neurology, Seattle 98195, USA.
| |
Collapse
|
19
|
The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J Neurosci 2000. [PMID: 10964940 DOI: 10.1523/jneurosci.20-17-06347.2000] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite widespread use of volatile general anesthetics for well over a century, the mechanisms by which they alter specific CNS functions remain unclear. Here, we present evidence implicating the two-pore domain, pH-sensitive TASK-1 channel as a target for specific, clinically important anesthetic effects in mammalian neurons. In rat somatic motoneurons and locus coeruleus cells, two populations of neurons that express TASK-1 mRNA, inhalation anesthetics activated a neuronal K(+) conductance, causing membrane hyperpolarization and suppressing action potential discharge. These membrane effects occurred at clinically relevant anesthetic levels, with precisely the steep concentration dependence expected for anesthetic effects of these compounds. The native neuronal K(+) current displayed voltage- and time-dependent properties that were identical to those mediated by the open-rectifier TASK-1 channel. Moreover, the neuronal K(+) channel and heterologously expressed TASK-1 were similarly modulated by extracellular pH. The decreased cellular excitability associated with TASK-1 activation in these cell groups probably accounts for specific CNS effects of anesthetics: in motoneurons, it likely contributes to anesthetic-induced immobilization, whereas in the locus coeruleus, it may support analgesic and hypnotic actions attributed to inhibition of those neurons.
Collapse
|
20
|
Sirois JE, Lei Q, Talley EM, Lynch C, Bayliss DA. The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J Neurosci 2000; 20:6347-54. [PMID: 10964940 PMCID: PMC6772985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Despite widespread use of volatile general anesthetics for well over a century, the mechanisms by which they alter specific CNS functions remain unclear. Here, we present evidence implicating the two-pore domain, pH-sensitive TASK-1 channel as a target for specific, clinically important anesthetic effects in mammalian neurons. In rat somatic motoneurons and locus coeruleus cells, two populations of neurons that express TASK-1 mRNA, inhalation anesthetics activated a neuronal K(+) conductance, causing membrane hyperpolarization and suppressing action potential discharge. These membrane effects occurred at clinically relevant anesthetic levels, with precisely the steep concentration dependence expected for anesthetic effects of these compounds. The native neuronal K(+) current displayed voltage- and time-dependent properties that were identical to those mediated by the open-rectifier TASK-1 channel. Moreover, the neuronal K(+) channel and heterologously expressed TASK-1 were similarly modulated by extracellular pH. The decreased cellular excitability associated with TASK-1 activation in these cell groups probably accounts for specific CNS effects of anesthetics: in motoneurons, it likely contributes to anesthetic-induced immobilization, whereas in the locus coeruleus, it may support analgesic and hypnotic actions attributed to inhibition of those neurons.
Collapse
Affiliation(s)
- J E Sirois
- Departments of Pharmacology and Anesthesiology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
The type II isoform of carbonic anhydrase is abundant in astrocytes and oligodendroglia. To explore whether the expression of the type II isoform is required for interstitial carbonic anhydrase activity, we studied extracellular pH transients in hippocampal slices from mutant mice devoid of carbonic anhydrase type II and from wild-type littermates. Stimulation of the Schaffer collateral afferents evoked similar extracellular pH transients in the CA1 stratum pyramidale, consisting of a predominant alkaline shift and little or no subsequent acidosis. After 5-s stimulus trains at 10 Hz, alkaline shifts were not significantly different in carbonic anhydrase II-deficient and wild-type preparations, averaging 0.09 +/- 0.04 and 0.08 +/- 0.04 unit pH, respectively. Addition of 1.5 microM benzolamide amplified the alkaline shifts by 385 +/- 146 and 345 +/- 75% in the mutant and wild-type preparations, respectively. Dose response studies with benzolamide displayed similar sensitivity to this carbonic anhydrase inhibitor over a concentration range of 0. 03-10 microM. These data indicate that interstitial carbonic anhydrase activity is effectively unaltered in brains devoid of carbonic anhydrase type II. The results are consistent with the interpretation that a distinct extracellular isoform of carbonic anhydrase exists in brain.
Collapse
Affiliation(s)
- C K Tong
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
22
|
Xiong ZQ, Stringer JL. Extracellular pH responses in CA1 and the dentate gyrus during electrical stimulation, seizure discharges, and spreading depression. J Neurophysiol 2000; 83:3519-24. [PMID: 10848567 DOI: 10.1152/jn.2000.83.6.3519] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since neuronal excitability is sensitive to changes in extracellular pH and there is regional diversity in the changes in extracellular pH during neuronal activity, we examined the activity-dependent extracellular pH changes in the CA1 region and the dentate gyrus. In vivo, in the CA1 region, recurrent epileptiform activity induced by stimulus trains, bicuculline, and kainic acid resulted in biphasic pH shifts, consisting of an initial extracellular alkalinization followed by a slower acidification. In vitro, stimulus trains also evoked biphasic pH shifts in the CA1 region. However, in CA1, seizure activity in vitro induced in the absence of synaptic transmission, by perfusing with 0 Ca(2+)/5 mM K(+) medium, was only associated with extracellular acidification. In the dentate gyrus in vivo, seizure activity induced by stimulation to the angular bundle or by injection of either bicuculline or kainic acid was only associated with extracellular acidification. In vitro, stimulus trains evoked only acidification. In the dentate gyrus in vitro, recurrent epileptiform activity induced in the absence of synaptic transmission by perfusion with 0 Ca(2+)/8 mM K(+) medium was associated with extracellular acidification. To test whether glial cell depolarization plays a role in the regulation of the extracellular pH, slices were perfused with 1 mM barium. Barium increased the amplitude of the initial alkalinization in CA1 and caused the appearance of alkalinization in the dentate gyrus. In both CA1 and the dentate gyrus in vitro, spreading depression was associated with biphasic pH shifts. These results demonstrate that activity-dependent extracellular pH shifts differ between CA1 and dentate gyrus both in vivo and in vitro. The differences in pH fluctuations with neuronal activity might be a marker for the basis of the regional differences in seizure susceptibility between CA1 and the dentate gyrus.
Collapse
Affiliation(s)
- Z Q Xiong
- Department of Pharmacology and Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
23
|
Talley EM, Lei Q, Sirois JE, Bayliss DA. TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 2000; 25:399-410. [PMID: 10719894 DOI: 10.1016/s0896-6273(00)80903-4] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inhibition of "leak" potassium (K+) channels is a widespread CNS mechanism by which transmitters induce slow excitation. We show that TASK-1, a two pore domain K+ channel, provides a prominent leak K+ current and target for neurotransmitter modulation in hypoglossal motoneurons (HMs). TASK-1 mRNA is present at high levels in motoneurons, including HMs, which express a K+ current with pH- and voltage-dependent properties virtually identical to those of the cloned channel. This pH-sensitive K+ channel was fully inhibited by serotonin, norepinephrine, substance P, thyrotropin-releasing hormone, and 3,5-dihydroxyphenylglycine, a group I metabotropic glutamate receptor agonist. The neurotransmitter effect was entirely reconstituted in HEK 293 cells coexpressing TASK-1 and the TRH-R1 receptor. Given its expression patterns and the widespread prevalence of this neuromodulatory mechanism, TASK-1 also likely supports this action in other CNS neurons.
Collapse
Affiliation(s)
- E M Talley
- Department of Pharmacology, University of Virginia, Charlottesville 22908, USA.
| | | | | | | |
Collapse
|
24
|
Shin JH, Lee JS, Lee HJ, Chu J, Pyun HJ, Nam H, Cha GS. Trifluoroacetophenone derivative-based carbonate ion-selective electrodes: effect of diluent pH on the anion selectivity. J Electroanal Chem (Lausanne) 1999. [DOI: 10.1016/s0022-0728(99)00079-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Tombaugh GC. Intracellular pH buffering shapes activity-dependent Ca2+ dynamics in dendrites of CA1 interneurons. J Neurophysiol 1998; 80:1702-12. [PMID: 9772233 DOI: 10.1152/jn.1998.80.4.1702] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated calcium (Ca) channels are highly sensitive to cytosolic H+, and Ca2+ influx through these channels triggers an activity-dependent fall in intracellular pH (pHi). In principle, this acidosis could act as a negative feedback signal that restricts excessive Ca2+ influx. To examine this possibility, whole cell current-clamp recordings were taken from rat hippocampal interneurons, and dendritic Ca2+ transients were monitored fluorometrically during spike trains evoked by brief depolarizing pulses. In cells dialyzed with elevated internal pH buffering (high beta), trains of >15 action potentials (Aps) provoked a significantly larger Ca2+ transient. Voltage-clamp analysis of whole cell Ca currents revealed that differences in cytosolic pH buffering per se did not alter baseline Ca channel function, although deliberate internal acidification by 0.3 pH units blunted Ca currents by approximately 20%. APs always broadened during a spike train, yet this broadening was significantly greater in high beta cells during rapid but not slow firing rates. This effect of internal beta on spike repolarization could be blocked by cadmium. High beta also 1) enhanced the slow afterhyperpolarization (sAHP) seen after a spike train and 2) accelerated the decay of an early component of the sAHP that closely matched a sAHP conductance that could be blocked by apamin. Both of these effects on the sAHP could be detected at high but not low firing rates. These data suggest that activity-dependent pHi shifts can blunt voltage-gated Ca2+ influx and retard submembrane Ca2+ clearance, suggesting a novel feedback mechanism by which Ca2+ signals are shaped and coupled to the level of cell activity.
Collapse
Affiliation(s)
- G C Tombaugh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
26
|
Abstract
We examined the hypothesis that aging alters the capacity of brain tissue to buffer intracellular pH changes. Intracellular buffering power was determined in hippocampal slices from young adult and aged rats by raising the partial pressure of CO2. Changes in intracellular and extracellular pH in response to increases and decreases in CO2 were measured simultaneously with spectrophotometry and pH-sensitive microelectrodes. The intrinsic buffering power did not differ between young adult (25.6 +/- 11.1 mM) and aged (28.2 +/- 8.6 mM) slices. However, the bicarbonate buffering power was higher in young adult slices (72.52 +/- 5.07 mM) compared with aged slices (58.67 +/- 5.78 mM) since the resting intracellular pH was about 0.1 unit lower in aged slices. This decreased bicarbonate buffering capacity may contribute to the increased vulnerability of the aged brain to metabolic stress.
Collapse
Affiliation(s)
- E L Roberts
- Geriatric Research, Education, and Clinical Center, Miami VA Medical Center, FL 33125, USA
| | | |
Collapse
|
27
|
Taylor DL, Obrenovitch TP, Symon L. Changes in extracellular acid-base homeostasis in cerebral ischemia. Neurochem Res 1996; 21:1013-21. [PMID: 8897464 DOI: 10.1007/bf02532411] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to examine the changes in extracellular CO32- and lactate concentration produced by ischemia, especially in relation to the occurrence of anoxic depolarization, and how some of these changes are altered by the inhibition of organic acid transport systems with probenecid. These data demonstrate that (i) the transmembrane mechanisms contributing to intracellular acid-base regulation (Na+/H+ and HCO3-/Cl- exchanges, and lactate/H+ cotransport) are markedly activated during ischemia; (ii) the efficacy of these mechanisms is abolished as the cellular membrane permeability to ions, including H+ and pH-changing anions, suddenly increases with anoxic depolarization; and (iii) efflux of intracellular lactate during ischemia, and its reuptake with reperfusion, mainly occur via a transporter. These findings imply that residual cellular acid-base homeostasis persists as long as cell depolarization does not occur, and strengthen the concept that anoxic depolarization is a critical event for cell survival during ischemia.
Collapse
Affiliation(s)
- D L Taylor
- Gough-Cooper Department of Neurological Surgery, Institute of Neurology, London, United Kingdom
| | | | | |
Collapse
|