1
|
Vryonidis E, Törnqvist M, Lignell S, Rosén J, Aasa J. Estimation of intake and quantification of hemoglobin adducts of acrylamide in adolescents in Sweden. Front Nutr 2024; 11:1371612. [PMID: 38887498 PMCID: PMC11180753 DOI: 10.3389/fnut.2024.1371612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/16/2024] [Indexed: 06/20/2024] Open
Abstract
Blood samples (n = 600) from participants in the Swedish dietary survey Riksmaten Adolescents 2016-17 were analyzed with respect to hemoglobin (Hb) adducts from acrylamide (AA) and its metabolite glycidamide (GA) as biomarkers of internal dose/exposure. The results are presented from statistical analyses of food consumption data (2-day dietary recall and questionnaires) and measured Hb adduct levels. The estimated exposure as well as consumption data were examined in relation to non-dietary factors such as sex, age (group medians of 12, 15, and 18 years), place of residence (urban/rural), smoking status, and parental education level. The median AA adduct level was estimated to be 34 pmol/g Hb (range 14-225). No significant difference was found for place of residence, parental education, sex, or age. A significant difference was found between the median adduct levels of daily smokers (n = 8) and never smokers (n = 323) in the older age groups, but not between occasional smokers (n = 47) and never smokers. The median differences between daily smokers and never smokers were 76, 40, and 128 pmol/g Hb for AA, GA, and AA + GA, respectively. The median AA intake for the whole group of adolescents, as estimated from dietary recall data combined with reported concentrations in food, was 0.40 μg/kg bw/day. The corresponding median intake estimated from measured Hb adduct levels of AA was 0.20 μg/kg bw/day. A significant, although low, positive Spearman correlation was found between the two intake estimates (p-value = 8 × 10-3; ρ = 0.11). From the estimated intake of AA from food frequency questionnaires, significance was found for the 15-year-old children with higher AA adduct levels observed at higher consumption frequencies of fried potatoes/French fries. AA is considered a genotoxic carcinogen. For the estimated intake of AA for any age group and method (dietary recall or AA adduct), both a calculated margin of exposure as well as lifetime quantitative cancer risk estimates indicate health concern. A future study on food consumption designed with respect to AA exposure would provide a better understanding of the correlation between consumption and exposure and should give a more reliable estimate of the contribution of dietary AA to the overall cancer risk.
Collapse
Affiliation(s)
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Sanna Lignell
- Division of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Johan Rosén
- Division of Laboratory Investigation and Analysis, Swedish Food Agency, Uppsala, Sweden
| | - Jenny Aasa
- Division of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| |
Collapse
|
2
|
Vryonidis E, Törnqvist M, Myhre O, Dirven H, Husøy T. Dietary intake of acrylamide in the Norwegian EuroMix biomonitoring study: Comparing probabilistic dietary estimates with haemoglobin adduct measurements. Food Chem Toxicol 2023; 180:114031. [PMID: 37696467 DOI: 10.1016/j.fct.2023.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Acrylamide is a probable human carcinogen with widespread exposure via food. The present study compared acrylamide intake measurements obtained from haemoglobin adduct levels and self-registered dietary consumption data in a group of 144 Norwegian healthy adults. Acrylamide adducts to N-terminal valine in haemoglobin were measured and used to estimate the intake via the internal dose approach which showed a median (interquartile range) of 0.24 (0.19-0.30) μg/kg bw/day. Data from weighed food records and food frequency questionnaires from the same individuals were used for probabilistic modelling of the intake of acrylamide. The median acrylamide intake was calculated to be 0.26 (0.16-0.39) and 0.30 (0.23-0.39) μg/kg bw/day, respectively from the two sources of self-registered dietary consumption data. Overall, a relatively good agreement was observed between the methods in pairwise comparison in Bland-Altman plots, with the methods disagreeing with 7% or less of the values. The intake estimates obtained with the two dietary consumption methods and one biomarker method are in line with earlier dietary estimates in the Norwegian population. The Margin of Exposure indicate a possible health risk concern from dietary acrylamide. This is the first study with a comparison in the same individuals of acrylamide intake estimates obtained with these methods.
Collapse
Affiliation(s)
- Efstathios Vryonidis
- Department of Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Oddvar Myhre
- Department of Chemical Toxicology, Norwegian Institute of Public Health, NO-0456, Oslo, Norway
| | - Hubert Dirven
- Department of Chemical Toxicology, Norwegian Institute of Public Health, NO-0456, Oslo, Norway
| | - Trine Husøy
- Department of Food Safety, Norwegian Institute of Public Health, NO-0456, Oslo, Norway.
| |
Collapse
|
3
|
Pedersen M, Vryonidis E, Joensen A, Törnqvist M. Hemoglobin adducts of acrylamide in human blood - What has been done and what is next? Food Chem Toxicol 2022; 161:112799. [PMID: 34995709 DOI: 10.1016/j.fct.2021.112799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Acrylamide forms in many commonly consumed foods. In animals, acrylamide causes tumors, neurotoxicity, developmental and reproductive effects. Acrylamide crosses the placenta and has been associated with restriction of intrauterine growth and certain cancers. The impact on human health is poorly understood and it is impossible to say what level of dietary exposure to acrylamide can be deemed safe as the assessment of exposure is uncertain. The determination of hemoglobin (Hb) adducts from acrylamide is increasingly being used to improve the exposure assessment of acrylamide. We aim to outline the literature on Hb adduct levels from acrylamide in humans and discuss methodological issues and research gaps. A total of 86 studies of 27,966 individuals from 19 countries were reviewed. Adduct levels were highest in occupationally exposed individuals and smokers. Levels ranged widely from 3 to 210 pmol/g Hb in non-smokers and this wide range suggests that dietary exposure to acrylamide varies largely. Non-smokers from the US and Canada had slightly higher levels as compared with non-smokers from elsewhere, but differences within studies were larger than between studies. Large studies with exposure assessment of acrylamide and related adduct forming compounds from diet during early-life are encouraged for the evaluation of health effects.
Collapse
Affiliation(s)
- Marie Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | - Andrea Joensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Motwani HV, Westberg E, Lindh C, Abramsson-Zetterberg L, Törnqvist M. Serum albumin adducts, DNA adducts and micronuclei frequency measured in benzo[a]pyrene-exposed mice for estimation of genotoxic potency. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 849:503127. [DOI: 10.1016/j.mrgentox.2019.503127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/13/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022]
|
5
|
Koske D, Goldenstein NI, Kammann U. Nitroaromatic compounds damage the DNA of zebrafish embryos (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105345. [PMID: 31715477 DOI: 10.1016/j.aquatox.2019.105345] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 05/27/2023]
Abstract
Lethal and sublethal effects of trinitrotoluene (TNT) and its degradation products 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) to zebrafish embryos (Danio rerio) were investigated in a 120 h exposure scenario. Lethal concentrations (LC50) were 4.5 mg/l for TNT, 13.4 mg/l for 2-ADNT and 14.4 mg/l for 4-ADNT. Embryos exposed to 2-ADNT or 4-ADNT revealed a high proportion of chorda deformations among the surviving individuals. Genotoxicity of the nitroaromatic compounds in zebrafish embryos was investigated by comet assay isolating cells from whole embryos after 48 h in vivo exposure. Significant genotoxicity was induced by all three compounds tested, in comparison to the corresponding controls at 0.1 mg/l and 1.0 mg/l as lowest tested concentrations. The genotoxicity caused by TNT was about three to four times higher than that of 2-ADNT and 4-ADNT. To our knowledge, this is the first study demonstrating the genotoxicity of TNT in fish embryos by in vivo exposure. The results are discussed in the context of dumped munition in the marine environment.
Collapse
Affiliation(s)
- Daniel Koske
- Thünen-Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany.
| | - Nadine I Goldenstein
- Thünen-Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Ulrike Kammann
- Thünen-Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| |
Collapse
|
6
|
Aasa J, Vryonidis E, Abramsson-Zetterberg L, Törnqvist M. Internal Doses of Glycidol in Children and Estimation of Associated Cancer Risk. TOXICS 2019; 7:E7. [PMID: 30717263 PMCID: PMC6468878 DOI: 10.3390/toxics7010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 11/24/2022]
Abstract
The general population is exposed to the genotoxic carcinogen glycidol via food containing refined edible oils where glycidol is present in the form of fatty acid esters. In this study, internal (in vivo) doses of glycidol were determined in a cohort of 50 children and in a reference group of 12 adults (non-smokers and smokers). The lifetime in vivo doses and intakes of glycidol were calculated from the levels of the hemoglobin (Hb) adduct N-(2,3-dihydroxypropyl)valine in blood samples from the subjects, demonstrating a fivefold variation between the children. The estimated mean intake (1.4 μg/kg/day) was about two times higher, compared to the estimated intake for children by the European Food Safety Authority. The data from adults indicate that the non-smoking and smoking subjects are exposed to about the same or higher levels compared to the children, respectively. The estimated lifetime cancer risk (200/10⁵) was calculated by a multiplicative risk model from the lifetime in vivo doses of glycidol in the children, and exceeds what is considered to be an acceptable cancer risk. The results emphasize the importance to further clarify exposure to glycidol and other possible precursors that could give a contribution to the observed adduct levels.
Collapse
Affiliation(s)
- Jenny Aasa
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 106 91 Stockholm, Sweden.
| | - Efstathios Vryonidis
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 106 91 Stockholm, Sweden.
| | | | - Margareta Törnqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
7
|
Motwani HV, Eriksson L, Göpfert L, Larsen K. Reaction kinetic studies for comparison of mutagenic potency between butadiene monoxide and glycidamide. Chem Biol Interact 2018; 288:57-64. [PMID: 29653098 DOI: 10.1016/j.cbi.2018.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022]
Abstract
DNA adducts can be formed from covalent binding of electrophilic reactive compounds to the nucleophilic N- and O-atoms of the biomolecule. The O-sites on DNA, with nucleophilic strength (n) of ca. 2, is recognized as a critical site for mutagenicity. Characterization of the reactivity of electrophilic compounds at the O-sites can be used to predict their mutagenic potency in relative terms. In the present study, reaction kinetic experiments were performed for butadiene monoxide (BM) in accordance with the Swain-Scott relation using model nucleophiles representing N- and O-sites on DNA, and earlier for glycidamide (GA) using a similar approach. The epoxide from the kinetic experiments was trapped by cob(I)alamin, resulting in formation of an alkylcobalamin which was analyzed by liquid chromatography tandem mass spectrometry. The Swain-Scott relationship was used to determine selectivity constant (s) of BM and GA as 0.86 and 1.0, respectively. The rate constant for the reaction at n of 2 was extrapolated to 0.023 and 0.038 M-1 h-1 for BM and GA, respectively, implying a higher mutagenic potency per dose unit of GA compared to BM. The reaction kinetic parameters associated with mutagenic potency were also estimated by a density functional theory approach, which were in accordance to the experimental determined values. These types of reaction kinetic measures could be useful in development of a chemical reactivity based prediction tool that could aid in reduction of animal experiments in cancer risk assessment procedures for relative mutagenicity.
Collapse
Affiliation(s)
- Hitesh V Motwani
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Lars Eriksson
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Lisa Göpfert
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kristian Larsen
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
8
|
Parallelogram based approach for in vivo dose estimation of genotoxic metabolites in humans with relevance to reduction of animal experiments. Sci Rep 2017; 7:17560. [PMID: 29242644 PMCID: PMC5730592 DOI: 10.1038/s41598-017-17692-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
When employing metabolism studies of genotoxic compounds/metabolites and cancer tests for risk estimation, low exposure doses in humans are roughly extrapolated from high exposure doses in animals. An improvement is to measure the in vivo dose, i.e. area under concentration-time curve (AUC), of the causative genotoxic agent. In the present work, we propose and evaluate a parallelogram based approach for estimation of the AUC of genotoxic metabolites that incorporates in vitro metabolic data and existing knowledge from published in vivo data on hemoglobin (Hb) adduct levels, using glycidamide (GA) as a case study compound that is the genotoxic metabolite of acrylamide (AA). The estimated value of AUC of GA per AUC of AA from the parallelogram approach vs. that from Hb adduct levels measured in vivo were in good agreement; 0.087 vs. 0.23 in human and 1.4 vs. 0.53 in rat, respectively. The described parallelogram approach is simple, and can be useful to provide an approximate estimation of the AUC of metabolites in humans at low exposure levels for which sensitive methods for analyzing the metabolites are not available, as well as aid in reduction of animal experiments for metabolism studies that are to be used for cancer risk assessment.
Collapse
|
9
|
Aasa J, Törnqvist M, Abramsson-Zetterberg L. Measurement of micronuclei and internal dose in mice demonstrates that 3-monochloropropane-1,2-diol (3-MCPD) has no genotoxic potency in vivo. Food Chem Toxicol 2017; 109:414-420. [PMID: 28917435 DOI: 10.1016/j.fct.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/16/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022]
Abstract
In this study 3-monochloropropane-1,2-diol (3-MCPD), a compound that appears as contaminant in refined cooking oils, has been studied with regard to genotoxicity in vivo (mice) with simultaneous measurement of internal dose using state-of-the-art methodologies. Genotoxicity (chromosomal aberrations) was measured by flow cytometry with dual lasers as the frequency of micronuclei in erythrocytes in peripheral blood from BalbC mice intraperitoneally exposed to 3-MCPD (0, 50, 75, 100, 125 mg/kg). The internal doses of 3-MCPD in the mice were calculated from N-(2,3-dihydroxypropyl)-valine adducts to hemoglobin (Hb), quantified at very low levels by high-resolution mass spectrometry. Convincing evidence for absence of genotoxic potency in correlation to measured internal doses in the mice was demonstrated, despite relatively high administered doses of 3-MCPD. The results are discussed in relation to another food contaminant that is formed as ester in parallel to 3-MCPD esters in oil processing, i.e. glycidol, which has been studied previously by us in a similar experimental setup. Glycidol has been shown to be genotoxic, and in addition to have ca. 1000 times higher rate of adduct formation compared to that observed for 3-MCPD. The conclusion is that at simultaneous exposure to 3-MCPD and glycidol the concern about genotoxicity would be glycidol.
Collapse
Affiliation(s)
- Jenny Aasa
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Sweden
| | - Margareta Törnqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Sweden.
| | - Lilianne Abramsson-Zetterberg
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Sweden; National Food Agency, Uppsala, Sweden.
| |
Collapse
|
10
|
Aasa J, Abramsson-Zetterberg L, Carlsson H, Törnqvist M. The genotoxic potency of glycidol established from micronucleus frequency and hemoglobin adduct levels in mice. Food Chem Toxicol 2017; 100:168-174. [DOI: 10.1016/j.fct.2016.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 11/28/2022]
|
11
|
Valente D, Costa-Amaral IC, Carvalho LVBD, Santos MVCD, Castro VSD, Rodrigues DDRF, Falco AD, Silva CB, Nogueira SM, Gonçalves ES, Moreira JC, André LC, Teixeira LR, Sarcinelli PDN, Sisenando HA, Oliveira MSD, Perini JA, Mattos RDCODC, Larentis AL. Utilização de biomarcadores de genotoxicidade e expressão gênica na avaliação de trabalhadores de postos de combustíveis expostos a vapores de gasolina. REVISTA BRASILEIRA DE SAÚDE OCUPACIONAL 2017. [DOI: 10.1590/2317-6369000124415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resumo Introdução: a avaliação de uma exposição mensura sua intensidade, frequência e duração, podendo detectar danos precoces que, se ignorados, podem evoluir para um quadro nocivo. Nos campos da saúde ambiental e ocupacional, os biomarcadores de genotoxicidade tem sido largamente utilizados para essa avaliação. Objetivo: identificar, descrever e discutir os principais bioindicadores de genotoxicidade e seu uso conjunto com técnicas de avaliação de expressão gênica em estudos de exposição ocupacional ao benzeno em postos de revenda de combustíveis (PRC). Métodos: revisão bibliográfica de trabalhos publicados entre 1995 e 2015. Resultados: as técnicas identificadas foram: ensaio cometa, estresse oxidativo, micronúcleos, aberrações cromossômicas, polimorfismos, adutos de DNA e proteínas, fatores epigenéticos e expressão gênica. Foi observado que testes de danos genéticos e epigenéticos são utilizados em frentistas de PRC que participam de programas de saúde do trabalhador ou de pesquisas, embora um baixo número de publicações sobre o tema tenha sido identificado. Esse fato talvez possa ser explicado pelos poucos países onde a profissão persiste e pelas limitações para o desenvolvimento de pesquisas nesses países. Conclusão: os bioindicadores de genotoxicidade e as técnicas de expressão gênica são úteis na detecção de dano precoce desta exposição ocupacional e devem ser avaliados em conjunto.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna De Falco
- Pontifícia Universidade Católica do Rio de Janeiro, Brazil; Fiocruz, Brazil
| | | | | | | | | | | | | | | | | | | | - Jamila Alessandra Perini
- Fundação Oswaldo Cruz, Brazil; Centro Universitário Estadual da Zona Oeste, Brasil; Fiocruz, Brazil
| | | | | |
Collapse
|
12
|
Motwani HV, Westberg E, Törnqvist M. Interaction of benzo[a]pyrene diol epoxide isomers with human serum albumin: Site specific characterisation of adducts and associated kinetics. Sci Rep 2016; 6:36243. [PMID: 27805056 PMCID: PMC5090251 DOI: 10.1038/srep36243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/12/2016] [Indexed: 01/17/2023] Open
Abstract
Carcinogenicity of benzo[a]pyrene {B[a]P, a polycyclic aromatic hydrocarbon (PAH)} involves DNA-modification by B[a]P diol epoxide (BPDE) metabolites. Adducts to serum albumin (SA) are not repaired, unlike DNA adducts, and therefore considered advantageous in assessment of in vivo dose of BPDEs. In the present work, kinetic experiments were performed in relation to the dose (i.e. concentration over time) of different BPDE isomers, where human SA (hSA) was incubated with respective BPDEs under physiological conditions. A liquid chromatography (LC) tandem mass spectrometry methodology was employed for characterising respective BPDE-adducts at histidine and lysine. This strategy allowed to structurally distinguish between the adducts from racemic anti- and syn-BPDE and between (+)- and (-)-anti-BPDE, which has not been attained earlier. The adduct levels quantified by LC-UV and the estimated rate of disappearance of BPDEs in presence of hSA gave an insight into the reactivity of the diol epoxides towards the N-sites on SA. The structure specific method and dosimetry described in this work could be used for accurate estimation of in vivo dose of the BPDEs following exposure to B[a]P, primarily in dose response studies of genotoxicity, e.g. in mice, to aid in quantitative risk assessment of PAHs.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/metabolism
- Algorithms
- Animals
- Chromatography, Liquid/methods
- DNA Adducts/chemistry
- Humans
- Isomerism
- Kinetics
- Mice
- Models, Chemical
- Molecular Structure
- Protein Binding
- Serum Albumin/chemistry
- Serum Albumin/metabolism
- Serum Albumin, Human/chemistry
- Serum Albumin, Human/metabolism
- Tandem Mass Spectrometry/methods
Collapse
Affiliation(s)
- Hitesh V. Motwani
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Emelie Westberg
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Margareta Törnqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
13
|
Berenbaum MC. Isobolographic, Algebraic, and Search Methods in the Analysis of Multiagent Synergy. ACTA ACUST UNITED AC 2016. [DOI: 10.3109/10915818809014524] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A combination of doses d1, d2, dn of n agents shows zero interaction when d1/D1 + d2/D2. + dn/Dn = 1, where D1,D2, Dn are the doses of the individual agents isoeffective with the combination. In synergy, the sum in this equation is less than 1, and in antagonism, it exceeds 1. This equation may be used to calculate the expected (zero interactive) effect of any combination, irrespective of the shapes of the dose-response curves of the agents and of whether they are linear or nonlinear, similar or dissimilar. For a given set of agents, finding the combination that has the maximum therapeutic (or toxic) effect may be logistically a huge problem because of the large number of variables (e.g., dose, dose interval, number of doses) that are generally involved. This problem may be tackled by (1) response surface methods, in which an equation (usually a low-order polynomial) is fitted to the observed effects of a number of different combinations, and the maximum on this response surface is found mathematically, or by (2) direct search methods, in which the response surface is explored one combination at a time without preconceived ideas about its form. For problems with many variables, direct search methods are more economic.
Collapse
Affiliation(s)
- Morris C. Berenbaum
- Department of Experimental Pathology St. Mary's Hospital Medical School Praed Street London, W.2., UK
| |
Collapse
|
14
|
Aasa J, Vare D, Motwani HV, Jenssen D, Törnqvist M. Quantification of the mutagenic potency and repair of glycidol-induced DNA lesions. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 805:38-45. [PMID: 27402481 DOI: 10.1016/j.mrgentox.2016.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/25/2022]
Abstract
Glycidol (Gly) is an electrophilic low-molecular weight epoxide that is classified by IARC as probably carcinogenic to humans. Humans might be exposed to Gly from food, e.g. refined vegetable oils, where Gly has been found as a food process contaminant. It is therefore important to investigate and quantify the genotoxicity of Gly as a primary step towards cancer risk assessment of the human exposure. Here, quantification of the mutagenic potency expressed per dose (AUC: area under the concentration-time curve) of Gly has been performed in Chinese hamster ovary (CHO) cells, using the HPRT assay. The dose of Gly was estimated in the cell exposure medium by trapping Gly with a strong nucleophile, cob(I)alamin, to form stable cobalamin adducts for analysis by LC-MS/MS. Gly was stable in the exposure medium during the time for cell treatment, and thus the dose in vitro is the initial concentration×cell treatment time. Gly induced mutations in the hprt-gene at a rate of 0.08±0.01 mutations/10(5) cells/mMh. Through comparison with the effect of ionizing radiation in the same system a relative mutagenic potency of 9.5rad-eq./mMh was obtained, which could be used for comparison of genotoxicity of chemicals and between test systems and also in procedures for quantitative cancer risk assessment. Gly was shown to induce strand breaks, that were repaired by base excision repair. Furthermore, Gly-induced lesions, present during replication, were found to delay the replication fork elongation. From experiments with repair deficient cells, homologous recombination repair and the ERCC1-XPF complex were indicated to be recruited to support in the repair of the damage related to the stalled replication elongation. The type of DNA damage responsible for the mutagenic effect of Gly could not be concluded from the present study.
Collapse
Affiliation(s)
- Jenny Aasa
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel Vare
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Hitesh V Motwani
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Dag Jenssen
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Margareta Törnqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
15
|
Carlsson H, Motwani HV, Osterman Golkar S, Törnqvist M. Characterization of a Hemoglobin Adduct from Ethyl Vinyl Ketone Detected in Human Blood Samples. Chem Res Toxicol 2015; 28:2120-9. [DOI: 10.1021/acs.chemrestox.5b00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Henrik Carlsson
- Department of Environmental
Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Hitesh V. Motwani
- Department of Environmental
Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Siv Osterman Golkar
- Department of Environmental
Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Margareta Törnqvist
- Department of Environmental
Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Adduct levels from benzo[a]pyrenediol epoxide: Relative formation to histidine in serum albumin and to deoxyguanosine in DNA in vitro and in vivo in mice measured by LC/MS–MS methods. Toxicol Lett 2015; 232:28-36. [DOI: 10.1016/j.toxlet.2014.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/15/2022]
|
17
|
Motwani HV, Törnqvist M. In vivo doses of butadiene epoxides as estimated from in vitro enzyme kinetics by using cob(I)alamin and measured hemoglobin adducts: An inter-species extrapolation approach. Toxicol Appl Pharmacol 2014; 281:276-84. [DOI: 10.1016/j.taap.2014.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 12/11/2022]
|
18
|
Honda H, Törnqvist M, Nishiyama N, Kasamatsu T. Characterization of glycidol-hemoglobin adducts as biomarkers of exposure and in vivo dose. Toxicol Appl Pharmacol 2014; 275:213-20. [DOI: 10.1016/j.taap.2014.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 11/28/2022]
|
19
|
Lagerqvist A, Håkansson D, Lundin C, Prochazka G, Dreij K, Segerbäck D, Jernström B, Törnqvist M, Frank H, Seidel A, Erixon K, Jenssen D. DNA repair and replication influence the number of mutations per adduct of polycyclic aromatic hydrocarbons in mammalian cells. DNA Repair (Amst) 2011; 10:877-86. [PMID: 21727035 DOI: 10.1016/j.dnarep.2011.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are an important class of environmental contaminants many of which require metabolic activation to DNA-reactive bay or fjord region diolepoxides (DE) in order to exert their mutagenic and carcinogenic effects. In this study, the mutagenicity of the bay region diolepoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (±)-anti-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydrodibenzo[a,h]anthracene (DBADE) and the fjord region diolepoxides (±)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]-pyrene (DBPDE) and (±)-anti-3,4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]-phenanthrene (BPhDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. The (32)P-postlabelling assay was applied to analyze DNA adduct levels and the Hprt gene mutation assay for monitoring mutations. Previously, we found that the mutagenicity per adduct was four times higher for DBPDE compared to BPDE in NER proficient cells. In these same cells, the mutagenicity of DBADE and BPhDE adducts was now found to be significantly lower compared to that of BPDE. In NER deficient cells the highest mutagenicity per adduct was found for BPDE and there was a tenfold and fivefold difference when comparing the BPDE data with the DBADE and BPhDE data, respectively. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the Hprt gene. Since NER turned out to be an important pathway for the yield of mutations, we further analyzed the role of transcription coupled NER versus global genome NER. However, our data demonstrate that neither of these pathways seems to be the sole factor determining the mutation frequency of the four PAH-DE and that the differences in the repair efficiency of these compounds could not be related to the presence of a bay or fjord region in the parent PAH.
Collapse
Affiliation(s)
- Anne Lagerqvist
- Department of Genetics, Microbiology and Toxicology, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Rappaport SM. Implications of the exposome for exposure science. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2011; 21:5-9. [PMID: 21081972 DOI: 10.1038/jes.2010.50] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During the 1920s, the forerunners of exposure science collaborated with health professionals to investigate the causes of occupational diseases. With the birth of U.S. regulatory agencies in the 1970s, interest in the environmental origins of human diseases waned, and exposure scientists focused instead upon levels of selected contaminants in air and water. In fact, toxic chemicals enter the body not only from exogenous sources (air, water, diet, drugs, and radiation) but also from endogenous processes, including inflammation, lipid peroxidation, oxidative stress, existing diseases, infections, and gut flora. Thus, even though current evidence suggests that non-genetic factors contribute about 90% of the risks of chronic diseases, we have not explored the vast majority of human exposures that might initiate disease processes. The concept of the exposome, representing the totality of exposures received by a person during life, encompasses all sources of toxicants and, therefore, offers scientists an agnostic approach for investigating the environmental causes of chronic diseases. In this context, it is appropriate to regard the "environment" as the body's internal chemical environment and to define "exposures" as levels of biologically active chemicals in this internal environment. To explore the exposome, it makes sense to employ a top-down approach based upon biomonitoring (e.g. blood sampling) rather than a bottom-up approach that samples air, water, food, and so on. Because sources and levels of exposure change over time, exposomes can be constructed by analyzing toxicants in blood specimens obtained during critical stages of life. Initial investigations could use archived blood from prospective cohort studies to measure important classes of toxic chemicals, notably, reactive electrophiles, metals, metabolic products, hormone-like substances, and persistent organic compounds. The exposome offers health scientists an avenue for integrating research that is currently fractured along lines related to particular diseases and risk factors, and can thereby promote discovery of the key exposures responsible for chronic diseases. By embracing the exposome as its operational paradigm, exposure science can play a major role in discovering and mitigating these exposures.
Collapse
Affiliation(s)
- Stephen M Rappaport
- School of Public Health, University of California, Berkeley, California 4720, USA.
| |
Collapse
|
22
|
Vikström AC, Abramsson-Zetterberg L, Naruszewicz M, Athanassiadis I, Granath FN, Törnqvist MÅ. In vivo doses of acrylamide and glycidamide in humans after intake of acrylamide-rich food. Toxicol Sci 2010; 119:41-9. [PMID: 20952504 DOI: 10.1093/toxsci/kfq323] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For assessment of cancer risk from acrylamide (AA) exposure through food, the relation between intake from food in humans and the in vivo doses (area under the concentration-time curve, AUC) of AA (AUC-AA) and of its genotoxic metabolite glycidamide (GA) (AUC-GA) is used as a basis for extrapolation between exposure levels and between species. In this study, AA-rich foods were given to nonsmokers: a high intake of 11 μg AA/kg body weight (bw) and day for 4 days or an extra (medium) intake of 2.5 μg AA/kg bw and day for a month. Hemoglobin (Hb)-adduct levels from AA and GA, measured in blood samples donated before and after exposures, were used for calculation of AUC-AA and AUC-GA using reaction rate constants for the adduct formation measured in vitro. Both AA- and GA-adduct levels increased about twofold after the periods with enhanced intake. AUC for the high and medium groups, respectively, in nanomolar hours per microgram AA per kilogram bw, was for AA 212 and 120 and for GA 49 and 21. The AA intake in the high group was better controlled and used for comparisons with other data. The AUCs per exposure dose obtained in the present human study (high group) are in agreement with those previously obtained at 10(2) times higher exposure levels in humans. Furthermore, the values of AUC-AA and AUC-GA are five and two times higher, respectively, than the corresponding values for F344 rats exposed to AA at levels as in published cancer bioassays.
Collapse
Affiliation(s)
- Anna C Vikström
- Department of Materials and Environmental Chemistry, Environmental Chemistry unit, Arrhenius laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Funk WE, Waidyanatha S, Chaing SH, Rappaport SM. Hemoglobin adducts of benzene oxide in neonatal and adult dried blood spots. Cancer Epidemiol Biomarkers Prev 2008; 17:1896-901. [PMID: 18708378 DOI: 10.1158/1055-9965.epi-08-0356] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adducts of reactive chemicals with hemoglobin (Hb) or human serum albumin can be used as biomarkers of internal doses of carcinogens. Because dried blood spots are easier to collect and store than conventional venous blood samples, they encourage applications of biomarkers of exposure in large epidemiologic studies. In addition, neonatal dried blood spot can be used to investigate chemical exposures in utero. Here, we report a simple method to isolate Hb from dried blood spot with high recovery and purity using the addition of ethanol to aqueous dried blood spot extracts. To prove the concept that dried blood spot-derived proteins can be used to assay for adducts, we measured Hb adducts of benzene oxide, a reactive metabolite of the ubiquitous air pollutant benzene in nine neonatal and nine adult dried blood spots (from volunteer subjects), using a gas chromatography-mass spectrometry method that we had previously developed. For comparison, benzene oxide-Hb adducts were measured in the same nine adult subjects using Hb that had been isolated and purified using our conventional method for venous blood. The geometric mean of benzene oxide-Hb levels in all dried blood spot samples ranged from 27.7 to 33.1 pmol/g globin. Neither of the comparisons of mean (logged) benzene oxide-Hb levels between sources (adult conventional versus adult dried blood spot and adult dried blood spot versus newborn dried blood spot) showed a significant difference. Based upon the estimated variance of the benzene oxide-Hb levels, we had 80% power to detect a 1.7-fold difference in geometric mean levels of benzene oxide-Hb in our sample of nine subjects.
Collapse
Affiliation(s)
- William E Funk
- Department of Environmental Sciences and Engineering, School of Public Health, University of California at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
24
|
Fred C, Törnqvist M, Granath F. Evaluation of cancer tests of 1,3-butadiene using internal dose, genotoxic potency, and a multiplicative risk model. Cancer Res 2008; 68:8014-21. [PMID: 18829559 DOI: 10.1158/0008-5472.can-08-0334] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In cancer tests with 1,3-butadiene (BD), the mouse is much more sensitive than the rat. This is considered to be related to the metabolism of BD to the epoxide metabolites, 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane, and 1,2-epoxy-3,4-butanediol. This study evaluates whether the large difference in outcome in cancer tests with BD could be predicted quantitatively on the basis of the concentration over time in blood (AUC) of the epoxide metabolites, their mutagenic potency, and a multiplicative cancer risk model, which has earlier been used for ionizing radiation. Published data on hemoglobin adduct levels from inhalation experiments with BD were used for the estimation of the AUC of the epoxide metabolites in the cancer tests. The estimated AUC of the epoxides were then weighed together to a total genotoxic dose, by using the relative genotoxic potency of the respective epoxide inferred from in vitro hprt mutation assays using EB as standard. The tumor incidences predicted with the risk model on the basis of the total genotoxic dose correlated well with the earlier observed tumor incidences in the cancer tests. The total genotoxic dose that leads to a doubling of the tumor incidences was estimated to be the same in both species, 9 to 10 mmol/Lxh EB-equivalents. The study validates the applicability of the multiplicative cancer risk model to genotoxic chemicals. Furthermore, according to this evaluation, different epoxide metabolites are predominating cancer-initiating agents in the cancer tests with BD, the diepoxide in the mouse, and the monoepoxides in the rat.
Collapse
Affiliation(s)
- Charlotta Fred
- Department of Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Törnqvist M, Paulsson B, Vikström AC, Granath F. Approach for cancer risk estimation of acrylamide in food on the basis of animal cancer tests and in vivo dosimetry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6004-6012. [PMID: 18624431 DOI: 10.1021/jf800490s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The question about the contribution from acrylamide (AA) in food to the cancer risk in the general population has not yet had a satisfactory answer. One point of discussion is whether AA constitutes a cancer risk through its genotoxic metabolite, glycidamide (GA), or whether other mechanism(s) could be operating. Using a relative cancer risk model, an improvement of the cancer risk estimate for dietary AA can be obtained by estimation of the genotoxic contribution to the risk. One cornerstone in this model is the in vivo dose of the causative genotoxic agent. This paper presents an evaluation, according to this model, of published AA cancer tests on the basis of in vivo doses of GA in rats exposed in the cancer tests. The present status regarding data with importance for an improved estimation of the contribution from GA to the cancer risk of AA, such as in vivo doses measured in humans, is discussed.
Collapse
|
26
|
Lagerqvist A, Håkansson D, Prochazka G, Lundin C, Dreij K, Segerbäck D, Jernström B, Törnqvist M, Seidel A, Erixon K, Jenssen D. Both replication bypass fidelity and repair efficiency influence the yield of mutations per target dose in intact mammalian cells induced by benzo[a]pyrene-diol-epoxide and dibenzo[a,l]pyrene-diol-epoxide. DNA Repair (Amst) 2008; 7:1202-12. [PMID: 18479980 DOI: 10.1016/j.dnarep.2008.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 03/14/2008] [Accepted: 03/28/2008] [Indexed: 11/30/2022]
Abstract
Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (+/-)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the (32)P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations. It was found that the mutagenicity per target dose was 4 times higher for DBPDE compared to BPDE in NER proficient cells while in NER deficient cells, the mutagenicity per target dose was 1.4 times higher for BPDE. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the hprt gene. The results suggest that NER of BPDE lesions are 5 times more efficient than for DBPDE lesions, in NER proficient cells. However, DBPDE adducts block replication more efficiently and also induce 6 times more recombination events in the hprt gene than adducts of BPDE, suggesting that DBPDE adducts are, to a larger extent, bypassed by homologous recombination. The results obtained here indicate that the mutagenicity of PAH is influenced not only by NER, but also by replication bypass fidelity. This has been postulated earlier based on results using in vitro enzyme assays, but is now also being recognized in terms of forward mutations in intact mammalian cells.
Collapse
Affiliation(s)
- Anne Lagerqvist
- Department of Genetics, Microbiology and Toxicology (GMT), Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Törnqvist M. Acrylamide in food: the discovery and its implications: a historical perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 561:1-19. [PMID: 16438285 DOI: 10.1007/0-387-24980-x_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The unexpected finding that humans are regularly exposed to relatively high doses of acrylamide (AA) through normal consumption of cooked food was a result of systematic research and relevant developments in methodology over decades, as well as a chain of certain coincidences. The present paper describes the scientific approach, investigations and events leading to the discovery of the formation of AA during cooking of foods. In addition, related issues concerning assessment, communication and management of cancer risks and associated ethical questions raised by the finding of the presence of AA in foods will be discussed.
Collapse
Affiliation(s)
- Margareta Törnqvist
- Dept. of Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
28
|
Neumann HG. Die Risikobewertung von Kanzerogenen und die Wirkungsschwelle, Teil I. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2006; 49:665-74. [PMID: 16758203 DOI: 10.1007/s00103-006-1287-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- H-G Neumann
- Institut für Toxikologie Universität Würzburg, Würzburg.
| |
Collapse
|
29
|
Dybing E, Farmer PB, Andersen M, Fennell TR, Lalljie SPD, Müller DJG, Olin S, Petersen BJ, Schlatter J, Scholz G, Scimeca JA, Slimani N, Törnqvist M, Tuijtelaars S, Verger P. Human exposure and internal dose assessments of acrylamide in food. Food Chem Toxicol 2005; 43:365-410. [PMID: 15680675 DOI: 10.1016/j.fct.2004.11.004] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 11/09/2004] [Indexed: 11/21/2022]
Abstract
This review provides a framework contributing to the risk assessment of acrylamide in food. It is based on the outcome of the ILSI Europe FOSIE process, a risk assessment framework for chemicals in foods and adds to the overall framework by focusing especially on exposure assessment and internal dose assessment of acrylamide in food. Since the finding that acrylamide is formed in food during heat processing and preparation of food, much effort has been (and still is being) put into understanding its mechanism of formation, on developing analytical methods and determination of levels in food, and on evaluation of its toxicity and potential toxicity and potential human health consequences. Although several exposure estimations have been proposed, a systematic review of key information relevant to exposure assessment is currently lacking. The European and North American branches of the International Life Sciences Institute, ILSI, discussed critical aspects of exposure assessment, parameters influencing the outcome of exposure assessment and summarised data relevant to the acrylamide exposure assessment to aid the risk characterisation process. This paper reviews the data on acrylamide levels in food including its formation and analytical methods, the determination of human consumption patterns, dietary intake of the general population, estimation of maximum intake levels and identification of groups of potentially high intakes. Possible options and consequences of mitigation efforts to reduce exposure are discussed. Furthermore the association of intake levels with biomarkers of exposure and internal dose, considering aspects of bioavailability, is reviewed, and a physiologically-based toxicokinetic (PBTK) model is described that provides a good description of the kinetics of acrylamide in the rat. Each of the sections concludes with a summary of remaining gaps and uncertainties.
Collapse
Affiliation(s)
- E Dybing
- Norwegian Institute of Public Health, Division of Environmental Medicine, P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Silvari V, Haglund J, Jenssen D, Golding BT, Ehrenberg L, Törnqvist M. Reaction-kinetic parameters of glycidamide as determinants of mutagenic potency. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 580:91-101. [PMID: 15668111 DOI: 10.1016/j.mrgentox.2004.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 11/09/2004] [Accepted: 11/13/2004] [Indexed: 11/16/2022]
Abstract
Values for reaction-kinetic parameters of electrophiles can be used to predict mutagenic potency. One approach employs the Swain-Scott relationship for comparative kinetic studies of electrophilic agents reacting with nucleophiles. In this way glycidamide (GA), the putatively mutagenic/carcinogenic metabolite of acrylamide, was assessed by determining the rates of reaction with different nucleophiles. The rate constants (kNu) were determined using the "supernucleophile" cob(I)alamin [Cbl(I)] as an analytical tool. The Swain-Scott parameters for GA were compared with those of ethylene oxide (EO). The substrate constants, s values, for GA and for EO were found to be 1.0 and 0.93, respectively. The reaction rates at low values of nucleophilic strength (n=1-3), corresponding to oxygens in DNA, were determined to be 2-3.5 times higher for GA compared to EO. GA was also more reactive than EO towards other nucleophiles (n=0-6.4). The mutagenic potency of GA was determined in Chinese hamster ovary cells (hprt mutations in CHO-AA8 cells per dose unit with gamma-radiation as reference standard). The potency of GA was estimated to be about three mutations per 10(5) cells and mMh corresponding to about 40 rad-equ./mMh. A preliminary comparison of the mutagenic potency (per mMh and as rad-equivalents) of GA and EO shows an approximately seven times higher potency for GA. A higher mutagenic potency of GA compared to EO is compatible with expectation from reaction-kinetic data of the two compounds. The data confirmed that GA is not a strong mutagen, which is in line with what is expected for simple oxiranes. The present study shows the value of cob(I)alamin for the determination of reaction-kinetic parameters and their use for prediction of mutagenic potency.
Collapse
Affiliation(s)
- V Silvari
- Department of Environmental Chemistry, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Hagmar L, Wirfält E, Paulsson B, Törnqvist M. Differences in hemoglobin adduct levels of acrylamide in the general population with respect to dietary intake, smoking habits and gender. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 580:157-65. [PMID: 15668117 DOI: 10.1016/j.mrgentox.2004.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 11/09/2004] [Accepted: 11/11/2004] [Indexed: 10/26/2022]
Abstract
The variation in dietary exposure to acrylamide (AA) has been studied through measurement of hemoglobin adduct levels from AA, as a measurement of internal dose, in a sample from the blood bank of the Malmö Diet and Cancer Cohort (n=28,098). The blood donors are well characterised with regard to their food habits, and 142 individuals were selected to obtain highest possible variation in the adduct levels from AA (none, random or high intake of coffee, fried potato, crisp bread and snacks, food items estimated to have high levels of AA). Among 70 non-smokers the AA-adduct levels varied by a factor of 5, and ranged between 0.02 and 0.1 nmol/g, with considerable overlap in AA-adduct levels between the different dietary groups. There was a significant difference between men with high dietary exposure to AA compared to men with low dietary exposure (P=0.04). No such difference was found for women. As expected a higher level (range: 0.03-0.43 nmol/g) of the AA-adduct, due to AA in tobacco smoke, was found in smokers. Smoking women with high dietary exposure to AA had significantly higher AA-adduct levels compared to smoking women with low dietary exposure (P=0.01). No such significant difference was found in smoking men. The median hemoglobin (Hb) adduct level in the randomly selected group of non-smokers was compatible with earlier studies (0.031 nmol/g). The variation in the average internal dose, measured as Hb adducts, was somewhat smaller than estimated for daily intake by food consumption questionnaires in other studies. Thus, the observed relatively narrow inter-individual variation in AA-adduct levels means that estimates of individual dietary AA intake have to be very precise if they should be useful in future cancer epidemiology.
Collapse
Affiliation(s)
- Lars Hagmar
- Department of Occupational and Environmental Medicine, Lund University Hospital, SE-22185 Lund, Sweden
| | | | | | | |
Collapse
|
32
|
Paulsson B, Rannug A, Henderson AP, Golding BT, Törnqvist M, Warholm M. In vitro studies of the influence of glutathione transferases and epoxide hydrolase on the detoxification of acrylamide and glycidamide in blood. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 580:53-9. [PMID: 15668107 DOI: 10.1016/j.mrgentox.2004.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/09/2004] [Accepted: 11/10/2004] [Indexed: 11/20/2022]
Abstract
Enzymes involved in the metabolism of xenobiotic substances are often polymorphic in humans. Such genetic polymorphisms may result in inter-individual differences in detoxification of certain chemicals, and as a consequence, possibly affect health-risk assessments. This present work concerns studies of the influence of polymorphic enzymes in the detoxification of acrylamide and its metabolite glycidamide. Enzymes that enhance conjugation with glutathione (GSH), the glutathione transferases (GSTs), may influence the detoxification of both acrylamide and glycidamide, whereas the enzyme epoxide hydrolase (EH) should only catalyse the hydrolysis of glycidamide. In this study, the doses of acrylamide or glycidamide measured as specific adducts to hemoglobin (Hb) were analysed in blood samples after in vitro incubation with these compounds. Blood samples from individuals with different genotypes for GSTT1 and GSTM1 were studied. No significant differences in adduct levels depending on genotype were noted. In a parallel experiment, incubation with ethylene oxide was used as positive control. In this experiment individuals carrying GSTT1 showed lower adduct level increments from ethylene oxide than individuals lacking GSTT1. Furthermore, addition of ethacrynic acid or laurylamine, compounds which inhibit GST and EH, respectively, did not affect the adduct levels. These results suggest that neither GSTs nor EH have any significant effect on the blood dose, measured as Hb-adducts over time, after exposure to acrylamide or glycidamide.
Collapse
Affiliation(s)
- Birgit Paulsson
- Department of Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Paulsson B, Kotova N, Grawé J, Henderson A, Granath F, Golding B, Törnqvist M. Induction of micronuclei in mouse and rat by glycidamide, genotoxic metabolite of acrylamide. Mutat Res 2003; 535:15-24. [PMID: 12547279 DOI: 10.1016/s1383-5718(02)00281-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Male CBA mice and male Sprague-Dawley rats were treated by i.p. injection of glycidamide (GA), the presumed genotoxic metabolite of acrylamide (AA). GA was obtained through a new way of synthesis. As an endpoint of chromosome damage, micronucleus (MN) induction in erythrocytes was measured. Hemoglobin (Hb) adducts were used as a measure of in vivo dose of GA. GA induced linear dose-dependent increases in adduct levels in both species. Rats exhibit, compared with mice, 30% higher Hb adduct levels per unit of administered amount of GA. The incremental MN frequencies per administered dose of GA in mice showed a linear-quadratic dose-dependent curve. In the rat no positive dose-response relationship was obtained, probably due to toxic effects to the bone marrow. The main result of this study is the finding that after treatment with synthetic GA the MN frequency per unit of the in vivo dose of GA in the mouse is very similar to that obtained in a previous study, where animals were treated with AA and GA as a metabolite. This equality in potency of GA, whether its in vivo dose is established by injection of synthetic GA or through metabolism of AA, supports the view that GA is the predominant genotoxic factor in AA exposure.
Collapse
Affiliation(s)
- Birgit Paulsson
- Department of Environmental Chemistry, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
34
|
Kolman A, Chovanec M, Osterman-Golkar S. Genotoxic effects of ethylene oxide, propylene oxide and epichlorohydrin in humans: update review (1990-2001). Mutat Res 2002; 512:173-94. [PMID: 12464351 DOI: 10.1016/s1383-5742(02)00067-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ethylene oxide (EtO), propylene oxide (PO) and epichlorohydrin (ECH) are important industrial chemicals widely used as intermediates for various synthetic products. EtO and PO are also environmental pollutants. In this review we summarize data published during the period 1990-2001 concerning both the genotoxic and carcinogenic effects of these epoxides in humans. The use of DNA and hemoglobin adducts as biomarkers of exposure and the role of polymorphism, as well as confounding factors, are discussed. We have also included recent in vitro data comprising genotoxic effects induced by EtO, PO and ECH in mammalian cells. The uncertainties regarding cancer risk estimation still persist, in spite of the large database collected.
Collapse
Affiliation(s)
- Ada Kolman
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91, Stockholm, Sweden.
| | | | | |
Collapse
|
35
|
Törnqvist M, Fred C, Haglund J, Helleberg H, Paulsson B, Rydberg P. Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 778:279-308. [PMID: 12376136 DOI: 10.1016/s1570-0232(02)00172-1] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- M Törnqvist
- Department of Environmental Chemistry, Stockholm University, S-106 91 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
36
|
Boogaard PJ. Use of haemoglobin adducts in exposure monitoring and risk assessment. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 778:309-22. [PMID: 12376137 DOI: 10.1016/s0378-4347(01)00445-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many industrial bulk chemicals are oxiranes or alkenes that are easily metabolised to oxiranes in mammalian systems. Many oxiranes may react with DNA and are therefore mutagenic in vitro. Some oxiranes have been shown to be carcinogenic in rodents in vivo as well. Despite the very limited evidence of the carcinogenicity of oxiranes in humans, they should be considered potential human carcinogens. As a consequence, exposure to these compounds should be minimised and controlled. Twenty-five years ago, Ehrenberg and co-workers suggested that exposure to oxiranes might be determined through the measurement of the adducts they form with haemoglobin (Hb). Ten years later, a modification of the Edman degradation was developed at Stockholm University that allowed determination of adducts with the N-terminal valine of Hb by GC-MS. In our laboratory, this methodology was modified and adapted for analysis on an industrial scale. Since 1987, exposure of operators in our facilities to ethylene oxide (EO) has been routinely monitored by determination of N-(2-hydroxyethyl)valine in Hb. Biological monitoring programmes for propylene oxide (PO) and 1,3-butadiene (BD) were developed later. In this review, the methodology and its results are discussed as a tool in human risk assessment of industrial chemicals. Two major advantages of Hb adduct determinations in risk assessment are (1) the qualitative information on the structure of reactive intermediates that may be obtained through the mass spectrometry, which may provide insight in the molecular toxicology of compounds such as BD, and (2) the possibility of reliable determination of exposure over periods of several months with limited number of samples for compounds such as ethylene oxide (EO), propylene oxide (PO) and BD which form stable adducts with Hb. Since good correlations between the airborne concentrations of these chemicals with their respective adducts have been established, Hb adducts can also be used to quantitate airborne exposure which is of paramount importance as exposure assessment is usually one of the weaker parameters in risk assessment.
Collapse
Affiliation(s)
- Peter J Boogaard
- Health Services, Shell International BV, PO Box 162, 2501 AN The Hague, The Netherlands.
| |
Collapse
|
37
|
Lohman PHM. International Commission for the Protection of the Environment against Mutagens and Carcinogens: a historical perspective. Mutat Res 2002; 511:63-71. [PMID: 11906842 DOI: 10.1016/s1383-5742(02)00002-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- P H M Lohman
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
38
|
Chovanec M, Cedervall B, Kolman A. DNA damage induced by gamma-radiation in combination with ethylene oxide or propylene oxide in human fibroblasts. Chem Biol Interact 2001; 137:259-68. [PMID: 11566293 DOI: 10.1016/s0009-2797(01)00258-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To estimate the effects of interaction of gamma-rays and an epoxide, cell survival and induction of DNA double-strand breaks (DSBs) following combined exposure to ionizing radiation and ethylene oxide (EtO) or propylene oxide (PO) were studied in human fibroblasts. Two treatment protocols were applied: (a) the cells were pre-exposed to different doses of gamma-rays and then treated with epoxide, and (b) the cells were pretreated with epoxide and then exposed to different doses of gamma-rays. Here we show that order of the treatment did not play a role in cell survival and that the effect of combined exposure on cell killing was additive for both epoxides. As to DNA DSBs induction, however, a difference dependent upon the order of the treatment was observed. While EtO or PO treatment followed by gamma-rays exposure led to an increased number of DSBs at higher gamma-ray doses (2-3 Gy), no significant increase of DSBs was detected after the opposite order of the treatment (gamma-ray exposure followed by EtO or PO treatment).
Collapse
Affiliation(s)
- M Chovanec
- Department of Molecular Genetics, Cancer Research Institute, Vlárska 7, 833 91 37, Bratislava, Slovakia
| | | | | |
Collapse
|
39
|
Myers SR, Spinnato JA, Pinorini-Godly MT. Tobacco Smoke Hemoglobin Adducts in Maternal and Fetal Blood. Polycycl Aromat Compd 2000. [DOI: 10.1080/10406630008028531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
van Sittert NJ, Boogaard PJ, Natarajan AT, Tates AD, Ehrenberg LG, Törnqvist MA. Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment. Mutat Res 2000; 447:27-48. [PMID: 10686305 DOI: 10.1016/s0027-5107(99)00208-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethylene oxide (EO) is mutagenic in various in vitro and in vivo test systems and carcinogenic in rodents. EO forms different adducts upon reaction with DNA, N7-(2-hydroxyethyl)guanine (N7-HEG) being the main adduct. The major objectives of this study were: (a) to determine the formation and persistence of N7-HEG adducts in liver DNA of adult male rats exposed to 0, 50, 100 and 200 ppm by inhalation (4 weeks, 5 days/week, 6 h/day) and (b) to assess dose-response relationships for Hprt gene mutations and various types of chromosomal changes in splenic lymphocytes.N7-HEG adducts were measured 5, 21, 35 and 49 days after cessation of exposure. By extrapolation, the mean concentrations of N7-HEG immediately after cessation of exposure ('day 0') to 50, 100 and 200 ppm were calculated as 310, 558 and 1202 adducts/10(8) nucleotides, respectively, while the mean concentration in control rats was 2.6 adducts/10(8) nucleotides. At 49 days, N7-HEG values had returned close to background levels. The mean levels of N-(2-hydroxyethylvaline) adducts in haemoglobin were also determined and amounted 61.7, 114 and 247 nmol/g globin, respectively. Statistically significant linear relationships were found between mean N7-HEG levels ('day 0') and Hprt mutant frequencies at expression times 21/22 and 49/50 days and between mean N7-HEG ('day 0') and sister-chromatid exchanges (SCEs) or high frequency cells (HFC) measured 5 days post-exposure. At day 21 post-exposure, SCEs and HFCs in-part persisted and were significantly correlated with persistent N7-HEG adducts. No statistically significant dose effect relationships were observed for induction of micronuclei, nor for chromosome breaks or translocations. In conclusion, this study indicates that following sub-chronic exposure, EO is only weakly mutagenic in adult rats. Using the data of this study to predict cancer risk in man resulting from low level EO exposures in conjunction with other published data, i.e., those on (a) genotoxic effects of EO in humans and rats, (b) DNA binding of other carcinogens, (c) natural background DNA binding and (d) genotoxic potency of low energy transfer (LET) radiation, it is not expected that long term occupational exposure to airborne concentrations of EO at or below 1 ppm EO produces an unacceptable increased risk in man.
Collapse
Affiliation(s)
- N J van Sittert
- Department of Molecular Toxicology, Shell International Chemicals, Amsterdam, Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Tates AD, van Dam FJ, Natarajan AT, van Teylingen CM, de Zwart FA, Zwinderman AH, van Sittert NJ, Nilsen A, Nilsen OG, Zahlsen K, Magnusson AL, Törnqvist M. Measurement of HPRT mutations in splenic lymphocytes and haemoglobin adducts in erythrocytes of Lewis rats exposed to ethylene oxide. Mutat Res 1999; 431:397-415. [PMID: 10636004 DOI: 10.1016/s0027-5107(99)00182-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Young adult male Lewis rats were exposed to ethylene oxide (EO) via single intraperitoneal (i.p.) injections (10-80 mg kg-1) or drinking water (4 weeks at concentrations of 2, 5, and 10 mM) or inhalation (50, 100 or 200 ppm for 4 weeks, 5 days week-1, 6 h day-1) to measure induction of HPRT mutations in lymphocytes from spleen by means of a cloning assay. N-ethyl-N-nitrosourea (ENU) and N-(2-hydroxyethyl)-N-nitrosourea (HOENU) were used as positive controls. Levels of N-(2-hydroxyethyl)valine (HOEtVal) adducts in haemoglobin (expressed in nmol g-1 globin) were measured to determine blood doses of EO (mmol kg-1 h, mM h). Blood doses were used as a common denominator for comparison of mutagenic effects of EO administered via the three routes. The mean HPRT mutant frequency (MF) of the historical control was 4.3 x 10(-6). Maximal mean MFs for ENU (100 mg kg-1) and HOENU (75 mg kg-1) were 243 x 10(-6) and 93 x 10(-6), respectively. In two independent experiments, EO injections led to a statistically significant dose-dependent induction of mutations, with a maximal increase in MF by 2.3-fold over the background. Administration of EO via drinking water gave statistically significant increases of MFs in two independent experiments. Effects were, at most, 2.5-fold above the concurrent control. Finally, inhalation exposure also caused a statistically significant maximal increase in MF by 1.4-fold over the background. Plotting of mutagenicity data (i.e., selected data pertaining to expression times where maximal mutagenic effects were found) for the three exposure routes against blood dose as common denominator indicated that, at equal blood doses, acute i.p. exposure led to higher observed MFs than drinking water treatment, which was more mutagenic than exposure via inhalation. In the injection experiments, there was evidence for a saturation of detoxification processes at the highest doses. This was not seen after subchronic administration of EO. The resulting HPRT mutagenicity data suggest that EO is a relatively weak mutagen in T-lymphocytes of rats following exposure(s) by i.p. injection, in drinking water or by inhalation.
Collapse
Affiliation(s)
- A D Tates
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mlejnek P, Kolman A. Effects of three epoxides--ethylene oxide, propylene oxide and epichlorohydrin--on cell cycle progression and cell death in human diploid fibroblasts. Chem Biol Interact 1999; 117:219-39. [PMID: 10190577 DOI: 10.1016/s0009-2797(98)00109-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ethylene oxide (EtO), propylene oxide (PO), and epichlorohydrin (ECH) strongly influenced the G1/S progression in human diploid fibroblasts, VH-10. However, these epoxides did not affect substantially the G2/M progression. It was found that G1 arrest is induced by these epoxides 6-18 h after the treatment at doses above 5, 3, and 0.5 mMh for EtO, PO, and ECH, respectively. An inhibitory effect on DNA synthesis was also demonstrated at the same doses within the same time interval. On the contrary, the epoxides transiently stimulated DNA synthesis 3-18 h after the treatment with the lower doses (below 5, 3, and 0.5 mMh for EtO, PO, and ECH, respectively). This effect was manifested both as an elevated rate of DNA synthesis and as an increase in the number of cells in S-phase. Among the three studied epoxides EtO was the most effective one: the increases of the rate of DNA synthesis and of cells in S-phase were 35 and 55%, respectively. All the epoxides tested induced significant decrease of intracellular level of reduced glutathione (GSH) shortly after cell exposure. While low and moderate doses induced a transient decrease in GSH level the high doses induced its irreversible depletion. The extensive GSH depletion was related to cell death. Morphological examination of cell nuclei indicated that epoxide-treated cells die via necrosis. This conclusion is supported by the lack of such features of the apoptosis as chromatin condensation and the occurrence of so called 'apoptotic bodies'. The absence of nucleosomal fragmentation of DNA and an increase of the permeability of the plasma membrane after the epoxide treatment also indicated a necrotic form of cell death. ECH is about ten times more toxic than the two other epoxides, and it causes almost 100% necrosis at dose of 3.0 mMh.
Collapse
Affiliation(s)
- P Mlejnek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno.
| | | |
Collapse
|
43
|
Pauwels W, Veulemans H. Comparison of ethylene, propylene and styrene 7,8-oxide in vitro adduct formation on N-terminal valine in human haemoglobin and on N-7-guanine in human DNA. Mutat Res 1998; 418:21-33. [PMID: 9748485 DOI: 10.1016/s1383-5718(98)00106-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epoxides react at various nucleophilic sites in macromolecules such as haemoglobin and DNA. To study the reaction rate constants of ethylene oxide (EO), propylene oxide (PO) and styrene 7,8-oxide (SO) towards two of these positions, i.e., the N-terminal valine in haemoglobin and N-7-guanine in DNA was the central aim of this investigation. These two reactive sites are the most studied haemoglobin and DNA adducts, respectively. Further attention, therefore, was also paid to the applicability in vivo of the in vitro determined reaction constants. The determination of the second-order rate constants between EO and PO and N-terminal valine in Hb [2.7 l (mol Hb h)-1 and 1.0 l (mol Hb h)-1, respectively] were consistent with the literature values. The constants for the reaction with N-7-guanine [16x10(-3) l (mol DNA nucleotide h)-1 and 7. 7x10(-3) l (mol DNA nucleotide h)-1, respectively] were lower than previously published values, probably due to differences in the methodology used. The use of the in vitro obtained values to model the in vivo situation lead to a consistent picture for EO and PO. In contrast, for SO the in vitro ratio between the adduct formation on N-terminal valine [1.5 l (mol Hb h)-1] and N-7-guanine [0.71x10(-3) l (mol DNA nucleotide h)-1] was about two orders of magnitude greater than for the in vivo situation. This was probably due to a lower than expected reactivity of SO towards N-terminal valine in vivo. Further research is needed to elucidate whether the use of SO in vitro, contrasting with the in vivo experiments in which SO was metabolically formed from styrene, could entail an explanation for this discrepancy. Concerning the methodological part, the use of dipeptide standards to replace the alkylated globins as standard lead to an improvement of the method. Especially the commercial availability of the standards, their stability and accurately known adduct content will make them to the standards of choice in the future.
Collapse
Affiliation(s)
- W Pauwels
- Laboratory for Occupational Hygiene and Toxicology, Katholieke Universiteit Leuven, Kapucijnenvoer 35/6, 3000, Leuven, Belgium
| | | |
Collapse
|
44
|
Abstract
The presence of highly carcinogenic tobacco-specific nitrosamines (TSNA) in snuff has been a matter of serious concern. However, the levels of TSNA in such products may differ by orders of magnitude depending on origin and manner of processing, and the mere presence of such agents at low levels does hardly constitute a meaningful prerequisite for classifying all types of snuff as human carcinogens. Reviewing available epidemiological evidence, a wide discrepancy is found for estimated cancer risk associated with snuff dipping derived from on one hand previous investigations conducted in the United States and on the other from recent extensive Swedish epidemiological studies. In spite of the fact that approximately 20% of all grown-up Swedish males use moist snuff, it has not been possible to detect any significant increase in the incidence of cancer of the oral cavity or pharynx-the prevalence of which by international standards remains low in this country. Further, there is insufficient evidence for a causal link between the use of Swedish snuff and increased risk for cardiovascular disease. Dissimilarities in the content of TSNA in oral snuff products may represent one important reason for the different outcomes of the epidemiological surveys conducted in the United States and Sweden. Bioassays using pure TSNA in rodents appear to give exaggerated risk estimates for humans, a discrepancy that could be ascribed to species-related differences in the relation between exposure and DNA target dose and/or adduct repair rates, as well as to the presence of anticarcinogens in snuff. Although a small risk cannot be excluded, the use of smokeless tobacco products low in TSNA which now are available on the market entails a risk that at any rate is more than 10 times lower than that associated with active smoking. Nevertheless, due to the decisive role of potent TSNA in determining possible cancer risks in users of smokeless tobacco, and due to the fact that large variations in the concentrations may occur, adequate control measures should be taken to keep the levels of these nitrosamines in smokeless tobacco products as low as is technically feasible.
Collapse
Affiliation(s)
- R Nilsson
- Department of Genetic and Cellular Toxicology, Wallenberg Laboratory, Stockholm University, Stockholm, S-10691, Sweden
| |
Collapse
|
45
|
Haglund J, Ehrenberg L, Törnqvist M. Studies of transalkylation of phosphotriesters in DNA: reaction conditions and requirements on nucleophiles for determination of DNA adducts. Chem Biol Interact 1997; 108:119-33. [PMID: 9463525 DOI: 10.1016/s0009-2797(97)00102-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive compounds form adducts at several sites in DNA. One of these sites, the phosphate groups, forms phosphotriesters (PTE) which are both chemically stable and little repaired. A measurement of PTE in DNA could therefore be advantageous for the determination of doses in vivo of mutagens/cancer initiators. In this paper, the possibilities of utilizing the weakly alkylating properties of PTE for the transfer of adducts to strong nucleophiles have been investigated. Model compounds, thymidine 3'-[thymidine 5'-(methyl phosphate)], TpMeT, and thymidine 3'-[thymidine 5'-(2-hydroxyethyl phosphate)], TpHOEtT, were incubated with thiosulfate, a relatively strong nucleophile and the formation of dealkylated model PTE, thymidine 3'-(thymidine 5'-phosphate), TpT, was followed by HPLC. Transalkylation to thiosulfate or aniline of methyl PTE in DNA alkylated by [3H]N-methyl-N-nitrosourea was demonstrated. The methyl groups transferred, forming methyl thiosulfate and N-methylaniline, respectively, were determined by HPLC. These experiments demonstrate that it is possible to transfer alkyls from DNA phosphate to nucleophiles. Kinetic aspects of the transalkylation and requirement on nucleophiles for a practically useful method for determination of DNA adducts are discussed. Constants of reaction rates are presented.
Collapse
Affiliation(s)
- J Haglund
- Department of Genetic and Cellular Toxicology, Stockholm University, Sweden
| | | | | |
Collapse
|
46
|
Yeowell-O'Connell K, Pauwels W, Severi M, Jin Z, Walker MR, Rappaport SM, Veulemans H. Comparison of styrene-7,8-oxide adducts formed via reaction with cysteine, N-terminal valine and carboxylic acid residues in human, mouse and rat hemoglobin. Chem Biol Interact 1997; 106:67-85. [PMID: 9305409 DOI: 10.1016/s0009-2797(97)00059-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reactive metabolite of styrene, styrene-7,8-oxide (SO), reacts with a variety of nucleophilic sites in hemoglobin (Hb) to form SO-Hb adducts. Following the in vitro incubation of SO with blood from humans, NMRI mice and Sprague-Dawley rats, the second-order reaction rate constants were determined for the reaction of SO with cysteine (through both the alpha- and beta-carbons of SO), N-terminal valine (through the beta-carbon of SO), and carboxylic acid (presumably through both the alpha- and beta-carbons of SO) residues in Hb. The rate constants for cysteine adducts vary dramatically between species [2.04, 10.7, 133 L (mol Hb)-1 h-1 (alpha binding) for humans, mice and rats, respectively] and [0.078, 2.16, 20.4 L (mol Hb)-1 h-1 (beta binding), respectively]. The considerably higher rate of reaction with cysteine in rat Hb probably reflects the presence of an additional cysteine residue at position beta 125. Although the rate constants for valine adducts (1.82, 0.80, 0.29 L (mol Hb)-1 h-1, respectively) and COOH adducts (3.55, 1.94, 2.37 L (mol Hb)-1 h-1, respectively) are much more consistent, the inter-species differences are statistically significant for the reaction of SO with the N-terminal valine of Hb. Following the i.p. administration of styrene to mice and styrene and SO to rats, the levels of adducts at each of these sites were used in conjunction with the calculated rate constants to predict the integrated blood doses of SO. While the SO doses predicted from cysteine and valine adducts were very similar, that based upon COOH-binding was significantly different, presumably due to the instability of SO-COOH adducts. This research affirms the use of both cysteine and valine adducts, but not carboxylic acid adducts, as biomarkers of exposure to styrene and SO.
Collapse
Affiliation(s)
- K Yeowell-O'Connell
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill 27599-7400, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Lin PH, Waidyanatha S, Pollack GM, Rappaport SM. Dosimetry of chlorinated quinone metabolites of pentachlorophenol in the livers of rats and mice based upon measurement of protein adducts. Toxicol Appl Pharmacol 1997; 145:399-408. [PMID: 9266814 DOI: 10.1006/taap.1997.8207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dosimetry of chlorinated quinones arising from metabolism of pentachlorophenol (PCP), in the livers of male Sprague-Dawley rats and B6C3F1 mice was investigated via measurements of cysteinyl protein adducts and estimates of the second-order reaction rate constants between the quinones and the proteins. We had previously shown that adducts of tetrachloro-1,4-benzoquinone (Cl4-1,4-BQ) and tetrachloro-1,2-benzosemiquinone (Cl4-1,2-SQ) were observed at the highest levels in the livers of Sprague-Dawley rats to which PCP had been administered by gavage (5-40 mg/kg body wt) (Biomarkers 1, 232-243, 1996). In the current study we observed that adducts of Cl4-1,4-BQ and tetrachloro-1,2-benzoquinone (CL4-1,2-BQ) were predominant in the livers of B6C3F1 mice receiving 20 mg PCP/kg body wt. The second-order rate constants, representing in vitro reactions between Cl4-1,2-BQ and Cl4-1,4-BQ and various cysteine residues of hepatic proteins of liver cytosol and liver nuclei, were estimated to be 0.012-1.96 L(g protein)(-1) hr(-1) in rats and 0.082-1.67 L(g protein)(-1) hr(-1) in mice. The estimated tissue doses of the quinones to liver cytosol decreased in the order rat Cl4-1,4-BQ > mouse Cl4-1,4-BQ > mouse Cl4-1,2-BQ and to liver nuclei in the order mouse Cl4-1,2-BQ > mouse Cl4-1,4-BQ > rat Cl4-1,4-BQ. The corresponding doses of Cl4-1,2-SQ could not be inferred due to our inability to estimate the second-order rate constants. After aggregating the estimated contributions of all quinone species, mice had a fourfold greater dose to liver nuclei than rats, whereas rats had a threefold greater dose to liver cytosol. The increased nuclear dose to mouse liver compared to that of the rat suggests that the mouse is at greater risk to hepatic DNA damage from PCP-derived quinones. Investigation of the time course of levels of unconjugated tetrachlorohydroquinone (Cl4HQ) in the livers indicated that about 0.4% of Cl4HQ was oxidized to Cl4-1,4-BQ in both rats and mice.
Collapse
Affiliation(s)
- P H Lin
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill 27599-7400, USA
| | | | | | | |
Collapse
|
48
|
Kolman A, Spivak I, Näslund M, Dusinská M, Cedervall B. Propylene oxide and epichlorohydrin induce DNA strand breaks in human diploid fibroblasts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1997; 30:40-46. [PMID: 9258328 DOI: 10.1002/(sici)1098-2280(1997)30:1<40::aid-em6>3.0.co;2-g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The induction of DNA strand breaks in human diploid fibroblasts (VH-10) was demonstrated after in vitro exposure with two carcinogenic epoxides, propylene oxide (PO) and epichlorohydrin (ECH). Alkaline DNA unwinding (ADU), pulsed field gel electropharosis (PFGE), and the comet assay were used to measure DNA single. (SSBs) and double-strand breaks (DSBs). A dose-dependent increase of DNA strand breaks, measured by ADU, was observed in the dose range 2.5-20 mMh of PO and 0.25-2 mMh of ECH. The dose-response of ECH was about five times higher compared with that of PO (211 vs. 41 SSBs. 100 Mbp-1.mMh-1). The induction rates of DSBs, measured by PFGE, were found to be 18 times higher for ECH compared to PO (4.8 and 0.27 DSBs.100 Mbp-1.mMh-1 for ECH and PO, respectively). Using these two methods, the SSBs/ DSBs ratio was estimated to be 148 for PO and 44 for ECH. The data obtained by the comet assay also demonstrated a dose-dependent ability of PO and ECH to induce DNA damage. It was found that ECH was about six times more effective as an inducer of DNA strand breaks compared to PO (200 and 32x100 Mbp-1.mMh-1 for ECH and PO, respectively). The SSBs/DSBs ratios calculated using comet assay and PFGE data were 125 for ECH and 41 for PO. In addition, ECH is about 10 times more toxic than PO with respect to survival. These properties of ECH can at least in part be explained by its higher chemical reactivity connected with a higher rate of DNA alkylation.
Collapse
Affiliation(s)
- A Kolman
- Department of Radiobiology, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
49
|
Abstract
Many steps are required to convert a normal cell into a cancerous one. The cancer cell must be able to multiply under conditions that a normal cell would not and to invade surrounding tissue and spread throughout the body. Both genetic changes, such as activation of oncogenes or inactivation of tumor suppressor genes, and epigenetic changes, such as stimulation of cell proliferation, contribute to the development of cancers. Chemical agents can increase the probability of malignant transformation by inducing mutations that can ultimately lead to tumor formation, by promoting the development of tumors in cells with preexisting genetic damage, or by increasing the rate of acquisition of malignant traits by benign tumors. Chemical carcinogens are structurally diverse, but all initiating agents are either already electrophiles or can be converted to electrophilic reactants through metabolic activation. Genetic and environmental factors can alter an individual's ability to metabolize carcinogens, to repair DNA damage, and to respond to mitogenic stimuli, all of which can alter susceptibility to chemical carcinogenesis. The incidence and time required for appearance of tumors appear to be dose-related, but the existence of no-effect doses of carcinogens remains controversial.
Collapse
Affiliation(s)
- D B Couch
- University of Mississippi Medical Center Jackson, USA
| |
Collapse
|
50
|
Pinorini-Godly MT, Myers SR. HPLC and GC/MS determination of 4-aminobiphenyl haemoglobin adducts in fetuses exposed to the tobacco smoke carcinogen in utero. Toxicology 1996; 107:209-17. [PMID: 8604481 DOI: 10.1016/0300-483x(95)03263-f] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Maternal-fetal exchange of the potent tobacco-related human carcinogen, 4-aminobiphenyl, was studied in women nonsmokers and in women smokers as well as in the corresponding fetuses during pregnancy. Smoking status of the women in the study was assessed via questionnaire and measurement by immunoassay of serum cotinine in maternal and fetal blood samples. 4-Aminobiphenyl was extracted from both maternal and fetal blood samples using organic solvent extractions and the released amine was qualitatively and quantitatively characterized by analysis of the samples by high pressure liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (GC/MS). Background levels (pg 4-aminobiphenyl/g haemoglobin) of 4-aminobiphenyl-haemoglobin adducts were detected in maternal smokers (mean +/- S.D; 29.6 +/- 16.2 (GC/MS); 23.7 +/- 13.5 (HPLC) and in fetal samples (14.0 +/- 6.5 (GCMS); 10.0 +/- 4.6 (HPLC). Elevated levels of 4-aminobiphenyl-haemoglobin adducts were found in maternal smokers (488 +/- 174 (GC/MS); 423 +/- 154 (HPLC). as well as in the corresponding fetal blood samples (244 +/- 91 (GC/MS); 197 +/- 77 (HPLC). This study confirms that a potent tobacco-related carcinogen, 4-aminobiphenyl, crosses the human placenta and binds to fetal haemoglobin in significantly higher concentrations in smokers when compared to nonsmokers.
Collapse
Affiliation(s)
- M T Pinorini-Godly
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|