1
|
Heflich RH, Bishop ME, Mittelstaedt RA, Yan J, Guerrero SK, Sims AM, Mitchell K, Moore N, Li X, Mei N, Elespuru RK, King ST, Keire DA, Kruhlak NL, Dorsam RT, Raw AS, Davis Bruno KL, McGovern TJ, Atrakchi AH. Optimizing the detection of N-nitrosamine mutagenicity in the Ames test. Regul Toxicol Pharmacol 2024; 153:105709. [PMID: 39343352 DOI: 10.1016/j.yrtph.2024.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Accurately determining the mutagenicity of small-molecule N-nitrosamine drug impurities and nitrosamine drug substance-related impurities (NDSRIs) is critical to identifying mutagenic and cancer hazards. In the current study we have evaluated several approaches for enhancing assay sensitivity for evaluating the mutagenicity of N-nitrosamines in the bacterial reverse mutagenicity (Ames) test. Preincubation assays were conducted using five activation conditions: no exogenous metabolic activation and metabolic activation mixes employing both 10% and 30% liver S9 from hamsters and rats pretreated with inducers of enzymatic activity. In addition, preincubations were conducted for both 60 min and 30 min. These test variables were evaluated by testing 12 small-molecule N-nitrosamines and 17 NDSRIs for mutagenicity in Salmonella typhimurium tester strains TA98, TA100, TA1535, and TA1537, and Escherichia coli strain WP2 uvrA (pKM101). Eighteen of the 29 N-nitrosamine test substances tested positive under one or more of the testing conditions and all 18 positives could be detected by using tester strains TA1535 and WP2 uvrA (pKM101), preincubations of 30 min, and S9 mixes containing 30% hamster liver S9. In general, the conditions under which NDSRIs were mutagenic were similar to those found for small-molecule N-nitrosamines.
Collapse
Affiliation(s)
- Robert H Heflich
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA.
| | - Michelle E Bishop
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | | | - Jian Yan
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Sharon K Guerrero
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Audrey M Sims
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Kamela Mitchell
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Nyosha Moore
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Xilin Li
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | - Nan Mei
- U.S. Food and Drug Administration, National Center for Toxicological Research, USA
| | | | - Sruthi T King
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, USA
| | - David A Keire
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, USA
| | - Naomi L Kruhlak
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Sciences, USA
| | - Robert T Dorsam
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, USA
| | - Andre S Raw
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, USA
| | - Karen L Davis Bruno
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, USA
| | - Timothy J McGovern
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, USA
| | - Aisar H Atrakchi
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, USA
| |
Collapse
|
2
|
Murbach TS, Glávits R, Endres JR, Hirka G, Vértesi A, Béres E, Pasics Szakonyiné I. An evaluation of the genotoxicity and 90-day repeated dose oral toxicity in rats of Porphyridium purpureum. J Appl Toxicol 2024; 44:1616-1632. [PMID: 38950973 DOI: 10.1002/jat.4665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
Interest in microalgae products for use in food is increasing, as demands for sustainable and cost-effective food choices grow due to the escalating global population and increase in climate-related struggles with agriculture. Toxicological assessments of some species of microalgae have been conducted, but there were little data available for the oral consumption of the red microalgae Porphyridium purpureum and no data on genotoxicity. This article articulates a genotoxicity assessment and a 90-day repeated dose oral toxicity study in rats performed according to OECD guidelines. Under the experimental conditions applied, the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used in the bacterial reverse mutation test. Similarly, the test item did not induce structural chromosomal aberrations in V79 hamster lung cells. The test item also did not cause chromosomal damage in bone marrow of mice in the mammalian micronucleus test. The no observed adverse effect level (NOAEL) of the 90-day repeated dose oral toxicity study in rats was determined to be the highest dose tested, 3000 mg/kg bw/day. These data add to the body of evidence regarding the safety of P. purpureum for human consumption.
Collapse
|
3
|
Krishnan A, Callanan DG, Sendra VG, Lad A, Christian S, Earla R, Khanehzar A, Tolentino AJ, Vailoces VAS, Greene MK, Scott CJ, Kunimoto DY, Hassan TS, Genead MA, Tolentino MJ. Comprehensive Ocular and Systemic Safety Evaluation of Polysialic Acid-Decorated Immune Modulating Therapeutic Nanoparticles (PolySia-NPs) to Support Entry into First-in-Human Clinical Trials. Pharmaceuticals (Basel) 2024; 17:481. [PMID: 38675441 PMCID: PMC11054942 DOI: 10.3390/ph17040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
An inflammation-resolving polysialic acid-decorated PLGA nanoparticle (PolySia-NP) has been developed to treat geographic atrophy/age-related macular degeneration and other conditions caused by macrophage and complement over-activation. While PolySia-NPs have demonstrated pre-clinical efficacy, this study evaluated its systemic and intraocular safety. PolySia-NPs were evaluated in vitro for mutagenic activity using Salmonella strains and E. coli, with and without metabolic activation; cytotoxicity was evaluated based on its interference with normal mitosis. PolySia-NPs were administered intravenously in CD-1 mice and Sprague Dawley rats and assessed for survival and toxicity. Intravitreal (IVT) administration in Dutch Belted rabbits and non-human primates was assessed for ocular or systemic toxicity. In vitro results indicate that PolySia-NPs did not induce mutagenicity or cytotoxicity. Intravenous administration did not show clastogenic activity, effects on survival, or toxicity. A single intravitreal (IVT) injection and two elevated repeat IVT doses of PolySia-NPs separated by 7 days in rabbits showed no signs of systemic or ocular toxicity. A single IVT inoculation of PolySia-NPs in non-human primates demonstrated no adverse clinical or ophthalmological effects. The demonstration of systemic and ocular safety of PolySia-NPs supports its advancement into human clinical trials as a promising therapeutic approach for systemic and retinal degenerative diseases caused by chronic immune activation.
Collapse
Affiliation(s)
- Anitha Krishnan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - David G. Callanan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Victor G. Sendra
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Amit Lad
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Sunny Christian
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Ravinder Earla
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Ali Khanehzar
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Andrew J. Tolentino
- Department of Biology, University of California Berkeley, Berkeley, CA 94720, USA;
| | | | - Michelle K. Greene
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
- The Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Christopher J. Scott
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
- The Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Derek Y. Kunimoto
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Tarek S. Hassan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
- Oakland University William Beaumont School of Medicine, Royal Oaks, MI 48067, USA
| | - Mohamed A. Genead
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Michael J. Tolentino
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
- Department of Ophthalmology, University of Central Florida School of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| |
Collapse
|
4
|
Yusof YA, Azizul Hasan ZA, Abd Maurad Z. Mutagenicity Assessment of Homologous Series of Methyl Ester Sulphonates (MES) Using the Bacterial Reverse Mutation (Ames) Test. Int J Toxicol 2024; 43:157-164. [PMID: 38048784 DOI: 10.1177/10915818231217041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Methyl ester sulphonate (MES) is an anionic surfactant that is suitable to be used as an active ingredient in household products. Four palm-based MES compounds with various carbon chains, namely C12, C14, C16 and C16/18 MES, were assayed by the in vitro bacterial reverse mutation (Ames) test in the Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 and the Escherichia coli strain WP2 uvrA, with the aim of establishing the safety data of the compounds, specifically their mutagenicity. The test was also carried out on linear alkylbenzene sulphonate (LAS) for comparison. The plate incorporation method was conducted according to the Organization for Economic Cooperation and Development (OECD) Test Guideline 471. All compounds were tested at five analysable non-cytotoxic concentrations, varying from .001 mg/plate to 5 mg/plate, with and without S-9 metabolic activation. All tested concentrations showed no significant increase in the number of revertant colonies compared to revertant colonies of the negative control. The Ames test indicated that each concentration of C12, C14, C16, C16/18 MES, and LAS used in this study induced neither base-pair substitutions nor frame-shift mutations in the S. typhimurium strains TA98, TA100, TA1535, and TA1537 and the E. coli strain WP2 uvrA. The results showed that C12, C14, C16 and C16/18 MES have no potential mutagenic properties in the presence and absence of S-9 metabolic activation, similarly to LAS. Therefore, the MES is safe to be used as an alternative to petroleum-based surfactants for household cleaning products.
Collapse
|
5
|
Clewell A, Glávits R, Endres JR, Murbach TS, Báldi PT, Renkecz T, Hirka G, Vértesi A, Béres E, Szakonyiné IP. An evaluation of the genotoxicity and 90-day repeated-dose toxicity of a CBD-rich hemp oil. J Appl Toxicol 2023; 43:1719-1747. [PMID: 37501578 DOI: 10.1002/jat.4511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
Currently, there is much interest in the sales and study of consumable Cannabis sativa L. products that contain relatively high levels of cannabidiol (CBD) and low levels of Δ-9-tetrahydrocannabinol. While there are published safety evaluations for extracts containing low concentrations of CBD, toxicological assessments for those with higher concentrations are still scant in the public domain. In this paper, genotoxicity tests and a 90-day repeated-dose toxicity study of an ethanolic extract of C. sativa containing ~85% CBD were performed following relevant OECD guidelines. No increased gene mutations were observed in a bacterial reverse mutation assay compared to controls up to the maximum recommended concentration of the guideline. An in vitro chromosomal aberration assay showed no positive findings in the short-term (3 h) treatment assays. Long-term treatment (20 h) showed an increased number of cells containing aberrations at the highest dose of 2 μg/mL, which was outside of historical control levels, but not statistically significantly different from the controls. An in vivo micronucleus study showed no genotoxic potential of the test item in mice. A 90-day repeated-dose gavage study using 0, 75, 125, and 175 mg/kg bw/day showed several slight findings that were considered likely to be related to an adaptive response to consumption of the extract by the animals but were not considered toxicologically relevant. These included increases in liver and adrenal weights compared to controls. The NOAEL was determined as 175 mg/kg bw/day, the highest dose tested (equivalent to approximately 150 mg/kg bw/day of CBD).
Collapse
Affiliation(s)
- Amy Clewell
- AIBMR Life Sciences, Inc., Seattle, Washington, 98122, USA
| | | | - John R Endres
- AIBMR Life Sciences, Inc., Seattle, Washington, 98122, USA
| | | | | | | | - Gábor Hirka
- Toxi-Coop Zrt., Budapest, Hungary
- Toxi-Coop Zrt., Balatonfüred, Hungary
| | | | | | | |
Collapse
|
6
|
Reyes TF, Agrawal P, Chan T, Green R, Matulka RA. The Safety of Soy Leghemoglobin Protein Preparation Derived from Pichia pastoris Expressing a Soy Leghemoglobin Gene from Glycine max: In Vitro and In Vivo Studies. J Toxicol 2023; 2023:7398724. [PMID: 37854042 PMCID: PMC10581837 DOI: 10.1155/2023/7398724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Soy leghemoglobin (LegH) protein derived from soy (Glycine max) produced in Pichia pastoris (reclassified as Komagataella phaffii) as LegH Prep is a novel food ingredient that provides meat-like flavor and aroma to plant-derived food products. The safety of LegH Prep has been previously assessed in a battery of in vivo and in vitro testing and found no adverse effects under the conditions tested. In this new work, we present the results of new in vivo and in vitro tests evaluating the safety of LegH Prep. LegH Prep was nonmutagenic in a bacterial reverse mutation assay and nonclastogenic in an in vitro micronucleus assay in human lymphocytes. Systemic toxicity was evaluated in the 90 day dietary study in male and female Sprague-Dawley® rats that included a 28 day recovery period. The study resulted in no animal deaths associated with the administration of LegH Prep at the highest dose (90,000 ppm). There were no significant adverse clinical or physical changes attributed to LegH Prep administration, and no observed adverse effects on either male or female rats over the course of the 28 day recovery phase study. The new 90 day dietary toxicity study established a no observed adverse effect level (NOAEL) of 4798.3 and 5761.5 mg/kg/day, the maximum level tested for male and female rats, respectively. Thus, the results of the studies demonstrate that under the conditions tested, LegH Prep is not toxic for consumption in meat analog products.
Collapse
Affiliation(s)
- Teresa F. Reyes
- Impossible Foods Inc., 400 Saginaw Drive, Redwood City, CA 94063, USA
| | - Puja Agrawal
- Impossible Foods Inc., 400 Saginaw Drive, Redwood City, CA 94063, USA
| | - Teresa Chan
- Impossible Foods Inc., 400 Saginaw Drive, Redwood City, CA 94063, USA
| | - Richard Green
- Impossible Foods Inc., 400 Saginaw Drive, Redwood City, CA 94063, USA
| | - Ray A. Matulka
- Burdock Group Consultants, 859 Outer Road, Orlando, FL 32814, USA
| |
Collapse
|
7
|
Aguilera-Rodríguez FR, Zamora-Perez AL, Gutiérrez-Hernández R, Quirarte-Báez SM, Reyes Estrada CA, Ortiz-García YM, Lazalde-Ramos BP. Teratogen Potential Evaluation of the Aqueous and Hydroalcoholic Leaf Extracts of Crataegus oxyacantha in Pregnancy Rats. PLANTS (BASEL, SWITZERLAND) 2023; 12:2388. [PMID: 37376012 DOI: 10.3390/plants12122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Crataegus oxyacantha is used in the treatment of cardiovascular diseases. The aim of this study was to evaluate the transplacental genotoxicity effect of aqueous (AE) and hydroalcoholic extract (HE) of leaves C. oxyacantha in a rat model and the quantification of malondialdehyde (MDA) in the liver. Three different doses of the AE and HE of the C. oxyacantha leaf were administered orally (500, 1000 and 2000 mg/kg) to Wistar rats during 5 days through the pregnancy term (16-21 days), and sampling in rats occurred every 24 h during the last 6 days of gestation, while only one sample was taken in neonates at birth. A sample of the mother's and the neonate's liver was taken for the determination of MDA. The results show that, at the hepatic level, the evaluated doses of extracts C. oxyacantha in pregnant rats and their pups did not show cytotoxicity. However, the AE and HE generated cytotoxic and genotoxic damage in the short term. On the other hand, only the AE showed a teratogenic effect. Based on these results, the AE and HE of the C. oxyacantha leaf should not be administered during pregnancy.
Collapse
Affiliation(s)
- Fany Renata Aguilera-Rodríguez
- Maestría en Ciencias y Tecnología Química, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| | - Ana Lourdes Zamora-Perez
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Rosalinda Gutiérrez-Hernández
- Licenciatura en Nutrición, Unidad Académica de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| | | | - Claudia Araceli Reyes Estrada
- Maestría en Ciencias de la Salud, Unidad Académica de Medicina Humana, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| | - Yveth Marlene Ortiz-García
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Blanca Patricia Lazalde-Ramos
- Maestría en Ciencias y Tecnología Química, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| |
Collapse
|
8
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Romualdo B, Cristina F, Stephen H, Marco I, Mosbach‐Schulz O, Riolo F, Christodoulidou A, Grasl‐Kraupp B. Risk assessment of N-nitrosamines in food. EFSA J 2023; 21:e07884. [PMID: 36999063 PMCID: PMC10043641 DOI: 10.2903/j.efsa.2023.7884] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
EFSA was asked for a scientific opinion on the risks to public health related to the presence of N-nitrosamines (N-NAs) in food. The risk assessment was confined to those 10 carcinogenic N-NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N-NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 μg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N-NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. 'Meat and meat products' is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98-100% certain) to be less than 10,000 for all age groups, which raises a health concern.
Collapse
|
9
|
Murbach TS, Glávits R, Jayasena S, Moghadam Maragheh N, Endres JR, Hirka G, Goodman RE, Vértesi A, Béres E, Pasics Szakonyiné I. Toxicology and digestibility of Chlamydomonas debaryana green algal biomass. J Appl Toxicol 2023. [PMID: 36680512 DOI: 10.1002/jat.4438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
There is an economic interest, both for food security and for the non-meat-eating population, in the development of novel, sustainable sources of high-quality protein. The green algae Chlamydomonas reinhardtii has already been developed for this purpose, and the closely related species, Chlamydomonas debaryana, is a complementary source that also presents some additional advantages, such as reduced production cost. To determine whether C. debaryana may have a similar safety profile to that of C. reinhardtii, a wild type strain was obtained, designated TS04 after confirmation of its identity, and subjected to a battery of preclinical studies. Genetic toxicity was evaluated using a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and an in vivo mammalian micronucleus test in a mouse model. No genotoxic potential (e.g., mutagenicity and clastogenicity) was observed in these tests under the employed conditions up to maximum recommended concentrations or doses. To assess general toxicity, a 90-day repeated-dose oral toxicity study was conducted in rats. No mortality or adverse effects were observed, and no target organs were identified up to the maximum feasible dose, due to solubility, of 4,000 mg/kg bw/day. The no-observed-adverse-effect level was determined as the highest dose tested. A digestibility study in simulated gastric fluid was conducted and determined that TS04 has low allergenic potential, exhibiting rapid digestion of proteins. Due to the negative results of our evaluation, it is reasonable to proceed with further development and additional investigations to contribute towards a safety assessment of the proposed use in food for human consumption.
Collapse
Affiliation(s)
| | | | - Shyamali Jayasena
- Food Allergy Research and Resource Program (FARRP), Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| | - Niloofar Moghadam Maragheh
- Food Allergy Research and Resource Program (FARRP), Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| | | | - Gábor Hirka
- Toxi-Coop Zrt., Budapest, Hungary.,Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Richard E Goodman
- Food Allergy Research and Resource Program (FARRP), Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| | - Adél Vértesi
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Erzsébet Béres
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | | |
Collapse
|
10
|
Modica V, Glávits R, Murbach TS, Endres JR, Hirka G, Vértesi A, Béres E, Pasics Szakonyiné I. Toxicological evaluation of protein powder derived from Cupriavidus necator. J Appl Toxicol 2023; 43:887-912. [PMID: 36598355 DOI: 10.1002/jat.4432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Microorganisms have the potential to produce nutrient-rich products that can be consumed as food or feed. The protein-rich powder derived from heat treatment of the whole-cell biomass of polyhydroxybutyrate-deficient Cupriavidus necator, a metabolically versatile organism that uses elements found in the air, is an example of such a product. To assess the safety of the protein powder for use as a nutritional ingredient in human food, in accordance with internationally accepted standards, its genotoxic potential and repeated-dose oral toxicity were investigated. A bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and an in vivo mammalian micronucleus test were performed. No evidence of mutagenicity or genotoxicity was found. Additionally, a 90-day repeated-dose oral toxicity study in rats was completed, in which a total of 100 male and female Wistar rats were exposed by gavage to daily doses of 1000, 2000, or 3000 mg/kg bw/day of the test material. Following 90 days of continuous exposure, no mortality or treatment-related adverse effects were observed and no target organs were identified. Therefore, a no observed adverse effect level was determined at 3000 mg/kg bw/day, the highest dose tested.
Collapse
Affiliation(s)
- Vickie Modica
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, Washington, 98122, USA
| | - Róbert Glávits
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary
| | - Timothy S Murbach
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, Washington, 98122, USA
| | - John R Endres
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, Washington, 98122, USA
| | - Gábor Hirka
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary.,Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Adél Vértesi
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Erzsébet Béres
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | | |
Collapse
|
11
|
Allemang A, Lester C, Roth T, Pfuhler S, Peuschel H, Kosemund K, Mahony C, Bergeland T, O'Keeffe L. Assessing the genotoxicity and carcinogenicity of 2-chloroethanol through structure activity relationships and in vitro testing approaches. Food Chem Toxicol 2022; 168:113290. [PMID: 35863484 DOI: 10.1016/j.fct.2022.113290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
The detection of 2-chloroethanol in foods generally follows an assumption that the pesticide ethylene oxide has been used at some stage in the supply chain. In this situation the Pesticide Residues in Food Regulation (EC) 396/2005 requires 2-chloroethanol to be assessed as if equivalent to ethylene oxide, which has been classified as a genotoxic carcinogen. This review investigated whether this is an appropriate risk assessment approach for 2-chloroethanol. This involved an assessment of existing genotoxicity and carcinogenicity data, application of Structure Activity Based Read Across for carcinogenicity assessment, biological reactivity in the ToxTracker assay and micronuclei formation in HepaRG cells. Although we identified there is an absence of a standard oral bioassay for 2-chloroethanol, carcinogenicity weight-of-evidence assessment along with data on relevant structural analogues do not show evidence for carcinogenicity for 2-chloroethanol. The absence of genotoxicity was demonstrated for 2-chloroethanol and suitable analogues. In contrast, ethylene oxide showed reactivity towards markers indicative of direct DNA damage which is consistent with what is known about its mode-of-action. These data facilitate the understanding of 2-chloroethanol and given that it is not a genotoxic carcinogen suggest it must be assessed relative to non-cancer endpoints and a health protective Reference Dose should be established on that basis.
Collapse
Affiliation(s)
| | - Cathy Lester
- The Procter & Gamble Company, Cincinnati, OH, USA
| | - Thomas Roth
- SCC Scientific Consulting Company GmbH, Am Grenzgraben 11, 55545, Bad Kreuznach, Germany
| | | | - Henrike Peuschel
- SCC Scientific Consulting Company GmbH, Am Grenzgraben 11, 55545, Bad Kreuznach, Germany
| | - Kirstin Kosemund
- Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65824, Schwalbach am Taunus, Germany
| | | | | | - Lara O'Keeffe
- The Procter & Gamble Company, Reading, Berkshire, UK.
| |
Collapse
|
12
|
Broudic K, Amberg A, Schaefer M, Spirkl HP, Bernard MC, Desert P. Nonclinical safety evaluation of a novel ionizable lipid for mRNA delivery. Toxicol Appl Pharmacol 2022; 451:116143. [PMID: 35843341 DOI: 10.1016/j.taap.2022.116143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/07/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
mRNA vaccines hold tremendous potential in disease control and prevention for their flexibility with respect to production, application, and design. Recent breakthroughs in mRNA vaccination would have not been possible without major advances in lipid nanoparticles (LNPs) technologies. We developed an LNP containing a novel ionizable cationic lipid, Lipid-1, and three well known excipients. An in silico toxicity hazard assessment for genotoxicity, a genotoxicity assessment, and a dose range finding toxicity study were performed to characterize the safety profile of Lipid-1. The in silico toxicity hazard assessment, utilizing two prediction systems DEREK and Leadscope, did not find any structural alert for mutagenicity and clastogenicity, and prediction in the statistical models were all negative. In addition, applying a read-across approach a structurally very similar compound was tested negative in two in vitro assays confirming the low genotoxicity potential of Lipid-1. A dose range finding toxicity study in rabbits, receiving a single intramuscular injection of either different doses of an mRNA encoding Influenza Hemagglutinin H3 antigen encapsulated in the LNP containing Lipid-1 or the empty LNP, evaluated local tolerance and systemic toxicity during a 2-week observation period. Only rabbits exposed to the vaccine were able to develop a specific IgG response, indicating an appropriate vaccine take. The vaccine was well tolerated up to 250 μg mRNA/injection, which was defined as the No Observed Adverse Effect Level (NOAEL). These results support the use of the LNP containing Lipid-1 as an mRNA delivery system for different vaccine formulations and its deployment into clinical trials.
Collapse
Affiliation(s)
| | - Alexander Amberg
- Sanofi, R&D Preclinical Safety, In Silico Toxicology, Frankfurt, Germany
| | - Markus Schaefer
- Sanofi, R&D Preclinical Safety, In Silico Toxicology, Frankfurt, Germany
| | - Hans-Peter Spirkl
- Sanofi, R&D Preclinical Safety, In Silico Toxicology, Frankfurt, Germany
| | | | | |
Collapse
|
13
|
Modica V, Glávits R, Murbach TS, Endres JR, Hirka G, Vértesi A, Béres E, Szakonyiné IP. A toxicological evaluation of 8–28 nm gold nanocrystals. Food Chem Toxicol 2022; 161:112844. [DOI: 10.1016/j.fct.2022.112844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
14
|
Murbach TS, Glávits R, Maragheh NM, Endres JR, Hirka G, Goodman RE, Lu G, Vértesi A, Béres E, Szakonyiné IP. Evaluation of the genotoxic potential of protoporphyrin IX and the safety of a protoporphyrin IX-rich algal biomass. J Appl Toxicol 2022; 42:1253-1275. [PMID: 35104912 DOI: 10.1002/jat.4293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Chlamydomonas reinhardtii is a nonpathogenic, nontoxigenic green algae used as a sustainable source of protein in foods. In order to mimic meat-like qualities, a strain rich in protoporphyrin IX (PPIX), an endogenous heme/chlorophyll precursor, was developed using an evolution and selection strategy, and investigations were carried out to evaluate the safety of the novel strain, C. reinhardtii (red), strain TAI114 (TAI114). Digestibly and proteomic evaluations were conducted to determine whether any potentially allergenic or toxic proteins occurred as the result of the mutation process. The genotoxic potential of pure PPIX was evaluated using a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and an in vivo mammalian micronucleus test. Finally, the novel TAI114 biomass was evaluated for general toxicity and identification of target organs in a 90-day repeated-dose oral toxicity study in rats. All proteins were rapidly degraded in pepsin at pH 2.0 suggesting low allergenic potential. The proteomic evaluation indicated that TAI114 biomass contains typical C. reinhardtii proteins. PPIX was unequivocally negative for genotoxic potential and no target organs or adverse effects were observed in rats up to the maximum feasible dose of 4000 mg/kg bw/day TAI114 biomass, which was determined to be the no-observed-adverse-effect-level (NOAEL). These results support the further development and risk characterization of TAI114 biomass as a novel ingredient for use in the meat analogue category of food.
Collapse
Affiliation(s)
- Timothy S Murbach
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, USA
| | - Róbert Glávits
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary
| | - Niloofar Moghadam Maragheh
- Goodman Laboratory, Food Allergy Research and Resource Program (FARRP), University of Nebraska, Dept. of Food Science & Technology, Lincoln, NE, USA
| | - John R Endres
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, USA
| | - Gábor Hirka
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary.,Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Richard E Goodman
- Goodman Laboratory, Food Allergy Research and Resource Program (FARRP), University of Nebraska, Dept. of Food Science & Technology, Lincoln, NE, USA
| | - Guihua Lu
- Triton Algae Innovations, 11760 Sorrento Valley Road, Suite R, San Diego, California, USA
| | - Adél Vértesi
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Erzsébet Béres
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | | |
Collapse
|
15
|
Murbach TS, Glávits R, Endres JR, Hirka G, Vértesi A, Béres E, Szakonyiné IP. A toxicological evaluation of lithium orotate. Regul Toxicol Pharmacol 2021; 124:104973. [PMID: 34146638 DOI: 10.1016/j.yrtph.2021.104973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022]
Abstract
Lithium orotate, the salt of lithium and orotic acid, has been marketed for decades as a supplemental source of lithium with few recorded adverse events. Nonetheless, there have been some concerns in the scientific literature regarding orotic acid, and pharmaceutical lithium salts are known to have a narrow therapeutic window, albeit, at lithium equivalent therapeutic doses 5.5-67 times greater than typically recommended for supplemental lithium orotate. To our knowledge, the potential toxicity of lithium orotate has not been investigated in preclinical studies; thus, we conducted a battery of genetic toxicity tests and an oral repeated-dose toxicity test in order to further explore its safety. Lithium orotate was not mutagenic or clastogenic in bacterial reverse mutation and in vitro mammalian chromosomal aberration tests, respectively, and did not exhibit in vivo genotoxicity in a micronucleus test in mice. In a 28-day, repeated-dose oral toxicity study, rats were administered 0, 100, 200, or 400 mg/kg body weight/day of lithium orotate by gavage. No toxicity or target organs were identified; therefore, a no observed adverse effect level was determined as 400 mg/kg body weight/day. These results are supportive of the lack of a postmarket safety signal from several decades of human consumption.
Collapse
Affiliation(s)
- Timothy S Murbach
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Róbert Glávits
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary.
| | - John R Endres
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Gábor Hirka
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary; Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary.
| | - Adél Vértesi
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary.
| | - Erzsébet Béres
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary.
| | | |
Collapse
|
16
|
A toxicological evaluation of geranylgeraniol. Regul Toxicol Pharmacol 2021; 124:104975. [PMID: 34144118 DOI: 10.1016/j.yrtph.2021.104975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
Geranylgeraniol (GGOH) is an isoprenoid compound found in annatto seeds and an intermediate of the mevalonate pathway found within organisms serving various functions. Toxicological studies on its safety profile are not readily available. To assess the safety of GGOH, a molecularly distilled, food grade annatto oil, consisting of approximately 80% trans-GGOH, was subjected to a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and an in vivo mammalian micronucleus test in order to investigate its genotoxic potential and a 90-day repeated-dose oral toxicity study in rats in order to investigate its potential subchronic toxicity and identify any target organs. No evidence of mutagenicity or genotoxic activity was observed under the applied test systems. In the 90-day study, male and female Hsd. Han Wistar rats were administered daily doses of 0, 725, 1450, and 2900 mg/kg bw/day by gavage. Treatment-related adverse effects were observed in the forestomach at all dose levels and in the liver at the intermediate- and high-dose levels. Based on these results, the lowest observed adverse effect level (LOAEL) for local effects and the no observed adverse effect level (NOAEL) for systemic effects were determined as 725 mg/kg bw/day.
Collapse
|
17
|
Preece KE, Glávits R, Murbach TS, Endres JR, Hirka G, Vértesi A, Szakonyiné IP. Assessment of toxicological potential of sodium carboxymethyl beta-glucan, a novel beta-glucan. Food Chem Toxicol 2021; 152:112226. [PMID: 33905759 DOI: 10.1016/j.fct.2021.112226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023]
Abstract
In this experimental work, sodium carboxymethyl beta-glucan (CMBG), a chemically altered beta-glucan, is evaluated for mutagenicity and sub-acute oral toxicity. Specifically, the tested material was CM-Glucan Nu, a food grade powder ≥90% CMBG derived from Saccharomyces cerevisiae. A bacterial reverse mutation test was performed and resulted in no mutagenicity. A 28-day, repeated-dose, oral (gavage) toxicity test on rats was performed at dose levels of 0, 500, 1000, and 2000 mg/kg bw/day. No mortality, target organs or other treatment related effects were observed. The no observed adverse effect level (NOAEL) was 2000 mg/kg bw/day, the highest dose tested, for both male and female Han:WIST rats.
Collapse
Affiliation(s)
- Kayla E Preece
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Róbert Glávits
- Toxi-Coop Zrt., Magyar Jakobinusok Tere 4/B, H-1122, Budapest, Hungary.
| | - Timothy S Murbach
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - John R Endres
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Gábor Hirka
- Toxi-Coop Zrt., Magyar Jakobinusok Tere 4/B, H-1122, Budapest, Hungary.
| | - Adél Vértesi
- Toxi-Coop Zrt., Magyar Jakobinusok Tere 4/B, H-1122, Budapest, Hungary.
| | | |
Collapse
|
18
|
Brendt J, Crawford SE, Velki M, Xiao H, Thalmann B, Hollert H, Schiwy A. Is a liver comparable to a liver? A comparison of different rat-derived S9-fractions with a biotechnological animal-free alternative in the Ames fluctuation assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143522. [PMID: 33246726 DOI: 10.1016/j.scitotenv.2020.143522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Metabolism has to be considered during the toxicological assessment of chemical and environmental samples because it is an important process in the mammalian liver. It can be assessed in vitro via liver homogenates called S9-fractions, an external metabolic activation system. However, the external metabolic activation systems can vary greatly in their composition due to biological variations among individual animals and animal strains that the S9-fraction are derived as well as the differences in the production treatment. To gain more insight into these variances, three different but commonly used rat-derived S9-fractions were compared in the present study for their variance and performance with a reference compound in the Ames fluctuation assay with Salmonella typhimurium strains TA 98 and TA 100 according to ISO 11350. Severe shortcomings of conventional rat-derived S9-fractions were observed in the present study, such that S9-fractions differed significantly within the same rat strain and for different types of induction procedures in regards to the metabolic capability. An intrinsic mutagenic potential of the three rat-derived S9-fractions were identified in the Ames fluctuation assay with varying S9-fraction concentrations. To address some of the shortcomings of the animal-derived S9-fraction, the present study investigated the use and performance of a biotechnological, animal-free alternative, ewoS9R, in comparison to one of the rat-derived S9-fraction as the others showed a mutagenic potential themselves. Specifically, 12 different chemicals were used as a reference to determine if ewoS9R could serve as an adequate and more consistent replacement of traditional rat-derived metabolic activation systems: 8 pro-mutagenic compounds (i.e., require metabolic activation to show a mutagenic potential), one pro-mutagenic compound but not in the tested strains, one mutagenic compound without metabolic activation and two compounds that are equivocal in the literature. EwoS9R was evaluated as a promising approach in the Ames fluctuation assay with 5 compounds observed to have similar results with both rat-derived S9-fraction and ewoS9R (41%), for 3 compounds ewoS9R was a better metabolization system than the rat-derived S9-fraction (16%). Further research is necessary to determine the full potential of ewoS9R in comparison to rat-derived S9-fractions.
Collapse
Affiliation(s)
- Julia Brendt
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sarah E Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Hongxia Xiao
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany
| | - Beat Thalmann
- EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Andreas Schiwy
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Murbach TS, Glávits R, Endres JR, Clewell AE, Hirka G, Vértesi A, Béres E, Pasics Szakonyiné I. A toxicological evaluation of a fulvic and humic acids preparation. Toxicol Rep 2020; 7:1242-1254. [PMID: 32995299 PMCID: PMC7505752 DOI: 10.1016/j.toxrep.2020.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/21/2023] Open
Abstract
Toxicological evaluations of blk. 333 according to OECD guidelines were negative. Blk. 333 was not mutagenic in vitro and showed no in vivo genotoxic activity. The NOAEL of the 90-day study was 2000 mg/kg bw/d blk. 333—the highest dose tested. No target organs or treatment-related toxicological effects were identified. Our results are relevant to a safety assessment of human ingestion of blk. 333.
Humic substances are ubiquitous in soils and waters. These complex superstructures are derived from the decomposition of dead plant and animal matter and are vital to soil health. Their heterogenous composition is specific to their site of origin and is comprised of weakly bound aggregates of small organic compounds that can sequester minerals and make them available to plants. As such, they may possess potential nutritional value for humans, and extractions of fulvic and humic acids can be produced that could be suitable for such purposes. For this reason, we evaluated the toxicological profile of a specific preparation (blk. 333) of fulvic and humic acids derived from a lignite deposit in Alberta, Canada and found it to lack genotoxic potential in a bacterial reverse mutation test, in vitro mammalian chromosomal aberration test, and in vivo mammalian micronucleus test. No general or organ toxicity was observed in Wistar rats following 90 days of continuous exposure, and a no observed adverse effect level (NOEAL) was determined at 2000 mg/kg bw/day, the highest tested dose. Our results suggest the feasibility of further evaluation for development of the preparation as a nutritional supplement in food.
Collapse
Key Words
- ANOVA, analysis of variance
- CDFA, California Department of Food and Agricultural
- Cl-HA, chlorinated humic acid
- DME, Dulbecco’s modified Eagle’s
- EFSA, European Food Safety Authority
- FA, fulvic acid
- FOB, functional observation battery
- Fulvic acid
- GLP, good laboratory practice
- HA, humic acid
- Humic acid
- MPCE, micronucleated polychromatic erythrocytes
- NOAEL
- NOAEL, no observed adverse effect level
- O3-HA, ozonated humic acid
- O3/Cl2-HA, ozonated and chlorinated humic acid
- OECD, Organisation for Economic Co-operation and Development
- S9, post mitochondrial supernatant S9-mix Phenobarbital/β-naphthoflavone-induced rat liver S9 metabolic activation system
- SCE, sister chromatid exchange
- SD, Sprague-Dawley
- SOP, standard operating procedure
- SPF, specific pathogen-free
- Safety
- TG, test guideline
- TSH, thyroid stimulating hormone
- Toxicity
- blk. 333
- fT4, free thyroxine
Collapse
Affiliation(s)
- Timothy S Murbach
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA 98122, USA
| | - Róbert Glávits
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045 Budapest, Hungary
| | - John R Endres
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA 98122, USA
| | - Amy E Clewell
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA 98122, USA
| | - Gábor Hirka
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045 Budapest, Hungary.,Toxi-Coop Zrt., Arácsi út 97, 8230 Balatonfüred, Hungary
| | - Adél Vértesi
- Toxi-Coop Zrt., Arácsi út 97, 8230 Balatonfüred, Hungary
| | - Erzsébet Béres
- Toxi-Coop Zrt., Arácsi út 97, 8230 Balatonfüred, Hungary
| | | |
Collapse
|
20
|
Preece KE, Glávits R, Murbach T, Endres JR, Hirka G, Vértesi A, Béres E, Szakonyiné IP. A toxicological evaluation of monomethylsilanetriol (MMST) stabilized in acacia gum, a novel silicon preparation. Regul Toxicol Pharmacol 2020; 117:104782. [PMID: 32905813 DOI: 10.1016/j.yrtph.2020.104782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/25/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
Monomethylsilanetriol (MMST), a silicon-containing compound, has been sold in dietary supplements. However, toxicological studies on its safety profile are not readily available. To assess the safety of MMST stabilized in acacia gum, a novel delivery form of MMST, in accordance with internationally accepted standards, the genotoxic potential and repeated-dose oral toxicity of Living Silica® Acacia Gum Stabilized Monomethylsilanetriol (formerly known as Orgono Acacia Gum Powder®), a food grade product consisting of 80 ± 10% acacia gum and 2.8% (SD ± 10%) elemental silicon from MMST, was investigated. A bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, an in vivo mammalian micronucleus test, and a 90-day repeated-dose oral toxicity study in rats were performed. No evidence of mutagenicity or genotoxic activity was observed under the applied test systems. In the 90-day study, male and female Hsd.Han Wistar rats were administered daily doses of 0, 500, 1000, and 2000 mg/kg bw/day by gavage. No mortality or treatment-related adverse effects were observed, and no target organs were identified. Therefore, the no observed adverse effects level (NOAEL) was determined as 2000 mg/kg bw/day (201 mg MMST/kg bw/day), the highest dose tested.
Collapse
Affiliation(s)
- Kayla E Preece
- AIBMR Life Sciences, Inc, 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Róbert Glávits
- Toxi-Coop Zrt, Magyar Jakobinusok tere 4/B, H-1122, Budapest, Hungary.
| | - Tim Murbach
- AIBMR Life Sciences, Inc, 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - John R Endres
- AIBMR Life Sciences, Inc, 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Gábor Hirka
- Toxi-Coop Zrt, Magyar Jakobinusok tere 4/B, H-1122, Budapest, Hungary.
| | - Adél Vértesi
- Toxi-Coop Zrt, Magyar Jakobinusok tere 4/B, H-1122, Budapest, Hungary.
| | - Erzsébet Béres
- Toxi-Coop Zrt, Magyar Jakobinusok tere 4/B, H-1122, Budapest, Hungary.
| | | |
Collapse
|
21
|
Saedtler M, Förtig N, Ohlsen K, Faber F, Masota N, Kowalick K, Holzgrabe U, Meinel L. Antibacterial Anacardic Acid Derivatives. ACS Infect Dis 2020; 6:1674-1685. [PMID: 32519844 DOI: 10.1021/acsinfecdis.9b00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report on the antibacterial activity of five phenolic lipids derived from anacardic acid characterized by increasing alkyl chain lengths with 6, 8, 10, 12, or 14 carbon atoms. The compounds were profiled for their physicochemical properties, transport across epithelial monolayers, cytotoxicity, and antibacterial activity as compared to common antibiotics. No cytotoxicity was reported in cell lines of fibroblast, hepatic, colorectal, or renal origin. C10 and C12 significantly increased the survival in a Galleria mellonella model infected with multi-drug-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococci (VRE) as compared to the untreated control group. Future studies are required to corroborate these findings in relevant animal model systems of infection.
Collapse
Affiliation(s)
- Marco Saedtler
- Institute for Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Niclas Förtig
- Institute for Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology (IMIB), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Franziska Faber
- Institute for Molecular Infection Biology (IMIB), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Nelson Masota
- Institute for Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Kristin Kowalick
- Labor LS SE & Co. KG, Mangelsfeld 4-6, 97708 Bad Bocklet, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, Am Hubland, 97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| |
Collapse
|
22
|
A Toxicological Evaluation of Germanium Sesquioxide (Organic Germanium). J Toxicol 2020; 2020:6275625. [PMID: 32322266 PMCID: PMC7160733 DOI: 10.1155/2020/6275625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022] Open
Abstract
A battery of OECD- and GLP-compliant toxicological studies was performed to assess the safety of a highly purified germanium sesquioxide, an organic form of the naturally occurring, nonessential trace element germanium. Germanium dioxide and germanium lactate citrate (inorganic germaniums) have been shown to induce renal toxicity, whereas germanium sesquioxide (an organic germanium) has been shown to have a more favorable safety profile. However, past toxicity studies on germanium sesquioxide compounds have not clearly stated the purity of the tested compounds. In the studies reported herein, there was no evidence of mutagenicity in a bacterial reverse mutation test or an in vitro mammalian chromosomal aberration test. There was no genotoxic activity observed in an in vivo mammalian micronucleus test at concentrations up to the limit dose of 2000 mg/kg bw/day. In a 90-day repeated-dose oral toxicity study in Han:WIST rats conducted at doses of 0, 500, 1000, and 2000 mg/kg bw/day by gavage, there were no mortalities, treatment-related adverse effects, or target organs identified. The no-observed-adverse-effect-level (NOAEL) was determined to be 2000 mg/kg bw/day.
Collapse
|
23
|
A Toxicological Evaluation of Methylliberine (Dynamine®). J Toxicol 2019; 2019:4981420. [PMID: 31911801 PMCID: PMC6930730 DOI: 10.1155/2019/4981420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
Methylliberine (CAS 51168-26-4), a methoxiuric acid, is a caffeine metabolite present at low levels in various Coffea plants; however, very little has been published regarding this compound and we could find no toxicological data in the public domain. Therefore, we undertook the toxicological investigation of a pure, synthetic form of methylliberine in order to evaluate its potential health hazards as a food ingredient. A (1) bacterial reverse mutation test, (2) in vitro mammalian chromosomal aberration test, (3) in vivo mammalian micronucleus test, and (4) 90-day repeated-dose oral toxicity study in rats with a 28-day recovery period were conducted. No in vitro mutagenic or clastogenic activity was observed in the presence or absence of metabolic activation up to the maximum OECD recommended test concentrations. No genotoxicity was observed in the mammalian micronucleus study up to the highest dose tested of 700 mg/kg bw. In the 90-day study, methylliberine was administered to Han:WIST rats at doses of 0, 75, 112, 150, 187, and 225 mg/kg bw/day. No mortality or morbidity was observed and no toxicologically relevant clinical effects or effects on clinical pathology parameters were observed. In male animals, test item-related effects on body weight and sexual organs, which were not reversible after a 28-day recovery period without treatment, were observed in the high-dose group. Body weight development was also slightly and reversibly depressed in the 187 mg/kg bw/day male group. No toxicological effects were observed in females. The NOAEL for females was determined to be 225 mg/kg bw/day, the highest dose tested, while the NOAEL for males was determined to be 150 mg/kg bw/day. Future studies are encouraged to corroborate the safety, and assess efficacy, of methylliberine in humans.
Collapse
|
24
|
Niederberger K, Dahms I, Broschard T, Boehni R, Moser R. Safety evaluation of calcium L-methylfolate. Toxicol Rep 2019; 6:1018-1030. [PMID: 31673504 PMCID: PMC6816227 DOI: 10.1016/j.toxrep.2019.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022] Open
Abstract
Calcium L-methylfolate (L-5-MTHF-Ca; CAS Number 151533-22-1) is a source of folate and an alternative to folic acid for use in human food and food supplements. The safety of L-5-MTHF-Ca was evaluated by testing for genotoxicity, subchronic and prenatal developmental toxicity. In in vitro assays L-5-MTHF-Ca was not mutagenic and did not induce other chromosomal events. Additionally, L-5-MTHF-Ca was not genotoxic in the in vivo micronucleus test nor did it induce DNA damage in rat liver cells. In a subchronic toxicity study, rats administered up to 400 mg/kg bw/day of L-5-MTHF-Ca via oral gavage for 13 weeks had no treatment-related mortalities, and no treatment-related effects were identified on behaviour, body weight, food consumption, ophthalmology, haematology, or organ weights. No treatment-related macroscopic or histopathological findings were observed. Calcium and sodium levels increased with increasing dosage, however the slight increases were within historical control ranges and reversible after the recovery period. L-5-MTHF-Ca is neither teratogenic nor embryotoxic. Based on the results of the in vitro and in vivo studies, the safe use of L-5-MTHF-Ca as an ingredient in foods is supported. The no observed adverse effect level was the highest dose in the subchronic toxicity study, i.e. 400 mg/kg bw/day for male and female rats.
Collapse
Key Words
- 5-MTHF, 5-methyltetrahydrofolate
- ANOVA, analysis of variance
- BaP, benzo[a]pyrene
- Calcium L-methylfolate
- Developmental toxicity
- EFSA, European Food Safety Authority
- GD, gestation day
- GLP, Good Laboratory Practice
- GRAS, generally recognized as safe
- Genotoxicity
- HPLC, High Performance Liquid Chromatography
- JECFA, Joint FAO/WHO Expert Committee on Food Additives
- L-5-MTHF-Ca
- L-5-MTHF-Ca, calcium L-methylfolate
- MTT, 3-[45-dimethylthiazole-2-yl]-2,5-diphenylbromide
- NNG, net grains/nucleus
- NOAEL, No Observed Adverse Effect Level
- OECD, Organisation for Economic Co-operation and Development
- TFT, 5-trifluorothymidine
- Toxicity
- USP, United States Pharmacopeia
- WE-I, Williams E medium-Incomplete
- bw, body weight
Collapse
Affiliation(s)
| | - I. Dahms
- DSM Nutritional Products, Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| | - T.H. Broschard
- Merck KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - R. Boehni
- Merck & Cie, Im Laternenacker 5, 8200, Schaffhausen, Switzerland
| | - R. Moser
- Merck & Cie, Im Laternenacker 5, 8200, Schaffhausen, Switzerland
| |
Collapse
|
25
|
Levy DD, Zeiger E, Escobar PA, Hakura A, van der Leede BJM, Kato M, Moore MM, Sugiyama KI. Recommended criteria for the evaluation of bacterial mutagenicity data (Ames test). Mutat Res 2019; 848:403074. [PMID: 31708073 DOI: 10.1016/j.mrgentox.2019.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
A committee was constituted within the International Workshop on Genetic Toxicology Testing (IWGT) to evaluate the current criteria for a valid Ames test and to provide recommendations for interpretation of test results. Currently, determination of a positive vs. a negative result is made by applying various data evaluation procedures for comparing dosed plates with the concurrent solvent control plates. These evaluation procedures include a requirement for a specific fold increase (2- or 3-fold, specific to the bacterial strain), formal statistical procedures, or subjective (expert judgment) evaluation. After extensive discussion, the workgroup was not able to reach consensus recommendations in favor of any of these procedures. There was a consensus that combining additional evaluation criteria to the comparison between dosed plates and the concurrent solvent control plates improves test interpretation. The workgroup recommended using these additional criteria because the induction of mutations is a continuum of responses and there is no biological relevance to a strict dividing line between a positive (mutagenic) and not-positive (nonmutagenic) response. The most useful additional criteria identified were a concentration-response relationship and consideration of a possible increase above the concurrent control in the context of the laboratory's historical solvent control values for the particular tester strain. The workgroup also emphasized the need for additional testing to resolve weak or inconclusive responses, usually with altered experimental conditions chosen based on the initial results. Use of these multiple criteria allowed the workgroup to reach consensus on definitions of "clear positive" and "clear negative" responses which would not require a repeat test for clarification. The workgroup also reached consensus on recommendations to compare the responses of concurrent positive and negative controls to historical control distributions for assay acceptability, and the use of control charts to determine the validity of the individual test.
Collapse
Affiliation(s)
- Dan D Levy
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, USA.
| | - Errol Zeiger
- Errol Zeiger Consulting, Chapel Hill, NC, 27514, USA
| | | | - Atsushi Hakura
- Tsukuba Drug Safety, Eisai Co., Ltd., Tsukuba, Ibaraki, 300-2635, Japan
| | - Bas-Jan M van der Leede
- Non-Clinical Safety, Janssen Research & Development, a Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Masayuki Kato
- CMIC Pharma Science Co., Ltd., Hokuto, Yamanashi, Japan
| | | | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
26
|
Toxicological Evaluation of a Mixture of Astragalus membranaceus and Panax notoginseng Root Extracts (InnoSlim®). J Toxicol 2019; 2019:5723851. [PMID: 31354815 PMCID: PMC6633876 DOI: 10.1155/2019/5723851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
Astragalus spp. and Panax spp. have a long history of traditional human use. A blend, InnoSlim®, of highly purified and fractionated root extracts from Astragalus membranaceus and Panax notoginseng has now been developed for human consumption; however, the unique constituent content of this blend has not been specifically evaluated with respect to safety. Therefore, the toxicological potential of the blend was formally investigated in a series of studies—genetic toxicity was evaluated in a bacterial reverse mutation test followed by an in vivo mammalian micronucleus test, and general toxicity was evaluated in a 28-day repeated-dose oral toxicity study in rats. No evidence of mutagenicity was observed in the bacterial tester strains used, and no evidence of in vivo chromosomal damage resulting in increased frequency of micronucleated cells was observed in male Crl:NMRI BR mice. No mortality or toxic effects were observed, and no target organs were identified, in male and female Han:WIST rats exposed to 0, 400, 800, or 1200 mg/kg bw/day of the blend by gavage for 28 consecutive days. The highest dose—1200 mg/kg bw/day—was determined to be the NOAEL. Based on these results, extrapolation towards a safe human consumption level can be explored.
Collapse
|
27
|
Zeiger E. The test that changed the world: The Ames test and the regulation of chemicals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 841:43-48. [DOI: 10.1016/j.mrgentox.2019.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 01/12/2023]
|
28
|
Honma M, Kitazawa A, Cayley A, Williams RV, Barber C, Hanser T, Saiakhov R, Chakravarti S, Myatt GJ, Cross KP, Benfenati E, Raitano G, Mekenyan O, Petkov P, Bossa C, Benigni R, Battistelli CL, Giuliani A, Tcheremenskaia O, DeMeo C, Norinder U, Koga H, Jose C, Jeliazkova N, Kochev N, Paskaleva V, Yang C, Daga PR, Clark RD, Rathman J. Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project. Mutagenesis 2019; 34:3-16. [PMID: 30357358 PMCID: PMC6402315 DOI: 10.1093/mutage/gey031] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/20/2018] [Indexed: 11/12/2022] Open
Abstract
The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico approaches for predicting Ames mutagenicity for the initial assessment of impurities in pharmaceuticals. This is the first international guideline that addresses the use of quantitative structure–activity relationship (QSAR) models in lieu of actual toxicological studies for human health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals. To increase the predictive power of QSAR models, larger experimental datasets from reliable sources are required. The Division of Genetics and Mutagenesis, National Institute of Health Sciences (DGM/NIHS) of Japan recently established a unique proprietary Ames mutagenicity database containing 12140 new chemicals that have not been previously used for developing QSAR models. The DGM/NIHS provided this Ames database to QSAR vendors to validate and improve their QSAR tools. The Ames/QSAR International Challenge Project was initiated in 2014 with 12 QSAR vendors testing 17 QSAR tools against these compounds in three phases. We now present the final results. All tools were considerably improved by participation in this project. Most tools achieved >50% sensitivity (positive prediction among all Ames positives) and predictive power (accuracy) was as high as 80%, almost equivalent to the inter-laboratory reproducibility of Ames tests. To further increase the predictive power of QSAR tools, accumulation of additional Ames test data is required as well as re-evaluation of some previous Ames test results. Indeed, some Ames-positive or Ames-negative chemicals may have previously been incorrectly classified because of methodological weakness, resulting in false-positive or false-negative predictions by QSAR tools. These incorrect data hamper prediction and are a source of noise in the development of QSAR models. It is thus essential to establish a large benchmark database consisting only of well-validated Ames test results to build more accurate QSAR models.
Collapse
Affiliation(s)
- Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kanagawa, Japan
| | - Airi Kitazawa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kanagawa, Japan
| | - Alex Cayley
- Lhasa Limited, Granary Wharf House, Canal Wharf, Leeds, UK
| | | | - Chris Barber
- Lhasa Limited, Granary Wharf House, Canal Wharf, Leeds, UK
| | - Thierry Hanser
- Lhasa Limited, Granary Wharf House, Canal Wharf, Leeds, UK
| | | | | | | | | | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa19 Milano, Italy
| | - Giuseppa Raitano
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa19 Milano, Italy
| | - Ovanes Mekenyan
- Laboratory of Mathematical Chemistry, As. Zlatarov University, Bourgas, Bulgaria
| | - Petko Petkov
- Laboratory of Mathematical Chemistry, As. Zlatarov University, Bourgas, Bulgaria
| | - Cecilia Bossa
- Istituto Superiore di Sanita', Viale Regina Elena, Rome, Italy
| | - Romualdo Benigni
- Istituto Superiore di Sanita', Viale Regina Elena, Rome, Italy.,Alpha-Pretox, Via G. Pascoli, Rome, Italy
| | | | | | | | | | - Ulf Norinder
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden.,Department of Computer and Systems Sciences, Stockholm University, SE Kista, Sweden
| | - Hiromi Koga
- Fujitsu Kyushu Systems Limited, Higashihie, Hakata-ku, Fukuoka, Japan
| | - Ciloy Jose
- Fujitsu Kyushu Systems Limited, Higashihie, Hakata-ku, Fukuoka, Japan
| | | | - Nikolay Kochev
- IdeaConsult Ltd., A. Kanchev str., Sofia, Bulgaria.,Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | - Vesselina Paskaleva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | - Chihae Yang
- Molecular Networks GmbH and Altamira LLC, Neumeyerstrasse Nürnberg, Germany and Candlewood Drive, Columbus, OH, USA
| | | | | | - James Rathman
- Molecular Networks GmbH and Altamira LLC, Neumeyerstrasse Nürnberg, Germany and Candlewood Drive, Columbus, OH, USA.,Chemical and Biomolecular Engineering, The Ohio State University, W. Woodruff Ave. Columbus, OH, USA
| |
Collapse
|
29
|
Palmer PA, Bryson JA, Clewell AE, Endres JR, Hirka G, Vértesi A, Béres E, Glávits R, Szakonyiné IP. A comprehensive toxicological safety assessment of an extract of Ageratum conyzoides. Regul Toxicol Pharmacol 2019; 103:140-149. [DOI: 10.1016/j.yrtph.2019.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 11/28/2022]
|
30
|
Amberg A, Anger LT, Bercu J, Bower D, Cross KP, Custer L, Harvey JS, Hasselgren C, Honma M, Johnson C, Jolly R, Kenyon MO, Kruhlak NL, Leavitt P, Quigley DP, Miller S, Snodin D, Stavitskaya L, Teasdale A, Trejo-Martin A, White AT, Wichard J, Myatt GJ. Extending (Q)SARs to incorporate proprietary knowledge for regulatory purposes: is aromatic N-oxide a structural alert for predicting DNA-reactive mutagenicity? Mutagenesis 2019; 34:67-82. [PMID: 30189015 DOI: 10.1093/mutage/gey020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/02/2018] [Accepted: 07/28/2018] [Indexed: 11/13/2022] Open
Abstract
(Quantitative) structure-activity relationship or (Q)SAR predictions of DNA-reactive mutagenicity are important to support both the design of new chemicals and the assessment of impurities, degradants, metabolites, extractables and leachables, as well as existing chemicals. Aromatic N-oxides represent a class of compounds that are often considered alerting for mutagenicity yet the scientific rationale of this structural alert is not clear and has been questioned. Because aromatic N-oxide-containing compounds may be encountered as impurities, degradants and metabolites, it is important to accurately predict mutagenicity of this chemical class. This article analysed a series of publicly available aromatic N-oxide data in search of supporting information. The article also used a previously developed structure-activity relationship (SAR) fingerprint methodology where a series of aromatic N-oxide substructures was generated and matched against public and proprietary databases, including pharmaceutical data. An assessment of the number of mutagenic and non-mutagenic compounds matching each substructure across all sources was used to understand whether the general class or any specific subclasses appear to lead to mutagenicity. This analysis resulted in a downgrade of the general aromatic N-oxide alert. However, it was determined there were enough public and proprietary data to assign the quindioxin and related chemicals as well as benzo[c][1,2,5]oxadiazole 1-oxide subclasses as alerts. The overall results of this analysis were incorporated into Leadscope's expert-rule-based model to enhance its predictive accuracy.
Collapse
Affiliation(s)
- Alexander Amberg
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Höchst, Frankfurt am Main, Germany
| | - Lennart T Anger
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Höchst, Frankfurt am Main, Germany
| | - Joel Bercu
- Gilead Sciences, Nonclinical Safety and Pathobiology, Foster City, CA, USA
| | | | | | - Laura Custer
- Bristol-Myers Squibb, Drug Safety Evaluation, New Brunswick, NJ, USA
| | - James S Harvey
- GlaxoSmithKline Pre-Clinical Development, Ware, Hertfordshire, UK
| | | | - Masamitsu Honma
- National Institute of Health Sciences, Division of Genetics & Mutagenesis, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | | | - Robert Jolly
- Toxicology Division, Eli Lilly and Company, Indianapolis, IN, USA
| | - Michelle O Kenyon
- Pfizer Worldwide Research and Development, Drug Safety, Genetic Toxicology, Groton, CT, USA
| | - Naomi L Kruhlak
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Penny Leavitt
- Bristol-Myers Squibb, Drug Safety Evaluation, New Brunswick, NJ, USA
| | | | | | | | - Lidiya Stavitskaya
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Andrew Teasdale
- AstraZeneca, Pharmaceutical Technology and Development, Macclesfield, Cheshire, UK
| | | | - Angela T White
- GlaxoSmithKline Pre-Clinical Development, Ware, Hertfordshire, UK
| | - Joerg Wichard
- Bayer AG, Pharmaceuticals Division, Investigational Toxicology, Muellerstr, Berlin, Germany
| | | |
Collapse
|
31
|
Thiel A, Glávits R, Murbach TS, Endres JR, Reddeman R, Hirka G, Vértesi A, Béres E, Szakonyiné IP. Toxicological evaluations of colostrum ultrafiltrate. Regul Toxicol Pharmacol 2019; 104:39-49. [PMID: 30831157 DOI: 10.1016/j.yrtph.2019.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
Colostrum has been consumed safely for many years as a food collected directly from cows. More recently, an ultrafiltrated bovine colostrum product has been developed; however, its safety in toxicology studies has not been extensively evaluated. To assess the safety of bovine colostrum ultrafiltrate, in accordance with internationally accepted standards, the genotoxic potential was investigated in a bacterial reverse mutation test, an in vitro chromosomal aberration test, and an in vivo mammalian micronucleus test. No mutagenicity or genotoxic activity was observed in these three tests. A 90-day repeated-dose oral toxicity study in Hsd.Han Wistar rats was conducted at doses of 0, 1050, 2100, and 4200 mg/kg bw/day by gavage. After 90 days of continuous exposure, no mortality or treatment-related adverse effects were observed, and no target organs were identified. The no-observed-adverse-effect level (NOAEL) was determined to be 4200 mg/kg bw/day, the highest dose tested.
Collapse
Affiliation(s)
- Anne Thiel
- AIBMR Life Sciences, Inc., 2800 East Madison Street, Suite 202, Seattle, WA 98112, USA.
| | - Róbert Glávits
- Toxi-Coop Zrt, Magyar Jakobinusok Tere 4/B, H-1122 Budapest, Hungary.
| | - Timothy S Murbach
- AIBMR Life Sciences, Inc., 2800 East Madison Street, Suite 202, Seattle, WA 98112, USA.
| | - John R Endres
- AIBMR Life Sciences, Inc., 2800 East Madison Street, Suite 202, Seattle, WA 98112, USA.
| | - Robin Reddeman
- AIBMR Life Sciences, Inc., 2800 East Madison Street, Suite 202, Seattle, WA 98112, USA.
| | - Gábor Hirka
- Toxi-Coop Zrt, Magyar Jakobinusok Tere 4/B, H-1122 Budapest, Hungary.
| | - Adél Vértesi
- Toxi-Coop Zrt, Magyar Jakobinusok Tere 4/B, H-1122 Budapest, Hungary.
| | - Erzsébet Béres
- Toxi-Coop Zrt, Magyar Jakobinusok Tere 4/B, H-1122 Budapest, Hungary.
| | | |
Collapse
|
32
|
Huang D, Zhang X, Zhang C, Li H, Li D, Hu Y, Yang F, Qi Y. 2,4-Dichlorophenol induces DNA damage through ROS accumulation and GSH depletion in goldfish Carassius auratus. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:798-804. [PMID: 30091148 DOI: 10.1002/em.22209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/17/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is one of the most abundant chlorophenols in the aquatic environment and has been frequently detected in surface waters. Although ecological and cellular toxicity of 2,4-DCP has aroused the public concern, few reports focus on the genotoxicity, especially on DNA double strand breaks (DSBs), of 2,4-DCP in fish. The present study aims to explore the genotoxic effect of 2,4-DCP on DSBs in goldfish Carassius auratus and to further elucidate its potential mechanism. The results showed that 2,4-DCP significantly induced DSBs (detected by neutral comet assay) in erythrocytes and hepatocytes of goldfish in a dose-dependent manner, indicating a genotoxicity of 2,4-DCP on fish. The total antioxidant capability and the content of reduced glutathione (GSH) were significantly decreased, while the level of reactive oxygen species (ROS) was significantly increased in a dose-dependent manner in erythrocytes and hepatocytes, suggesting an oxidative stress caused by 2,4-DCP in fish. N-acetyl-l-cysteine, a precursor of GSH and a ROS scavenger, significantly impaired 2,4-DCP-induced ROS overproduction and DSBs, which proves that ROS accumulation and GSH depletion are involved in 2,4-DCP-induced DNA damage in fish. Environ. Mol. Mutagen. 59:798-9, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaoning Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Chen Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Hui Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Dong Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Feng Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
33
|
Marx TK, Reddeman R, Clewell AE, Endres JR, Béres E, Vértesi A, Glávits R, Hirka G, Szakonyiné IP. An Assessment of the Genotoxicity and Subchronic Toxicity of a Supercritical Fluid Extract of the Aerial Parts of Hemp. J Toxicol 2018; 2018:8143582. [PMID: 29977291 PMCID: PMC6011091 DOI: 10.1155/2018/8143582] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023] Open
Abstract
A battery of toxicological studies was conducted on a supercritical CO2 extract of the aerial parts of the Cannabis sativa plant, containing approximately 25% cannabinoids. No evidence of genotoxicity was found in a bacterial reverse mutation test (Ames), in an in vitro mammalian chromosomal aberration test, or in an in vivo mouse micronucleus study. A 14-day repeated oral dose-range finding study conducted in Wistar rats at 1000, 2000, and 4000 mg/kg bw/day resulted in effects where a NOAEL could not be concluded. Based on those results, a 90-day repeated dose oral toxicity study was performed in rats using doses of 100, 360, and 720 mg/kg bw/day, followed by a 28-day recovery period for two satellite groups. Significant decreases in body weight, body weight gain, and differences in various organ weights compared to controls were observed. At the end of the recovery period, many of the findings were trending toward normal; thus, the changes appeared to be reversible. The NOAEL for the hemp extract in Hsd.Han Wistar rats was considered to be 100 mg/kg bw/day for males and 360 mg/kg bw/day for females.
Collapse
Affiliation(s)
- Tennille K. Marx
- AIBMR Life Sciences, Inc., 2800 E Madison St., Suite 202, Seattle, WA 98112, USA
| | - Robin Reddeman
- AIBMR Life Sciences, Inc., 2800 E Madison St., Suite 202, Seattle, WA 98112, USA
| | - Amy E. Clewell
- AIBMR Life Sciences, Inc., 2800 E Madison St., Suite 202, Seattle, WA 98112, USA
| | - John R. Endres
- AIBMR Life Sciences, Inc., 2800 E Madison St., Suite 202, Seattle, WA 98112, USA
| | - Erzsébet Béres
- Toxi-Coop Zrt., Magyar Jakobinusok Tere 4/B, Budapest 1122, Hungary
| | - Adél Vértesi
- Toxi-Coop Zrt., Magyar Jakobinusok Tere 4/B, Budapest 1122, Hungary
| | - Róbert Glávits
- Toxi-Coop Zrt., Magyar Jakobinusok Tere 4/B, Budapest 1122, Hungary
| | - Gábor Hirka
- Toxi-Coop Zrt., Magyar Jakobinusok Tere 4/B, Budapest 1122, Hungary
| | | |
Collapse
|
34
|
Kao I, Xiong Y, Steffen A, Smuda K, Zhao L, Georgieva R, Pruss A, Bäumler H. Preclinical In Vitro Safety Investigations of Submicron Sized Hemoglobin Based Oxygen Carrier HbMP-700. Artif Organs 2018; 42:549-559. [DOI: 10.1111/aor.13071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ijad Kao
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
| | - Yu Xiong
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
- CC-Ery GmbH; Berlin Germany
| | - Axel Steffen
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
- CC-Ery GmbH; Berlin Germany
| | - Kathrin Smuda
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
| | - Lian Zhao
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
- Institute of Transfusion Medicine, Academy of Military Medical Sciences; Beijing China
| | - Radostina Georgieva
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
| | - Axel Pruss
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
| | - Hans Bäumler
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine; Berlin Germany
| |
Collapse
|
35
|
Reddeman RA, Glávits R, Endres JR, Murbach TS, Hirka G, Vértesi A, Béres E, Szakonyiné IP. A Toxicological Assessment of Creatyl-l-Leucine. Int J Toxicol 2018; 37:171-187. [PMID: 29357766 DOI: 10.1177/1091581817751142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A battery of toxicological studies was conducted to investigate the genotoxicity and repeated-dose oral toxicity of creatyl-l-leucine, a synthetic compound, in rats in accordance with internationally accepted guidelines. There was no evidence of mutagenicity in a bacterial reverse mutation test and in an in vitro mammalian chromosomal aberration test. There was no genotoxic activity observed in an in vivo mammalian micronucleus test at concentrations up to the limit dose of 2,000 mg/kg bw/d. Creatyl-l-leucine did not cause mortality or toxic effects in Hsd.Han Wistar rats in a 90-day repeated-dose oral (gavage) toxicity study at doses of 1,250, 2,500, and 5,000 mg/kg bw/d. The no observed adverse effect level from the 90-day study was determined to be 5,000 mg/kg bw/d, the highest dose tested, for both male and female rats.
Collapse
|
36
|
Murbach TS, Glávits R, Endres JR, Hirka G, Vértesi A, Béres E, Szakonyiné IP. A Toxicological Evaluation of Chlamydomonas reinhardtii, a Green Algae. Int J Toxicol 2018; 37:53-62. [PMID: 29303016 DOI: 10.1177/1091581817746109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is a current worldwide interest in developing novel sustainable nonanimal nutritional sources, and one such source is the green algae Chlamydomonas reinhardtii, the only green algae that has been studied as a model organism for many biological processes ranging from photosynthesis to flagellar movement. However, its potential as a safe nutritional source for use in various foods has not been thoroughly investigated. To assess the safety of C reinhardtii for use as a nutritional human food ingredient, in accordance with internationally accepted standards, the genotoxic potential and repeated-dose oral toxicity of the dried C reinhardtii (THN 6) algal biomass was investigated. The following studies were conducted: (1) a bacterial reverse mutation test, (2) an in vitro mammalian chromosomal aberration test, (3) an in vivo mammalian micronucleus test, and (4) a 28-day repeated-dose oral toxicity study in rats. No evidence of mutagenicity or genotoxic activity was observed in the first 3 tests under the applied test systems. In the 28-day study, male and female Hsd.Han Wistar rats were exposed to daily doses of 0, 1,000, 2,000, and 4,000 mg/kg bw by gavage. Following 28 days of continuous exposure, no mortality or treatment-related adverse effects were observed and no target organs were identified. Therefore, a no observed adverse effect level was concluded as 4,000 mg/kg bw/day, the highest dose tested.
Collapse
|
37
|
Liu Q, Lei Z, Zhu F, Ihsan A, Wang X, Yuan Z. A Novel Strategy to Predict Carcinogenicity of Antiparasitics Based on a Combination of DNA Lesions and Bacterial Mutagenicity Tests. Front Public Health 2017; 5:288. [PMID: 29170735 PMCID: PMC5684118 DOI: 10.3389/fpubh.2017.00288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Genotoxicity and carcinogenicity testing of pharmaceuticals prior to commercialization is requested by regulatory agencies. The bacterial mutagenicity test was considered having the highest accuracy of carcinogenic prediction. However, some evidences suggest that it always results in false-positive responses when the bacterial mutagenicity test is used to predict carcinogenicity. Along with major changes made to the International Committee on Harmonization guidance on genotoxicity testing [S2 (R1)], the old data (especially the cytotgenetic data) may not meet current guidelines. This review provides a compendium of retrievable results of genotoxicity and animal carcinogenicity of 136 antiparasitics. Neither genotoxicity nor carcinogenicity data is available for 84 (61.8%), while 52 (38.2%) have been evaluated in at least one genotoxicity or carcinogenicity study, and only 20 (14.7%) in both genotoxicity and carcinogenicity studies. Among 33 antiparasitics with at least one old result in in vitro genotoxicity, 15 (45.5%) are in agreement with the current ICH S2 (R1) guidance for data acceptance. Compared with other genotoxicity assays, the DNA lesions can significantly increase the accuracy of prediction of carcinogenicity. Together, a combination of DNA lesion and bacterial tests is a more accurate way to predict carcinogenicity.
Collapse
Affiliation(s)
- Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zhixin Lei
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Feng Zhu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Xu Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
38
|
Bora NS, Pathak MP, Mandal S, Mazumder B, Policegoudra R, Raju PS, Chattopadhyay P. Safety assessment and toxicological profiling of a novel combinational sunprotective dermal formulation containing melatonin and pumpkin seed oil. Regul Toxicol Pharmacol 2017; 89:1-12. [DOI: 10.1016/j.yrtph.2017.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/23/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
|
39
|
Bhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol 2017; 38:81-99. [PMID: 28695982 DOI: 10.1002/jat.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
Abstract
Many of the known human carcinogens are potent genotoxins that are efficiently detected as carcinogens in human populations but certain types of compounds such as immunosuppressants, sex hormones, etc. act via non-genotoxic mechanism. The absence of genotoxicity and the diversity of modes of action of non-genotoxic carcinogens make predicting their carcinogenic potential extremely challenging. There is evidence that combinations of different short-term tests provide a better and efficient prediction of human genotoxic and non-genotoxic carcinogens. The purpose of this study is to summarize the in vivo and in vitro comet assay (CMT) results of group 1 carcinogens selected from the International Agency for Research on Cancer and to discuss the utility of the comet assay along with other genotoxic assays such as Ames, in vivo micronucleus (MN), and in vivo chromosomal aberration (CA) test. Of the 62 agents for which valid genotoxic data were available, 38 of 61 (62.3%) were Ames test positive, 42 of 60 (70%) were in vivo MN test positive and 36 of 45 (80%) were positive for the in vivo CA test. Higher sensitivity was seen in in vivo CMT (90%) and in vitro CMT (86.9%) assay. Combination of two tests has greater sensitivity than individual tests: in vivo MN + in vivo CA (88.6%); in vivo MN + in vivo CMT (92.5%); and in vivo MN + in vitro CMT (95.6%). Combinations of in vivo or in vitro CMT with other tests provided better sensitivity. In vivo CMT in combination with in vivo CA provided the highest sensitivity (96.7%).
Collapse
Affiliation(s)
- Jacky Bhagat
- Department of Zoology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
40
|
Proudlock R, Evans K. The micro-Ames test: A direct comparison of the performance and sensitivities of the standard and 24-well plate versions of the bacterial mutation test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:687-705. [PMID: 27862311 DOI: 10.1002/em.22065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
"Ames" bacterial mutation tests are widely performed for evaluation and registration of new materials including industrial chemicals, agrochemicals, medical devices, pharmaceuticals, pharmaceutical impurities and other materials. Tests are used to predict their potential long-term adverse health effects (including carcinogenicity). Given their importance, pre-screening 'miniaturized' versions have been developed which allow higher throughput and use less test material, including the widely-employed 24-well micro-Ames (µAmes) test which uses 20 times less material. However, little quantitative information has been published on the methodology or sensitivity of this system. We describe methods and results used in direct comparisons of the sensitivity of micro and standard systems using the same cultures, formulations, etc. Initial testing utilized the plate incorporation method and, later, the pre-incubation method. In a subsequent phase of testing, a four-way direct comparison was made between the pre-incubation and plate incorporation methods in both systems using some direct-acting mutagens. Tests used only those strain/S9/chemical combinations where a response was expected. Historical control results accumulated during testing are also presented. Spontaneous and induced revertant colony counts for the µAmes system were consistently proportionate and approximately 1/20th those for the standard Ames test. Sensitivities of the two systems were found to be nearly identical in almost all cases for a wide variety of weak and strong inorganic and organic mutagens. Standardized procedures and increased reliability of the estimate of the background revertant frequency in the µAmes system means that the two systems give equivalent results and are expected to be highly predictive of one another. Environ. Mol. Mutagen. 57:687-705, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Kristie Evans
- Molecular Toxicology, Inc. (Moltox), Boone, North Carolina
| |
Collapse
|
41
|
Rosenkranz HS, Klopman G. Mechanistic Insights Gained from an Analysis of Carcinogenic Polycyclic Aromatic Hydrocarbons with the Computer Automated Structure Evaluation System. ACTA ACUST UNITED AC 2016. [DOI: 10.3109/10915818909018069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Computer Automated Structure Evaluation System (CASE) was used to identify the structural components responsible for either the mutagenicity or the carcinogenicity of polycyclic aromatic hydrocarbons (PAHs). These were found not to overlap and some of the structural components were endowed with much more biological activity than others. A study was then undertaken to determine whether these structural features could explain the mutagenicity and carcinogenicity of 7,12-dimethylbenz(a)anthracene (DMBA). It was found that the structures identified by CASE could explain the mutagenicity and carcinogenicity qualitatively as well as quantitatively. Moreover, the identified structures were entirely consistent with recent findings on the metabolism and DNA adduct formation of DMBA. These results are taken to indicate that CASE can be used to identify the structures in a molecule (e.g., PAH) that are sites of metabolism. Laboratory studies can then focus on that portion of the molecule.
Collapse
Affiliation(s)
- Herbert S. Rosenkranz
- Dept. of Environmental Health Sciences School of Medicine Case Western Reserve University Cleveland. Ohio 44106
| | - Gilles Klopman
- Dept. of Environmental Health Sciences School of Medicine Case Western Reserve University Cleveland. Ohio 44106
| |
Collapse
|
42
|
Akyıl D, Eren Y, Konuk M, Dere H, Serteser A. Genotoxic evaluation of Halfenprox using the human peripheral lymphocyte micronucleus assay and the Ames test. Drug Chem Toxicol 2016; 40:191-195. [PMID: 27387265 DOI: 10.1080/01480545.2016.1193865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The genotoxicity and mutagenicity of Halfenprox, a synthetic pyrethroid insecticide and acaricide, was assessed using two standard genotoxicity assays of the Salmonella typhimurium mutagenicity assay (Ames test) and in vitro micronucleus (MN) assay in human peripheral lymphocytes. In the Ames test, Salmonella strains TA98 and TA100 were treated with or without S9 fraction. The doses of Halfenprox were 6.25, 12.5, 25, 50, and 100 μg/plate and test materials were dissolved in DMSO. The concentrations of Halfenprox did not show mutagenic activity on both strains with and without S9 fraction. The MN assay was used to investigate the genotoxic effects of Halfenprox in human peripheral lymphocytes treated with 250, 500, 750, and 1000 μg/ml concentrations of Halfenprox for 24 and 48 h, and at 1000 μg/ml the concentration was significantly increased and the MN formation was compared with the negative control for both treatment periods. In addition, a significant decrease of the nuclear devision index (NDI) values at the higher concentrations of Halfenprox and at both treatment periods was observed.
Collapse
Affiliation(s)
- Dilek Akyıl
- a Department of Biology , Faculty of Arts and Sciences, Afyon Kocatepe University , Afyonkarahisar , Turkey
| | - Yasin Eren
- b Department of Science , Faculty of Education, Suleyman Demirel University , Isparta , Turkey , and
| | - Muhsin Konuk
- c Department of Molecular Biology and Genetics (English) , Faculty of Engineering and Natural Sciences, Üsküdar University , Istanbul , Turkey
| | - Hatice Dere
- a Department of Biology , Faculty of Arts and Sciences, Afyon Kocatepe University , Afyonkarahisar , Turkey
| | - Ahmet Serteser
- a Department of Biology , Faculty of Arts and Sciences, Afyon Kocatepe University , Afyonkarahisar , Turkey
| |
Collapse
|
43
|
Clewell AE, Béres E, Vértesi A, Glávits R, Hirka G, Endres JR, Murbach TS, Szakonyiné IP. A Comprehensive Toxicological Safety Assessment of an Extract of Olea Europaea L. Leaves (Bonolive™). Int J Toxicol 2015; 35:208-21. [PMID: 26658007 DOI: 10.1177/1091581815619764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A battery of toxicological studies was conducted to investigate the genotoxicity and repeated-dose oral toxicity of Bonolive™, a proprietary water-soluble extract of the leaves of the olive tree (Olea europaea L.), in accordance with internationally accepted protocols. There was no evidence of mutagenicity in a bacterial reverse mutation test and in an vitro mammalian chromosomal aberration test nor was any genotoxic activity observed in an in vivo mouse micronucleus test at concentrations up to the limit dose of 2000 mg/kg bw/d. Bonolive™ did not cause mortality or toxic effects in Crl:(WI)BR Wistar rats in a 90-day repeated-dose oral toxicity study at doses of 360, 600, and 1000 mg/kg bw/d. The no observed adverse effect level in the 90-day study was 1000 mg/kg bw/d for both male and female rats, the highest dose tested.
Collapse
Affiliation(s)
- Amy E Clewell
- AIBMR Life Sciences, Inc, 4117 South Meridian, Puyallup, WA, USA
| | - Erzsébet Béres
- Toxi-Coop Toxicological Research Center, Budapest, Hungary
| | - Adél Vértesi
- Toxi-Coop Toxicological Research Center, Budapest, Hungary
| | - Róbert Glávits
- Toxi-Coop Toxicological Research Center, Budapest, Hungary
| | - Gábor Hirka
- Toxi-Coop Toxicological Research Center, Budapest, Hungary
| | - John R Endres
- AIBMR Life Sciences, Inc, 4117 South Meridian, Puyallup, WA, USA
| | | | | |
Collapse
|
44
|
Murbach TS, Béres E, Vértesi A, Glávits R, Hirka G, Endres JR, Clewell AE, Szakonyiné IP. A comprehensive toxicological safety assessment of an aqueous extract of Polypodium leucotomos (Fernblock(®)). Food Chem Toxicol 2015; 86:328-41. [PMID: 26585922 DOI: 10.1016/j.fct.2015.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 12/01/2022]
Abstract
A battery of toxicological studies was conducted in accordance with internationally accepted standards to investigate the genotoxicity and repeated-dose oral toxicity of Fernblock(®), a commercial aqueous extraction of the leaves of the tropical fern Polypodium leucotomos used for its oral and topical photoprotective properties. No evidence of mutagenicity was observed in a bacterial reverse mutation test or in vitro mammalian chromosomal aberration test nor was any genotoxic activity observed in an in vivo mouse micronucleus test. Two repeated-dose oral toxicity studies were conducted in male and female Wistar rats. In the first study, no mortality or toxic effects were observed and no target organs were identified at doses administered for 14 days by gavage up to the maximum dose of 5000 mg/kg bw/day. Based on these results, a 90-day study was conducted at 0, 300, 600, and 1200 mg/kg bw/day. No mortality or treatment-related adverse effects were observed and no target organs were identified. The NOAEL from the 90-day study was determined to be 1200 mg/kg bw/day, the highest dose tested.
Collapse
Affiliation(s)
- Timothy S Murbach
- AIBMR Life Sciences, Inc., 4117 South Meridian, Puyallup, WA 98373, USA.
| | - Erzsébet Béres
- Toxi-Coop Zrt., Deres u. 10/A, H-1124 Budapest, Hungary.
| | - Adél Vértesi
- Toxi-Coop Zrt., Deres u. 10/A, H-1124 Budapest, Hungary.
| | - Róbert Glávits
- Toxi-Coop Zrt., Deres u. 10/A, H-1124 Budapest, Hungary.
| | - Gábor Hirka
- Toxi-Coop Zrt., Deres u. 10/A, H-1124 Budapest, Hungary.
| | - John R Endres
- AIBMR Life Sciences, Inc., 4117 South Meridian, Puyallup, WA 98373, USA.
| | - Amy E Clewell
- AIBMR Life Sciences, Inc., 4117 South Meridian, Puyallup, WA 98373, USA.
| | | |
Collapse
|
45
|
Sui H, Matsumoto H, Wako Y, Kawasako K. Evaluation of in vivo genotoxicity by thioacetamide in a 28-day repeated-dose liver micronucleus assay using male young adult rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 780-781:81-4. [DOI: 10.1016/j.mrgentox.2014.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 11/26/2022]
|
46
|
Genotoxic evaluation of aspirin eugenol ester using the Ames test and the mouse bone marrow micronucleus assay. Food Chem Toxicol 2013; 62:805-9. [DOI: 10.1016/j.fct.2013.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/14/2013] [Accepted: 10/08/2013] [Indexed: 02/02/2023]
|
47
|
McKee RH, North CM, Podhasky P, Charlap JH, Kuhl A. Toxicological Assessment of Refined Naphthenic Acids in a Repeated Dose/Developmental Toxicity Screening Test. Int J Toxicol 2013; 33:168S-180S. [DOI: 10.1177/1091581813504229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Naphthenic acids (NAs) are primarily cycloaliphatic carboxylic acids with 10 to 16 carbons. To characterize the potential of refined NAs (>70% purity) to cause reproductive and/or developmental effects, Sprague-Dawley rats (12/group) were given oral doses of 100, 300, or 900 mg/kg/d, beginning 14 days prior to mating, then an additional 14 days for males or through lactation day 3 for females (up to 53 days) in a repeated dose/reproductive toxicity test (Organization for Economic Cooperation and Development [OECD] 422). Potential mutagenic effects were assessed using Salmonella (OECD 471) and in in vivo micronucleus tests (OECD 474) using bone marrow taken from treated animals in the screening study described previously. Systemic effects included reduced terminal body weights, increased liver weights, and changes in a number of blood cell parameters. The overall no effect level for all target organ effects was 100 mg/kg/d. In the reproductive/developmental toxicity assessment, there were significant reductions in numbers of live born offspring in groups exposed to 300 and 900 mg/kg/d. The overall no effect level for developmental effects was 100 mg/kg/d. The data from the Salmonella and micronucleus tests provide evidence that refined NAs are not genotoxic.
Collapse
Affiliation(s)
| | | | | | | | - Adam Kuhl
- Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
48
|
Genotoxicity of dried Hoodia parviflora aerial parts. Food Chem Toxicol 2013; 55:272-8. [PMID: 23348409 DOI: 10.1016/j.fct.2013.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/22/2022]
|
49
|
Kier LD, Kirkland DJ. Review of genotoxicity studies of glyphosate and glyphosate-based formulations. Crit Rev Toxicol 2013; 43:283-315. [PMID: 23480780 DOI: 10.3109/10408444.2013.770820] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An earlier review of the toxicity of glyphosate and the original Roundup™-branded formulation concluded that neither glyphosate nor the formulation poses a risk for the production of heritable/somatic mutations in humans. The present review of subsequent genotoxicity publications and regulatory studies of glyphosate and glyphosate-based formulations (GBFs) incorporates all of the findings into a weight of evidence for genotoxicity. An overwhelming preponderance of negative results in well-conducted bacterial reversion and in vivo mammalian micronucleus and chromosomal aberration assays indicates that glyphosate and typical GBFs are not genotoxic in these core assays. Negative results for in vitro gene mutation and a majority of negative results for chromosomal effect assays in mammalian cells add to the weight of evidence that glyphosate is not typically genotoxic for these endpoints in mammalian systems. Mixed results were observed for micronucleus assays of GBFs in non-mammalian systems. Reports of positive results for DNA damage endpoints indicate that glyphosate and GBFs tend to elicit DNA damage effects at high or toxic dose levels, but the data suggest that this is due to cytotoxicity rather than DNA interaction with GBF activity perhaps associated with the surfactants present in many GBFs. Glyphosate and typical GBFs do not appear to present significant genotoxic risk under normal conditions of human or environmental exposures.
Collapse
|
50
|
Lübcke-von Varel U, Bataineh M, Lohrmann S, Löffler I, Schulze T, Flückiger-Isler S, Neca J, Machala M, Brack W. Identification and quantitative confirmation of dinitropyrenes and 3-nitrobenzanthrone as major mutagens in contaminated sediments. ENVIRONMENT INTERNATIONAL 2012; 44:31-9. [PMID: 22336528 DOI: 10.1016/j.envint.2012.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 05/17/2023]
Abstract
Polar fractions of a sediment extract of the industrial area of Bitterfeld, Germany, have been subjected for effect-directed identification of mutagens using the Ames fluctuation assay with TA98. Mutagenicity could be well recovered in several secondary and tertiary fractions. Dinitropyrenes and 3-nitrobenzanthrone could be confirmed to contribute great shares of the observed mutagenicity. In addition, a multitude of polar polycyclic aromatic compounds has been tentatively identified in mutagenic fractions including nitro-PAHs, azaarenes, ketones, quinones, hydroxy-compounds, lactones and carboxylic acids although their contribution to mutagenicity could not be quantified due to a lack of standards. Diagnostic Salmonella strains YG1024 and YG1041 were applied to confirm the contribution of nitro-aromatic compounds. We suggest the inclusion of dinitropyrenes and 3-nitrobenzanthrone into sediment monitoring in order to minimize the mutagenic risk to aquatic organisms and to human health.
Collapse
|