1
|
Smith-Roe SL, Hobbs CA, Hull V, Todd Auman J, Recio L, Streicker MA, Rivas MV, Pratt GA, Lo FY, Higgins JE, Schmidt EK, Williams LN, Nachmanson D, Valentine Iii CC, Salk JJ, Witt KL. Adopting duplex sequencing technology for genetic toxicity testing: A proof-of-concept mutagenesis experiment with N-ethyl-N-nitrosourea (ENU)-exposed rats. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503669. [PMID: 37770135 PMCID: PMC10539650 DOI: 10.1016/j.mrgentox.2023.503669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Duplex sequencing (DS) is an error-corrected next-generation sequencing method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors in consensus sequences. The resulting background of less than one artifactual mutation per 107 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DS-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays.
Collapse
Affiliation(s)
| | - Cheryl A Hobbs
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Victoria Hull
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - J Todd Auman
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Michael A Streicker
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Miriam V Rivas
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | | | | | | | | | | | | | - Kristine L Witt
- Division of Translational Toxicology, NIEHS, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Smith-Roe SL, Hobbs CA, Hull V, Auman JT, Recio L, Streicker MA, Rivas MV, Pratt GA, Lo FY, Higgins JE, Schmidt EK, Williams LN, Nachmanson D, Valentine CC, Salk JJ, Witt KL. Adopting Duplex Sequencing™ Technology for Genetic Toxicity Testing: A Proof-of-Concept Mutagenesis Experiment with N-Ethyl-N-Nitrosourea (ENU)-Exposed Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539833. [PMID: 37214853 PMCID: PMC10197591 DOI: 10.1101/2023.05.08.539833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Duplex sequencing (DuplexSeq) is an error-corrected next-generation sequencing (ecNGS) method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors by comparing grouped strand sequencing reads. The resulting background of less than one artifactual mutation per 10 7 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DuplexSeq-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays. HIGHLIGHTS DuplexSeq is an ultra-accurate NGS technology that directly quantifies mutationsENU-dependent mutagenesis was detected 24 h post-exposure in proliferative tissuesMultiple tissues exhibited the canonical ENU mutation spectrum 7 d after exposureResults obtained with DuplexSeq were highly concordant between laboratoriesThe Rat-50 Mutagenesis Assay is promising for applications in genetic toxicology.
Collapse
Affiliation(s)
| | - Cheryl A. Hobbs
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Victoria Hull
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - J. Todd Auman
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Leslie Recio
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Michael A. Streicker
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Miriam V. Rivas
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | | | | | | | | | | | | | | | | | - Kristine L. Witt
- Division of Translational Toxicology, NIEHS, Research Triangle Park, NC
| |
Collapse
|
3
|
Hagiwara T, Numano T, Hara T, Sugiyama T, Mera Y, Tamano S, Miyata H. Chemical-induced lung tumor in Tg-rasH2 mice: a novel mouse tumor model to assess immune checkpoint inhibitors combined with a chemotherapy drug. J Toxicol Pathol 2022; 35:321-331. [PMID: 36406167 PMCID: PMC9647217 DOI: 10.1293/tox.2022-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2022] [Indexed: 09/08/2024] Open
Abstract
In subcutaneous tumor models, changes in the tumor microenvironment can lead to differences in therapeutic treatment responses between the subcutaneous and parent tumors. Accordingly, we generated a lung carcinogenesis model that combines genetically modified mice (Tg-rasH2 mice) with two-stage chemical carcinogenesis as an alternative to the subcutaneous tumor model. In this model, Tg-rasH2 mice were treated with 1-ethyl-1-nitrosourea, followed by butylhydroxytoluene. Mice developed lung adenomas five weeks after treatment initiation. Subsequently, anti-mouse PD-1 antibody (α-mPD-1) or isotype control was administered intraperitoneally twice a week for 4 weeks. Tumor growth was examined by measuring the relative tumor area in serially sliced lung histopathological specimens. No statistically significant differences were observed in the relative lung tumor areas between treated and control groups. A second experiment then examined the antitumor efficacy of α-mPD-1 combined with gemcitabine in a mouse model. Mice were treated identically as in Experiment 1, except that the treated group received once-weekly intraperitoneal injections of 10 mg/kg gemcitabine. In contrast to Experiment 1, the combined treatment significantly reduced the relative tumor areas in the lungs. This result also resembles that of a phase III clinical trial (ORIENT-12), showing that patients with non-small-cell lung carcinoma benefited from combination treatment with gemcitabine and the anti-human PD-1 antibody sintilimab. Thus, this mouse model could be a feasible means to preclinically evaluate the antitumor efficacy of different immunotherapy and chemotherapy drug combinations.
Collapse
Affiliation(s)
- Teruaki Hagiwara
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Takamasa Numano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Tomomi Hara
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Taiki Sugiyama
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Yukinori Mera
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Seiko Tamano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Hiroto Miyata
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| |
Collapse
|
4
|
Shibuya T, Kashima T, Sui H, Horiya Y. Transgene mutagenesis in the testicular cells of Muta™Mouse treated transplacentally with N-ethyl-N-nitrosourea at the primordial germ cell stages: Comparisons with the specific-locus test and the intragenic gene-recombination assay. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503513. [PMID: 36031330 DOI: 10.1016/j.mrgentox.2022.503513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
N-Ethyl-N-nitrosourea (ENU) induces recessive mutations (RM) at a high frequency in male mouse primordial germ cells (PGCs) in a dose-dependent and stage-specific manner when administered during embryonic development as confirmed by a specific locus test (SLT) (Shibuya et al., 1993, 1996 [1,2]). ENU also induces intragenic recombination (IGR) in the pun allele at E10.5 in PGCs of male mice (Shibuya et al., 2022 [3]). In this study, the induced mutant frequencies (MF) in testicular cells of male Muta™Mousetreated at the same developmental stages of PGCs were determined with a positive selection system (MM/PS). Although the mutant frequencies of MM/PS were consistently lower than for the SLT/RM, they showed similar stage-specificity and dose-dependency. Expressed as a linear equation, the correlation coefficient on the MF from SLT and MM/PS was extremely high (r2 = 0.920).
Collapse
Affiliation(s)
- Tohru Shibuya
- Laboratory of Environmental Epigenetics, 1933-45 Yoshihama Yugawara-machi, Ashigara-shimo, Kanagawa 259-0312, Japan.
| | - Takayuki Kashima
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Hajime Sui
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Yukiharu Horiya
- Laboratory of Environmental Epigenetics, 1933-45 Yoshihama Yugawara-machi, Ashigara-shimo, Kanagawa 259-0312, Japan
| |
Collapse
|
5
|
Nath P, Maiti D. A review of the mutagenic potential of N-ethyl-N-nitrosourea (ENU) to induce hematological malignancies. J Biochem Mol Toxicol 2022; 36:e23067. [PMID: 35393684 DOI: 10.1002/jbt.23067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/05/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
This review is intended to summarize the existing literature on the mutagenicity of N-ethyl-N-nitrosourea (ENU) in inducing hematological malignancies, including acute myeloid leukemia (AML) in mice. Blood or hematological malignancies are the most common malignant disorders seen in people of all age groups. Driven by a number of genetic alterations, leukemia rule out the normal proliferation and differentiation of hematopoietic stem cells (HSCs) and their progenitors in the bone marrow (BM) and severely affects blood functions. Out of all hematological malignancies, AML is the most aggressive type, with a high incidence and mortality rate. AML is found as either de novo or secondary therapeutic AML (t-AML). t-AML is a serious adverse consequence of alkylator chemotherapy to the cancer patient and alone constitutes about 10%-20% of all reported AML cases. Cancer patients who received alkylator chemotherapy are at an elevated risk of developing t-AML. ENU has a long history of use as a potent carcinogen that induces blood malignancies in mice and rats that are pathologically similar to human AML and t-AML. ENU, once entered into the body, circulates all over the body tissues and reaches BM. It creates an overall state of suppression within the BM by damaging the marrow cells, alkylating the DNA, and forming DNA adducts within the early and late hematopoietic stem and progenitor cells. The BM holds a weak DNA repair mechanism due to low alkyltransferase, and poly [ADP-ribose] polymerase (PARP) enzyme content often fails to obliterate those adducts, acting as a catalyst to bring genetic abnormalities, including point gene mutations as well as chromosomal alterations, for example, translocation and inversion. Taking advantage of ENU-induced immune-suppressed state and weak immune surveillance, these mutations remain viable and slowly give rise to transformed HSCs. This review also highlights the carcinogenic nature of ENU and the complex relation between the ENU's overall toxicity in the induction of hematological malignancies.
Collapse
Affiliation(s)
- Priyatosh Nath
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| |
Collapse
|
6
|
Shibuya T, Takeda-Endo W, Hara T, Sui H, Horiya Y. Intragenic recombination within the p un allele of the pink-eyed dilution locus in pre-melanocytes and primordial germ cells of embryonic mice treated with N-ethyl-N-nitrosourea. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503426. [PMID: 35094814 DOI: 10.1016/j.mrgentox.2021.503426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
The forward or reverse processes of intragenic recombination (IGR), which occur through the addition or deletion of duplicated homologous exons of the pun allele in Pun mice, was observed in vivo, after introducing an homozygous pun allele in a C57BL/6 background. We assessed the frequency of IGR upon N-ethyl-N-nitrosourea (ENU) treatment of pre-melanocytes (PMCs: somatic cells) and primordial germ cells (PGCs: germ cells) of embryonic mice at 10.5 days of development (E10.5). We simultaneously examined IGR and other mutations at the p locus of PMCs responsible for coat color in the offspring obtained by crossing pun/pun with pun/P mice. The frequencies of both spontaneous and ENU-induced IGR were markedly higher than that of the recessive mutation (RM) in PMCs obtained from crossing C57BL/6 and PW strains (Shibuya et al., 1982). ENU also induces IGR at a higher frequency in PGCs at E10.5, which was observed in the next generation. These results indicate that ENU, which preferentially induces gene mutations through base substitution, also induces IGR at a high frequency in the pun allele in both somatic and germ cells of embryonic mice at the E10.5 developmental stage.
Collapse
Affiliation(s)
- Tohru Shibuya
- Laboratory of Environmental Epigenetics, 1933-45 Yoshihama, Ashigara-Shimo, Kanagawa 259-0312, Japan.
| | - Wakako Takeda-Endo
- Hatano Research Institute, Food and Drug Safety Center, Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Takumi Hara
- Hatano Research Institute, Food and Drug Safety Center, Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Hajime Sui
- Hatano Research Institute, Food and Drug Safety Center, Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Yukiharu Horiya
- Laboratory of Environmental Epigenetics, 1933-45 Yoshihama, Ashigara-Shimo, Kanagawa 259-0312, Japan
| |
Collapse
|
7
|
Comparison of the frequencies of ENU-induced point mutations in male germ cells and inherited germline mutations in their offspring. Genes Environ 2021; 43:43. [PMID: 34627396 PMCID: PMC8501628 DOI: 10.1186/s41021-021-00216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Background Gene mutations induced in germ cells may be transmitted to the next generation and cause adverse effects such as genetic diseases. Certain mutations may result in infertility or death in early development. Thus, the mutations may not be inheritable. However, the extent to which point mutations in male germ cells are transmitted to the next generation or eliminated during transmission is largely unknown. This study compared mutation frequencies (MFs) in sperm of N-ethyl-N-nitrosourea (ENU)-treated gpt delta mice and de novo MFs in the whole exome/genome of their offspring. Results Male gpt delta mice were treated with 10, 30, and 85 mg/kg of ENU (i.p., weekly × 2) and mated with untreated females to generate offspring. We previously reported a dose-dependent increase in de novo MFs in the offspring estimated by whole exome sequencing (WES) (Mutat. Res., 810, 30–39, 2016). In this study, gpt MFs in the sperm of ENU-treated mice were estimated, and the MFs per reporter gene were converted to MFs per base pair. The inherited de novo MFs in the offspring (9, 26 and 133 × 10− 8/bp for 10, 30, and 85 mg/kg ENU-treated groups, respectively) were comparable to those of the converted gpt MFs in the sperm of ENU-treated fathers (6, 16, and 69 × 10− 8/bp). It indicated that the gpt MFs in the ENU-treated father’s sperm were comparable to the inherited de novo MFs in the offspring as estimated by WES. In addition, de novo MFs in the offspring of 10 mg/kg ENU-treated and control fathers were estimated by whole genome sequencing (WGS), because WES was not sufficiently sensitive to detect low background MF. The de novo MF in the offspring of the ENU-treated fathers was 6 × 10− 8/bp and significantly higher than that of the control (2 × 10− 8/bp). There were no significant differences in de novo MFs between gene-coding and non-coding regions. WGS analysis was able to detect ENU-induced characteristic de novo base substitutions at a low dose group. Conclusions Despite a difference between exome/genome and exogenous reporter genes, the results indicated that ENU-induced point mutations in male germ cells could be transmitted to the next generation without severe selection. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-021-00216-z.
Collapse
|
8
|
Pitchakarn P, Inthachat W, Karinchai J, Temviriyanukul P. Human Hazard Assessment Using Drosophila Wing Spot Test as an Alternative In Vivo Model for Genotoxicity Testing-A Review. Int J Mol Sci 2021; 22:9932. [PMID: 34576092 PMCID: PMC8472225 DOI: 10.3390/ijms22189932] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Genomic instability, one of cancer's hallmarks, is induced by genotoxins from endogenous and exogenous sources, including reactive oxygen species (ROS), diet, and environmental pollutants. A sensitive in vivo genotoxicity test is required for the identification of human hazards to reduce the potential health risk. The somatic mutation and recombination test (SMART) or wing spot test is a genotoxicity assay involving Drosophila melanogaster (fruit fly) as a classical, alternative human model. This review describes the principle of the SMART assay in conjunction with its advantages and disadvantages and discusses applications of the assay covering all segments of health-related industries, including food, dietary supplements, drug industries, pesticides, and herbicides, as well as nanoparticles. Chemopreventive strategies are outlined as a global health trend for the anti-genotoxicity of interesting herbal extract compounds determined by SMART assay. The successful application of Drosophila for high-throughput screening of mutagens is also discussed as a future perspective.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
9
|
Masumura K, Ando T, Ukai A, Fujiwara S, Yokose S, You X, Suzuki T, Hayashi H, Nohmi T, Takagi H, Honma M. New homozygous gpt delta transgenic rat strain improves an efficiency of the in vivo mutagenicity assay. Genes Environ 2021; 43:25. [PMID: 34158118 PMCID: PMC8220708 DOI: 10.1186/s41021-021-00195-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/27/2021] [Indexed: 02/22/2023] Open
Abstract
Background Gene mutation assays in transgenic rodents are useful tools to investigate in vivo mutagenicity in a target tissue. Using a lambda EG10 transgene containing reporter genes, gpt delta transgenic mice and rats have been developed to detect point mutations and deletions. The transgene is integrated in the genome and can be rescued through an in vitro packaging reaction. However, the packaging efficiency is lower in gpt delta rats than in mice, because of the transgene in gpt delta rats being heterozygous and in low copy number. To improve the packaging efficiency, we herein describe a newly developed homozygous gpt delta rat strain. Results The new gpt delta rat has a Wistar Hannover background and has been successfully maintained as homozygous for the transgene. The packaging efficiency in the liver was 4 to 8 times higher than that of existing heterozygous F344 gpt delta rats. The frequency of gpt point mutations significantly increased in the liver and bone marrow of N-nitroso-N-ethylurea (ENU)- and benzo[a]pyrene (BaP)-treated rats. Spi− deletion frequencies significantly increased in the liver and bone marrow of BaP-treated rats but not in ENU-treated rats. Whole genome sequencing analysis identified ≥ 30 copies of lambda EG10 transgenes integrated in rat chromosome 1. Conclusions The new homozygous gpt delta rat strain showed a higher packaging efficiency, and could be useful for in vivo gene mutation assays in rats. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-021-00195-1.
Collapse
Affiliation(s)
- Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Tomoko Ando
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Akiko Ukai
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Sho Fujiwara
- Biotechnical Center, Japan SLC, Inc., 3-5-1, Aoihigashi, Naka-ku, Hamamatsu-shi, Shizuoka, 433-8114, Japan
| | - Shigeo Yokose
- Biotechnical Center, Japan SLC, Inc., 3-5-1, Aoihigashi, Naka-ku, Hamamatsu-shi, Shizuoka, 433-8114, Japan
| | - Xinyue You
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, 210-9501, Kawasaki-shi, Kanagawa, Japan.,School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Takayoshi Suzuki
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Hiroyuki Hayashi
- Biologics Business Planning & Operation Dept, Meiji Seika Pharma Co., Ltd, 2-4-16 Kyobashi Chuo- ku, Tokyo, 104-8002, Japan
| | - Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Hisayoshi Takagi
- Biotechnical Center, Japan SLC, Inc., 3-5-1, Aoihigashi, Naka-ku, Hamamatsu-shi, Shizuoka, 433-8114, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
10
|
Lerchl A, Klose M, Drees K. No Increased DNA Damage Observed in the Brain, Liver, and Lung of Fetal Mice Treated With Ethylnitrosourea and Exposed to UMTS Radiofrequency Electromagnetic Fields. Bioelectromagnetics 2020; 41:611-616. [PMID: 33030760 DOI: 10.1002/bem.22301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022]
Abstract
The widespread use of mobile phones and Wi-Fi-based communication devices makes exposure to radiofrequency electromagnetic fields (RF-EMF) unavoidable. Previous experiments have revealed the tumor-promoting effects of non-ionizing RF-EMF in adult carcinogen-treated mice in utero. To extend these investigations, we tested whether these effects are due to the co-carcinogenicity of RF-EMF which would manifest as elevated DNA damage. Similar to previous experiments, pregnant mice were exposed to RF-EMF (Universal Mobile Telecommunication System [UMTS] standard, approximately 1,960 MHz) from day 7 post-conception (p.c.) at 0 (sham), 0.04, and 0.4 W/kg SAR. At day 14 p.c., the mice were injected with the carcinogen ethylnitrosourea (ENU, 40 mg/kg). At three time-points specifically 24, 36, and 72 h later, the pregnant females were sacrificed and the fetuses (n = 24-57) were removed. A dye (cy3) specific for adenyl adducts was used to detect DNA damage by fluorescence microscopy in the brain, liver, and lung of each fetus. Compared to control (0 W/kg SAR), exposure to RF-EMF had no effect on the formation of DNA adducts in the inspected tissues. We conclude that increased adenyl formation of DNA by RF-EMF exposure is not a valid explanation for the previously reported tumor-promoting effects of RF-RMF. Our findings may help to gain a deeper insight into the biological effects of RF-EMF exposure in the context of malignancy. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Alexander Lerchl
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Melanie Klose
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Karen Drees
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
11
|
N-Ethyl- n-Nitrosourea Induced Leukaemia in a Mouse Model through Upregulation of Vascular Endothelial Growth Factor and Evading Apoptosis. Cancers (Basel) 2020; 12:cancers12030678. [PMID: 32183192 PMCID: PMC7140055 DOI: 10.3390/cancers12030678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Chemical carcinogens are commonly used to investigate the biology and prognoses of various cancers. This study investigated the mechanism of leukaemogenic effects of n-ethyl-n-nitrosourea (ENU) in a mouse model. A total of 14 3-week-old male Institute of Cancer Research (ICR)-mice were used for the study. The mice were divided into groups A and B with seven mice each. Group A served as the control while group B received intraperitoneal (IP) injections of 80 mg/kg ENU twice with a one-week interval and were monitored monthly for 3 months for the development of leukaemia via blood smear examination. The mice were sacrificed humanely using a CO2 chamber. Blood, spleen, lymph nodes, liver, kidney and lung samples were collected for blood smear examination and histopathological evaluation. The expression of angiogenic protein (VEGF), and pro and anti-apoptotic proteins (BCL2 and BAX), was detected and quantified using Western blot technique. Leukaemia was confirmed by the presence of numerous blast cells in the peripheral blood smear in group B. Similarly, the VEGF and BCL2 proteins were significantly (p < 0.05) upregulated in group B compared to A. It is concluded that IP administration of 80 mg/kg ENU induced leukaemia in ICR-mice 12 weeks post administration through upregulation of angiogenic and anti-apoptotic proteins: VEGF and BCL2.
Collapse
|
12
|
Palmer AC, Chidley C, Sorger PK. A curative combination cancer therapy achieves high fractional cell killing through low cross-resistance and drug additivity. eLife 2019; 8:50036. [PMID: 31742555 PMCID: PMC6897534 DOI: 10.7554/elife.50036] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Curative cancer therapies are uncommon and nearly always involve multi-drug combinations developed by experimentation in humans; unfortunately, the mechanistic basis for the success of such combinations has rarely been investigated in detail, obscuring lessons learned. Here, we use isobologram analysis to score pharmacological interaction, and clone tracing and CRISPR screening to measure cross-resistance among the five drugs comprising R-CHOP, a combination therapy that frequently cures Diffuse Large B-Cell Lymphomas. We find that drugs in R-CHOP exhibit very low cross-resistance but not synergistic interaction: together they achieve a greater fractional kill according to the null hypothesis for both the Loewe dose-additivity model and the Bliss effect-independence model. These data provide direct evidence for the 50 year old hypothesis that a curative cancer therapy can be constructed on the basis of independently effective drugs having non-overlapping mechanisms of resistance, without synergistic interaction, which has immediate significance for the design of new drug combinations.
Collapse
Affiliation(s)
- Adam C Palmer
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
| | - Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States.,Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
13
|
McGuigan K, Aw E. How does mutation affect the distribution of phenotypes? Evolution 2017; 71:2445-2456. [PMID: 28884791 DOI: 10.1111/evo.13358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022]
Abstract
The potential for mutational processes to influence patterns of neutral or adaptive phenotypic evolution is not well understood. If mutations are directionally biased, shifting trait means in a particular direction, or if mutation generates more variance in some directions of multivariate trait space than others, mutation itself might be a source of bias in phenotypic evolution. Here, we use mutagenesis to investigate the affect of mutation on trait mean and (co)variances in zebrafish, Danio rerio. Mutation altered the relationship between age and both prolonged swimming speed and body shape. These observations suggest that mutational effects on ontogeny or aging have the potential to generate variance across the phenome. Mutations had a far greater effect in males than females, although whether this is a reflection of sex-specific ontogeny or aging remains to be determined. In males, mutations generated positive covariance between swimming speed, size, and body shape suggesting the potential for mutation to affect the evolutionary covariation of these traits. Overall, our observations suggest that mutation does not generate equal variance in all directions of phenotypic space or in each sex, and that pervasive variation in ontogeny or aging within a cohort could affect the variation available to evolution.
Collapse
Affiliation(s)
- Katrina McGuigan
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072
| | - Ernest Aw
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072
| |
Collapse
|
14
|
Gallardo R, Alves M, Rodrigues L. Influence of nutritional and operational parameters on the production of butanol or 1,3-propanediol from glycerol by a mutant Clostridium pasteurianum. N Biotechnol 2017; 34:59-67. [DOI: 10.1016/j.nbt.2016.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/19/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
|
15
|
Masumura K, Toyoda-Hokaiwado N, Ukai A, Gondo Y, Honma M, Nohmi T. Dose-dependent de novo germline mutations detected by whole-exome sequencing in progeny of ENU-treated male gpt delta mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 810:30-39. [DOI: 10.1016/j.mrgentox.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 01/06/2023]
|
16
|
Wang Q, Satomi K, Oh JE, Hutter B, Brors B, Diessl N, Liu HK, Wolf S, Wiestler O, Kleihues P, Koelsch B, Kindler-Röhrborn A, Ohgaki H. Braf Mutations Initiate the Development of Rat Gliomas Induced by Postnatal Exposure to N-Ethyl-N-Nitrosourea. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2569-76. [PMID: 27658714 DOI: 10.1016/j.ajpath.2016.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022]
Abstract
A single dose of N-ethyl-N-nitrosourea (ENU) during late prenatal or early postnatal development induces a high incidence of malignant schwannomas and gliomas in rats. Although T->A mutations in the transmembrane domain of the Neu (c-ErbB-2) gene are the driver mutations in ENU-induced malignant schwannomas, the molecular basis of ENU-induced gliomas remains enigmatic. We performed whole-genome sequencing of gliomas that developed in three BDIV and two BDIX rats exposed to a single dose of 80 mg ENU/kg body weight on postnatal day one. T:A->A:T and T:A->C:G mutations, which are typical for ENU-induced mutagenesis, were predominant (41% to 55% of all somatic single nucleotide mutations). T->A mutations were identified in all five rat gliomas at Braf codon 545 (V545E), which corresponds to the human BRAF V600E. Additional screening revealed that 33 gliomas in BDIV rats and 12 gliomas in BDIX rats all carried a Braf V545E mutation, whereas peritumoral brain tissue of either strain had the wild-type sequence. The gliomas were immunoreactive to BRAF V600E antibody. These results indicate that Braf mutation is a frequent early event in the development of rat gliomas caused by a single dose of ENU.
Collapse
Affiliation(s)
- Qi Wang
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kaishi Satomi
- International Agency for Research on Cancer, Lyon, France
| | - Ji Eun Oh
- International Agency for Research on Cancer, Lyon, France
| | - Barbara Hutter
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicolle Diessl
- High Throughput Sequencing Unit, Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Wolf
- High Throughput Sequencing Unit, Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Otmar Wiestler
- Helmholtz Association of German Research Centres, Berlin, Germany
| | - Paul Kleihues
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Bernd Koelsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrea Kindler-Röhrborn
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Hiroko Ohgaki
- International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
17
|
Damasceno JL, Oliveira PF, Miranda MA, Leandro LF, Acésio NO, Ozelin SD, Bastos JK, Tavares DC. Protective effects of Solanum cernuum extract against chromosomal and genomic damage induced by methyl methanesulfonate in Swiss mice. Biomed Pharmacother 2016; 83:1111-1115. [PMID: 27551757 DOI: 10.1016/j.biopha.2016.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/25/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
Solanum cernuum Vell is a Brazilian shrub or small tree, restricted to Southeast states of the country. The leaves are commercialized as "panacéia" and indicated for the treatment of urinary disorders, gonorrhea, scabies, skin diseases and as desobstruent, diuretic and antiarrhythmic. The hydroalcholic extract is active in the treatment of gastric ulcer. The aim of this study was to evaluate the genotoxic and antigenotoxic potential of S. cernuum hydroalcoholic extract (SC) in Swiss mice by micronucleus and comet assays. The animals were treated by gavage with the doses of 500, 1000 and 2000mg/kg body weight (b.w.). For antigenotoxicity assessment, the doses of 15, 30, 60, 120 and 240mg/kg b.w SC were administered simultaneously with the mutagen methyl methanesulfonate (MMS, 40mg/kg b.w., i.p.). The results showed that the SC was not genotoxic in both micronucleus and comet assays. On the other hand, the treatment with the lowest dose of SC (15mg/kg b.w.) plus MMS showed a statistically significant reduction in the frequency of micronuclei compared to treatment only with MMS. For the comet assay, significant reduction in extensions of DNA damage was observed in all treatments with SC combined with MMS in comparison with only MMS. The antigenotoxic activity observed for the SC may be due to the antioxidant potential of the compounds present in the extract such as guanidine alkaloids and flavonoids.
Collapse
Affiliation(s)
- Jaqueline L Damasceno
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil
| | - Pollyanna F Oliveira
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil
| | - Mariza A Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, s/n-Monte Alegre, 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Luis F Leandro
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil
| | - Nathália O Acésio
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil
| | - Saulo D Ozelin
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, s/n-Monte Alegre, 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Denise C Tavares
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil.
| |
Collapse
|
18
|
Masumura K, Toyoda-Hokaiwado N, Ukai A, Gondo Y, Honma M, Nohmi T. Estimation of the frequency of inherited germline mutations by whole exome sequencing in ethyl nitrosourea-treated and untreated gpt delta mice. Genes Environ 2016; 38:10. [PMID: 27350829 PMCID: PMC4918133 DOI: 10.1186/s41021-016-0035-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/11/2016] [Indexed: 11/29/2022] Open
Abstract
Background Germline mutations are heritable and may cause health disadvantages in the next generation. To investigate trans-generational mutations, we treated male gpt delta mice with N-ethyl-N-nitrosourea (ENU) (85 mg/kg intraperitoneally, weekly on two occasions). The mice were mated with untreated female mice and offspring were obtained. Whole exome sequencing analyses were performed to identify de novo mutations in the offspring. Results At 20 weeks after the treatment, the gpt mutant frequencies in the sperm of ENU-treated mice were 21-fold higher than those in the untreated control. Liver DNA was extracted from six mice, including the father, mother, and four offspring from each family of the ENU-treated or untreated mice. In total, 12 DNA samples were subjected to whole exome sequencing analyses. We identified de novo mutations in the offspring by comparing single nucleotide variations in the parents and offspring. In the ENU-treated group, we detected 148 mutation candidates in four offspring and 123 (82 %) were confirmed as true mutations by Sanger sequencing. In the control group, we detected 12 candidate mutations, of which, three (25 %) were confirmed. The frequency of inherited mutations in the offspring from the ENU-treated family was 184 × 10−8 per base, which was 17-fold higher than that in the control family (11 × 10−8 per base). The de novo mutation spectrum in the next generation exhibited characteristic ENU-induced somatic mutations, such as base substitutions at A:T bp. Conclusions These results suggest that direct sequencing analyses can be a useful tool for investigating inherited germline mutations and that the germ cells could be a good endpoint for evaluating germline mutations, which are transmitted to offspring as inherited mutations. Electronic supplementary material The online version of this article (doi:10.1186/s41021-016-0035-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Naomi Toyoda-Hokaiwado
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Akiko Ukai
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Yoichi Gondo
- RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074 Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan ; Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| |
Collapse
|
19
|
Stottmann R, Beier DR. ENU Mutagenesis in the Mouse. CURRENT PROTOCOLS IN HUMAN GENETICS 2014; 82:15.4.1-15.4.10. [PMID: 25042716 PMCID: PMC4113905 DOI: 10.1002/0471142905.hg1504s82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This unit describes the treatment of laboratory mice with the mutagen N-ethyl-N-nitrosourea (ENU) to induce very highly increased rates of mutation throughout the genome. Further, it describes several popular mating schemes designed to produce animals displaying phenotypes associated with the induced mutations.
Collapse
Affiliation(s)
- Rolf Stottmann
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - David R. Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute
| |
Collapse
|
20
|
Abstract
This article describes the treatment of laboratory mice with the mutagen N-ethyl-N-nitrosourea (ENU) to induce very highly increased rates of mutation throughout the genome. Further, it describes several popular mating schemes designed to produce animals displaying phenotypes associated with the induced mutations.
Collapse
Affiliation(s)
- Rolf Stottmann
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
21
|
Pecinka A, Liu CH. Drugs for Plant Chromosome and Chromatin Research. Cytogenet Genome Res 2014; 143:51-9. [DOI: 10.1159/000360774] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Luan Y, Qi X, Xu L, Ren J, Chen T. Absence of mature microRNAs inactivates the response of gene expression to carcinogenesis induced by N-ethyl-N-nitrosourea in mouse liver. J Appl Toxicol 2014; 34:1409-17. [PMID: 24478143 DOI: 10.1002/jat.2973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/25/2013] [Accepted: 11/15/2013] [Indexed: 01/24/2023]
Abstract
This study aims to evaluate the role of microRNAs (miRNAs) in chemical tumorigenesis by evaluating genomic gene expression in miRNA knockout mice. Previous studies showed that mice without mature miRNAs due to hepatocyte-specific Dicer1 knockout (KO) had a much higher liver tumor incidence than wild-type mice. In this study, Dicer1 KO or the wild-type mice were treated intraperitoneally with genotoxic carcinogen N-ethyl-N-nitrosourea (ENU) at a single dose (150 mg kg(-1) that resulted in liver tumorigenesis) or the vehicle at 3 weeks of age. The animals were killed 2 weeks after treatment and the liver samples were collected for the gene expression study. Principal components analysis and hierarchical cluster analysis showed that gene expression was globally altered by the Dicer1 KO and ENU exposure. There were 5621, 3286 and 2565 differentially expressed genes for Dicer1 disruption, ENU treatment in wild-type mice and ENU treatment in Dicer1 KO mice, respectively. Functional analysis of the differentially expressed genes suggests that the Dicer1 KO mouse liver lost their capability to suppress the carcinogenesis induced by ENU exposure in genomic level. In addition, the miRNA-mediated BRCA1 and P53 signaling pathways were identified as the main pathways responsible for the tumorigenesis. We conclude that the mouse livers in the absence of mature miRNAs could not appropriately respond to carcinogenic insults from ENU treatment, indicating that miRNAs play a critical role in chemical carcinogenesis.
Collapse
Affiliation(s)
- Yang Luan
- School of Public Health, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
| | | | | | | | | |
Collapse
|
23
|
Gahlon HL, Sturla SJ. Hydrogen bonding or stacking interactions in differentiating duplex stability in oligonucleotides containing synthetic nucleoside probes for alkylated DNA. Chemistry 2013; 19:11062-7. [PMID: 23801518 DOI: 10.1002/chem.201204593] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 04/17/2013] [Indexed: 01/01/2023]
Abstract
Oligonucleotides that hybridize to modified DNA are useful chemical tools to probe the noncovalent interactions that stabilize DNA duplexes. In an effort to better understand the interactions that influence the specificity of hybridization probes for O(6)-alkylguanine lesions, we examined a series of synthetic nucleoside analogues (BIM, Benzi, and Peri) with respect to their ability to stabilize duplex DNA comprised of native or damaged DNA oligonucleotides. The base-modified nucleoside analogues contained systematically varied hydrogen-bonding and π-stacking properties. The nucleoside probes were incorporated into DNA and paired opposite canonical bases (A, T, C, or G), O(6) -methylguanine (O(6)-MeG), O(6)-benzylguanine (O(6)-BnG), or a stable abasic site analogue (tetrahydrofuran, THF). On the basis of the free energy of duplex formation, the highest degree of stabilization was observed when Peri was paired opposite O(6)-MeG. The thermodynamic data suggest that the smaller probes stabilize DNA duplexes more through hydrogen bonding, whereas the larger probes, with a greater capacity to π stack, contribute to duplex stabilization more on the basis of base stacking. These results demonstrate that increased helix stability could be achieved when BIM, Benzi, or Peri were paired opposite damage-containing DNA rather than unmodified DNA (that is, O(6)-MeG rather than G). This knowledge is expected to be useful in the design and development of nucleoside analogues for uses in DNA-based technologies.
Collapse
Affiliation(s)
- Hailey L Gahlon
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | | |
Collapse
|
24
|
Leandro LF, Munari CC, Sato VLFL, Alves JM, de Oliveira PF, Mastrocola DFP, Martins SDPL, Moraes TDS, de Oliveira AI, Tozatti MG, Cunha WR, Tavares DC. Assessment of the genotoxicity and antigenotoxicity of (+)-usnic acid in V79 cells and Swiss mice by the micronucleus and comet assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 753:101-6. [DOI: 10.1016/j.mrgentox.2013.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 10/27/2022]
|
25
|
O'Brien JM, Williams A, Gingerich J, Douglas GR, Marchetti F, Yauk CL. No evidence for transgenerational genomic instability in the F1 or F2 descendants of Muta™Mouse males exposed to N-ethyl-N-nitrosourea. Mutat Res 2013; 741-742:11-17. [PMID: 23499255 DOI: 10.1016/j.mrfmmm.2013.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 06/01/2023]
Abstract
Exposure of male mice to genotoxic agents can increase mutation frequencies in their unexposed descendants. This phenomenon, known as transgenerational genomic instability (TGI), can persist for several generations. However, little is known about the underlying mechanisms. Chemically-induced TGI has been demonstrated in non-coding unstable tandem repeat DNA regions, but it is unclear whether it extends to other genetic endpoints. We investigated whether exposure of Muta™Mouse males to a single dose of 75mg/kg N-ethyl-N-nitrosourea (ENU) increased the spontaneous frequency of gene mutations or chromosome damage in their offspring. Treated males were mated with untreated females 3 days, 6 weeks or 10 weeks post-exposure to produce the F1 generation. Offspring were thus conceived from germ cells exposed to ENU as mature spermatozoa, dividing spermatogonia, or spermatogonial stem cells, respectively. F2 mice were generated by mating F1 descendants with untreated partners. Mutations in the lacZ transgene were quantified in bone marrow and micronucleus frequencies were evaluated in red blood cells by flow-cytometry for all F0 and their descendants. LacZ mutant frequencies were also determined in sperm for all exposed males and their male descendants. In F0 males, lacZ mutant frequencies were significantly increased in bone marrow at least 10-fold at all three time points investigated. In sperm, lacZ mutant frequency was significantly increased 7-11-fold after exposure of dividing and stem cell spermatogonia, but not in replication-deficient haploid sperm. Micronucleus frequencies assessed two days after ENU treatment were increased 5-fold in F0 males, but returned to control levels after 10 weeks. Despite the strong mutagenic response in F0 males, pre- and post-meiotic ENU exposure did not significantly increase lacZ mutant or micronucleus frequencies in F1 or F2 offspring. These findings suggest that TGI may not extend to all genetic endpoints and that further investigation of this phenomenon and its health relevance will require multiple measures of genomic damage.
Collapse
Affiliation(s)
- Jason M O'Brien
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Exposure to anticancer drugs can result in transgenerational genomic instability in mice. Proc Natl Acad Sci U S A 2012; 109:2984-8. [PMID: 22308437 DOI: 10.1073/pnas.1119396109] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The genetic effects of human exposure to anticancer drugs remain poorly understood. To establish whether exposure to anticancer drugs can result not only in mutation induction in the germ line of treated animals, but also in altered mutation rates in their offspring, we evaluated mutation rates in the offspring of male mice treated with three commonly used chemotherapeutic agents: cyclophosphamide, mitomycin C, and procarbazine. The doses of paternal exposure were approximately equivalent to those used clinically. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat locus Ms6-hm was established in DNA samples extracted from sperm and bone marrow of the offspring of treated males. After paternal exposure to any one of these three drugs, expanded simple tandem repeat mutation frequencies were significantly elevated in the germ line (sperm) and bone marrow of their offspring. This observed transgenerational instability was attributed to elevated mutation rates at the alleles derived from both the exposed fathers and from the nonexposed mothers, thus implying a genome-wide destabilization. Our results suggest that paternal exposure to a wide variety of mutagens can result in transgenerational instability manifesting in their offspring. Our data also raise important issues concerning delayed transgenerational effects in the children of survivors of anticancer therapy.
Collapse
|
27
|
Ripoll VM, Kong PL, Potter PK. ENU-based phenotype-driven screening. Methods Mol Biol 2012; 844:1-13. [PMID: 22262431 DOI: 10.1007/978-1-61779-527-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Deciphering the contribution of individual genes and in turn pathways to cellular processes can be complicated and is often based on prior knowledge or assumptions of gene function. Phenotype-driven mutagenesis screens based around n-ethyl-n-nitrosurea (ENU) have been successful in a wide range of physiological systems in identifying novel genes that contribute to a given phenotype. Here, we describe methodologies we have employed in analysing cellular phenotypes in pipelines of mutagenised mice. Examples of primary screens to identify outliers, and secondary screens to provide a more detailed characterisation are outlined.
Collapse
Affiliation(s)
- Vera M Ripoll
- Mammalian Genetics Unit, Medical Research Council Harwell, Oxfordshire, UK
| | | | | |
Collapse
|
28
|
Jiang XY, Sun CF, Zhang QG, Zou SM. ENU-induced mutagenesis in grass carp (Ctenopharyngodon idellus) by treating mature sperm. PLoS One 2011; 6:e26475. [PMID: 22022617 PMCID: PMC3195716 DOI: 10.1371/journal.pone.0026475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
N-ethyl-N-nitrosourea (ENU) mutagenesis is a useful approach for genetic improvement of plants, as well as for inducing functional mutants in animal models including mice and zebrafish. In the present study, mature sperm of grass carp (Ctenopharyngodon idellus) were treated with a range of ENU concentrations for 45 min, and then wild-type eggs were fertilized. The results indicated that the proportion of embryos with morphological abnormalities at segmentation stage or dead fry at hatching stage increased with increasing ENU dose up to 10 mM. Choosing a dose that was mutagenic, but provided adequate numbers of viable fry, an F1 population was generated from 1 mM ENU-treated sperm for screening purposes. The ENU-treated F1 population showed large variations in growth during the first year. A few bigger mutants with morphologically normal were generated, as compared to the controls. Analysis of DNA from 15 F1 ENU-treated individuals for mutations in partial coding regions of igf-2a, igf-2b, mstn-1, mstn-2, fst-1and fst-2 loci revealed that most ENU-treated point mutations were GC to AT or AT to GC substitution, which led to nonsense, nonsynonymous and synonymous mutations. The average mutation rate at the examined loci was 0.41%. These results indicate that ENU treatment of mature sperm can efficiently induce point mutations in grass carp, which is a potentially useful approach for genetic improvement of these fish.
Collapse
Affiliation(s)
- Xia-Yun Jiang
- Key Laboratory of Aquatic Genetic Resources and Utilization, Shanghai Ocean University, Shanghai, China
| | - Cheng-Fei Sun
- Key Laboratory of Aquatic Genetic Resources and Utilization, Shanghai Ocean University, Shanghai, China
| | - Quan-Gen Zhang
- Key Laboratory of Aquatic Genetic Resources and Utilization, Shanghai Ocean University, Shanghai, China
| | - Shu-Ming Zou
- Key Laboratory of Aquatic Genetic Resources and Utilization, Shanghai Ocean University, Shanghai, China
- * E-mail:
| |
Collapse
|
29
|
Quan L, Stassen APM, Ruivenkamp CAL, van Wezel T, Fijneman RJA, Hutson A, Kakarlapudi N, Hart AAM, Demant P. Most lung and colon cancer susceptibility genes are pair-wise linked in mice, humans and rats. PLoS One 2011; 6:e14727. [PMID: 21390212 PMCID: PMC3044722 DOI: 10.1371/journal.pone.0014727] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 01/31/2011] [Indexed: 12/02/2022] Open
Abstract
Genetic predisposition controlled by susceptibility quantitative trait loci (QTLs) contributes to a large proportion of common cancers. Studies of genetics of cancer susceptibility, however, did not address systematically the relationship between susceptibility to cancers in different organs. We present five sets of data on genetic architecture of colon and lung cancer susceptibility in mice, humans and rats. They collectively show that the majority of genes for colon and lung cancer susceptibility are linked pair-wise and are likely identical or related. Four CcS/Dem recombinant congenic strains, each differing from strain BALB/cHeA by a different small random subset of ±12.5% of genes received from strain STS/A, suggestively show either extreme susceptibility or extreme resistance for both colon and lung tumors, which is unlikely if the two tumors were controlled by independent susceptibility genes. Indeed, susceptibility to lung cancer (Sluc) loci underlying the extreme susceptibility or resistance of such CcS/Dem strains, mapped in 226 (CcS-10×CcS-19)F2 mice, co-localize with susceptibility to colon cancer (Scc) loci. Analysis of additional Sluc loci that were mapped in OcB/Dem strains and Scc loci in CcS/Dem strains, respectively, shows their widespread pair-wise co-localization (P = 0.0036). Finally, the majority of published human and rat colon cancer susceptibility genes map to chromosomal regions homologous to mouse Sluc loci. 12/12 mouse Scc loci, 9/11 human and 5/7 rat colon cancer susceptibility loci are close to a Sluc locus or its homologous site, forming 21 clusters of lung and colon cancer susceptibility genes from one, two or three species. Our data shows that cancer susceptibility QTLs can have much broader biological effects than presently appreciated. It also demonstrates the power of mouse genetics to predict human susceptibility genes. Comparison of molecular mechanisms of susceptibility genes that are organ-specific and those with trans-organ effects can provide a new dimension in understanding individual cancer susceptibility.
Collapse
Affiliation(s)
- Lei Quan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The tropical fresh water minnow, Danio rerio, more commonly known as zebrafish, has emerged rapidly over the last decade as a powerful tool for developmental geneticists. External fertilization, high fecundity, a short generation time, and optical transparency of embryos during early development combined with the amenability to a variety of genetic manipulations constitute in the zebrafish the convergence of several unique advantages for a vertebrate model system. Traditional forward genetic screens, which employ the use of a chemical mutagen such as N-ethyl-N-nitrosourea to induce mutations in the male genome, have also proven to be highly successful in the zebrafish. This chapter provides experimental approaches to successfully induce pre-meiotic mutations in the male zebrafish germline and genetic strategies to recover and maintain such mutations in subsequent generations (Section 3.1). Though discussed specifically in the context of zebrafish research in this chapter, many of these genetic approaches may also be broadly applicable in other model systems. We also discuss experimental techniques to manipulate the ploidy of zebrafish embryos, which when used in combination with the standard mutagenesis protocol significantly expedite the identification of the induced mutations (Section 3.2). Additional stand-alone procedures are provided in Section 3.3, which are also required for the execution of the experiments discussed in its preceding sections.
Collapse
|
31
|
Li Z, Branham WS, Dial SL, Wang Y, Guo L, Shi L, Chen T. Genomic analysis of microRNA time-course expression in liver of mice treated with genotoxic carcinogen N-ethyl-N-nitrosourea. BMC Genomics 2010; 11:609. [PMID: 21029445 PMCID: PMC3091750 DOI: 10.1186/1471-2164-11-609] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/28/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Dysregulated expression of microRNAs (miRNAs) has been previously observed in human cancer tissues and shown promise in defining tumor status. However, there is little information as to if or when expression changes of miRNAs occur in normal tissues after carcinogen exposure. RESULTS To explore the possible time-course changes of miRNA expression induced by a carcinogen, we treated mice with one dose of 120 mg/kg N-ethyl-N-nitrosourea (ENU), a model genotoxic carcinogen, and vehicle control. The miRNA expression profiles were assessed in the mouse livers in a time-course design. miRNAs were isolated from the livers at days 1, 3, 7, 15, 30 and 120 after the treatment and their expression was determined using a miRNA PCR Array. Principal component analysis of the miRNA expression profiles showed that miRNA expression at post-treatment days (PTDs) 7 and 15 were different from those at the other time points and the control. The number of differentially expressed miRNAs (DEMs) changed over time (3, 5, 14, 32, 5 and 5 at PTDs 1, 3, 7, 15, 30 and 120, respectively). The magnitude of the expression change varied with time with the highest changes at PTDs 7 or 15 for most of the DEMs. In silico functional analysis of the DEMs at PTDs 7 and 15 indicated that the major functions of these ENU-induced DEMs were associated with DNA damage, DNA repair, apoptosis and other processes related to carcinogenesis. CONCLUSION Our results showed that many miRNAs changed their expression to respond the exposure of the genotoxic carcinogen ENU and the number and magnitude of the changes were highest at PTDs 7 to 15. Thus, one to two weeks after the exposure is the best time for miRNA expression sampling.
Collapse
Affiliation(s)
- Zhiguang Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Shih CK, Chen CM, Chen YC, Huang HC, Chen YT, Li SC. Screening of Ethylnitrosourea Mice With Fatty Acid Oxidation Disorders by a Candidate Gene Approach After Proteome Analysis. JOURNAL OF EXPERIMENTAL & CLINICAL MEDICINE 2010; 2:231-238. [DOI: 10.1016/s1878-3317(10)60036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
33
|
The importance of XRCC2 in RAD51-related DNA damage repair. DNA Repair (Amst) 2010; 9:517-25. [DOI: 10.1016/j.dnarep.2010.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/04/2009] [Accepted: 01/28/2010] [Indexed: 12/11/2022]
|
34
|
Mamur S, Yüzbaşıoğlu D, Ünal F, Yılmaz S. Does potassium sorbate induce genotoxic or mutagenic effects in lymphocytes? Toxicol In Vitro 2010; 24:790-4. [DOI: 10.1016/j.tiv.2009.12.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 12/01/2009] [Accepted: 12/21/2009] [Indexed: 11/27/2022]
|
35
|
Helguera AM, Pérez-Machado G, Cordeiro MNDS, Combes RD. Quantitative structure-activity relationship modelling of the carcinogenic risk of nitroso compounds using regression analysis and the TOPS-MODE approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2010; 21:277-304. [PMID: 20544552 DOI: 10.1080/10629361003773930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Worldwide, legislative and governmental efforts are focusing on establishing simple screening tools for identifying those chemicals most likely to cause adverse effects without experimentally testing all chemicals of regulatory concern. This is because even the most basic biological testing of compounds of concern, apart from requiring a huge number of test animals, would be neither resource nor time effective. Thus, alternative approaches such as the one proposed here, quantitative structure-activity relationship (QSAR) modelling, are increasingly being used for identifying the potential health hazards and subsequent regulation of new industrial chemicals. This paper follows up on our earlier work that demonstrated the use of the TOPological Substructural MOlecular DEsign (TOPS-MODE) approach to QSAR modelling for predictions of the carcinogenic potency of nitroso compounds. The data set comprises 56 nitroso compounds which have been bio-assayed in female rats and administered by the oral water route. The QSAR model was able to account for about 81% of the variance in the experimental activity and exhibited good cross-validation statistics. A reasonable interpretation of the TOPS-MODE descriptors was achieved by means of bond contributions, which in turn afforded the recognition of structural alerts (SAs) regarding carcinogenicity. A comparison of the SAs obtained from different data sets showed that experimental factors, such as the sex and the oral administration route, exert a major influence on the carcinogenicity of nitroso compounds. The present and previous QSAR models combined together provide a reliable tool for estimating the carcinogenic potency of yet untested nitroso compounds and they should allow the identification of SAs, which can be used as the basis of prediction systems for the rodent carcinogenicity of these compounds.
Collapse
Affiliation(s)
- A M Helguera
- Department of Chemistry, Central University of Las Villas, Santa Clara, Villa Clara, Cuba.
| | | | | | | |
Collapse
|
36
|
Wang J, Chen T. Sequencing analysis of mutations induced by N-ethyl-N-nitrosourea at different sampling times in mouse bone marrow. J Appl Toxicol 2009; 30:133-41. [PMID: 19764070 DOI: 10.1002/jat.1479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In our previous study (Wang et al., 2004, Toxicol. Sci. 82: 124-128), we observed that the cII gene mutant frequency (MF) in the bone marrow of Big Blue mice showed significant increase as early as day 1, reached the maximum at day 3 and then decreased to a plateau by day 15 after a single dose of carcinogen N-ethyl-N-nitrosourea (ENU) treatment, which is different from the longer mutation manifestation time and the constancy of MFs after reaching their maximum in some other tissues. To determine the mechanism underlying the quick increase in MF and the peak formation in the mutant manifestation, we examined the mutation frequencies and spectra of the ENU-induced mutants collected from different sampling times in this study. The cII mutants from days 1, 3 and 120 after ENU treatment were randomly selected from different animals. The mutation frequencies were 33, 217, 305 and 144 x 10(-6) for control, days 1, 3, and 120, respectively. The mutation spectra at days 1 and 3 were significantly different from that at day 120. Considering that stem cells are responsible for the ultimate MF plateau (day 120) and transit cells are accountable for the earlier MF induction (days 1 or 3) in mouse bone marrow, we conclude that transit cells are much more sensitive to mutation induction than stem cells in mouse bone marrow, which resulted in the specific mutation manifestation induced by ENU.
Collapse
Affiliation(s)
- Jianyong Wang
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA
| | | |
Collapse
|
37
|
Demir E, Kocaoğlu S, Cetin H, Kaya B. Antigenotoxic effects of Citrus aurentium L. fruit peel oil on mutagenicity of two alkylating agents and two metals in the Drosophila wing spot test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:483-488. [PMID: 19350605 DOI: 10.1002/em.20484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Antigenotoxic effects of Citrus aurentium L. (Rutaceae) fruit peel oil (CPO) in combination with mutagenic metals and alkylating agents were studied using the wing spot test of D. melanogaster. The four reference mutagens, potassium dichromate (K2Cr2O7), cobalt chloride (CoCl2), ethylmethanesulfonate (EMS), and N-ethyl-N-nitrosourea (ENU) were clearly genotoxic. CPO alone at doses from 0.1 to 0.5% in Tween 80 was not mutagenic and did not enhance the mutagenic effect of the reference mutagens. However, antigenotoxic effects of CPO were clearly demonstrated in chronic cotreatments with mutagens and oil, by a significant decrease in wing spots induced by all four mutagens. The D. melanogaster wing spot test was found to be a suitable assay for detecting antigenotoxic effects in vivo.
Collapse
Affiliation(s)
- Eşref Demir
- Department of Biology, Faculty of Arts and Sciences, Akdeniz University, Antalya, Turkey
| | | | | | | |
Collapse
|
38
|
RAD51D- and FANCG-dependent base substitution mutagenesis at the ATP1A1 locus in mammalian cells. Mutat Res 2009; 665:61-6. [PMID: 19427512 DOI: 10.1016/j.mrfmmm.2009.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/26/2009] [Accepted: 03/04/2009] [Indexed: 12/23/2022]
Abstract
Elaborate processes act at the DNA replication fork to minimize the generation of chromatid discontinuity when lesions are encountered. To prevent collapse of stalled replication forks, mutagenic translesion synthesis (TLS) polymerases are recruited temporarily to bypass DNA lesions. When a replication-associated (one-ended) double-strand break occurs, homologous recombination repair (HRR) can restore chromatid continuity in what has traditionally been regarded as an "error-free" process. Our previous mutagenesis studies show an important role for HRR in preventing deletions and rearrangements that would otherwise result from error-prone nonhomologous end joining (NHEJ) after fork breakage. An analogous, but distinct, role in minimizing mutations is attributed to the proteins defective in the cancer predisposition disease Fanconi anemia (FA). Cells from FA patients and model systems show an increased proportion of gene-disrupting deletions at the hprt locus as well as decreased mutation rates in the hprt assay, suggesting a role for the FANC proteins in promoting TLS, HRR, and possibly also NHEJ. It remains unclear whether HRR, like the FANC pathway, impacts the rate of base substitution mutagenesis. Therefore, we measured, in isogenic rad51d and fancg CHO mutants, mutation rates at the Na(+)/K(+)-ATPase alpha-subunit (ATP1A1) locus using ouabain resistance, which specifically detects base substitution mutations. Surprisingly, we found that the spontaneous mutation rate was reduced approximately 2.5-fold in rad51d knockout cells, an even greater extent than observed in fancg cells, when compared with parental and isogenic gene-complemented control lines. A approximately 2-fold reduction in induced mutations in rad51d cells was seen after treatment with the DNA alkylating agent ethylnitrosurea while a lesser reduction occurred in fancg cells. Should the model ATP1A1 locus be representative of the genome, we conclude that at least 50% of base substitution mutations in this mammalian system arise through error-prone polymerase(s) acting during HRR-mediated restart of broken replication forks.
Collapse
|
39
|
Sareddy GR, Challa S, Panigrahi M, Babu PP. Wnt/beta-catenin/Tcf signaling pathway activation in malignant progression of rat gliomas induced by transplacental N-ethyl-N-nitrosourea exposure. Neurochem Res 2009; 34:1278-88. [PMID: 19148749 DOI: 10.1007/s11064-008-9906-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2008] [Indexed: 11/29/2022]
Abstract
Although Wnt/beta-catenin/Tcf signaling pathway has been shown to be a crucial factor in the development of many cancers, little is known about its role in glioma malignancy. In the present study, we report the first evidence that Wnt/beta-catenin/Tcf signaling pathway is constitutively activated in experimental gliomas induced by single transplacental dose of N-ethyl-N-nitrosourea (ENU). In the present study we analyzed ENU induced rat gliomas of different stages (P90, P135 and P180) for the expression of beta-catenin, Lef1, Tcf4 and their targets c-Myc, N-Myc and cyclin D1. Western blot analysis revealed upregulation of beta-catenin, Lef1, Tcf4, c-Myc, N-Myc and cyclin D1 in gliomas compared to controls and their levels were progressively increased from initial stage (P90) to progression stage (P180). In consistent with this, immunohistochemistry revealed the cytoplasmic and nuclear accumulation of beta-catenin, and nuclear positivity was evident for Lef1, Tcf4, c-Myc, N-Myc and cyclin D1. Based on these results, we conclude that Wnt/beta-catenin pathway may play a major role in the tumorigenesis and tumor progression in ENU induced rat gliomas.
Collapse
Affiliation(s)
- Gangadhara Reddy Sareddy
- Department of Biotechnology and Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | |
Collapse
|
40
|
Abstract
Chemical mutagenesis using N-ethyl-N-nitrosourea is the current method of choice for dense mutagenesis in zebrafish. Methods are available for both pre-meiotic and post-meiotic sperm mutagenesis; in this chapter, pre-meiotic mutagenesis is described. Mutated males are crossed with untreated females to create an F1 generation that is heterozygous for the mutations. The F1 females can be screened directly by making haploid embryos using in vitro fertilization (IVF) with ultraviolet (UV)-irradiated sperm. This approach requires substantially fewer fish and less aquarium space than the classical F2 generation screen and is feasible for a small research group. Production of haploid embryos is described in detail.
Collapse
Affiliation(s)
- Judith E Layton
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
41
|
Dubrova YE, Hickenbotham P, Glen CD, Monger K, Wong HP, Barber RC. Paternal exposure to ethylnitrosourea results in transgenerational genomic instability in mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:308-311. [PMID: 18366099 DOI: 10.1002/em.20385] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recent data shows that the effects of ionizing radiation are not restricted to the directly exposed parental germ cells, but can also manifest in their nonexposed offspring, resulting in elevated mutation rates and cancer predisposition. The mechanisms underlying these transgenerational changes remain poorly understood. One of the most important steps in elucidating these mechanisms is to investigate the initial cellular events that trigger genomic instability. Here we have analyzed the effects of paternal treatment by ethylnitrosourea, an alkylating agent which is known to form specific types of DNA adducts, on the transgenerational effects in the first-generation (F1) offspring of exposed CBA/Ca and BALB/c male mice. Mutation rates at two expanded simple tandem repeat loci were significantly elevated in the F1 germline of both strains. Pre and postmeiotic exposures resulted in similar increases in mutation rate in the F1 germline. Within each strain mutation rates were equally elevated in the germline of male and female F1 offspring of the directly exposed males. The results of our study suggest that transgenerational instability is not attributed to a specific sub-set of DNA lesions, such as double strand breaks, and is most probably triggered by a stress-like response to a generalized DNA damage.
Collapse
Affiliation(s)
- Yuri E Dubrova
- Department of Genetics, University of Leicester, Leicester, United Kingdom.
| | | | | | | | | | | |
Collapse
|
42
|
Yamauchi K, Kakinuma S, Sudo S, Kito S, Ohta Y, Nohmi T, Masumura KI, Nishimura M, Shimada Y. Differential effects of low- and high-dose X-rays on N-ethyl-N-nitrosourea-induced mutagenesis in thymocytes of B6C3F1 gpt-delta mice. Mutat Res 2008; 640:27-37. [PMID: 18242641 DOI: 10.1016/j.mrfmmm.2007.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 11/30/2007] [Accepted: 12/06/2007] [Indexed: 05/25/2023]
Abstract
Carcinogenesis in humans is thought to result from exposure to numerous environmental factors. Little is known, however, about how these different factors work in combination to cause cancer. Because thymic lymphoma is a good model of research for combined exposure, we examined the occurrence of mutations in thymic DNA following exposure of B6C3F1 gpt-delta mice to both ionizing radiation and N-ethyl-N-nitrosourea (ENU). Mice were exposed weekly to whole body X-irradiation (0.2 or 1.0 Gy), ENU (200 ppm) in the drinking water, or X-irradiation followed by ENU treatment. Thereafter, genomic DNA was prepared from the thymus and the number and types of mutations in the reporter transgene gpt was determined. ENU exposure alone increased mutant frequency by 10-fold compared to untreated controls and over 80% of mutants had expanded clonally. X-irradiation alone, at either low or high dose, unexpectedly, reduced mutant frequency. Combined exposure to 0.2 Gy X-rays with ENU dramatically decreased mutant frequency, specifically G:C to A:T and A:T to T:A mutations, compared to ENU treatment alone. In contrast, 1.0 Gy X-rays enhanced mutant frequency by about 30-fold and appeared to accelerate clonal expansion of mutated cells. In conclusion, repeated irradiation with 0.2 Gy X-rays not only reduced background mutation levels, but also suppressed ENU-induced mutations and clonal expansion. In contrast, 1.0 Gy irradiation in combination with ENU accelerated clonal expansion of mutated cells. These results indicate that the mode of the combined mutagenic effect is dose dependent.
Collapse
Affiliation(s)
- Kazumi Yamauchi
- Experimental Radiobiology for Children's Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jang T, Sathy B, Hsu YH, Merchant M, Recht B, Chang C, Recht L. A distinct phenotypic change in gliomas at the time of magnetic resonance imaging detection. J Neurosurg 2008; 108:782-90. [DOI: 10.3171/jns/2008/108/4/0782] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Although gliomas remain refractory to treatment, it is not clear whether this characteristic is fixed at the time of its origin or develops later. The authors have been using a model of neurocarcinogenesis to determine whether a time exists during a glioma's evolution during which it is detectable but still curable, thus providing a justification for exploring the clinical merits of an early detection and treatment strategy. The authors recently reported the presence of 2 distinct cellular subsets, 1 expressing nestin and the other both glial fibrillary acidic protein (GFAP) and osteopontin (OPN), within all examined gliomas that developed after in utero exposure to ethylnitrosourea.
Methods
In this study, the authors used magnetic resonance (MR) imaging to assess when these 2 subpopulations appeared during glioma evolution.
Results
Using T2-weighted and diffusion-weighted MR imaging, the authors observed that gliomas grew exponentially once detected at rates that were location-dependent. Despite large differences in growth rates, however, they determined by correlating histochemistry with imaging in a second series of animals, that all lesions initially detected on T2-weighted images contained both subsets of cells. In contrast, lesions containing only nestin-positive cells, which appeared on average 40 days before detection on MR images, were not detected.
Conclusions
The sequential appearance of first the nestin-positive cells followed several weeks later by those expressing GFAP/OPN suggests that all gliomas arise through common early steps in this model. Furthermore, the authors hypothesize that the expression of OPN, a molecule associated with cancer aggressiveness, at the time of T2-weighted detection signals a time during glioma development when the lesion becomes refractory to treatment.
Collapse
Affiliation(s)
- Taichang Jang
- 1Department of Neurology, Stanford University Medical School, Stanford, California
| | - Binulal Sathy
- 2Institute of Biomedical Science, Academia Sinica, Nan-Kan, Taipei, Taiwan; and
| | - Yi-Hua Hsu
- 2Institute of Biomedical Science, Academia Sinica, Nan-Kan, Taipei, Taiwan; and
| | - Milton Merchant
- 1Department of Neurology, Stanford University Medical School, Stanford, California
| | - Benjamin Recht
- 3Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Chen Chang
- 2Institute of Biomedical Science, Academia Sinica, Nan-Kan, Taipei, Taiwan; and
| | - Lawrence Recht
- 1Department of Neurology, Stanford University Medical School, Stanford, California
| |
Collapse
|
44
|
Cho KH, Cho JW, Song CW. Studies on N-Ethyl- N-nitrosourea Mutagenesis in BALB/c Mice. Toxicol Res 2008; 24:59-68. [PMID: 32038778 PMCID: PMC7006260 DOI: 10.5487/tr.2008.24.1.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 02/18/2008] [Indexed: 11/28/2022] Open
Abstract
N-ethyl-N-nitrosoures (ENU) is effective in inducing hypermorphic mutation as well as hypomorphic and antimorphic mutations. Therefore, this mutagen is used to the production of mutant in the mice. In order to perform an effective ENU mutagenesis using BALB/cAnN mice, determination of optimal dosage and dosage regimen of ENU is necessary. And this study tried to develop a suitable screening method and searched for novel and various mutants as model animals in phenotypedriven ENU mutagenesis. We have carried out dosage regimen for mutagenizing dose of 200 mg/kg ENU in the BALB/c mice. Total screened mice were 30,133. As the results of Esaki and Cho’s Phenotype Screening, we got 2,516 phenotypic and behavior abnormalities in G1, G2 and G3 mice. One hundred thirty five G1 phenodeviants were tested for inheritance and 16 dominant mutants were discovered. Forty two recessive mutants were also found in tested 201 micropedigrees. Early-onset mutant mice included the dysmorphology of face, eye, tail, limb, skin, and foot and abnormal behavior like circling, swimming, head tossing, stiff-walking, high cholesterol level, and tremor etc. In this study we could effectively screen G3 recessive mutants. The frequent and concise early-onset screening before weaning will be available for ENU mutagenesis.
Collapse
Affiliation(s)
- Kyu-Hyuk Cho
- Department of Research & Development, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, P.O BOX 123, Yuseong, Daejeon, 305-343 Korea
| | - Jae-Woo Cho
- Department of Research & Development, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, P.O BOX 123, Yuseong, Daejeon, 305-343 Korea
| | - Chang-Woo Song
- Department of Research & Development, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, P.O BOX 123, Yuseong, Daejeon, 305-343 Korea
| |
Collapse
|
45
|
Kostecki LM, Thomas M, Linford G, Lizotte M, Toxopeus L, Bartleman AP, Kirkland JB. Niacin deficiency delays DNA excision repair and increases spontaneous and nitrosourea-induced chromosomal instability in rat bone marrow. Mutat Res 2007; 625:50-61. [PMID: 17618655 DOI: 10.1016/j.mrfmmm.2007.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 05/07/2007] [Accepted: 05/10/2007] [Indexed: 05/16/2023]
Abstract
We have shown that niacin deficiency impairs poly(ADP-ribose) formation and enhances sister chromatid exchanges and micronuclei formation in rat bone marrow. We designed the current study to investigate the effects of niacin deficiency on the kinetics of DNA repair following ethylation, and the accumulation of double strand breaks, micronuclei (MN) and chromosomal aberrations (CA). Weanling male Long-Evans rats were fed niacin deficient (ND), or pair fed (PF) control diets for 3 weeks. We examined repair kinetics by comet assay in the 36h following a single dose of ethylnitrosourea (ENU) (30mg/kg bw). There was no effect of ND on mean tail moment (MTM) before ENU treatment, or on the development of strand breaks between 0 and 8h after ENU. Repair kinetics between 12 and 30h were significantly delayed by ND, with a doubling of area under the MTM curve during this period. O(6)-ethylation of guanine peaked by 1.5h, was largely repaired by 15h, and was also delayed in bone marrow cells from ND rats. ND significantly enhanced double strand break accumulation at 24h after ENU. ND alone increased chromosome and chromatid breaks (four- and two-fold). ND alone caused a large increase in MN, and this was amplified by ENU treatment. While repair kinetics suggest that ND may be acting by creating catalytically inactive PARP molecules with a dominant-negative effect on repair processes, the effect of ND alone on O(6)-ethylation, MN and CA, in the absence of altered comet results, suggests additional mechanisms are also leading to chromosomal instability. These data support the idea that the bone marrow cells of niacin deficient cancer patients may be more sensitive to the side effects of genotoxic chemotherapy, resulting in acute bone marrow suppression and chronic development of secondary leukemias.
Collapse
Affiliation(s)
- Lisa M Kostecki
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | |
Collapse
|
46
|
Miccoli L, Burr KLA, Hickenbotham P, Friedberg EC, Angulo JF, Dubrova YE. The combined effects of xeroderma pigmentosum C deficiency and mutagens on mutation rates in the mouse germ line. Cancer Res 2007; 67:4695-9. [PMID: 17510396 DOI: 10.1158/0008-5472.can-06-3844] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spontaneous and induced mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germ line of xeroderma pigmentosum group C (Xpc) knockout mice defective in global genome nucleotide excision repair. Spontaneous and radiation-induced mutation rates in homozygous Xpc(-/-) males were significantly higher than those in isogenic wild-type (Xpc(+/+)) and heterozygous (Xpc(+/-)) mice. In contrast, exposure to the monofunctional alkylating agent ethylnitrosourea resulted in similar increases in ESTR mutation rates across all genotypes. ESTR mutation spectra in the germ line of Xpc(-/-), Xpc(+/-) and Xpc(+/+) did not differ. Considering these data and the results of other publications, we propose that the Xpc-deficient mice possess a mutator phenotype in their germ line and somatic tissues that may significantly enhance carcinogenesis across multiple tissues.
Collapse
Affiliation(s)
- Laurent Miccoli
- Commissariat à l'Energie Atomique, Laboratoire de Génétique de la Radiosensibilité, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, Fontenay aux Roses, France
| | | | | | | | | | | |
Collapse
|
47
|
Doak SH, Jenkins GJS, Johnson GE, Quick E, Parry EM, Parry JM. Mechanistic influences for mutation induction curves after exposure to DNA-reactive carcinogens. Cancer Res 2007; 67:3904-11. [PMID: 17440105 DOI: 10.1158/0008-5472.can-06-4061] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A mechanistic understanding of carcinogenic genotoxicity is necessary to determine consequences of chemical exposure on human populations and improve health risk assessments. Currently, linear dose-responses are assumed for DNA reactive compounds, ignoring cytoprotective processes that may limit permanent damage. To investigate the biological significance of low-dose exposures, human lymphoblastoid cells were treated with alkylating agents that have different mechanisms of action and DNA targets: methylmethane sulfonate (MMS), methylnitrosourea (MNU), ethylmethane sulfonate (EMS), and ethylnitrosourea (ENU). Chromosomal damage and point mutations were quantified with the micronucleus and hypoxanthine phosphoribosyltransferase forward mutation assays. MNU and ENU showed linear dose-responses, whereas MMS and EMS had nonlinear curves containing a range of nonmutagenic low doses. The lowest observed effect level for induction of chromosomal aberrations was 0.85 microg/mL MMS and 1.40 microg/mL EMS; point mutations required 1.25 microg/mL MMS and 1.40 microg/mL EMS before a mutagenic effect was detected. This nonlinearity could be due to homeostatic maintenance by DNA repair, which is efficient at low doses of compounds that primarily alkylate N(7)-G and rarely attack O atoms. A pragmatic threshold for carcinogenicity may therefore exist for such genotoxins.
Collapse
Affiliation(s)
- Shareen H Doak
- School of Medicine, University of Wales Swansea, Singleton Park, Swansea, Wales, United Kingdom.
| | | | | | | | | | | |
Collapse
|
48
|
Healy C, Wade M, McMahon A, Williams A, Johnson DA, Parfett C. Flow cytometric detection of tandem repeat mutations induced by various chemical classes. Mutat Res 2006; 598:85-102. [PMID: 16516933 DOI: 10.1016/j.mrfmmm.2006.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To facilitate detection of genotoxicity from environmental mutagen exposure, we generated an in vitro enhanced green fluorescence protein (EGFP) reactivation assay that quickly and effectively detects frameshift mutations in tandem repeat sequences (TRS). Two murine cell lines, C3H10T1/2 and mismatch repair deficient MC2a, were stably transfected with EGFP reporter plasmids in which the EGFP constructs contain TRS that put the EGFP sequence out of frame. These included several 2, 3, 4, 5 and 6 bp repeat sequences, a control non-repetitive sequence and a human gene sequence containing a 4 bp repeat motif. Transfected cultures were exposed to five model mutagens and carcinogens: hydrogen peroxide (H(2)O(2)), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), benzo-a-pyrene-diol-epoxide (BPDE), ethyl nitrosourea (ENU), 9-aminoacridine (9AA) and two controls: acetone and ethanol. Frameshift mutations resulted in green fluorescent revertants, as determined by flow cytometry, and were confirmed, for 9AA treatments, by sequencing. All five treatments with model agents induced statistically significant sequence- and exposure-dependent responses in MC2a cells and a negative response with the two negative control treatments, acetone and ethanol. Similar responses were seen in a smaller panel of treatments and plasmids in C3H10T1/2 cells. The mutation frequencies were higher in cells transfected with the plasmids containing TRS than those harbouring the control construct lacking repeats. The highest mutation frequencies were observed with H(2)O(2) and 9AA treatments, yielding up to a 50-fold difference between vehicle and highest concentration treatment. ENU, BPDE, and to a lesser extent TPA treatments, also showed a statistically significant exposure response. Results from these experiments reveal that the assay responds robustly to various classes of mutagenic substances, as well as to rodent carcinogens that are inactive in conventional mutation assays, and that responses are not linked to cytotoxicity. This assay is a promising approach for detecting chemically induced frameshifts within certain DNA sequences of interest, but further characterization and validation are required prior to general use in genotoxicity screening.
Collapse
Affiliation(s)
- Caroline Healy
- Environmental and Occupational Toxicology Division, Health Canada, Ottawa, Ont., Canada
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
In the mouse, random mutagenesis with N-ethyl-N-nitrosourea (ENU) has been used since the 1970s in forward mutagenesis screens. However, only in the last decade has ENU mutagenesis been harnessed to generate a myriad of new mouse mutations in large-scale genetic screens and focused, smaller efforts. The development of additional genetic tools, such as balancer chromosomes, refinements in genetic mapping strategies, and evolution of specialized assays, has allowed these screens to achieve new levels of sophistication. The impressive productivity of these screens has led to a deluge of mouse mutants that wait to be harnessed. Here the basic large- and small-scale strategies are described, as are the basics of screen design. Finally, and importantly, this review describes the mechanisms by which such mutants may be accessed now and in the future. Thus, this review should serve both as an overview of the power of forward mutagenesis in the mouse and as a resource for those interested in developing their own screens, adding onto existing efforts, or obtaining specific mouse mutants that have already been generated.
Collapse
Affiliation(s)
- Sabine P Cordes
- Samuel Lunenfeld Research Institute, Room 865, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|
50
|
Katayama KI, Ueno M, Yamauchi H, Nakayama H, Doi K. Microarray analysis of genes in fetal central nervous system after ethylnitrosourea administration. ACTA ACUST UNITED AC 2005; 74:255-60. [PMID: 15954086 DOI: 10.1002/bdrb.20045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Ethylnitrosourea (ENU), a monofunctional alkylating agent, induces apoptosis and cell cycle arrest in neuroepithelial cells, neural stem cells in the fetal central nervous system (CNS). These effects occur immediately after the administration of ENU to pregnant animals resulting in fetal brain anomalies and long-term effects include brain tumors in the offspring. METHODS Changes in gene expression were investigated in the fetal CNS after ENU administration to pregnant rats using microarray to identify the genes involved in the injury and recovery of the fetal CNS. RESULTS The up-regulation of 21 genes in injury and 15 genes in recovery phases and down-regulation of 5 genes in injury and 3 genes in recovery phases were identified. The genes up-regulated in the injury phase contained p53-target genes that mediate apoptosis and cell cycle arrest, and those in the recovery phase contained cell proliferation-promoting genes. The genes down-regulated in the injury phase contained cholesterol biosynthesis-related genes. In addition, there were some genes that have not been identified to be involved in the CNS injury and recovery. CONCLUSIONS The present study will provide a better understanding of the mechanisms of development, regeneration and carcinogenesis of the CNS as well as the mechanisms of ENU-induced fetal CNS injury and recovery.
Collapse
Affiliation(s)
- Kei-ichi Katayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|