1
|
Gandhi RD, Hickert S, Hoevelmann Y, Mee CD, Schlingemann J, Adams A, Blanazs A, Simon S, Elloway J, Rigger L, Teasdale A, Beaumont CV, Wright L, Doherty A. Escaping the cohort of concern: in vitro experimental evidence supports non-mutagenicity of N-nitroso-hydrochlorothiazide. Arch Toxicol 2024; 98:4159-4172. [PMID: 39259282 PMCID: PMC11496371 DOI: 10.1007/s00204-024-03859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
In recent years, nitrosamine impurities in pharmaceuticals have been subject to intense regulatory scrutiny, with nitrosamine drug substance-related impurities (NDSRIs) treated as cohort of concern impurities, regardless of predicted mutagenic potential. Here, we describe a case study of the NDSRI N-nitroso-hydrochlorothiazide (NO-HCTZ), which was positive in the bacterial reverse mutation (Ames) test but is unstable under the test conditions, generating formaldehyde among other products. The mutagenic profile of NO-HCTZ was inconsistent with that expected of a mutagenic nitrosamine, exhibiting mutagenicity in the absence of metabolic activation, and instead aligned well with that of formaldehyde. To assess further, a modified Ames system including glutathione (3.3 mg/plate) to remove formaldehyde was developed. Strains used were S. typhimurium TA98, TA100, TA1535, and TA1537, and E. coli WP2 uvrA/pKM101. In this system, formaldehyde levels were considerably lower, with a concomitant increase in levels of S-(hydroxymethyl)glutathione (the adduct formed between glutathione and formaldehyde). Upon retesting NO-HCTZ in the modified system (1.6-5000 µg/plate), a clear decrease in the mutagenic response was observed in the strains in which NO-HCTZ was mutagenic in the original system (TA98, TA100, and WP2 uvrA/pKM101), indicating that formaldehyde drives the response, not NO-HCTZ. In strain TA1535, an increase in revertant colonies was observed in the modified system, likely due to a thiatriazine degradation product formed from NO-HCTZ under Ames test conditions. Overall, these data support a non-mutagenic designation for NO-HCTZ and demonstrate the value of further investigation when a positive Ames result does not align with the expected profile.
Collapse
Affiliation(s)
- R D Gandhi
- Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - C D Mee
- Gentronix Ltd. Alderley Park, Macclesfield, UK
| | | | - A Adams
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - A Blanazs
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - S Simon
- Merck KGaA, Darmstadt, Germany
| | - J Elloway
- Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - L Rigger
- Reference Materials R&D, Merck KGaA, Buchs, Switzerland
| | - A Teasdale
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - C V Beaumont
- Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - L Wright
- Safety Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - A Doherty
- Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
2
|
Blouin T, Saini N. Aldehyde-induced DNA-protein crosslinks- DNA damage, repair and mutagenesis. Front Oncol 2024; 14:1478373. [PMID: 39328207 PMCID: PMC11424613 DOI: 10.3389/fonc.2024.1478373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Aldehyde exposure has been shown to lead to the formation of DNA damage comprising of DNA-protein crosslinks (DPCs), base adducts and interstrand or intrastrand crosslinks. DPCs have recently drawn more attention because of recent advances in detection and quantification of these adducts. DPCs are highly deleterious to genome stability and have been shown to block replication forks, leading to wide-spread mutagenesis. Cellular mechanisms to prevent DPC-induced damage include excision repair pathways, homologous recombination, and specialized proteases involved in cleaving the covalently bound proteins from DNA. These pathways were first discovered in formaldehyde-treated cells, however, since then, various other aldehydes have been shown to induce formation of DPCs in cells. Defects in DPC repair or aldehyde clearance mechanisms lead to various diseases including Ruijs-Aalfs syndrome and AMeD syndrome in humans. Here, we discuss recent developments in understanding how aldehydes form DPCs, how they are repaired, and the consequences of defects in these repair pathways.
Collapse
Affiliation(s)
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South
Carolina, Charleston, SC, United States
| |
Collapse
|
3
|
Benedict B, Kristensen SM, Duxin JP. What are the DNA lesions underlying formaldehyde toxicity? DNA Repair (Amst) 2024; 138:103667. [PMID: 38554505 DOI: 10.1016/j.dnarep.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024]
Abstract
Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.
Collapse
Affiliation(s)
- Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Stella Munkholm Kristensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
4
|
Chen PW, Lu HF, Liu ZS. Development and application of the Ames test using a direct-exposure module: The assessment of mutagenicity of incense and sidestream cigarette smoke. INDOOR AIR 2022; 32:e13140. [PMID: 36305075 DOI: 10.1111/ina.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
We had previously developed an improved Ames module to directly determine the mutagenicity of gaseous formaldehyde (HCHO) and toluene without liquid extraction. This study further evaluated the suitability and sensitivity of this module on whole and real polluted air samples. For this, two common brands of stick incense (A and B) and cigarettes (A and B) were harvested, and various types of incense smoke (IS) and sidestream cigarette smoke (SCS) samples were generated by lighting 3, 6, 12, 24, 30, or 36 incense sticks, and by lighting 1, 2, or 3 cigarettes, respectively, in an acrylic box. CO2 , CO, total volatile organic compound (TVOC), PM1.0, and HCHO concentrations in the air samples were determined, and all air samples did not partially fit the requirements of the air quality standards. The smoke samples were then directly exposed to TA100 for 10, 20, 30, or 60 min in our exposure module. Exposure to IS (brand A) for 30 to 60 min and exposure to IS (brand B) for 60 min led to statistically (p < 0.05) weak (below the twofold rule) but dose-dependent mutagenic activities either with or without metabolic activation. Furthermore, a short-term exposure (10-60 min) to SCS (brands A and B) displayed statistically significant (p < 0.05) direct-acting, indirect-acting, time- and dose-dependent mutagenic activities. Furthermore, our data also support that the liver S9 enzyme could enhance the mutagenic activities in most IS and SCS samples. This study confirmed that the modified Ames module can be applied to directly detect the mutagenic activities of real polluted air samples.
Collapse
Affiliation(s)
- Po-Wen Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Fu Lu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| |
Collapse
|
5
|
Chen PW, Kuo TC, Liu ZS, Lu HF. Assessment of the mutagenicity of two common indoor air pollutants, formaldehyde and toluene. INDOOR AIR 2021; 31:1353-1363. [PMID: 33818839 DOI: 10.1111/ina.12832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Traditionally, direct-reading instruments have been used to directly determine the concentrations of indoor air pollutants that may exceed the regulation limits. However, these instruments cannot directly assess the potential health hazards of these pollutants to humans. In this study, we developed and improved a bacterial reverse mutation assay (Ames test) by using a direct gas exposure module to directly determine the mutagenicity of indoor air quality using five tester bacterial strains (TA98, TA100, TA102, TA1535, and TA1537). Thereafter, the module was used to evaluate the effects of exposure time, different concentrations of HCHO or toluene, and mutagenic activities. We found that TA100 was the most sensitive strain and was reverted by relatively lower concentrations of 0.035 ppm HCHO. Furthermore, 50 ppm of toluene exposures caused a significant increase in the number of revertant colonies of TA100 without S9 activation at the 1.5-8-h exposure time intervals. Our findings provide new evidence that gaseous HCHO exposure could display weak but direct, time-dependent, and dose-dependent mutagenic activities. The weak, direct-acting, indirect-acting, and time-dependent mutagen of 50 ppm toluene was also confirmed. Moreover, our improved Ames module and the exposure conditions provided in this study can be further applied to evaluate the mutagenicity of indoor air quality.
Collapse
Affiliation(s)
- Po-Wen Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tai-Chen Kuo
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hung-Fu Lu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
6
|
Formaldehyde-responsive proteins, TtmR and EfgA, reveal a tradeoff between formaldehyde resistance and efficient transition to methylotrophy in Methylorubrum extorquens. J Bacteriol 2021; 203:JB.00589-20. [PMID: 33619153 PMCID: PMC8092166 DOI: 10.1128/jb.00589-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For bacteria to thrive they must be well-adapted to their environmental niche, which may involve specialized metabolism, timely adaptation to shifting environments, and/or the ability to mitigate numerous stressors. These attributes are highly dependent on cellular machinery that can sense both the external and intracellular environment. Methylorubrum extorquens is an extensively studied facultative methylotroph, an organism that can use single-carbon compounds as their sole source of carbon and energy. In methylotrophic metabolism, carbon flows through formaldehyde as a central metabolite; thus, formaldehyde is both an obligate metabolite and a metabolic stressor. Via the one-carbon dissimilation pathway, free formaldehyde is rapidly incorporated by formaldehyde activating enzyme (Fae), which is constitutively expressed at high levels. In the presence of elevated formaldehyde levels, a recently identified formaldehyde-sensing protein, EfgA, induces growth arrest. Herein, we describe TtmR, a formaldehyde-responsive transcription factor that, like EfgA, modulates formaldehyde resistance. TtmR is a member of the MarR family of transcription factors and impacts the expression of 75 genes distributed throughout the genome, many of which are transcription factors and/or involved in stress response, including efgA Notably, when M. extorquens is adapting its metabolic network during the transition to methylotrophy, efgA and ttmR mutants experience an imbalance in formaldehyde production and a notable growth delay. Although methylotrophy necessitates that M. extorquens maintain a relatively high level of formaldehyde tolerance, this work reveals a tradeoff between formaldehyde resistance and the efficient transition to methylotrophic growth and suggests that TtmR and EfgA play a pivotal role in maintaining this balance.Importance: All organisms produce formaldehyde as a byproduct of enzymatic reactions and as a degradation product of metabolites. The ubiquity of formaldehyde in cellular biology suggests all organisms have evolved mechanisms of mitigating formaldehyde toxicity. However, formaldehyde-sensing is poorly described and prevention of formaldehyde-induced damage is primarily understood in the context of detoxification. Here we use an organism that is regularly exposed to elevated intracellular formaldehyde concentrations through high-flux one-carbon utilization pathways to gain insight into the role of formaldehyde-responsive proteins that modulate formaldehyde resistance. Using a combination of genetic and transcriptomic analyses, we identify dozens of genes putatively involved in formaldehyde resistance, determined the relationship between two different formaldehyde response systems and identified an inherent tradeoff between formaldehyde resistance and optimal transition to methylotrophic metabolism.
Collapse
|
7
|
Bazurto JV, Riazi S, D’Alton S, Deatherage DE, Bruger EL, Barrick JE, Marx CJ. Global Transcriptional Response of Methylorubrum extorquens to Formaldehyde Stress Expands the Role of EfgA and Is Distinct from Antibiotic Translational Inhibition. Microorganisms 2021; 9:347. [PMID: 33578755 PMCID: PMC7916467 DOI: 10.3390/microorganisms9020347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
The potency and indiscriminate nature of formaldehyde reactivity upon biological molecules make it a universal stressor. However, some organisms such as Methylorubrum extorquens possess means to rapidly and effectively mitigate formaldehyde-induced damage. EfgA is a recently identified formaldehyde sensor predicted to halt translation in response to elevated formaldehyde as a means to protect cells. Herein, we investigate growth and changes in gene expression to understand how M. extorquens responds to formaldehyde with and without the EfgA-formaldehyde-mediated translational response, and how this mechanism compares to antibiotic-mediated translation inhibition. These distinct mechanisms of translation inhibition have notable differences: they each involve different specific players and in addition, formaldehyde also acts as a general, multi-target stressor and a potential carbon source. We present findings demonstrating that in addition to its characterized impact on translation, functional EfgA allows for a rapid and robust transcriptional response to formaldehyde and that removal of EfgA leads to heightened proteotoxic and genotoxic stress in the presence of increased formaldehyde levels. We also found that many downstream consequences of translation inhibition were shared by EfgA-formaldehyde- and kanamycin-mediated translation inhibition. Our work uncovered additional layers of regulatory control enacted by functional EfgA upon experiencing formaldehyde stress, and further demonstrated the importance this protein plays at both transcriptional and translational levels in this model methylotroph.
Collapse
Affiliation(s)
- Jannell V. Bazurto
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (J.V.B.); (S.R.); (E.L.B.)
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, MN 55108, USA
- Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, MN 55108, USA
- Biotechnology Institute, University of Minnesota, Twin Cities, MN 55108, USA
| | - Siavash Riazi
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (J.V.B.); (S.R.); (E.L.B.)
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Simon D’Alton
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; (S.D.); (D.E.D.); (J.E.B.)
| | - Daniel E. Deatherage
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; (S.D.); (D.E.D.); (J.E.B.)
| | - Eric L. Bruger
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (J.V.B.); (S.R.); (E.L.B.)
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Jeffrey E. Barrick
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; (S.D.); (D.E.D.); (J.E.B.)
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (J.V.B.); (S.R.); (E.L.B.)
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
8
|
Pachva MC, Kisselev AF, Matkarimov BT, Saparbaev M, Groisman R. DNA-Histone Cross-Links: Formation and Repair. Front Cell Dev Biol 2021; 8:607045. [PMID: 33409281 PMCID: PMC7779557 DOI: 10.3389/fcell.2020.607045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
The nucleosome is a stretch of DNA wrapped around a histone octamer. Electrostatic interactions and hydrogen bonds between histones and DNA are vital for the stable organization of nucleosome core particles, and for the folding of chromatin into more compact structures, which regulate gene expression via controlled access to DNA. As a drawback of tight association, under genotoxic stress, DNA can accidentally cross-link to histone in a covalent manner, generating a highly toxic DNA-histone cross-link (DHC). DHC is a bulky lesion that can impede DNA transcription, replication, and repair, often with lethal consequences. The chemotherapeutic agent cisplatin, as well as ionizing and ultraviolet irradiations and endogenously occurring reactive aldehydes, generate DHCs by forming either stable or transient covalent bonds between DNA and side-chain amino groups of histone lysine residues. The mechanisms of DHC repair start to unravel, and certain common principles of DNA-protein cross-link (DPC) repair mechanisms that participate in the removal of cross-linked histones from DNA have been described. In general, DPC is removed via a two-step repair mechanism. First, cross-linked proteins are degraded by specific DPC proteases or by the proteasome, relieving steric hindrance. Second, the remaining DNA-peptide cross-links are eliminated in various DNA repair pathways. Delineating the molecular mechanisms of DHC repair would help target specific DNA repair proteins for therapeutic intervention to combat tumor resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Manideep C Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Alexei F Kisselev
- Department Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | | | - Murat Saparbaev
- Groupe "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Regina Groisman
- Groupe "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
9
|
García-Romero I, Nogales J, Díaz E, Santero E, Floriano B. Understanding the metabolism of the tetralin degrader Sphingopyxis granuli strain TFA through genome-scale metabolic modelling. Sci Rep 2020; 10:8651. [PMID: 32457330 PMCID: PMC7250832 DOI: 10.1038/s41598-020-65258-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 11/23/2022] Open
Abstract
Sphingopyxis granuli strain TFA is an α-proteobacterium that belongs to the sphingomonads, a group of bacteria well-known for its degradative capabilities and oligotrophic metabolism. Strain TFA is the only bacterium in which the mineralisation of the aromatic pollutant tetralin has been completely characterized at biochemical, genetic, and regulatory levels and the first Sphingopyxis characterised as facultative anaerobe. Here we report additional metabolic features of this α-proteobacterium using metabolic modelling and the functional integration of genomic and transcriptomic data. The genome-scale metabolic model (GEM) of strain TFA, which has been manually curated, includes information on 743 genes, 1114 metabolites and 1397 reactions. This represents the largest metabolic model for a member of the Sphingomonadales order thus far. The predictive potential of this model was validated against experimentally calculated growth rates on different carbon sources and under different growth conditions, including both aerobic and anaerobic metabolisms. Moreover, new carbon and nitrogen sources were predicted and experimentally validated. The constructed metabolic model was used as a platform for the incorporation of transcriptomic data, generating a more robust and accurate model. In silico flux analysis under different metabolic scenarios highlighted the key role of the glyoxylate cycle in the central metabolism of strain TFA.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013, Seville, Spain
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology. Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), 28040, Madrid, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013, Seville, Spain
| | - Belén Floriano
- Department of Molecular Biology and Biochemical Engineering. Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| |
Collapse
|
10
|
Zhang H, Xiong Y, Chen J. DNA-protein cross-link repair: what do we know now? Cell Biosci 2020; 10:3. [PMID: 31921408 PMCID: PMC6945406 DOI: 10.1186/s13578-019-0366-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
When a protein is covalently and irreversibly bound to DNA (i.e., a DNA–protein cross-link [DPC]), it may obstruct any DNA-based transaction, such as transcription and replication. DPC formation is very common in cells, as it can arise from endogenous factors, such as aldehyde produced during cell metabolism, or exogenous sources like ionizing radiation, ultraviolet light, and chemotherapeutic agents. DPCs are composed of DNA, protein, and their cross-linked bonds, each of which can be targeted by different repair pathways. Many studies have demonstrated that nucleotide excision repair and homologous recombination can act on DNA molecules and execute nuclease-dependent DPC repair. Enzymes that have evolved to deal specifically with DPC, such as tyrosyl-DNA phosphodiesterases 1 and 2, can directly reverse cross-linked bonds and release DPC from DNA. The newly identified proteolysis pathway, which employs the proteases Wss1 and SprT-like domain at the N-terminus (SPRTN), can directly hydrolyze the proteins in DPCs, thus offering a new venue for DPC repair in cells. A deep understanding of the mechanisms of each pathway and the interplay among them may provide new guidance for targeting DPC repair as a therapeutic strategy for cancer. Here, we summarize the progress in DPC repair field and describe how cells may employ these different repair pathways for efficient repair of DPCs.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
11
|
Chesner LN, Campbell C. A quantitative PCR-based assay reveals that nucleotide excision repair plays a predominant role in the removal of DNA-protein crosslinks from plasmids transfected into mammalian cells. DNA Repair (Amst) 2018; 62:18-27. [PMID: 29413806 DOI: 10.1016/j.dnarep.2018.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/26/2022]
Abstract
DNA-protein crosslinks (DPCs) are complex DNA lesions that induce mutagenesis and cell death. DPCs are created by common antitumor drugs, reactive oxygen species, and endogenous aldehydes. Since these agents create other types of DNA damage in addition to DPCs, identification of the mechanisms of DPC repair is challenging. In this study, we created plasmid substrates containing site-specific DPC lesions, as well as plasmids harboring lesions that are selectively repaired by the base excision or nucleotide excision repair (NER) pathways. These substrates were transfected into mammalian cells and a quantitative real-time PCR assay employed to study their repair. This assay revealed that DPC lesions were rapidly repaired in wild-type human and Chinese hamster derived cells, as were plasmids harboring an oxoguanine residue (base excision repair substrate) or cholesterol lesion (NER substrate). Interestingly, the DPC substrate was repaired in human cells nearly three times as efficiently as in Chinese hamster cells (>75% vs ∼25% repair at 8 h post-transfection), while there was no significant species-specific difference in the efficiency with which the cholesterol lesion was repaired (∼60% repair). Experiments revealed that both human and hamster cells deficient in NER due to mutations in the xeroderma pigmentosum A or D genes were five to ten-fold less able to repair the cholesterol and DPC lesions than were wild-type control clones, and that both the global genome and transcription-coupled sub-pathways of NER were capable of repairing DPCs. In addition, analyses using this PCR-based assay revealed that a 4 kDa peptide DNA crosslink was repaired nearly twice as efficiently as was a ∼38 kDa DPC, suggesting that proteolytic degradation of crosslinked proteins occurs during DPC repair. These results highlight the utility of this PCR-based assay to study DNA repair and indicate that the NER machinery rapidly and efficiently repairs plasmid DPC lesions in mammalian cells.
Collapse
Affiliation(s)
- Lisa N Chesner
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Duran R, Cravo-Laureau C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 2016; 40:814-830. [PMID: 28201512 PMCID: PMC5091036 DOI: 10.1093/femsre/fuw031] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/28/2015] [Accepted: 07/24/2016] [Indexed: 11/14/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms.
Collapse
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| |
Collapse
|
13
|
Bogen KT, Heilman JM. Reassessment of MTBE cancer potency considering modes of action for MTBE and its metabolites. Crit Rev Toxicol 2016; 45 Suppl 1:1-56. [PMID: 26414780 DOI: 10.3109/10408444.2015.1052367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A 1999 California state agency cancer potency (CP) evaluation of methyl tert-butyl ether (MTBE) assumed linear risk extrapolations from tumor data were plausible because of limited evidence that MTBE or its metabolites could damage DNA, and based such extrapolations on data from rat gavage and rat and mouse inhalation studies indicating elevated tumor rates in male rat kidney, male rat Leydig interstitial cells, and female rat leukemia/lymphomas. More recent data bearing on MTBE cancer potency include a rodent cancer bioassay of MTBE in drinking water; several new studies of MTBE genotoxicity; several similar evaluations of MTBE metabolites, formaldehyde, and tert-butyl alcohol or TBA; and updated evaluations of carcinogenic mode(s) of action (MOAs) of MTBE and MTBE metabolite's. The lymphoma/leukemia data used in the California assessment were recently declared unreliable by the U.S. Environmental Protection Agency (EPA). Updated characterizations of MTBE CP, and its uncertainty, are currently needed to address a variety of decision goals concerning historical and current MTBE contamination. To this end, an extensive review of data sets bearing on MTBE and metabolite genotoxicity, cytotoxicity, and tumorigenicity was applied to reassess MTBE CP and related uncertainty in view of MOA considerations. Adopting the traditional approach that cytotoxicity-driven cancer MOAs are inoperative at very low, non-cytotoxic dose levels, it was determined that MTBE most likely does not increase cancer risk unless chronic exposures induce target-tissue toxicity, including in sensitive individuals. However, the corresponding expected (or plausible upper bound) CP for MTBE conditional on a hypothetical linear (e.g., genotoxic) MOA was estimated to be ∼2 × 10(-5) (or 0.003) per mg MTBE per kg body weight per day for adults exposed chronically over a lifetime. Based on this conservative estimate of CP, if MTBE is carcinogenic to humans, it is among the weakest 10% of chemical carcinogens evaluated by EPA.
Collapse
|
14
|
Assessment of immunotoxicity and genotoxicity in workers exposed to low concentrations of formaldehyde. Arch Toxicol 2012; 87:145-53. [DOI: 10.1007/s00204-012-0961-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
|
15
|
Grogan D, Jinks-Robertson S. Formaldehyde-induced mutagenesis in Saccharomyces cerevisiae: molecular properties and the roles of repair and bypass systems. Mutat Res 2011; 731:92-8. [PMID: 22197481 DOI: 10.1016/j.mrfmmm.2011.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
Although DNA-protein cross-links (DPCs) pose a significant threat to genome stability, they remain a poorly understood class of DNA lesions. To define genetic impacts of DPCs on eukaryotic cells in molecular terms, we used a sensitive Saccharomyces cerevisiae frameshift-detection assay to analyze mutagenesis by formaldehyde (HCHO), and its response to nucleotide excision repair (NER) and translesion DNA synthesis (TLS). Brief exposure to HCHO was mutagenic for NER-defective rad14 strains but not for a corresponding RAD14 strain, nor for a rad14 strain lacking both Polζ and Polη TLS polymerases. This confirmed that HCHO-generated DNA lesions can trigger error-prone TLS and are substrates for the NER pathway. Sequencing revealed that HCHO-induced single-base-pair insertions occurred primarily at one hotspot; most of these insertions were also complex, changing an additional base-pair nearby. Most of the HCHO-induced mutations required both Polζ and Polη, providing a striking example of cooperativity between these two TLS polymerases during bypass of a DNA lesion formed in vivo. The similar molecular properties of HCHO-induced and spontaneous complex +1 insertions detected by this system suggest that DPCs which form in vivo during normal metabolism may contribute characteristic events to the spectra of spontaneous mutations in NER-deficient cells.
Collapse
Affiliation(s)
- Dennis Grogan
- Department of Biological Sciences, University of Cincinnati, Cincinnati OH 45221-0006, USA.
| | | |
Collapse
|
16
|
Ide H, Shoulkamy MI, Nakano T, Miyamoto-Matsubara M, Salem AMH. Repair and biochemical effects of DNA-protein crosslinks. Mutat Res 2011; 711:113-122. [PMID: 21185846 DOI: 10.1016/j.mrfmmm.2010.12.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/11/2010] [Accepted: 12/17/2010] [Indexed: 05/30/2023]
Abstract
Genomic DNA is associated with various structural, regulatory, and transaction proteins. The dynamic and reversible association between proteins and DNA ensures the accurate expression and propagation of genetic information. However, various endogenous, environmental, and chemotherapeutic agents induce DNA-protein crosslinks (DPCs), and hence covalently trap proteins on DNA. Since DPCs are extremely large compared to conventional DNA lesions, they probably impair many aspects of DNA transactions such as replication, transcription, and repair due to steric hindrance. Recent genetic and biochemical studies have shed light on the elaborate molecular mechanism by which cells repair or tolerate DPCs. This review summarizes the current knowledge regarding the repair and biochemical effects of the most ubiquitous form of DPCs, which are associated with no flanked DNA strand breaks. In bacteria small DPCs are eliminated by nucleotide excision repair (NER), whereas oversized DPCs are processed by RecBCD-dependent homologous recombination (HR). NER does not participate in the repair of DPCs in mammalian cells, since the upper size limit of DPCs amenable to mammalian NER is smaller than that of bacterial NER. Thus, DPCs are processed exclusively by HR. The reactivation of the stalled replication fork at DPCs by HR seems to involve fork breakage in mammalian cells but not in bacterial cells. In addition, recent proteomic studies have identified the numbers of proteins in DPCs induced by environmental and chemotherapeutic agents. However, it remains largely elusive how DPCs affect replication and transcription at the molecular level. Considering the extremely large nature of DPCs, it is possible that they impede the progression of replication and transcription machineries by mechanisms different from those for conventional DNA lesions. This might also be true for the DNA damage response and signaling mechanism.
Collapse
Affiliation(s)
- Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | | | | | | | | |
Collapse
|
17
|
Genotoxicity/mutagenicity of formaldehyde revealed by the Arabidopsis thaliana plants transgenic for homologous recombination substrates. Mutat Res 2010; 699:35-43. [PMID: 20399886 DOI: 10.1016/j.mrgentox.2010.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/18/2010] [Accepted: 04/10/2010] [Indexed: 01/01/2023]
Abstract
Formaldehyde (FA) is a major industrial chemical and has been extensively used in the manufacture of synthetic resins and chemicals. The use of FA-containing industrial materials in daily life exposes human to FA extensively. Numerous studies indicate that FA is genotoxic, and can induce various genotoxic effects in vitro and in vivo. The primary DNA lesions induced by FA are DNA-protein crosslinks (DPCs). Recently, it has been reported that the homologous recombination (HR) mechanism is involved in the repair of DPCs, suggesting the homologous recombination could be a potential indicator for the genotoxicity/mutagenicity of FA. However, it has not yet been reported that organisms harboring recombination substrates are used for the detection of genotoxic/mutagenic effects of FA. In this present study, an Arabidopsis thaliana-line transgenic for GUS recombination substrates was used to study the genotoxicity/mutagenicity of FA, and the results showed that FA-exposure significantly increased the induction of HR in growing plants, but not in dormant seeds. We also observed an early up-regulation of expression of HR-related gene, AtRAD54, after FA-exposure. Moreover, the pretreatment with glutathione (GSH) suppressed drastically the induction of HR by FA-exposure.
Collapse
|
18
|
Genetic analysis of repair and damage tolerance mechanisms for DNA-protein cross-links in Escherichia coli. J Bacteriol 2009; 191:5657-68. [PMID: 19617358 DOI: 10.1128/jb.00417-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA-protein cross-links (DPCs) are unique among DNA lesions in their unusually bulky nature. We have recently shown that nucleotide excision repair (NER) and RecBCD-dependent homologous recombination (HR) collaboratively alleviate the lethal effect of DPCs in Escherichia coli. In this study, to gain further insight into the damage-processing mechanism for DPCs, we assessed the sensitivities of a panel of repair-deficient E. coli mutants to DPC-inducing agents, including formaldehyde (FA) and 5-azacytidine (azaC). We show here that the damage tolerance mechanism involving HR and subsequent replication restart (RR) provides the most effective means of cell survival against DPCs. Translesion synthesis does not serve as an alternative damage tolerance mechanism for DPCs in cell survival. Elimination of DPCs from the genome relies primarily on NER, which provides a second and moderately effective means of cell survival against DPCs. Interestingly, Cho rather than UvrC seems to be an effective nuclease for the NER of DPCs. Together with the genes responsible for HR, RR, and NER, the mutation of genes involved in several aspects of DNA repair and transactions, such as recQ, xth nfo, dksA, and topA, rendered cells slightly but significantly sensitive to FA but not azaC, possibly reflecting the complexity of DPCs or cryptic lesions induced by FA. UvrD may have an additional role outside NER, since the uvrD mutation conferred a slight azaC sensitivity on cells. Finally, DNA glycosylases mitigate azaC toxicity, independently of the repair of DPCs, presumably by removing 5-azacytosine or its degradation product from the chromosome.
Collapse
|
19
|
Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacteriumCupriavidus necatorJMP134. FEMS Microbiol Rev 2008; 32:736-94. [DOI: 10.1111/j.1574-6976.2008.00122.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Nucleotide excision repair and homologous recombination systems commit differentially to the repair of DNA-protein crosslinks. Mol Cell 2007; 28:147-58. [PMID: 17936711 DOI: 10.1016/j.molcel.2007.07.029] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/30/2007] [Accepted: 07/30/2007] [Indexed: 11/21/2022]
Abstract
DNA-protein crosslinks (DPCs)-where proteins are covalently trapped on the DNA strand-block the progression of replication and transcription machineries and hence hamper the faithful transfer of genetic information. However, the repair mechanism of DPCs remains largely elusive. Here we have analyzed the roles of nucleotide excision repair (NER) and homologous recombination (HR) in the repair of DPCs both in vitro and in vivo using a bacterial system. Several lines of biochemical and genetic evidence show that both NER and HR commit to the repair or tolerance of DPCs, but differentially. NER repairs DPCs with crosslinked proteins of sizes less than 12-14 kDa, whereas oversized DPCs are processed exclusively by RecBCD-dependent HR. These results highlight how NER and HR are coordinated when cells need to deal with unusually bulky DNA lesions such as DPCs.
Collapse
|
21
|
Kailasam S, Rogers KR. A fluorescence-based screening assay for DNA damage induced by genotoxic industrial chemicals. CHEMOSPHERE 2007; 66:165-71. [PMID: 16820187 DOI: 10.1016/j.chemosphere.2006.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 05/16/2006] [Accepted: 05/21/2006] [Indexed: 05/10/2023]
Abstract
A rapid screening assay to detect chemically-induced DNA damage resulting from exposure of surrogate DNA to genotoxic compounds is reported. This assay is based on changes in the melting and annealing behavior observed for damaged DNA. Exposure of calf thymus DNA to genotoxic industrial chemicals reduced the extent to which the DNA annealed as measured using a double strand DNA selective fluorescent indicator dye. Formaldehyde, acrolein, crotonaldehyde and bromoethane showed the most prominent effects, chloroacetone and allylamine exhibited lesser effects, and acryrlonitrile showed no statistically significant assay response. The assay response for formaldehyde and crotonaldehyde were measured over the concentration range of 10-100 mM and 50-300 mM, respectively. This assay showed little response for the cytotoxic compounds phenol, cyclohexane and toluene but was sensitive to the effects of DNA damaging compounds such as mitomycin C and glutaraldehyde.
Collapse
Affiliation(s)
- S Kailasam
- US EPA National Exposure Research Laboratory-LV, Environmental Protection Agency, 944 E. Harmon Ave., Las Vegas, NV 89119, USA
| | | |
Collapse
|
22
|
Patchett CL, Srinivasan V, Waterhouse PJ. Is there life after Buckley's formocresol? Part II - Development of a protocol for the management of extensive caries in the primary molar. Int J Paediatr Dent 2006; 16:199-206. [PMID: 16643542 DOI: 10.1111/j.1365-263x.2006.00687.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To produce a working clinical protocol for pulp therapy techniques in the extensively carious primary molar. INTRODUCTION The International Agency for Research on Cancer has recently classified formaldehyde as carcinogenic to human beings. As such, a medicament that can be used to replace formocresol in clinical practice should be identified. METHODS Part I of this paper explored the currently available alternative interventions and materials to formocresol in the form of a narrative review following an extensive literature search. Part II now presents the formation of a specialist group to establish an evidence-based protocol, for the management of the extensively carious primary molar. CONCLUSION A protocol and key points document have been developed to assist clinicians in their treatment planning. Areas for further postgraduate training are identified.
Collapse
Affiliation(s)
- C L Patchett
- Department of Child Dental Health, Newcastle Dental Hospital, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
23
|
Hickman JW, Barber RD, Skaar EP, Donohue TJ. Link between the membrane-bound pyridine nucleotide transhydrogenase and glutathione-dependent processes in Rhodobacter sphaeroides. J Bacteriol 2002; 184:400-9. [PMID: 11751816 PMCID: PMC139586 DOI: 10.1128/jb.184.2.400-409.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of a glutathione-dependent pathway for formaldehyde oxidation in the facultative phototroph Rhodobacter sphaeroides has allowed the identification of gene products that contribute to formaldehyde metabolism. Mutants lacking the glutathione-dependent formaldehyde dehydrogenase (GSH-FDH) are sensitive to metabolic sources of formaldehyde, like methanol. This growth phenotype is correlated with a defect in formaldehyde oxidation. Additional methanol-sensitive mutants were isolated that contained Tn5 insertions in pntA, which encodes the alpha subunit of the membrane-bound pyridine nucleotide transhydrogenase. Mutants lacking transhydrogenase activity have phenotypic and physiological characteristics that are different from those that lack GSH-FDH activity. For example, cells lacking transhydrogenase activity can utilize methanol as a sole carbon source in the absence of oxygen and do not display a formaldehyde oxidation defect, as determined by whole-cell (13)C-nuclear magnetic resonance. Since transhydrogenase can be a major source of NADPH, loss of this enzyme could result in a requirement for another source for this compound. Evidence supporting this hypothesis includes increased specific activities of other NADPH-producing enzymes and the finding that glucose utilization by the Entner-Doudoroff pathway restores aerobic methanol resistance to cells lacking transhydrogenase activity. Mutants lacking transhydrogenase activity also have higher levels of glutathione disulfide under aerobic conditions, so it is consistent that this strain has increased sensitivity to oxidative stress agents like diamide, which are known to alter the oxidation reduction state of the glutathione pool. A model will be presented to explain the role of transhydrogenase under aerobic conditions when cells need glutathione both for GSH-FDH activity and to repair oxidatively damaged proteins.
Collapse
Affiliation(s)
- Jason W Hickman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
24
|
Kayser MF, Stumpp MT, Vuilleumier S. DNA polymerase I is essential for growth of Methylobacterium dichloromethanicum DM4 with dichloromethane. J Bacteriol 2000; 182:5433-9. [PMID: 10986246 PMCID: PMC110986 DOI: 10.1128/jb.182.19.5433-5439.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylobacterium dichloromethanicum DM4 grows with dichloromethane as the unique carbon and energy source by virtue of a single enzyme, dichloromethane dehalogenase-glutathione S-transferase. A mutant of the dichloromethane-degrading strain M. dichloromethanicum DM4, strain DM4-1445, was obtained by mini-Tn5 transposon mutagenesis that was no longer able to grow with dichloromethane. Dichloromethane dehalogenase activity in this mutant was comparable to that of the wild-type strain. The site of mini-Tn5 insertion in this mutant was located in the polA gene encoding DNA polymerase I, an enzyme with a well-known role in DNA repair. DNA polymerase activity was not detected in cell extracts of the polA mutant. Conjugation of a plasmid containing the intact DNA polymerase I gene into the polA mutant restored growth with dichloromethane, indicating that the polA gene defect was responsible for the observed lack of growth of this mutant with dichloromethane. Viability of the DM4-1445 mutant was strongly reduced upon exposure to both UV light and dichloromethane. The polA'-lacZ transcriptional fusion resulting from mini-Tn5 insertion was constitutively expressed at high levels and induced about twofold after addition of 10 mM dichloromethane. Taken together, these data indicate that DNA polymerase I is essential for growth of M. dichloromethanicum DM4 with dichloromethane and further suggest an important role of the DNA repair machinery in the degradation of halogenated, DNA-alkylating compounds by bacteria.
Collapse
Affiliation(s)
- M F Kayser
- Institut für Mikrobiologie, ETH Zürich, CH-8092 Zürich, Switzerland
| | | | | |
Collapse
|
25
|
Sarrif AM, Krahn DF, Donovan SM, O'Neil RM. Evaluation of hexamethylphosphoramide for gene mutations in Salmonella typhimurium using plate incorporation, preincubation, and suspension assays. Mutat Res 1997; 380:167-77. [PMID: 9385397 DOI: 10.1016/s0027-5107(97)00134-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hexamethylphosphoramide (HMPA), a potent rat nasal carcinogen by inhalation, and three of its metabolites, pentamethylphosphoramide (PMPA), trimethylphosphoramide (TriMPA), and formaldehyde (HCHO), were assessed in Salmonella typhimurium gene mutation assays using various protocols, including plate incorporation, preincubation and suspension assays. HMPA (tested up to 15,000 micrograms/plate) was not mutagenic in plate incorporation or preincubation assays with or without metabolic activation. HCHO was mutagenic in the plate incorporation and preincubation assays (tested up to 150 micrograms/plate). In suspension assays, however, HMPA (tested up to 40 mg/ml), PMPA (up to 44 mg/ml) and HCHO (up to 45 micrograms/ml), but not TriMPA (up to 29 mg/ml), were mutagenic. HMPA and PMPA were positive only with activation. HMPA's mutagenicity was optimized using a relatively high level of rat liver S9 protein (3.5 mg/plate) in the metabolic activation mixture. Semicarbazide, an HCHO trapping agent, added at concentrations up to 167 micrograms/ml, markedly inhibited the mutagenic activities of HMPA and PMPA suggesting that HCHO generation may play a role in their mutagenicity. These studies show that HMPA is mutagenic in a modified Salmonella typhimurium reverse mutation assay with metabolic activation. Successive N-demethylation of HMPA eventually eliminates the mutagenic activity which further suggests that HMPA's mutagenic activity is related to the release of HCHO.
Collapse
Affiliation(s)
- A M Sarrif
- E.I. du Pont de Nemours and Co., Haskell Laboratory for Toxicology and Industrial Medicine, Newark, Delaware 19714, USA
| | | | | | | |
Collapse
|
26
|
Suvachittanont W, Kurashima Y, Esumi H, Tsuda M. Formation of thiazolidine-4-carboxyiic acid (thioproline), an effective nitrite-trapping agent in human body, in Parkia speciosa seeds and other edible leguminous seeds in Thailand. Food Chem 1996. [DOI: 10.1016/0308-8146(95)00132-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Conaway CC, Whysner J, Verna LK, Williams GM. Formaldehyde mechanistic data and risk assessment: endogenous protection from DNA adduct formation. Pharmacol Ther 1996; 71:29-55. [PMID: 8910948 DOI: 10.1016/0163-7258(96)00061-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Exposures of rodents to airborne formaldehyde (FA) produce dose-related toxicity, enhanced cell proliferation and squamous cell carcinomas in the nasal passages. The mechanism of FA-induced tumor formation involves DNA-protein crosslink formation and enhanced cell proliferation secondarily to cytotoxicity. The mucociliary apparatus and glutathione protect against low-dose FA-induced effects. Consequently, the mechanistic information is consistent with a very sublinear dose-response curve for tumor formation. The sublinear dose-response of nasal DNA-protein crosslinks levels in rodents and monkeys has been used in the risk assessment of FA.
Collapse
Affiliation(s)
- C C Conaway
- Toxicology and Risk Assessment Program, American Health Foundation, Valhalla, NY 10595-1599, USA
| | | | | | | |
Collapse
|
28
|
Knasmüller S, Zöhrer E, Kainzbauer E, Kienzl H, Colbert B, Lamprecht G, Schulte-Hermann R. Detection of mutagenic activity in textiles with Salmonella typhimurium. Mutat Res 1993; 299:45-53. [PMID: 7679192 DOI: 10.1016/0165-1218(93)90118-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A hundred and ninety-six textile samples were tested in a modified version of the Salmonella/microsome assay for release of mutagenic contaminants. As heat sterilization of the samples can result in reduction of mutagenic activity, tests were performed with streptomycin resistant derivatives of Salmonella tester strains TA98 and TA100. Textile samples were preincubated in buffered saline (PBS), DMSO or ethanol. Subsequently, the fabrics were placed on streptomycin supplemented selective agar plates. In total, 18 samples (9.2%) exerted mutagenic activity. DMSO was the most effective solvent (15 positives) followed by ethanol (9 positive samples) and PBS (7 positives). Most fabrics (16) caused mutagenic effects only upon metabolic activation with liver S9 mix. Chemical analysis indicates that the positive results obtained with PBS are not due to release of histidine or formaldehyde. Three directly active samples gave negative results in strain TA98NR which is devoid of classical nitroreductase. With one exception all other textiles were negative in strain TA98/1,8-DNP6 (which lacks O-acetyltransferase). These findings indicate that nitroaromatics and amines might be responsible for the mutagenic effects of the textiles.
Collapse
Affiliation(s)
- S Knasmüller
- Institute for Tumor Biology, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
29
|
Nunoshiba T, Hashimoto M, Nishioka H. Cross-adaptive response in Escherichia coli caused by pretreatment with H2O2 against formaldehyde and other aldehyde compounds. Mutat Res 1991; 255:265-71. [PMID: 1719398 DOI: 10.1016/0921-8777(91)90030-s] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cross-adaptive response (CAR), defined as a reduction of the effects of an agent by pretreatment with another agent, was demonstrated when E. coli WP2 cells were pretreated with hydrogen peroxide (H2O2) followed by challenging treatment with aldehyde compounds. Pretreatment with a sublethal dose (60 microM) of H2O2 for 30 min made WP2 cells resistant to the killing effects of formaldehyde (FA), and 4 other mutagenic aldehydes: glutaraldehyde, glyoxal, methyl glyoxal and chloroacetaldehyde. CAR was also observed in WP2uvrA (uvrA-) and ZA12 (umuC-) cells, but not in ZA60 (recA-) and CM561 (lexA- (Ind-] cells. A role of recA and lexA in CAR was further suggested by the lack of beta-galactosidase induction in recA- and lexA- cells by H2O2. CAR and beta-galactosidase induction, however, were found to be separate events since CAR was recovered by introducing the recA+ gene into lexA- cells, but no induction of beta-galactosidase by H2O2 was observed in cells with the same gene transfer. These results suggest that H2O2 has the capacity to induce a function which reduces the killing effects of aldehydes, and the function is controlled by the recA gene without involvement of SOS response.
Collapse
Affiliation(s)
- T Nunoshiba
- Division of Biochemistry, Doshisha University, Kyoto, Japan
| | | | | |
Collapse
|
30
|
Feron VJ, Til HP, de Vrijer F, Woutersen RA, Cassee FR, van Bladeren PJ. Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat Res 1991; 259:363-85. [PMID: 2017217 DOI: 10.1016/0165-1218(91)90128-9] [Citation(s) in RCA: 317] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aldehydes constitute a group of relatively reactive organic compounds. They occur as natural (flavoring) constituents in a wide variety of foods and food components, often in relatively small, but occasionally in very large concentrations, and are also widely used as food additives. Evidence of carcinogenic potential in experimental animals is convincing for formaldehyde and acetaldehyde, limited for crotonaldehyde, furfural and glycidaldehyde, doubtful for malondialdehyde, very weak for acrolein and absent for vanillin. Formaldehyde carcinogenesis is a high-dose phenomenon in which the cytotoxicity plays a crucial role. Cytotoxicity may also be of major importance in acetaldehyde carcinogenesis but further studies are needed to prove or disprove this assumption. For a large number of aldehydes (relevant) data on neither carcinogenicity nor genotoxicity are available. From epidemiological studies there is no convincing evidence of aldehyde exposure being related to cancer in humans. Overall assessment of the cancer risk of aldehydes in the diet leads to the conclusion that formaldehyde, acrolein, citral and vanillin are no dietary risk factors, and that the opposite may be true for acetaldehyde, crotonaldehyde and furfural. Malondialdehyde, glycidaldehyde, benzaldehyde, cinnamaldehyde and anisaldehyde cannot be evaluated on the basis of the available data. A series of aldehydes should be subjected to at least mutagenicity, cytogenicity and cytotoxicity tests. Priority setting for testing should be based on expected mechanism of action and degree of human exposure.
Collapse
Affiliation(s)
- V J Feron
- TNO-CIVO Toxicology and Nutrition Institute, Zeist, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- H D Heck
- Department of Biochemical Toxicology and Pathobiology, Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina
| | | | | |
Collapse
|
32
|
Zijlstra JA. Liquid holding increases mutation induction by formaldehyde and some other cross-linking agents in Escherichia coli K12. Mutat Res 1989; 210:255-61. [PMID: 2643024 DOI: 10.1016/0027-5107(89)90086-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The induction by some cross-linking agents of forward mutations leading to nalidixic acid resistance in Escherichia coli K12/343/113 was considerably enhanced when a 24-h period of liquid holding was interpolated between treatment and growth phase. Liquid holding increased the mutagenic effectiveness of nor-nitrogen mustard (NNM) 28-fold, of phosphoramide mustard (PAM) 10-fold, and of tris-ethyleneimino)-phosphineoxide (TEPA), tris(chloroethyl)amine (TCEA) and chloroacetaldehyde (CAA) 3-fold, over the complete concentration range. By contrast, the activities of cisplatin (CDDP), transplatin (TDDP) and chloracetamide-N-metholol (CAM) were slightly decreased after liquid holding. Liquid holding did not measurably influence the mutagenicity of formaldehyde at low concentrations, whereas at higher concentrations an 8-fold increase was observed. As opposed to the considerable activity in the Uvr+ strain, formaldehyde was found not to be mutagenically active in an E. coli strain carrying a deletion of the uvrB gene.
Collapse
Affiliation(s)
- J A Zijlstra
- Department of Radiation Genetics and Chemical Mutagenesis, University of Leiden, Syluius Laboratories, The Netherlands
| |
Collapse
|
33
|
Affiliation(s)
- T H Ma
- Institute for Environmental Management, Western Illinois University Macomb 61455
| | | |
Collapse
|
34
|
Crosby RM, Richardson KK, Craft TR, Benforado KB, Liber HL, Skopek TR. Molecular analysis of formaldehyde-induced mutations in human lymphoblasts and E. coli. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1988; 12:155-66. [PMID: 2900762 DOI: 10.1002/em.2860120202] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular nature of formaldehyde (HCHO)-induced mutations was studied in both human lymphoblasts and E. coli. Thirty HPRT- human lymphoblast colonies induced by eight repetitive 150 microM HCHO treatments were characterized by Southern blot analysis. Fourteen of these mutants (47%) had visible deletions of some or all of the X-linked HPRT bands, indicating that HCHO can induce large losses of DNA in human lymphoblasts. In E. coli, DNA alterations induced by HCHO were characterized with use of the xanthine guanine phosphoribosyl transferase (gpt) gene as the genetic target. Exposure of E. coli to 4 mM HCHO for 1 hr induced large insertions (41%), large deletions (18%), and point mutations (41%). Dideoxy DNA sequencing revealed that most of the point mutations were transversions at GC base pairs. In contrast, exposure of E. coli to 40 mM HCHO for 1 hr produced 92% point mutations, 62% of which were transitions at a single AT base pair in the gene. Therefore, HCHO is capable of producing different genetic alterations in E. coli at different concentrations, suggesting fundamental differences in the mutagenic mechanisms operating at the two concentrations used. Naked pSV2gpt plasmid DNA was exposed to 3.3 or 10 mM HCHO and transformed into E. coli. Most of the resulting mutations were frameshifts, again suggesting a different mutagenic mechanism.
Collapse
Affiliation(s)
- R M Crosby
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709
| | | | | | | | | | | |
Collapse
|
35
|
Takahashi K, Kawazoe Y. Methyl iodide, a potent inducer of the adaptive response without appreciable mutagenicity in E. coli. Biochem Biophys Res Commun 1987; 144:447-53. [PMID: 3555487 DOI: 10.1016/s0006-291x(87)80530-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Methyl iodide (MeI), a very weak mutagen, induced the adaptive response in E. coli to a similar extent to those induced by potently mutagenic methylating agents. MeI potentiated the mutagenicity of a methylating mutagen, N-methyl-N-nitrosourea, by its co-treatment. These results might give indication that MeI directly methylates O6-methylguanine-DNA methyltransferase resulting in induction of the adaptive response and depletion of the repair capacity of enzyme.
Collapse
|
36
|
Kohda KH, Ninomiya S, Washizu K, Shiraki K, Ebie M, Kawazoe Y. Mutagenicity of a series of N-alkyl-, N-hydroxyalkyl-, N-haloalkyl- and N-carboxyalkyl-N-nitrosoureas in Escherichia coli tester strains: dependence on the uvrA DNA-repair system. Mutat Res 1987; 177:219-28. [PMID: 3031494 DOI: 10.1016/0027-5107(87)90004-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of N-alkyl-, N-hydroxyalkyl-, N-haloalkyl- and N-carboxyalkyl-N-nitrosoureas and some related derivatives were tested for mutagenicity in E. coli B (Arg-) H/r30R (wild-type) and its isogenic Hs30R (uvrA) tester strains. Mutagenic potency in Hs30R, in general, appears to depend on the substituent (-OH, -OCH3, -halogen, -COO- or -COOCH3) on the alkyl group, rather than the chain length or branching of the alkyl group. On the other hand, mutagenic potency in the wild-type H/r30R strain depends on buliness of the substituent and alkyl moiety. The term "uvrA-dependence" of mutation frequency is then defined as the ratio of the mutation frequency in Hs30R versus that in H/r30R at 1 mM dose of mutagens. Its dependence on structure is also discussed. A good correlation was found with the van der Waals volume of the substituted alkyl group, except for compounds having a carboxyalkyl or a branched alkyl group. The carboxyalkyl derivatives are the most weakly mutagenic and most seriously "uvrA-dependent", probably due to the negative charge of the molecule. The possibility of forming epoxides and lactones from N-hydroxyalkyl- and N-carboxyalkyl-N-nitrosoureas, respectively, and their participation in mutagenic potency are discussed. An attempt to correlate the partition property and activation rate of the N-nitrosoureas with mutagenic characteristics proved unsuccessful.
Collapse
|
37
|
Craft TR, Bermudez E, Skopek TR. Formaldehyde mutagenesis and formation of DNA-protein crosslinks in human lymphoblasts in vitro. Mutat Res 1987; 176:147-55. [PMID: 3796657 DOI: 10.1016/0027-5107(87)90262-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human lymphoblasts were exposed in vitro to various concentrations of formaldehyde (HCHO) in single and multiple treatment regimens to determine relative mutagenic efficiency. Single treatments of HCHO (0-150 microM X 2 h) resulted in a nonlinear increase in induced mutant fraction at the thymidine kinase locus with increasing slope at concentrations above 125 microM. Only HCHO exposures of 125 microM X 2 h or greater produced significant effects on the growth rate of the lymphoblasts. Cultures were also exposed to either three treatments of 50 microM X 2 h, five treatments of 30 microM X 2 h, or ten treatments of 15 microM X 2 h; multiple treatments were administered on different days. These multiple treatments resulted in increases in mutant fraction, although their combined effect was less than a single treatment of equivalent concentration X time (150 microM X 2 h). Exposure of lymphoblasts to four treatments of 150 microM X 2 h HCHO failed to induce mutations at the ouabain resistance locus. Cultures of lymphoblasts receiving a single treatment of HCHO (0-600 microM X 2 h) were analyzed by the alkaline elution technique to detect the presence of DNA-protein crosslinks. HCHO treatment resulted in a significant nonlinear increase in DNA-protein crosslinks at concentrations greater than 50 microM X 2 h, which correlated with the onset of significant toxicity in this cell line. Holding the culture for 24 h resulted in complete removal of the crosslinks. These data indicate that both the induction of mutations and the formation of DNA-protein crosslinks by HCHO are nonlinear functions in human lymphoblasts and occur at overlapping concentration ranges.
Collapse
|
38
|
Proctor BL, Gaulden ME, Dowd MA. Reactivity and fate of benzene and formaldehyde in culture medium with and without fetal calf serum; relevance to in vitro mutagenicity testing. Mutat Res 1986; 160:259-66. [PMID: 3960039 DOI: 10.1016/0027-5107(86)90136-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gas chromatographic-mass spectrometric analyses were performed to determine the reactivity and fate of benzene (BEN) and formaldehyde (FA) in culture medium. BEN (solubility in water: approximately 500 ppm) does not react with culture medium, either with or without fetal calf serum, but its volatility, even in closed vials, is so great that 90% of a 250-ppm solution is lost to the head space after 1 h at 24 degrees C. FA, as a 37% aqueous solution, is a complex mixture that changes composition after 15-min incubation at 38 degrees C. FA is extremely reactive in culture medium containing fetal calf serum, and is much less reactive with medium components in the absence of serum. There is a dramatic increase in the number of daughter products in FA-treated medium over time, such that those seen immediately after FA is added to medium have been replaced after 60-min incubation (38 degrees C in closed vials) by many other interaction products. Methods ensuring maximum solubilization and minimal volatilization of BEN during exposure are essential for obtaining reproducible data on the mutagenic potential of BEN. The volatilization of FA from stock formalin solutions, and, more importantly, the interaction product(s) formed by this highly reactive compound with medium components, especially those in serum, are probably the critical aspects of an effective testing protocol for FA.
Collapse
|
39
|
Sato Y, Ninomiya SI, Liu FZ, Shirai N, Kawazoe Y. Synthesis and properties of n-trimethylgermylmethyl-n-nitrosourea, a germanium analogue of n-neopentyl-n-nitrosourea. Tetrahedron Lett 1985. [DOI: 10.1016/s0040-4039(01)80884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|