1
|
Chen BN, Humenick AG, Hibberd TJ, Yew WP, Wattchow DA, Dinning PG, Costa M, Spencer NJ, Brookes SJH. Characterization of viscerofugal neurons in human colon by retrograde tracing and multi-layer immunohistochemistry. Front Neurosci 2024; 17:1313057. [PMID: 38292899 PMCID: PMC10825022 DOI: 10.3389/fnins.2023.1313057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024] Open
Abstract
Background and Aims Viscerofugal neurons (VFNs) have cell bodies in the myenteric plexus and axons that project to sympathetic prevertebral ganglia. In animals they activate sympathetic motility reflexes and may modulate glucose metabolism and feeding. We used rapid retrograde tracing from colonic nerves to identify VFNs in human colon for the first time, using ex vivo preparations with multi-layer immunohistochemistry. Methods Colonic nerves were identified in isolated preparations of human colon and set up for axonal tracing with biotinamide. After fixation, labeled VFN cell bodies were subjected to multiplexed immunohistochemistry for 12 established nerve cell body markers. Results Biotinamide tracing filled 903 viscerofugal nerve cell bodies (n = 23), most of which (85%) had axons projecting orally before entering colonic nerves. Morphologically, 97% of VFNs were uni-axonal. Of 215 VFNs studied in detail, 89% expressed ChAT, 13% NOS, 13% calbindin, 9% enkephalin, 7% substance P and 0 of 123 VFNs expressed CART. Few VFNs contained calretinin, VIP, 5HT, CGRP, or NPY. VFNs were often surrounded by dense baskets of axonal varicosities, probably reflecting patterns of connectivity; VAChT+ (cholinergic), SP+ and ENK+ varicosities were most abundant around them. Human VFNs were diverse; showing 27 combinations of immunohistochemical markers, 4 morphological types and a wide range of cell body sizes. However, 69% showed chemical coding, axonal projections, soma-dendritic morphology and connectivity similar to enteric excitatory motor neurons. Conclusion Viscerofugal neurons are present in human colon and show very diverse combinations of features. High proportions express ChAT, consistent with cholinergic synaptic outputs onto postganglionic sympathetic neurons in prevertebral ganglia.
Collapse
Affiliation(s)
- Bao Nan Chen
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Adam G. Humenick
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Timothy James Hibberd
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wai Ping Yew
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David A. Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Phil G. Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marcello Costa
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J. H. Brookes
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
2
|
Münzberg H, Berthoud HR, Neuhuber WL. Sensory spinal interoceptive pathways and energy balance regulation. Mol Metab 2023; 78:101817. [PMID: 37806487 PMCID: PMC10590858 DOI: 10.1016/j.molmet.2023.101817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
3
|
Bassi GS, Kanashiro A, Coimbra NC, Terrando N, Maixner W, Ulloa L. Anatomical and clinical implications of vagal modulation of the spleen. Neurosci Biobehav Rev 2020; 112:363-373. [PMID: 32061636 DOI: 10.1016/j.neubiorev.2020.02.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The vagus nerve coordinates most physiologic functions including the cardiovascular and immune systems. This mechanism has significant clinical implications because electrical stimulation of the vagus nerve can control inflammation and organ injury in infectious and inflammatory disorders. The complex mechanisms that mediate vagal modulation of systemic inflammation are mainly regulated via the spleen. More specifically, vagal stimulation prevents organ injury and systemic inflammation by inhibiting the production of cytokines in the spleen. However, the neuronal regulation of the spleen is controversial suggesting that it can be mediated by either monosynaptic innervation of the splenic parenchyma or secondary neurons from the celiac ganglion depending on the experimental conditions. Recent physiologic and anatomic studies suggest that inflammation is regulated by neuro-immune multi-synaptic interactions between the vagus and the splanchnic nerves to modulate the spleen. Here, we review the current knowledge on these interactions, and discuss their experimental and clinical implications in infectious and inflammatory disorders.
Collapse
Affiliation(s)
- Gabriel S Bassi
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC 27710, USA.
| | - Alexandre Kanashiro
- Department of Pharmacology and Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Norberto C Coimbra
- Department of Pharmacology and Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Niccolò Terrando
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC 27710, USA
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology. Duke University, Durham, NC 27710, USA
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Kaestner CL, Smith EH, Peirce SG, Hoover DB. Immunohistochemical analysis of the mouse celiac ganglion: An integrative relay station of the peripheral nervous system. J Comp Neurol 2019; 527:2742-2760. [PMID: 31021409 DOI: 10.1002/cne.24705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
Celiac ganglia are important sites of signal integration and transduction. Their complex neurochemical anatomy has been studied extensively in guinea pigs but not in mice. The goal of this study was to provide detailed neurochemical characterization of mouse celiac ganglia and noradrenergic nerves in two target tissues, spleen and stomach. A vast majority of mouse celiac neurons express a noradrenergic phenotype, which includes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, and the norepinephrine transporter. Over 80% of these neuron also express neuropeptide Y (NPY), and this coexpression is maintained by dissociated neurons in culture. Likewise, TH and NPY were colocalized in noradrenergic nerves throughout the spleen and in stomach blood vessels. Somatostatin was not detected in principal neurons but did occur in small, TH-negative cells presumed to be interneurons and in a few varicose nerve fibers. Cholinergic nerves provided the most abundant input to the ganglia, and small percentages of these also contained nitric oxide synthase or vasoactive intestinal polypeptide. A low-to-moderate density of nerves also stained separately for the latter markers. Additionally, nerve bundles and varicose nerve fibers containing the sensory neuropeptides, calcitonin gene-related polypeptide, and substance P, occurred at variable density throughout the ganglia. Collectively, these findings demonstrate that principal neurons of mouse celiac ganglia have less neurochemical diversity than reported for guinea pig and other species but receive input from nerves expressing an array of neurochemical markers. This profile suggests celiac neurons integrate input from many sources to influence target tissues by releasing primarily norepinephrine and NPY.
Collapse
Affiliation(s)
- Charlotte L Kaestner
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee
| | - Elizabeth H Smith
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee
| | - Stanley G Peirce
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
5
|
Chen BN, Sharrad DF, Hibberd TJ, Zagorodnyuk VP, Costa M, Brookes SJ. Neurochemical characterization of extrinsic nerves in myenteric ganglia of the guinea pig distal colon. J Comp Neurol 2014; 523:742-56. [DOI: 10.1002/cne.23704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bao Nan Chen
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Dale F. Sharrad
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Timothy J. Hibberd
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Vladimir P. Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Simon J.H. Brookes
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| |
Collapse
|
6
|
Hibberd T, Spencer N, Zagorodnyuk V, Chen B, Brookes S. Targeted electrophysiological analysis of viscerofugal neurons in the myenteric plexus of guinea-pig colon. Neuroscience 2014; 275:272-84. [DOI: 10.1016/j.neuroscience.2014.04.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/15/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
|
7
|
Rivera LR, Poole DP, Thacker M, Furness JB. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol Motil 2011; 23:980-8. [PMID: 21895878 DOI: 10.1111/j.1365-2982.2011.01780.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO), produced by the neural nitric oxide synthase enzyme (nNOS) is a transmitter of inhibitory neurons supplying the muscle of the gastrointestinal tract. Transmission from these neurons is necessary for sphincter relaxation that allows the passage of gut contents, and also for relaxation of muscle during propulsive activity in the colon. There are deficiencies of transmission from NOS neurons to the lower esophageal sphincter in esophageal achalasia, to the pyloric sphincter in hypertrophic pyloric stenosis and to the internal anal sphincter in colonic achalasia. Deficits in NOS neurons are observed in two disorders in which colonic propulsion fails, Hirschsprung's disease and Chagas' disease. In addition, damage to NOS neurons occurs when there is stress to cells, in diabetes, resulting in gastroparesis, and following ischemia and reperfusion. A number of factors may contribute to the propensity of NOS neurons to be involved in enteric neuropathies. One of these is the failure of the neurons to maintain Ca(2+) homeostasis. In neurons in general, stress can increase cytoplasmic Ca(2+), causing a Ca(2+) toxicity. NOS neurons face the additional problem that NOS is activated by Ca(2+). This is hypothesized to produce an excess of NO, whose free radical properties can cause cell damage, which is exacerbated by peroxynitrite formed when NO reacts with oxygen free radicals.
Collapse
Affiliation(s)
- L R Rivera
- Department of Anatomy & Cell Biology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
8
|
Russo D, Bombardi C, Grandis A, Furness JB, Spadari A, Bernardini C, Chiocchetti R. Sympathetic innervation of the ileocecal junction in horses. J Comp Neurol 2010; 518:4046-66. [PMID: 20737599 DOI: 10.1002/cne.22443] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The distribution and chemical phenotypes of sympathetic and dorsal root ganglion (DRG) neurons innervating the equine ileocecal junction (ICJ) were studied by combining retrograde tracing and immunohistochemistry. Immunoreactivity (IR) for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), neuronal nitric oxide synthase (nNOS), calcitonin gene-related peptide (CGRP), substance P (SP), and neuropeptide Y (NPY) was investigated. Sympathetic neurons projecting to the ICJ were distributed within the celiac (CG), cranial mesenteric (CranMG), and caudal mesenteric (CaudMG) ganglia, as well as in the last ganglia of the thoracic sympathetic chain and in the splanchnic ganglia. In the CG and CranMG 91 +/- 8% and 93 +/- 12% of the neurons innervating the ICJ expressed TH- and DBH-IR, respectively. In the CaudMG 90 +/- 15% and 94 +/- 5% of ICJ innervating neurons were TH- and DBH-IR, respectively. Sympathetic (TH-IR) fibers innervated the myenteric and submucosal ganglia, ileal blood vessels, and the muscle layers. They were more concentrated at the ICJ level and were also seen encircling myenteric plexus (MP) and submucosal plexus (SMP) descending neurons that were retrogradely labeled from the ICJ. Among the few retrogradely labeled DRG neurons, nNOS-, CGRP-, and SP-IR nerve cells were observed. Dense networks of CGRP-, nNOS-, and SP-IR varicosities were seen around retrogradely labeled prevertebral ganglia neurons. The CGRP-IR fibers are probably the endings of neurons projecting from the intestine to the prevertebral ganglia. These findings indicate that this crucial region of the intestinal tract is strongly influenced by the sympathetic system and that sensory information of visceral origin influences the sympathetic control of the ICJ.
Collapse
Affiliation(s)
- D Russo
- Department of Veterinary Morphophysiology and Animal Productions (UNI EN ISO 9001:2008), University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Miller SM, Szurszewski JH. Circumferential, not longitudinal, colonic stretch increases synaptic input to mouse prevertebral ganglion neurons. Am J Physiol Gastrointest Liver Physiol 2003; 285:G1129-38. [PMID: 12919940 DOI: 10.1152/ajpgi.00292.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The relationship between longitudinal and circular muscle tension in the mouse colon and mechanosensory excitatory synaptic input to neurons in the superior mesenteric ganglion (SMG) was investigated in vitro. Electrical activity was recorded intracellularly from SMG neurons, and muscle tension was simultaneously monitored in the longitudinal, circumferential, or both axes. Colonic intraluminal pressure and volume changes were also monitored simultaneously with muscle tension changes. The results showed that the frequency of fast excitatory postsynaptic potentials (fEPSPs) in SMG neurons increased when colonic muscle tension decreased, when the colon relaxed and refilled with fluid after contraction, and during receptive relaxation preceding spontaneous colonic contractions. In contrast, fEPSP frequency decreased when colonic muscle tension increased during spontaneous colonic contraction and emptying. Manual stretch of the colon wall to 10-15% beyond resting length in the circumferential axis of flat sheet preparations increased fEPSP frequency in SMG neurons, but stretch in the longitudinal axis to 15% beyond resting length in the same preparations did not. There was no increase in synaptic input when tubular colon segments were stretched in their long axes up to 20% beyond their resting length. The circumferential stretch-sensitive increase in the frequency of synaptic input to SMG neurons persisted when the colonic muscles were relaxed pharmacologically by nifedipine (2 microM) or nicardipine (3 microM). These results suggest that colonic mechanosensory afferent nerves projecting to the SMG function as length or stretch detectors in parallel to the circular muscle layer.
Collapse
Affiliation(s)
- Steven M Miller
- Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
10
|
Anlauf M, Schäfer MKH, Eiden L, Weihe E. Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 2003; 459:90-111. [PMID: 12629668 DOI: 10.1002/cne.10599] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this investigation was to identify the proportional neurochemical codes of enteric neurons and to determine the specific terminal fields of chemically defined nerve fibers in all parts of the human gastrointestinal (GI) tract. For this purpose, antibodies against the vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), serotonin (5-HT), vasoactive intestinal peptide (VIP), and protein gene product 9.5 (PGP 9.5) were used. For in situ hybridization (35)S-labeled VMAT1, VMAT2, and VAChT riboprobes were used. In all regions of the human GI tract, 50-70% of the neurons were cholinergic, as judged by staining for VAChT. The human gut unlike the rodent gut exhibits a cholinergic innervation, which is characterized by an extensive overlap with VIPergic innervation. Neurons containing VMAT2 constituted 14-20% of all intrinsic neurons in the upper GI tract, and there was an equal number of TH-positive neurons. In contrast, DBH was absent from intrinsic neurons. Cholinergic and monoaminergic phenotypes proved to be completely distinct phenotypes. In conclusion, the chemical coding of human enteric neurons reveals some similarities with that of other mammalian species, but also significant differences. VIP is a cholinergic cotransmitter in the intrinsic innervation of the human gut. The substantial overlap between VMAT2 and TH in enteric neurons indicates that the intrinsic catecholaminergic innervation is a stable component of the human GI tract throughout life. The absence of DBH from intrinsic catecholaminergic neurons indicates that these neurons have a dopaminergic phenotype.
Collapse
Affiliation(s)
- Martin Anlauf
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University, Marburg, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
11
|
Schicho R, Schemann M, Pabst MA, Holzer P, Lippe ITH. Capsaicin-sensitive extrinsic afferents are involved in acid-induced activation of distinct myenteric neurons in the rat stomach. Neurogastroenterol Motil 2003; 15:33-44. [PMID: 12588467 DOI: 10.1046/j.1365-2982.2003.00384.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Challenge of the rat gastric mucosa with 0.5 mol L(-1) HCl activates nitrergic neurons in the myenteric plexus as visualized by c-Fos immunohistochemistry. In the present study, we characterized the activated neurons more extensively by their chemical coding and investigated whether a neural pathway that involves capsaicin-sensitive extrinsic afferents and/or cholinergic neurons transmitting via nicotinic receptors contributes to the activation of myenteric neurons. In multiple labelling experiments, c-Fos was examined for co-localization with nitric oxide synthase (NOS), vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), enkephalin (ENK), gastrin-releasing peptide (GRP), substance P (SP), calbindin D-28k (CALB) and neurofilament 145 (NF 145). All c-Fos-positive neurons were immunoreactive for NOS, VIP, NPY and NF 145, but not for SP, ENK, GRP and CALB. Nerve fibres co-expressing NOS, VIP and NPY were predominantly found in the external muscle layer and in the muscularis mucosae but rarely in the mucosa. Pre-treatment with capsaicin or hexamethonium or a combination of both pre-treatments reduced HCl-induced c-Fos expression by 54, 66 and 63%, respectively. Acid challenge of the stomach, therefore, leads to activation of presumably inhibitory motor neurons responsible for muscle relaxation. Activation of these neurons is partly mediated by capsaicin-sensitive afferents and involves ganglionic transmission via nicotinic receptors.
Collapse
Affiliation(s)
- R Schicho
- Department of Experimental and Clinical Pharmacology, University of Graz, Austria.
| | | | | | | | | |
Collapse
|
12
|
Anderson RL, Jobling P, Matthew SE, Gibbins IL. Development of convergent synaptic inputs to subpopulations of autonomic neurons. J Comp Neurol 2002; 447:218-33. [PMID: 11984817 DOI: 10.1002/cne.10222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Visceromotor neurons in mammalian prevertebral sympathetic ganglia receive convergent synaptic inputs from spinal preganglionic neurons and peripheral intestinofugal neurons projecting from the enteric plexuses. Vasomotor neurons in the same ganglia receive only preganglionic inputs. How this pathway-specific pattern of connectivity is established is unknown. We have used a combination of immunohistochemical, ultrastructural, and electrophysiological techniques to investigate the development of synaptic inputs onto visceromotor and vasomotor neurons in the celiac ganglion of guinea pigs. Functional synaptogenesis occurred primarily from early fetal (F30-F35) to midfetal (F36-F45) stages, after the neurochemical differentiation of vasomotor and visceromotor neurons but before establishment of their electrophysiological phenotypes. Intestinofugal inputs were detected only on presumptive visceromotor neurons located primarily in medial regions of the ganglion. The number of ultrastructurally identified synaptic profiles increased in parallel with functional synaptogenesis, especially in medial regions, where dendritic growth rates also were higher. However, the expression of immunoreactivity to choline acetyltransferase in the terminals of inputs was very low until late fetal stages, after functional transmission already had been established. These results show that peripheral intestinofugal neurons directly establish appropriate functional connections with their target visceromotor neurons simultaneously with the development of functional preganglionic inputs to both visceromotor and vasomotor neurons. It seems likely that synaptogenesis occurs independently of the neurochemical differentiation of the target neurons but is closely related to the pathway-specific dendritic development of those neurons.
Collapse
Affiliation(s)
- Rebecca L Anderson
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders Medical Research Institute, The Flinders University of South Australia, Adelaide, South Australia, 5001 Australia.
| | | | | | | |
Collapse
|
13
|
Quinson N, Robbins HL, Clark MJ, Furness JB. Locations and innervation of cell bodies of sympathetic neurons projecting to the gastrointestinal tract in the rat. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2001; 64:281-94. [PMID: 11575424 DOI: 10.1679/aohc.64.281] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The locations of cell bodies of sympathetic neurons projecting to the stomach, the duodenum, the ileum, the colon, the spleen and the pancreas have been studied using retrograde tracing. Projections arose from both pre- and paravertebral ganglia. In the rat, the prevertebral ganglia are the paired coeliac ganglia lying caudo-lateral to the root of the coeliac artery, paired splanchnic ganglia in the abdominal segments of the greater splanchnic nerves, unpaired superior mesenteric and inter-renal ganglia and the inferior mesenteric ganglia. The projections from the prevertebral sympathetic ganglia to the different parts of the gut were organised somatotopically. The most rostral ganglia (splanchnic, coeliac, and superior mesenteric ganglia) contained neurons innervating all regions of the gastrointestinal tract, the pancreas and the spleen. The inter-renal and inferior mesenteric ganglia, located more caudally, contained neurons innervating the distal part of the gut (distal ileum and colon). The innervation of the spleen and the pancreas came from the closest ganglia (sympathetic chains, splanchnic and coeliac ganglia). This organotopic organisation was not found in the sympathetic chain ganglia; the innervation of all organs came predominantly from the lower part of the thoracic chains. A large proportion of the retrogradely labelled nerve cells in the splanchnic ganglia received nitric oxide synthase immunoreactive innervation probably from the spinal cord. In the other prevertebral ganglia, most of the neurons received nitric oxide synthase immunoreactive innervation and/or bombesin immunoreactive innervation. This leads to the conclusion that, in these ganglia, many neurons receive projections from the gastrointestinal tract in addition to the spinal cord.
Collapse
Affiliation(s)
- N Quinson
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
14
|
Zagorodnyuk VP, Chen BN, Brookes SJ. Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 2001; 534:255-68. [PMID: 11433006 PMCID: PMC2278677 DOI: 10.1111/j.1469-7793.2001.00255.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
1. Distension-sensitive vagal afferent fibres from the cardiac region of the guinea-pig stomach were recorded extracellularly, then filled with biotinamide, using an anterograde tracing technique. 2. Most of the stretch-sensitive units of the guinea-pig stomach (41 out of 47; number of animals N = 26) had low thresholds (less than 1 mm) to circumferential stretch and showed slow adaptation. Twenty of these units fired spontaneously under resting conditions (mean: 1.9 +/- 0.3 Hz, n = 20, N = 14). 3. Adaptation of firing during slow or maintained stretch correlated closely with accommodation of intramural tension, but tension-independent adaptation was also present. 4. Nicardipine (3 microM) with hyoscine (3 microM) reduced stretch-evoked firing of gastric vagal afferents, by inhibiting smooth muscle contraction. Gadolinium (1 mM) blocked distension-evoked firing. 5. Focal stimulation of the stomach muscle wall with a von Frey hair (0.4 mN) identified one to six punctate receptive fields in each low threshold vagal distension-sensitive afferent. These were marked on the serosal surface of the stomach wall. 6. Anterograde filling of recorded nerve trunks revealed intraganglionic laminar endings (IGLEs) within 142 +/- 34 microm (n = 38; N = 10) of marked receptive fields. The mean distance from randomly generated sites to the nearest IGLE was significantly greater (1500 +/- 48 microm, n = 380, N = 10, P < 0.0001). Viscerofugal nerve cell bodies, intramuscular arrays and varicose axons were not associated with receptive fields. The results indicate that IGLEs are the mechanotransduction sites of low threshold, slowly adapting vagal tension receptors in the guinea-pig upper stomach.
Collapse
Affiliation(s)
- V P Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, GPO Box 2100, Adelaide, South Australia.
| | | | | |
Collapse
|
15
|
Abstract
Neuroanatomical tracing techniques, and retrograde labelling in particular, are widely used tools for the analysis of neuronal pathways in the central and peripheral nervous system. Over the last 10 years, these techniques have been used extensively to identify enteric neuronal pathways. In combination with multiple-labelling immunohistochemistry, quantitative data about the projections and neurochemical profile of many functional classes of cells have been acquired. These data have revealed a high degree of organization of the neuronal plexuses, even though the different classes of nerve cell bodies appear to be randomly assorted in ganglia. Each class of neurone has a predictable target, length and polarity of axonal projection, a particular combination of neurochemicals in its cell body and distinctive morphological characteristics. The combination of retrograde labelling with targeted intracellular recording has made it possible to target small populations of cells that would rarely be sampled during random impalements. These neuroanatomical techniques have also been applied successfully to human tissue and are gradually unravelling the complexity of the human enteric nervous system.
Collapse
Affiliation(s)
- S Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, South Australia.
| |
Collapse
|
16
|
Abstract
The guinea-pig small intestine has been very widely used to study the physiology, pharmacology and morphology of the enteric nervous system. It also provides an ideal, simple mammalian preparation for studying how nerve cells are organised into functional circuits underlying simple behaviours. Many different types of nerve cells are present in the enteric nervous system and they show characteristic combinations of morphological features, projections, biophysical properties, neurochemicals, and receptors. To identify the different functional classes is an important prerequisite for systematic analysis of how the enteric nervous system controls normal gut behaviour. Based on combinations of multiple-labelling immunohistochemistry and retrograde tracing, it has been possible to account quantitatively for all of the neurones in the guinea-pig small intestine. This article summarises that account and updates it in the light of recent data. A total of 18 classes of neurones are currently distinguishable, including primary afferent neurones, motor neurones, interneurones, secretomotor and vasomotor neurones. It is now possible to take an individual nerve cell and use a few carefully chosen criteria to assign it to a functional class. This provides a firm anatomical foundation for the systematic analysis of how the enteric nervous system normally functions and how it goes wrong in various clinically important disorders.
Collapse
Affiliation(s)
- S J Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia 5001.
| |
Collapse
|
17
|
Timmermans JP, Hens J, Adriaensen D. Outer submucous plexus: an intrinsic nerve network involved in both secretory and motility processes in the intestine of large mammals and humans. THE ANATOMICAL RECORD 2001; 262:71-8. [PMID: 11146430 DOI: 10.1002/1097-0185(20010101)262:1<71::aid-ar1012>3.0.co;2-a] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The architecture of the enteric nerve networks in the gastrointestinal tract appears to be more complex in large mammals, including humans, than in small laboratory animals. At least two distinct ganglionic nerve plexuses could be identified in the submucous layer in the digestive tract of large mammals. While functionally and morphologically similar neuron populations are found in the intestinal wall of both small and large mammals, significant differences in their topographical organization and neurochemical features may be present. This short review clearly illustrates that the close and exclusive association, which has been assumed so far between the efferent pathways of the submucous plexus and regulation of intestinal secretion/absorption on the one hand and between the myenteric plexus and regulation of intestinal motility on the other hand, cannot be interpreted that strictly. An attempt has been made to give a briefoverview of the current status of the identification of distinct functional enteric neuronal classes in the gastrointestinal tract of large mammals using the pig and human intestine as references, and to compare these data with the more extensive information gathered from the guinea-pig intestine.
Collapse
Affiliation(s)
- J P Timmermans
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
| | | | | |
Collapse
|
18
|
Furness JB, Koopmans HS, Robbins HL, Lin HC. Identification of intestinofugal neurons projecting to the coeliac and superior mesenteric ganglia in the rat. Auton Neurosci 2000; 83:81-5. [PMID: 11023632 DOI: 10.1016/s0165-1838(00)00159-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intestinofugal neurons are parts of the afferent limbs of inhibitory intestino-intestinal reflexes. These neurons have been mapped in guinea-pigs, where they have a gradient of increasing frequency of occurrence from oral to anal, but not in other species. In the present work in the rat, a species that is more amenable to physiological study than the guinea-pig, we have used retrograde tracing to map the distribution of the cell bodies of intestinofugal neurons projecting to the coeliac-superior mesenteric ganglion complex. Labelled nerve cells were found in the myenteric, but not the submucosal plexus. They were mono-axonal neurons, most with Dogiel type I morphology, and were immunoreactive for choline acetyltransferase, implying that they are cholinergic, which is consistent with functional studies. The cells increased in number per unit area from the stomach, through the small intestine, to the caecum. The results are consistent with physiological studies that reveal distal to proximal inhibitory reflexes that are more potent from distal compared to proximal sites.
Collapse
Affiliation(s)
- J B Furness
- Department of Anatomy and Cell Biology and Howard Florey Institute, University of Melbourne, Parkville, VIC, Australia.
| | | | | | | |
Collapse
|
19
|
Lomax AE, Zhang JY, Furness JB. Origins of cholinergic inputs to the cell bodies of intestinofugal neurons in the guinea pig distal colon. J Comp Neurol 2000; 416:451-60. [PMID: 10660877 DOI: 10.1002/(sici)1096-9861(20000124)416:4<451::aid-cne3>3.0.co;2-e] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Integration of function between gut regions is mediated by means of hormones and long neuronal reflex pathways. Intestinofugal neurons, which participate in one of these pathways, have cell bodies within the myenteric plexus and project their axons from the gut with the mesenteric nerves. They form excitatory synapses on neurons in prevertebral ganglia that in turn innervate other gut regions. The aim of the present study was to characterise immunohistochemically the synaptic input to intestinofugal neurons. The cell bodies of intestinofugal neurons that project from the distal colon were labelled with Fast Blue that was injected into the inferior mesenteric ganglia. Varicosities surrounding Fast Blue-labelled neurons were analysed for immunoreactivity for the vesicular acetylcholine transporter, vasoactive intestinal peptide, and bombesin. Most intestinofugal neurons were surrounded by nerve terminals immunoreactive for the vesicular acetylcholine transporter; many of these terminals also contained vasoactive intestinal peptide and bombesin immunoreactivity. This combination of markers occurs in axons of descending interneurons. Extrinsic denervation had no effect on the distribution of cholinergic terminals around intestinofugal neurons. A decrease in the number of vesicular acetylcholine transporter and vasoactive intestinal peptide immunoreactive terminals occurred around nerve cells immediately anal, but not oral, to myotomy operations. Consistent with previous physiological studies, it is concluded that intestinofugal neurons receive cholinergic synaptic input from other myenteric neurons, including cholinergic descending interneurons. Thus, intestinofugal neurons are second, or higher, order neurons in reflex pathways, although physiological data indicate that they also respond directly to distension of the gut wall.
Collapse
Affiliation(s)
- A E Lomax
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
20
|
Quinson N, Catalin D, Niel JP, Miolan JP. Release of nitric oxide within the coeliac plexus is involved in the organization of a gastroduodenal inhibitory reflex in the rabbit. J Physiol 1999; 519 Pt 1:223-34. [PMID: 10432353 PMCID: PMC2269493 DOI: 10.1111/j.1469-7793.1999.0223o.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The coeliac plexus can organize a gastroduodenal inhibitory reflex without action potentials. The involvement of the nitric oxide-cGMP pathway in this reflex was investigated in the rabbit on an in vitro preparation of the coeliac plexus connected to the stomach and duodenum. Intraluminal duodenal pressures were measured with water-filled balloons. Gastric distension inhibited duodenal motility, thus characterizing a gastroduodenal inhibitory reflex organized by the coeliac plexus. 2. L-Arginine, superfused at the coeliac plexus level, enhanced this reflex, whereas Nomega-nitro-L-arginine (L-NOARG) or 2-(4-carboxyphenyl)-4,4,5,5 tetramethylimidazoline-1-oxyl-3-oxide (carboxy PTIO) reduced or abolished it. Moreover, diethylamine/nitric oxide complex superfused at the coeliac plexus level inhibited duodenal motility in the absence of gastric distension. 3. The effects of nitric oxide were mediated through the activation of guanylyl cyclase, as 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ) reduced or abolished the gastroduodenal inhibitory reflex, whereas zaprinast enhanced it. Moreover, 8-bromo-cGMP and cGMP, superfused at the coeliac plexus level, inhibited duodenal motility in the absence of gastric distension. 4. On the other hand, when perfused at the visceral level, L-NOARG, propranolol plus phentolamine, and guanethidine did not affect the reflex. Thus, neither nitric oxide nor noradrenaline could be the transmitters released at the muscular level to induce this reflex. 5. Our study demonstrates that the gastroduodenal inhibitory reflex, which is organized by the coeliac plexus without action potentials, is induced by the release within the plexus of nitric oxide acting on the cGMP pathway. These results provide new insights into the control of digestive motility by the prevertebral ganglia.
Collapse
Affiliation(s)
- N Quinson
- Département de Physiologie et Neurophysiologie, ESA-CNRS 6034, Faculté des Sciences et Techniques de Saint Jérôme, 13397 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
21
|
Immediate-early gene expression in the inferior mesenteric ganglion and colonic myenteric plexus of the guinea pig. J Neurosci 1999. [PMID: 10087087 DOI: 10.1523/jneurosci.19-07-02755.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of neurons in the inferior mesenteric ganglion (IMG) was assessed using c-fos, JunB, and c-Jun expression in the guinea pig IMG and colonic myenteric plexus during mechanosensory stimulation and acute colitis in normal and capsaicin-treated animals. Intracolonic saline or 2% acetic acid was administered, and mechanosensory stimulation was performed by passage of a small (0.5 cm) balloon either 4 or 24 hr later. Lower doses of capsaicin or vehicle were used to activate primary afferent fibers during balloon passage. c-Jun did not respond to any of the stimuli in the study. c-fos and JunB were absent from the IMG and myenteric plexus of untreated and saline-treated animals. Acetic acid induced acute colitis by 4 hr, which persisted for 24 hr, but c-fos was found only in enteric glia in the myenteric plexus and was absent from the IMG. Balloon passage induced c-fos and JunB in only a small subset of IMG neurons and no myenteric neurons. However, balloon passage induced c-fos and JunB in IMG neurons (notably those containing somatostatin) and the myenteric plexus of acetic acid-treated animals. After capsaicin treatment, c-fos and JunB induction by balloon passage was inhibited in the IMG, but there was enhanced c-fos expression in the myenteric plexus. c-fos and JunB induction by balloon stimulation was also mimicked by acute activation of capsaicin-sensitive nerves. These data suggest that colitis enhances reflex activity of the IMG by a mechanism that involves activation of both primary afferent fibers and the myenteric plexus.
Collapse
|
22
|
Ratcliffe EM, deSa DJ, Dixon MF, Stead RH. Choline acetyltransferase (ChAT) immunoreactivity in paraffin sections of normal and diseased intestines. J Histochem Cytochem 1998; 46:1223-31. [PMID: 9774621 DOI: 10.1177/002215549804601102] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is increasing interest in localizing nerves in the intestine, especially specific populations of nerves. At present, the usual histochemical marker for cholinergic nerves in tissue sections is acetylcholinesterase activity. However, such techniques are applicable only to frozen sections and have uncertain specificity. Choline acetyltransferase (ChAT) is also present in cholinergic nerves, and we therefore aimed to establish a paraffin section immunocytochemical technique using an anti-ChAT antibody. Monoclonal anti-choline acetyltransferase (1.B3.9B3) and a biotin-streptavidin detection system were used to study the distribution of ChAT immunoreactivity (ChAT IR) in paraffin-embedded normal and diseased gastrointestinal tracts from both rats and humans. Optimal staining was seen after 6-24 hr of fixation in neutral buffered formalin and overnight incubation in 1 microgram/ml of 1.B3.9B3, with a similar distribution to that seen in frozen sections. In the rat diaphragm (used as a positive control), axons and motor endplates were ChAT IR. Proportions of ganglion cells and nerve fibers in the intramural plexi of both human and rat gastrointestinal tracts were also ChAT IR, as well as extrinsic nerve bundles in aganglionic segments of Hirschsprung's disease. Mucosal cholinergic nerves, however, were not visualized. In addition, non-neuronal cells such as endothelium, epithelium, and inflammatory cells were ChAT IR. We were able to localize ChAT to nerves in formalin-fixed, paraffin-embedded sections. The presence of ChAT IR in non-neuronal cells indicates that this method should be used in conjunction with other antibodies. Nevertheless, it proves to be a useful technique for studying cholinergic neuronal distinction in normal tissues and pathological disorders.
Collapse
Affiliation(s)
- E M Ratcliffe
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Stoyanova I, Chouchkov C, Scheuermann DW. Immunocytochemical localization of the neurons in the superior mesenteric ganglion innervating the small intestine of the cat. Ann Anat 1997; 179:517-23. [PMID: 9442259 DOI: 10.1016/s0940-9602(97)80008-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retrograde tracing was used to determine the localization of neuronal perikarya and fibres in the feline superior mesenteric ganglion (SMG), projecting to the small intestine. In the distal part of the ileum, a retrograde neuronal tracer Fast Blue (FB) was injected and after approximately thirty five to forty days the animals were killed by perfusion. The SMG were removed and the neuropeptide contents of the neurons, projecting to the distal ileum, were determined by means of immunofluorescence with antisera to neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), substance P (SP), somatostatin (SOM), and vasoactive intestinal polypeptide (VIP). Neurons innervating the small intestine were located in the upper part of the SMG and all of them were NPY-immunopositive. The group of CGRP-immunoreactive (IR) cells was less numerous (73.33%). Probably the FB-labeled fibres, containing the same neuropeptides, arise from these perikarya. SP- or VIP-immunopositive neuronal processes were found to surround immunonegative ganglionic cells but their origin is not in the ganglion. Only single FB-marked cells were VIP-immunopositive. SP- and SOM-immunoreactive amounted respectively to 2.28% and 3.01% of all the neuronal population, but only a few of these cells were FB-labelled.
Collapse
Affiliation(s)
- I Stoyanova
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Thracian University, Stara Zagora Bulgaria
| | | | | |
Collapse
|
24
|
Poethke R, Härtig W, Brückner G, Felgenhauer K, Mäder M. Characterization of monoclonal and polyclonal antibodies to human choline acetyltransferase and epitope analysis. Biol Chem 1997; 378:997-1004. [PMID: 9348109 DOI: 10.1515/bchm.1997.378.9.997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Choline acetyltransferase (ChAT) was partially purified from human placenta and brain. In order to raise monoclonal antibodies, Balb/c mice were immunized with a preparation from placenta or with a mixture of eight synthetic peptides that were deduced from the primary structures of porcine and human ChAT. Polyclonal antibodies were raised in rabbits against five synthetic peptides deduced from the amino acid sequence of human ChAT. The monoclonal and polyclonal antibodies were characterized by their ability to recognize ChAT in various immunoassays: immunoblot, enzyme-linked immunosorbent assay (ELISA), two-side ELISA and immunohistochemistry. With one exception all monoclonal antibodies recognized ChAT on immunoblots, some were particularly sensitive; one bound active ChAT in ELISA when used as capture reagent; most antibodies recognized immobilized ChAT in ELISA. Two monoclonal antibodies out of nine gave particularly excellent results in staining cholinergic neurons and fibers on sections from rat and primate brain. With the help of nine synthetic peptides it was possible to evaluate two major binding sites for the monoclonal antibodies on the ChAT molecule, comprising amino acids 167-189 and 57-76, respectively.
Collapse
Affiliation(s)
- R Poethke
- Department of Neurology, University of Göttingen, Germany
| | | | | | | | | |
Collapse
|
25
|
Ichikawa H, Helke CJ. Coexistence of calbindin D-28k and NADPH-diaphorase in vagal and glossopharyngeal sensory neurons of the rat. Brain Res 1996; 735:325-9. [PMID: 8911673 DOI: 10.1016/0006-8993(96)00798-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The presence and coexistence of calbindin D-28k-immunoreactivity (ir) and nicotinamide adenosine dinucleotide phosphate (NADPH)-diaphorase activity (a marker of neurons that are presumed to convert L-arginine to L-citrulline and nitric oxide) were examined in the glossopharyngeal and vagal sensory ganglia (jugular, petrosal and nodose ganglia) of the rat. Calbindin D-28k-ir nerve cells were found in moderate and large numbers in the petrosal and nodose ganglia, respectively. Some calbindin D-28k-ir nerve cells were also observed in the jugular ganglion. NADPH-diaphorase positive nerve cells were localized to the jugular and nodose ganglia and were rare in the petrosal ganglion. A considerable portion (33-51%) of the NADPH-diaphorase positive neurons in these ganglia colocalized calbindin D-28k-ir. The presence and colocalization of calbindin D-28k-ir and NADPH-diaphorase activity in neurotransmitter-identified subpopulations of visceral sensory neurons were also studied. In all three ganglia, calcitonin gene-related peptide (CGRP)-ir was present in many NADPH-diaphorase positive neurons, a subset of which also contained calbindin D-28k-ir. In the nodose ganglion, many (42%) of tyrosine hydroxylase (TH)-ir neurons also contained NADPH diaphorase activity but did not contain calbindin D-28k-ir. These data are consistent with a potential co-operative role for calbindin D-28k and NADPH-diaphorase in the functions of a subpopulation of vagal and glossopharyngeal sensory neurons.
Collapse
Affiliation(s)
- H Ichikawa
- Second Department of Oral Anatomy, Okayama University Dental School, Japan
| | | |
Collapse
|