1
|
Ashrafizadeh M, Zarabi A, Hushmandi K, Moghadam ER, Hashemi F, Daneshi S, Hashemi F, Tavakol S, Mohammadinejad R, Najafi M, Dudha N, Garg M. C-Myc Signaling Pathway in Treatment and Prevention of Brain Tumors. Curr Cancer Drug Targets 2021; 21:2-20. [PMID: 33069197 DOI: 10.2174/1568009620666201016121005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Brain tumors are responsible for high morbidity and mortality worldwide. Several factors such as the presence of blood-brain barrier (BBB), sensitive location in the brain, and unique biological features challenge the treatment of brain tumors. The conventional drugs are no longer effective in the treatment of brain tumors, and scientists are trying to find novel therapeutics for brain tumors. In this way, identification of molecular pathways can facilitate finding an effective treatment. c-Myc is an oncogene signaling pathway capable of regulation of biological processes such as apoptotic cell death, proliferation, survival, differentiation, and so on. These pleiotropic effects of c-Myc have resulted in much fascination with its role in different cancers, particularly brain tumors. In the present review, we aim to demonstrate the upstream and down-stream mediators of c-Myc in brain tumors such as glioma, glioblastoma, astrocytoma, and medulloblastoma. The capacity of c-Myc as a prognostic factor in brain tumors will be investigated. Our goal is to define an axis in which the c-Myc signaling pathway plays a crucial role and to provide direction for therapeutic targeting in these signaling networks in brain tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Universite Caddesi No. 27, Orhanli, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of physiotherapy, Faculty of rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, Uttar Pradesh, India
| | - Manoj Garg
- Amity of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida-201313, India
| |
Collapse
|
2
|
Liu J, Li Y. Upregulation of MAPK10, TUBB2B and RASL11B may contribute to the development of neuroblastoma. Mol Med Rep 2019; 20:3475-3486. [PMID: 31432180 PMCID: PMC6755162 DOI: 10.3892/mmr.2019.10589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to investigate genes and transcription factors (TFs) that may contribute to neuroblastoma (NB) development. The GSE78061 dataset that included 25 human NB cell lines and four retinal pigment epithelial cell lines was used to analyze differentially expressed genes (DEGs) between groups. Functional enrichment analysis and protein-protein interaction (PPI) network analysis were performed for the identified DEGs. Additionally, submodule analysis and TF-target regulatory networks were conducted. The relative mRNA expression levels of mitogen-activated protein kinase 10 (MAPK10), tubulin β 2B class IIb (TUBB2B), RAS like family 11 member B (RASL11B) and integrin subunit α 2 (ITGA2) in the NB cell line SH-SY5Y were compared with retinal pigment epithelial cell lines. A set of 386 upregulated and 542 downregulated DEGs were obtained. Upregulated DEGs were significantly associated with the ‘neuron migration’ and ‘dopaminergic synapse signaling’ pathways, whereas, downregulated DEGs were primarily involved in ‘focal adhesion’ such as ITGA2 and ITGA3. In the PPI networks analyzed, MAPK10, dopa decarboxylase (DDC), G protein subunit γ 2 (GNG2), paired like homeobox 2B (PHOX2B), TUBB2B, RASL11B, and ITGA2 were hub genes with high connectivity degrees. Additionally, PHOX2B was predicted to be a TF regulating TUBB2B in the regulatory network. The expressions of MAPK10, TUBB2B, RASL11B and ITGA2 were detected by reverse transcription-quantitative polymerase chain reaction in the NB cell line SH-SY5Y, and were consistent with the present bioinformatics results, suggesting that MAPK10, DDC, GNG2, PHOX2B, TUBB2B, RASL11B, ITGA2 and ITGA3 may contribute to NB development. Additionally, the present study identified a novel significant association between the increased expression levels of MAPK10, TUBB2B and RASL11B, and NB cells.
Collapse
Affiliation(s)
- Jiangtao Liu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathobiology, College of Basic Medical Sciences, Jilin University, Chuangchun, Jilin 130000, P.R. China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathobiology, College of Basic Medical Sciences, Jilin University, Chuangchun, Jilin 130000, P.R. China
| |
Collapse
|
3
|
MARCKS regulates neuritogenesis and interacts with a CDC42 signaling network. Sci Rep 2018; 8:13278. [PMID: 30185885 PMCID: PMC6125478 DOI: 10.1038/s41598-018-31578-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/21/2018] [Indexed: 01/24/2023] Open
Abstract
Through the process of neuronal differentiation, newly born neurons change from simple, spherical cells to complex, sprawling cells with many highly branched processes. One of the first stages in this process is neurite initiation, wherein cytoskeletal modifications facilitate membrane protrusion and extension from the cell body. Hundreds of actin modulators and microtubule-binding proteins are known to be involved in this process, but relatively little is known about how upstream regulators bring these complex networks together at discrete locations to produce neurites. Here, we show that Myristoylated alanine-rich C kinase substrate (MARCKS) participates in this process. Marcks−/− cortical neurons extend fewer neurites and have less complex neurite arborization patterns. We use an in vitro proteomics screen to identify MARCKS interactors in developing neurites and characterize an interaction between MARCKS and a CDC42-centered network. While the presence of MARCKS does not affect whole brain levels of activated or total CDC42, we propose that MARCKS is uniquely positioned to regulate CDC42 localization and interactions within specialized cellular compartments, such as nascent neurites.
Collapse
|
4
|
miR-484/MAP2/c-Myc-positive regulatory loop in glioma promotes tumor-initiating properties through ERK1/2 signaling. J Mol Histol 2018; 49:209-218. [PMID: 29480405 DOI: 10.1007/s10735-018-9760-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/05/2018] [Indexed: 01/17/2023]
Abstract
Glioma is the most common intracranial malignant tumor. Cancer stem cells (CSCs) are resistant to chemotherapy and radiotherapy, and are closely related to cancer metastasis and recurrence. In this study, we aimed to explore the effect of miR-484 on glioma stemness and the underlying mechanism involved. miR-484 enhanced glioma tumor-initiating properties in vitro and in vivo. Moreover, miR-484 was shown to directly target MAP2, resulting in activation of ERK1/2 signaling and promotion of stemness in glioma. The ERK1/2 signaling facilitated the formation of a miR-484/MAP2/c-Myc positive feedback loop in glioma. High miR-484 expression predicted a poor prognosis for glioma patients, and high MAP2 expression predicted a good prognosis for glioma patients. Low miR-484 expression and high MAP2 expression was associated with the best prognosis in glioma. Our study suggests that miR-484 and MAP2 can be utilized as predictors for the clinical diagnosis and prognosis of glioma, and miR-484 and MAP2 are potential targets for the treatment of glioma.
Collapse
|
5
|
Ng HK, Ko HCW, Tse CCH. Immunohistochemical and Ultrastructural Studies of Oligodendrogliomas Revealed Features of Neuronal Differentiation. Int J Surg Pathol 2016. [DOI: 10.1177/106689699400200109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In an attempt to characterize differentiation in oligodendrogliomas, 39 cases were examined immunohistochemically with 5 neuronal markers, synaptophysin, neuron- specific enolase, neurofilament proteins, protein gene product (PGP) 9.5, and micro tubule-associated protein 2 (MAP2), in addition to glial fibrillary acidic protein (GFAP). Positive immunolabeling was obtained for neuron-specific enolose in 29 cases (74%), synaptophysin in 21 cases (54%), PGP 9.5 in 33 cases (85%), and MAP2 in 23 cases (59%). All cases were negative for neurofilament, and 90% stained for GFAP. Eight cases were further studied ultrastructurally, and in five cases features of neuronal differentiation were identified in some of the typical neoplastic oligodendro cytes—small neuritic cellular processes with microtubules and focal synapse-like junc tions, as well as sparse neurosecretory granules. It was concluded that, both immuno histochemically and ultrastructurally, oligodendrogliomas may exhibit features of neuronal differentiation. These previously unreported features of oligodendrogliomas call into question conventional immunohistochemical and electron microscopic crite ria used in distinguishing oligodendrogliomas from tumors showing similar histologic appearance, especially central neurocytomas and dysembryoplastic neuroepithelial tu mors. Int J Surg Pathol 2(1):47-56 1994
Collapse
|
6
|
Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, McCabe C, Xu J, Bjorklund N, Taglialatela G, Bennett DA, De Jager PL, Shulman JM, Bellen HJ, Lu HC. NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biol 2016; 14:e1002472. [PMID: 27254664 PMCID: PMC4890852 DOI: 10.1371/journal.pbio.1002472] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is neuroprotective in numerous preclinical models of neurodegeneration. Here, we show that brain nmnat2 mRNA levels correlate positively with global cognitive function and negatively with AD pathology. In AD brains, NMNAT2 mRNA and protein levels are reduced. NMNAT2 shifts its solubility and colocalizes with aggregated Tau in AD brains, similar to chaperones, which aid in the clearance or refolding of misfolded proteins. Investigating the mechanism of this observation, we discover a novel chaperone function of NMNAT2, independent from its enzymatic activity. NMNAT2 complexes with heat shock protein 90 (HSP90) to refold aggregated protein substrates. NMNAT2’s refoldase activity requires a unique C-terminal ATP site, activated in the presence of HSP90. Furthermore, deleting NMNAT2 function increases the vulnerability of cortical neurons to proteotoxic stress and excitotoxicity. Interestingly, NMNAT2 acts as a chaperone to reduce proteotoxic stress, while its enzymatic activity protects neurons from excitotoxicity. Taken together, our data indicate that NMNAT2 exerts its chaperone or enzymatic function in a context-dependent manner to maintain neuronal health. This study reveals NMNAT2 to be a dual-function neuronal maintenance factor that not only generates NAD to protect neurons from excitotoxicity but also moonlights as a chaperone to combat protein toxicity. Pathological protein aggregates are found in many neurodegenerative diseases, and it has been hypothesized that these protein aggregates are toxic and cause neuronal death. Little is known about how neurons protect against pathological protein aggregates to maintain their health. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a newly identified neuronal maintenance factor. We found that in humans, levels of NMNAT2 transcript are positively correlated with cognitive function and are negatively correlated with pathological features of neurodegenerative disease like plaques and tangles. In this study, we demonstrate that NMNAT2 can act as a chaperone to reduce protein aggregates, and this function is independent from its known function in the enzymatic synthesis of nicotinamide adenine dinucleotide (NAD). We find that NMNAT2 interacts with heat shock protein 90 (HSP90) to refold protein aggregates, and that deleting NMNAT2 in cortical neurons renders them vulnerable to protein stress or excitotoxicity. Interestingly, the chaperone function of NMNAT2 protects neurons from protein toxicity, while its enzymatic function is required to defend against excitotoxicity. Our work here suggests that NMNAT2 uses either its chaperone or enzymatic function to combat neuronal insults in a context-dependent manner. In Alzheimer disease brains, NMNAT2 levels are less than 50% of control levels, and we propose that enhancing NMNAT2 function may provide an effective therapeutic intervention to reserve cognitive function.
Collapse
Affiliation(s)
- Yousuf O. Ali
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hunter M. Allen
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Lei Yu
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dena Bakhshizadehmahmoudi
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Asante Hatcher
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristin McCabe
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Jishu Xu
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Nicole Bjorklund
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Giulio Taglialatela
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua M. Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute (HHMI), Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lim HJ, Perera TH, Wilems TS, Ghosh S, Zheng YY, Azhdarinia A, Cao Q, Smith Callahan LA. Response to di-functionalized hyaluronic acid with orthogonal chemistry grafting at independent modification sites in rodent models of neural differentiation and spinal cord injury. J Mater Chem B 2016; 4:6865-6875. [DOI: 10.1039/c6tb01906d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hyaluronic acid functionalized with two orthogonal chemistries at different targets expedites neural maturation in vitro, while reducing inflammation in vivo.
Collapse
Affiliation(s)
- Hyun Ju Lim
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - T. Hiran Perera
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Thomas S. Wilems
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Sukhen Ghosh
- Center for Molecular Imaging
- Brown Foundation Institute of Molecular Medicine
- University of Texas Health Science Center at Houston
- Houston
- USA
| | - Yi-Yan Zheng
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Ali Azhdarinia
- Center for Molecular Imaging
- Brown Foundation Institute of Molecular Medicine
- University of Texas Health Science Center at Houston
- Houston
- USA
| | - Qilin Cao
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Laura A. Smith Callahan
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| |
Collapse
|
8
|
Mohammad M, Yaseen N, Al-Joubory A, Abdullah R, Mahmood N, Ahmed AA, Al-Shammari A. Production of Neural Progenitors from Bone Marrow Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/scd.2016.61001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Krohn M, Dreßler J, Bauer M, Schober K, Franke H, Ondruschka B. Immunohistochemical investigation of S100 and NSE in cases of traumatic brain injury and its application for survival time determination. J Neurotrauma 2015; 32:430-40. [PMID: 25211554 DOI: 10.1089/neu.2014.3524] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The availability of markers able to provide insight into protein changes in the central nervous system after fatal traumatic brain injury (TBI) is limited. The present study reports on the semi-quantitative assessments of the immunopositive neuroglial cells (both astrocytes and oligodendrocytes) and neurons for S100 protein (S100), as well as neuronal specific enolase (NSE), in the cerebral cortex, hippocampus, and cerebellum with regard to survival time and cause of death. Brain tissues of 47 autopsy cases with TBI (survival times ranged between several minutes and 34 d) and 10 age- and gender-matched controls (natural deaths) were examined. TBI cases were grouped according to their survival time in acute death after brain injury (ABI, n = 25), subacute death after brain injury (SBI, n = 18) and delayed death after brain injury (DBI, n = 4). There were no significant changes in the percentages of S100-stained astrocytes between TBI and control cases. The percentages of S100-positive oligodendrocytes in the pericontusional zone (PCZ) in cases with SBI were significantly lower than in controls (p < 0.05) and in the ABI group (p < 0.05). In the hippocampus, S100-positive oligodendrocytes were significantly lower in cases with ABI and SBI (both, p < 0.05), compared with controls. It is of particular interest that there were also S100-positive neurons in the PCZ and hippocampus in TBI cases after more than 2 h survival but not in ABI cases or controls. The percentages of NSE-positive neurons in the hippocampus were likewise significantly lower in cases with ABI, compared with controls (p < 0.05) but increased in cases with SBI in PCZ (p < 0.05). In conclusion, the present findings emphasize that S100 and NSE-immunopositivity might be useful for detecting the cause and process of death due to TBI. Further, S100-positivity in neurons may be helpful to estimate the survival time of fatal injuries in legal medicine.
Collapse
Affiliation(s)
- Michael Krohn
- 1 Institute of Legal Medicine, University of Leipzig , Germany
| | | | | | | | | | | |
Collapse
|
10
|
Gómez-Villafuertes R, Pintor J, Miras-Portugal MT, Gualix J. Ectonucleotide pyrophosphatase/phosphodiesterase activity in Neuro-2a neuroblastoma cells: changes in expression associated with neuronal differentiation. J Neurochem 2014; 131:290-302. [PMID: 24947519 DOI: 10.1111/jnc.12794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023]
Abstract
Neuro-2a (N2a) neuroblastoma cells display an ectoenzymatic hydrolytic activity capable of degrading diadenosine polyphosphates. The Apn A-cleaving activity has been analysed with the use of the fluorogenic compound BODIPY FL guanosine 5'-O-(3-thiotriphosphate) thioester. Hydrolysis of this dinucleotide analogue showed a hyperbolic kinetic with a Km value of 4.9 ± 1.3 μM. Diadenosine pentaphosphate, diadenosine tetraphosphate, diadenosine triphosphate, and the nucleoside monophosphate AMP behaved as an inhibitor of BODIPY FL guanosine 5'-O-(3-thiotriphosphate) thioester extracellular degradation. Ectoenzymatic activity shared the typical characteristics of the ectonucleotide pyrophosphatase/phosphodiesterase family, as hydrolysis reached maximal activity at alkaline pH and was dependent on the presence of divalent cations, being strongly inhibited by EDTA and activated by Zn(2+) ions. Both NPP1 and NPP3 isozymes are expressed in N2a cells, their expression levels substantially changing when cells differentiate into a neuronal-like phenotype. In this sense, it is relevant to point the expression pattern of the NPP3 protein, whose levels were drastically reduced in the differentiated cells, being almost completely absent after 24 h of differentiation. Enzymatic activity assays carried out with differentiated N2a cells showed that NPP1 is the main isozyme involved in the extracellular degradation of dinucleotides in these cells, this enzyme reducing its activity and changing its subcellular location following neuronal differentiation. We described the presence of an ectoenzymatic activity able to hydrolyse diadenosine polyphosphates (ApnA) in N2a cells. This activity displays biochemical features that are typical of the ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) family members, as demonstrated by the use of the fluorogenic compound BODIPY-FL-GTPγS. Both NPP1 and NPP3 ectoenzymes are expressed in N2a cells, their levels dramatically changing when cells differentiate into a neuronal-like phenotype. Activity assays in differentiated cells showed that the ApnA-hydrolytic activity largely depends on the NPP1 isozyme.
Collapse
Affiliation(s)
- Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Kimura I, Nakayama Y, Konishi M, Kobayashi T, Mori M, Ito M, Hirasawa A, Tsujimoto G, Ohta M, Itoh N, Fujimoto M. Neuferricin, a novel extracellular heme-binding protein, promotes neurogenesis. J Neurochem 2010; 112:1156-67. [DOI: 10.1111/j.1471-4159.2009.06522.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Microtubule-associated Protein-2 is a Sensitive Marker of Primary and Metastatic Neuroblastoma. Am J Surg Pathol 2009; 33:1695-704. [DOI: 10.1097/pas.0b013e3181b0ebdc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Gómez-Villafuertes R, del Puerto A, Díaz-Hernández M, Bustillo D, Díaz-Hernández JI, Huerta PG, Artalejo AR, Garrido JJ, Miras-Portugal MT. Ca2+/calmodulin-dependent kinase II signalling cascade mediates P2X7 receptor-dependent inhibition of neuritogenesis in neuroblastoma cells. FEBS J 2009; 276:5307-25. [PMID: 19682070 DOI: 10.1111/j.1742-4658.2009.07228.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ATP, via purinergic P2X receptors, acts as a neurotransmitter and modulator in both the central and peripheral nervous systems, and is also involved in many biological processes, including cell proliferation, differentiation and apoptosis. Previously, we have reported that P2X7 receptor inhibition promotes axonal growth and branching in cultured hippocampal neurons. In this article, we demonstrate that the P2X7 receptor negatively regulates neurite formation in mouse Neuro-2a neuroblastoma cells through a Ca2+/calmodulin-dependent kinase II-related mechanism. Using both molecular and immunocytochemical techniques, we characterized the presence of endogenous P2X1, P2X3, P2X4 and P2X7 subunits in these cells. Of these, the P2X7 receptor was the only functional receptor, as its activation induced intracellular calcium increments similar to those observed in primary neuronal cultures, exhibiting pharmacological properties characteristic of homomeric P2X7 receptors. Patch-clamp experiments were also conducted to fully demonstrate that ionotropic P2X7 receptors mediate nonselective cation currents in this cell line. Pharmacological inhibition of the P2X7 receptor and its knockdown by small hairpin RNA interference resulted in increased neuritogenesis in cells cultured in low serum-containing medium, whereas P2X7 overexpression significantly reduced the formation of neurites. Interestingly, P2X7 receptor inhibition also modified the phosphorylation state of focal adhesion kinase, Akt and glycogen synthase kinase 3, protein kinases that participate in the Ca2+/calmodulin-dependent kinase II signalling cascade and that have been related to neuronal differentiation and axonal growth. Taken together, our results provide the first mechanistic insight into P2X7 receptor-triggered signalling pathways that regulate neurite formation in neuroblastoma cells.
Collapse
Affiliation(s)
- Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Seigel GM, Sun W, Wang J, Hershberger DH, Campbell LM, Salvi RJ. Neuronal gene expression and function in the growth-stimulated R28 retinal precursor cell line. Curr Eye Res 2009; 28:257-69. [PMID: 15259295 DOI: 10.1076/ceyr.28.4.257.27831] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Proliferative retinal progenitor cells that express neuronal characteristics are potentially useful for developmental studies and as experimental graft material. The continuously-growing R28 retinal cell line has been distributed to over 60 laboratories for a variety of studies, yet has not been fully characterized. In this study, we tested the hypothesis that the proliferative R28 retinal cell line contains subpopulations of cells that express neuronal mRNAs and proteins characteristic of CNS neurons. METHODS To this end, we sought to determine the potential retinal, neuronal, and growth-related characteristics of this retinal cell line through gene expression profiling, coupled with confirmatory immunocytochemistry and electrophysiology. RESULTS Despite expression of growth-stimulatory oncogenes and growth-promoting factors, subpopulations of R28 cells express abundant retinal and neuronal markers, as well as the functional capacity to respond to specific neurotransmitters such as dopamine, acetylcholine, serotonin, and glycine. CONCLUSION Proliferative R28 cells retain functional neuronal properties that may prove useful in future studies of neuronal differentiation and development.
Collapse
Affiliation(s)
- Gail M Seigel
- Department of Ophthalmology, University at Buffalo, SUNY, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Study and simulation of reaction-diffusion systems affected by interacting signaling pathways. Acta Biotheor 2008; 56:315-28. [PMID: 18941903 DOI: 10.1007/s10441-008-9062-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
Possible effects of interaction (cross-talk) between signaling pathways is studied in a system of Reaction-Diffusion (RD) equations. Furthermore, the relevance of spontaneous neurite symmetry breaking and Turing instability has been examined through numerical simulations. The interaction between Retinoic Acid (RA) and Notch signaling pathways is considered as a perturbation to RD system of axon-forming potential for N2a neuroblastoma cells. The present work suggests that large increases to the level of RA-Notch interaction can possibly have substantial impacts on neurite outgrowth and on the process of axon formation. This can be observed by the numerical study of the homogeneous system showing that in the absence of RA-Notch interaction the unperturbed homogeneous system may exhibit different saddle-node bifurcations that are robust under small perturbations by low levels of RA-Notch interactions, while large increases in the level of RA-Notch interaction result in a number of transitions of saddle-node bifurcations into Hopf bifurcations. It is speculated that near a Hopf bifurcation, the regulations between the positive and negative feedbacks change in such a way that spontaneous symmetry breaking takes place only when transport of activated Notch protein takes place at a faster rate.
Collapse
|
16
|
Kimura I, Konishi M, Miyake A, Fujimoto M, Itoh N. Neudesin, a secreted factor, promotes neural cell proliferation and neuronal differentiation in mouse neural precursor cells. J Neurosci Res 2006; 83:1415-24. [PMID: 16547973 DOI: 10.1002/jnr.20849] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neudesin encodes a secreted signal with neurotrophic activity in neurons. Most neurotrophic factors are involved in neural cell proliferation and/or differentiation. However, the role of neudesin in neural development remains to be elucidated. We examined the expression of neudesin in mouse embryonic cerebral cortex and cultured mouse neural precursor cells and its roles in neural development. Neudesin was expressed in the embryonic cerebral cortex early in development. Its expression was observed mainly in the preplate, where mostly postmitotic neural cells existed. Because neudesin mRNA was expressed in the neural precursor cells before the appearance of neurons, the roles of neudesin in neural development were examined by using the precursor cells. Neudesin significantly promoted neuronal differentiation and overrode the undifferentiated state of the neural precursor cells sustained by fibroblast growth factor 2 (FGF2). In contrast, it inhibited the differentiation of astrocytes. In addition, neudesin transiently promoted neural cell proliferation early in the developmental process. The effect on cell proliferation was distinct from that of FGF2, a self-renewal-promoting factor for neural precursor cells. The differentiation was mediated though activation of the protein kinase A (PKA) and phosphatidylinositol-3 kinase (PI-3K) pathways. In contrast, the proliferation was mediated through the mitogen-activated protein kinase and PKA pathways. The expression profile and activity indicate that neudesin plays unique roles in neural development. The present findings have revealed new potential roles of neudesin in neural cell proliferation and neuronal differentiation.
Collapse
Affiliation(s)
- Ikuo Kimura
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | | | | | | | | |
Collapse
|
17
|
Bryan BA, Cai Y, Liu M. The Rho-family guanine nucleotide exchange factor GEFT enhances retinoic acid- and cAMP-induced neurite outgrowth. J Neurosci Res 2006; 83:1151-9. [PMID: 16496360 DOI: 10.1002/jnr.20814] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Rho GTPases are important regulators of neurite outgrowth and pathfinding. We have recently reported that a Rho-family guanine nucleotide exchange factor, GEFT, modulates dendrite spine morphology and basal neurite outgrowth in primary hippocampal neurons and Neuro2A cells, respectively. Here we demonstrate that GEFT protein is highly expressed in all regions of the brain and is highly up-regulated upon treatment of Neuro2A cells with retinoic acid and dibutyric cAMP, which promote dendrite and axon-like neurite extensions, respectively. Within retinoic acid-induced neurite extensions, GEFT is localized to actin-enriched regions in the primary neurites, with little or no expression from secondary branches. Dibutyric cAMP-induced neurite extensions are highly concentrated for GEFT at the actin-rich distal tip of the growth cone. Additionally, we demonstrate that GEFT promotes neurite outgrowth in undifferentiated as well as differentiated Neuro2A cells. Together, our data provide new evidence suggesting that GEFT is an important regulator of multiple processes involved in axon and dendrite formation.
Collapse
Affiliation(s)
- Brad A Bryan
- Alkek Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
18
|
Elsaesser R, Montani G, Tirindelli R, Paysan J. Phosphatidyl-inositide signalling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. Eur J Neurosci 2005; 21:2692-700. [PMID: 15926917 DOI: 10.1111/j.1460-9568.2005.04108.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ciliated sensory neurons, supporting cells and basal stem cells represent major cellular components of the main olfactory epithelium in mammals. Here we describe a novel class of sensory cells in the olfactory neuroepithelium. The cells express phospholipase C beta-2 (PLC beta2), transient receptor potential channels 6 (TRPC6) and inositol 3, 4, 5-trisphosphate receptors type III (InsP3R-III). Unlike ciliated olfactory neurons, they express neither olfactory marker protein nor centrin, adenylyl cyclase or cyclic nucleotide-gated cation channels. Typical components of the cytoskeleton of microvilli, ezrin and actin are found co-localized with PLC beta2 and TRPC6 in apical protrusions of the cells. In Ca2+-imaging experiments, the cells responded to odours. They express neuronal marker proteins and possess an axon-like process, but following bulbectomy the cells do not degenerate. Our results suggest a novel class of microvillous secondary chemosensory cells in the mammalian olfactory system. These cells, which utilize phosphatidyl-inositides in signal transduction, represent about 5% of all olfactory cells. Their abundance indicates that they play an important role in stimulus-dependent functions and/or the regeneration of the olfactory system.
Collapse
Affiliation(s)
- Rebecca Elsaesser
- Institute of General Zoology and Animal Physiology, Friedrich-Schiller-University, D-07743 Jena, Germany.
| | | | | | | |
Collapse
|
19
|
Leil TA, Chen ZW, Chang CSS, Olsen RW. GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci 2005; 24:11429-38. [PMID: 15601949 PMCID: PMC6730371 DOI: 10.1523/jneurosci.3355-04.2004] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The trafficking of GABA(A) receptors is an important component of the pathway that regulates plasticity of inhibitory synapses. The 17 kDa GABA(A) receptor-associated protein (GABARAP) has been implicated in the trafficking of GABA(A) receptors because of its ability to interact not only with the gamma2 subunit of the receptor but also with microtubules and the N-ethylmaleimide-sensitive factor (NSF). To elucidate the role of GABARAP in the trafficking of GABA(A) receptors, we have constructed a yellow fluorescent protein (YFP) fusion protein of GABARAP and expressed it in neurons using adenovirus, so that its function may be examined. YFP-GABARAP colocalized with gamma2 subunit-containing GABA(A) receptors and NSF to the perinuclear cytoplasm in cultured hippocampal neurons and to the proximal regions of dendrites that are making synaptic contact. Expression of YFP-GABARAP in Cos7 cells and cultured hippocampal neurons was able to increase the level of GABA(A) receptors detected at the plasma membrane, even at low levels of YFP-GABARAP expression. This effect is specific to the function of GABARAP on GABA(A) receptor trafficking, because point mutations in the gamma2-binding domain of YFP-GABARAP interfered with the ability of YFP-GABARAP to increase GABA(A) receptor surface levels. These mutations also disrupted the colocalization of YFP-GABARAP with the gamma2 subunit and with NSF in hippocampal neurons. The results of this study show for the first time that GABARAP has a functional effect on the trafficking of GABA(A) receptors and provide decisive evidence for the role of GABARAP in transporting GABA(A) receptors to the plasma membrane in neurons.
Collapse
Affiliation(s)
- Tarek A Leil
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095-1735
| | | | | | | |
Collapse
|
20
|
Tojima T, Ito E. Signal transduction cascades underlying de novo protein synthesis required for neuronal morphogenesis in differentiating neurons. Prog Neurobiol 2004; 72:183-93. [PMID: 15130709 DOI: 10.1016/j.pneurobio.2004.03.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 03/03/2004] [Indexed: 12/16/2022]
Abstract
Differentiating neurons must acquire many unique morphological and functional characteristics in creating the precise neural circuits of the mature nervous system. The phenomenon of 'neuronal differentiation' includes a special set of simple, separate processes, that is, neuritogenesis, neurite outgrowth, pathfinding, targeting and synaptogenesis. All of these processes are critically dependent on the reorganization of actin cytoskeleton by many actin-binding proteins that function downstream of Rho-family GTPases. Furthermore, de novo synthesis of key proteins are critically involved in the reorganization of actin cytoskeleton during neuronal differentiation. In this article, we review recent progresses in the general mechanisms that control actin dynamics by various actin-binding proteins in differentiating neurons, including a series of recent studies from our laboratory on de novo synthesis of several key proteins that are essential for actin reorganization induced by second messengers. We demonstrated that dual regulation of cyclic AMP and Ca2+ determines cofilin (an actin-binding protein) phosphorylation states and LIM kinase 1 (a cofilin kinase) expression level during neuritogenesis.
Collapse
Affiliation(s)
- Takuro Tojima
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | |
Collapse
|
21
|
Abstract
Recent studies indicate the actin and microtubule cytoskeletons are a final common target of many signaling cascades that influence the developing neuron. Regulation of polymer dynamics and transport are crucial for the proper growth cone motility. This review addresses how actin filaments, microtubules, and their associated proteins play crucial roles in growth cone motility, axon outgrowth, and guidance. We present a working model for cytoskeletal regulation of directed axon outgrowth. An important goal for the future will be to understand the coordinated response of the cytoskeleton to signaling cascades induced by guidance receptor activation.
Collapse
Affiliation(s)
- Erik W Dent
- Biology Department, 68-270, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
22
|
The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 2003. [PMID: 14573527 DOI: 10.1523/jneurosci.23-29-09479.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During neurite initiation, cells surrounded by a flattened, actin-rich lamellipodium transform to produce thin, microtubule-filled neurite shafts tipped by actin-rich growth cones, but little is known about this transformation. Our detailed time-lapse analyses of cultured hippocampal neurons, a widely used model system for neuronal development, revealed that neurites emerge from segmented lamellipodia, which then gradually extend from the cell body to become nascent growth cones. This suggests that actin- and microtubule-rich structures are reorganized in a coordinated manner. We hypothesized that proteins such as microtubule-associated protein 2 (MAP2), which can interact with both cytoskeletal components, might be critically involved in neurite initiation. Live-cell video and fluorescence microscopy in Neuro-2a cells showed that expression of MAP2c triggers neurite formation via rapid accumulation and bundling of stable, MAP2c-bound microtubules, concurrent with a gradual transformation of lamellipodia into nascent growth cones. The microtubule-stabilizing agent Taxol did not mimic this effect, suggesting that the ability of MAP2c to stabilize microtubules is not sufficient for neurite initiation. However, combination of Taxol treatment with actin disruption induced robust process formation, suggesting that inhibitory effects of F-actin need to be overcome as well. Neurite initiation by MAP2c required its microtubule-binding domain and was enhanced by its binding domain for cAMP-dependent protein kinase (PKA). MAP2c mutants defective in both PKA and microtubule binding acted as dominant negative inhibitors of neurite initiation in neuroblastoma cells and primary hippocampal neurons. Together, these data suggest that MAP2c bears functions that both stabilize microtubules and directly or indirectly alter actin organization during neurite initiation.
Collapse
|
23
|
Maden M. Role and distribution of retinoic acid during CNS development. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:1-77. [PMID: 11580199 DOI: 10.1016/s0074-7696(01)09010-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retinoic acid (RA), the biologically active derivative of vitamin A, induces a variety of embryonal carcinoma and neuroblastoma cell lines to differentiate into neurons. The molecular events underlying this process are reviewed with a view to determining whether these data can lead to a better understanding of the normal process of neuronal differentiation during development. Several transcription factors, intracellular signaling molecules, cytoplasmic proteins, and extracellular molecules are shown to be necessary and sufficient for RA-induced differentiation. The evidence that RA is an endogenous component of the developing central nervous system (CNS) is then reviewed, data which include high-pressure liquid chromotography (HPLC) measurements, reporter systems and the distribution of the enzymes that synthesize RA. The latter is particularly relevant to whether RA signals in a paracrine fashion on adjacent tissues or whether it acts in an autocrine manner on cells that synthesize it. It seems that a paracrine system may operate to begin early patterning events within the developing CNS from adjacent somites and later within the CNS itself to induce subsets of neurons. The distribution of retinoid-binding proteins, retinoid receptors, and RA-synthesizing enzymes is described as well as the effects of knockouts of these genes. Finally, the effects of a deficiency and an excess of RA on the developing CNS are described from the point of view of patterning the CNS, where it seems that the hindbrain is the most susceptible part of the CNS to altered levels of RA or RA receptors and also from the point of view of neuronal differentiation where, as in the case of embryonal carcinoma (EC) cells, RA promotes neuronal differentiation. The crucial roles played by certain genes, particularly the Hox genes in RA-induced patterning processes, are also emphasized.
Collapse
Affiliation(s)
- M Maden
- MRC Centre for Developmental Neurobiology, King's College London, United Kingdom
| |
Collapse
|
24
|
Jori FP, Galderisi U, Piegari E, Peluso G, Cipollaro M, Cascino A, Giordano A, Melone MA. RB2/p130 ectopic gene expression in neuroblastoma stem cells: evidence of cell-fate restriction and induction of differentiation. Biochem J 2001; 360:569-577. [PMID: 11736646 PMCID: PMC1222259 DOI: 10.1042/0264-6021:3600569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activity of the RB2/p130 gene, which is a member of the retinoblastoma gene family, is cell-cycle-regulated and plays a key role in growth inhibition and differentiation. We used neuroblastoma cell lines as a model for studies on neural crest progenitor cell differentiation. We show that Rb2/p130 ectopic protein expression induces morphological and molecular modifications, promoting differentiation of intermediate (I) phenotype SK-N-BE(2)-C neuroblastoma cells towards a neuroblastic (N) rather than a Schwann/glial/melanocytic (S) phenotype. These modifications are stable as they persist even after treatment with an S-phenotype inducer. Rb2/p130 ectopic expression also induces a more differentiated phenotype in N-type SH-SY-5Y cells. Further, this function appears to be independent of cell-cycle withdrawal. The data reported suggest that the Rb2/p130 protein is able to induce neuronal lineage specification and differentiation in neural crest stem and committed neuroblastoma cells, respectively. Thus, the Rb2/p130 protein seems to be required throughout the full neural maturation process.
Collapse
Affiliation(s)
- F P Jori
- Department of Neurological Sciences, Second University of Naples, Via Pansini 5, 80100 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu G, Lu ZH, Xie X, Ledeen R. Comparison of ganglioside profiles in nuclei and whole cells of NG108-15 and NG-CR72 lines: changes in response to different neuritogenic stimuli. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 126:183-90. [PMID: 11248352 DOI: 10.1016/s0165-3806(00)00150-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The plasma and nuclear membranes of neural cells have been shown to express gangliosides to a limited extent before, and at increasing levels during, differentiation. Recent studies employing qualitative cytochemistry have shown that GM1 expression in particular is significantly elevated in both membranes by specific neuritogenic agents. The present study provides a more complete description of ganglioside patterns of the 2 membranes of NG108-15 cells and a mutated form of the latter lacking gangliotetraose gangliosides. Nuclei of wild type NG108-15 cells were found to contain predominantly GM1 and GD1a, whereas whole cells had those in addition to substantial amounts of GM2 and GM3. GM1 and GD1a levels increased 2--3.5-fold in both whole cells and nuclei following axonogenic stimulation, but changed little in response to dendritogenic agents. GM2 expression, limited to the plasma membrane, showed little if any change with axonogenic stimuli but a 1.5--2-fold increase following treatment with dendritogenic agents. GM3 resembled GM2 in being virtually absent from the nuclear membrane, while its presence in the plasma membrane showed only modest change at most with any of the stimuli. The gangliotetraose ganglioside-deficient mutant cell line, NG-CR72, had significantly higher basal levels of GM2 in the plasma membrane compared to wild type NG108-15 cells, and this level increased significantly on treatment with dendritogenic agents. Basal GM3 levels were greatly reduced in the mutant cells and changed little with any of the stimuli. As expected, nuclei of NG-CR72 cells were virtually devoid of gangliosides. These mutant cells were previously shown to extend well defined dendritic neurites but were incapable of forming stable axonal processes. This study thus demonstrates major differences in the ganglioside content of wild type and mutated NG108-15 cells and their nuclei, and in their response to different neuritogenic stimuli.
Collapse
Affiliation(s)
- G Wu
- Department of Neurosciences, New Jersey Medical School, UMDNJ 185 South Orange Ave., Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
26
|
Tojima T, Yamane Y, Takahashi M, Ito E. Acquisition of neuronal proteins during differentiation of NG108-15 cells. Neurosci Res 2000; 37:153-61. [PMID: 10867177 DOI: 10.1016/s0168-0102(00)00110-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The differentiated type of neuroblastomaxglioma hybrid cell line, NG108-15, has widely been used in in vitro studies instead of primary-cultured neurons. Here we examined whether NG108-15 cells can be used as a model for studying the neuronal differentiation process. We compared the expression of neuronal proteins (neurofilament 200 (NF200), phosphorylated-NF200 (p-NF200), microtubule associated protein 2, synaptophysin, syntaxin 1, choline acetyltransferase, and acetylcholinesterase (AChE)) and a glial protein (vimentin) between undifferentiated and differentiated NG108-15 cells by immunocytochemistry and immunoblot analysis. The expression of all neuronal proteins, with the exception of NF200 and p-NF200, was positive in differentiated cells, but almost negative in undifferentiated cells. On the other hand, cytoskeletal intermediate filaments (NF200 and p-NF200) for neurons and that (vimentin) for glia were present in both undifferentiated and differentiated cells. Furthermore, a high expression of AChE mRNA was confirmed in differentiated cells by reverse transcription-PCR analysis. Our results showed that even though the expression of cytoskeletal filaments does not change during differentiation of NG108-15 cells, these cells during differentiation can serve as an appropriate tool for investigating and understanding the mechanisms involved in neuronal development and differentiation.
Collapse
Affiliation(s)
- T Tojima
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, 060-0810, Sapporo, Japan
| | | | | | | |
Collapse
|
27
|
Ju YT, Chang AC, She BR, Tsaur ML, Hwang HM, Chao CC, Cohen SN, Lin-Chao S. gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation. Proc Natl Acad Sci U S A 1998; 95:11423-8. [PMID: 9736752 PMCID: PMC21658 DOI: 10.1073/pnas.95.19.11423] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth arrest-specific (gas) genes are expressed preferentially in cells that enter a quiescent state. gas7, which we identified in serum-starved murine fibroblasts, is reported here to be expressed in vivo selectively in neuronal cells of the mature cerebral cortex, hippocampus, and cerebellum. gas7 transcripts encode a 48-kDa protein containing a structural domain that resembles sequences of OCT2, a POU transcription factor implicated in neuronal development, and synapsins, which have a role in modulating neurotransmitter release. Using in situ hybridization and immunocytochemical analysis, we show that GAS7 expression occurs prominently in cerebellar Purkinje cells and that inhibition of production in terminally differentiating cultures of embryonic murine cerebellum impedes neurite outgrowth from maturing Purkinje cells. Conversely, GAS7 overexpression in undifferentiated neuroblastoma cell cultures dramatically promotes neurite-like outgrowth. Collectively, our results provide evidence for an association between expression of this gas gene and neuronal development.
Collapse
Affiliation(s)
- Y T Ju
- Institute of Molecular Biology, Academia Sinica, Nankang Taipei, Taiwan 115, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Katsetos CD, Herman MM, Balin BJ, Vinores SA, Hessler RB, Arking EJ, Karkavelas G, Frankfurter A. Class III beta-tubulin isotype (beta III) in the adrenal medulla: III. Differential expression of neuronal and glial antigens identifies two distinct populations of neuronal and glial-like (sustentacular) cells in the PC12 rat pheochromocytoma cell line maintained in a Gelfoam matrix system. Anat Rec (Hoboken) 1998; 250:351-65. [PMID: 9517852 DOI: 10.1002/(sici)1097-0185(199803)250:3<351::aid-ar10>3.0.co;2-n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The rat PC12 pheochromocytoma cell line provides an established system for the study of neuronal differentiation. To our knowledge, glial differentiation has not been reported in this cell line. METHODS We have studied, by immunohistochemistry and immunoblotting, the presence of neuronal cytoskeletal antigens [class III beta-tubulin isotype (beta III), microtubule associated proteins MAP2, MAP1B and tau, and different neurofilament (NF) protein components], and synaptophysin in comparison with the glial fibrillary acidic protein (GFAP) and S-100 protein in the PC12 cell line. In three different experiments, PC12 cells were maintained in a three-dimensional gelatin foam (Gelfoam) matrix system for up to 34 days with and without treatment with 1 mM dibutyryl cyclic (dc)AMP. Immunohistochemistry was performed on explants ranging from 2 to 32 days-in vitro, which were fixed in either Bouin's solution, 70% ethanol, or 10% neutral-buffered formalin and embedded in paraffin. Immunoblotting was performed on Gelfoam explants with a panel of antibodies against all aforementioned neuronal and glial markers. Additional immunoblot experiments using anti-GFAP and anti-beta III monoclonal antibodies in cell suspensions and homogenates from PC12 monolayer cultures were carried out to compare growth conditions in relation to the expression of these proteins. RESULTS Beta III and MAP2 were demonstrated by immunohistochemistry and immunoblotting of PC12 explants maintained for up to 32 days in Gelfoam matrices with and without treatment with dcAMP. Intense filamentous and granular beta III staining of PC12 cells was observed in dcAMP-treated cultures concomitant with neuronal morphologic alterations (neuritogenesis and ganglionic phenotype). In untreated cultures, beta III staining was present in less differentiated cells, as well in cells undergoing neuritic development. The neuronal phenotype of PC12 cells was confirmed by staining for MAP2, tau, and NF proteins, as well as for synaptophysin. The presence of beta III, MAP2, MAP1B, tau, and NF proteins was confirmed by immunoblotting. Clusters of GFAP-positive and S-100 protein-positive spindle cells, phenotypically distinct from the chromaffin-like or neuronal cells, were demonstrated in Gelfoam explants at 5-30 days in vitro. In 30-day-old cultures treated with dcAMP, there was strong filamentous GFAP and diffuse S-100 protein staining in an increased number of sustentacular-like PC12 cells. GFAP staining was corroborated by immunoblotting of explants maintained under identical conditions in vitro. In contrast, immunoblots performed on homogenates from PC12 suspension and monolayer cultures were GFAP-negative. CONCLUSIONS Neuronal and glial-like, presumed sustentacular, phenotypes were demonstrated in PC12 cells grown in Gelfoam matrices with and without treatment with dcAMP for up to 34 days. To our knowledge, the occurrence of glial differentiation in the PC12 line is a hitherto unreported finding. Adult rat medullary sustentacular cells are known to express S-100 and GFA proteins (Suzuki and Kachi, Kaibogaku Zasshi-Anat 70(2): 130-139, 1995), and the organ culture system employed in our study may well have favored this direction of differentiation.
Collapse
Affiliation(s)
- C D Katsetos
- Neuropathology Laboratory, Hahnemann University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shea TB, Wheeler E, Jung C. Aluminum inhibits neurofilament assembly, cytoskeletal incorporation, and axonal transport. Dynamic nature of aluminum-induced perikaryal neurofilament accumulations as revealed by subunit turnover. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1997; 32:17-39. [PMID: 9437656 DOI: 10.1007/bf02815165] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism by which aluminum induces formation of perikaryal neurofilament (NF) inclusions remains unclear. Aluminum treatment inhibits: 1. The incorporation of newly synthesized NF subunits into Triton-insoluble cytoskeleton of axonal neurites; 2. Their degradation and dephosphorylation; 3. Their translocation into axonal neurites. It also fosters the accumulation of phosphorylated NFs within perikarya. In the present study, we addressed the relationship among these effects. Aluminum reduced the assembly of newly synthesized NF subunits into NFs. During examination of those subunits that did assemble in the presence of aluminum, it was revealed that aluminum also interfered with transport of newly assembled NFs into axonal neurites. Similarly, a delay in axonal transport of microinjected biotinylated NF-H was observed in aluminum-treated cells. Aluminum also inhibited the incorporation of newly synthesized and microinjected subunits into the Triton-insoluble cytoskeleton within both perikarya and neurites. Once incorporated into Triton-insoluble cytoskeletons, however, biotinylated subunits were retained within perikarya of aluminum-treated cells to a greater extent than within untreated cells. Notably, these subunits were depleted in the presence and absence of aluminum within 48 h, despite the persistence of the aluminum-induced perikaryal accumulation itself, suggesting that individual NF subunits undergo turnover even within aluminum-induced perikaryal accumulations. These findings demonstrate that aluminum interferes with multiple aspects of neurofilament dynamics and furthermore leaves open the possibility that aluminum-induced perikaryal NF whorls may not represent permanent structures, but rather may require continued recruitment of cytoskeletal constituents.
Collapse
Affiliation(s)
- T B Shea
- Department of Biological Sciences, University of Massachusetts at Lowell, MA 01854, USA.
| | | | | |
Collapse
|
30
|
Shea TB, Dahl DC, Nixon RA, Fischer I. Triton-soluble phosphovariants of the heavy neurofilament subunit in developing and mature mouse central nervous system. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970615)48:6<515::aid-jnr4>3.0.co;2-d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Abstract
We have recently shown that tanycytes, a particular type of glial cell that has morphological and biochemical similarities with radial glial cells, constitute a preferential support for the regeneration of lesioned neurohypophysial axons. The present study was designed to explore the possible neurotrophic role of tanycytes in vitro. Glial cells derived from the median eminence or from the cerebral cortex of 10-day-old rats were cultured for 4-7 weeks. At these times the majority of the cells identified in the median eminence cultures exhibited immunostaining patterns of tanycytes, as detected in the mediobasal hypothalamus of 10-day-old and adult rats, i.e., they were immunoreactive to vimentin (VIM), to DARPP-32 (a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein), and to a lesser extent to glial fibrillary acidic protein (GFAP) antibodies. On the other hand, the majority of cells in cortex cultures showed immunostaining patterns of astrocytes, i.e., they were intensely immunoreactive to GFAP and VIM antibodies but negative to DARPP-32. Cells obtained from the dissociation of 3-day-old rat mesencephalon, cortex, and hypothalamus were cocultured on these glial monolayers, and the number of surviving neurons and their neurite length were quantified after 8 days. Our data showed that, when compared with astrocytes, tanycytes greatly improved both survival (six-to ten-fold higher) and neurite outgrowth (two- to five-fold longer) of cocultured neurons whatever their origin. Experiments performed by coculturing neurons on millicell inserts placed above the glial monolayers showed that diffusible factors from median eminence glial cells slightly increased survival (1.7-fold higher) of cocultured neurons but had no significant effect on neurite outgrowth. These observations indicate: 1) that aged tanycytes have a capacity to support survival and neurite outgrowth for a variety of postnatal neurons; and 2) that this neurotrophic effect is exerted mainly by means of specific molecules bound to the tanycytic plasmalemma limiting membrane and/or to the extracellular matrix.
Collapse
Affiliation(s)
- N Chauvet
- INSERM U336, University of Montpellier II, France
| | | | | |
Collapse
|
32
|
Beaman-Hall CM, Vallano ML. Distinct mode of microtubule-associated protein 2 expression in the neuroblastoma/glioma cell line 108CC15/NG108-15. JOURNAL OF NEUROBIOLOGY 1993; 24:1500-16. [PMID: 7506750 DOI: 10.1002/neu.480241105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The properties of microtubule-associated protein-2 (MAP-2) expression were examined in a transformed cell line, and compared to neurons from rodent brain where evidence supports both transcriptional and nontranscriptional regulation of MAP-2 synthesis. A monoclonal antibody that recognizes a common epitope in the adult (HMW MAP-2) and juvenile (MAP-2c) forms was used in an immunoblotting assay to assess the protein levels in actively dividing and differentiated neuroblastoma/glioma (108CC15, also designated NG108-15) cells. Multiply-phosphorylated MAP-2c was the predominant form in actively dividing cells, whereas HMW MAP-2 predominated in differentiated cells, which exhibited several other neuronal-like properties. A progressive increase in the levels of immunoreactive HMW MAP-2 was observed with increasing days of cell differentiation using dBcAMP as the inducing agent. However, the absolute levels of both HMW MAP-2 and MAP-2c in NG108-15 cells were significantly lower (at least 10-fold) than levels measured in rodent brain. To assess whether there are correspondingly lower levels of HMW MAP-2 and MAP-2c mRNAs in NG108-15 cells, relative to rodent brain, a highly sensitive RNA amplification assay (reverse transcription-polymerase chain reaction; RT-PCR) was developed. Oligonucleotide primers were designed to specify either HMW MAP-2 mRNA or MAP-2c mRNA, and whole tissue RNA extracted from adult and neonatal rodent brain was used to verify the reliability of the RT-PCR assay. Accordingly, PCR products of the predicted size, specificity, and abundance were obtained, with similar levels of HMW MAP-2 mRNA and proportionately higher levels of MAP-2c mRNA in neonatal brain, relative to adult brain. MAP-2c mRNA was the predominant transcript in actively dividing NG108-15 cells, and the amount of HMW MAP-2 mRNA gradually increased and became the predominant transcript in cells exposed to dBcAMP for 6-9 days. Thus, the observed changes in MAP-2-specific mRNAs during differentiation paralleled changes in expressed protein, suggesting that MAP-2 synthesis in NG108-15 cells is transcriptionally controlled. However, the levels of both MAP-2 mRNAs in NG108-15 cells were comparable to levels in rodent brain, despite the fact that MAP-2 protein levels are at least 10-fold lower in NG108-15 cells. These data suggest that the low levels of HMW MAP-2 and MAP-2c protein expression in NG108-15 cells are not due to correspondingly lower levels of MAP-2 mRNAs, and that transformed neuronal cell lines demonstrate a unique mode of MAP-2 regulation.
Collapse
Affiliation(s)
- C M Beaman-Hall
- Department of Pharmacology, State University of New York/Health Science Center, Syracuse 13210
| | | |
Collapse
|
33
|
Shea TB, Beermann ML, Fischer I. Transient requirement for vimentin in neuritogenesis: intracellular delivery of anti-vimentin antibodies and antisense oligonucleotides inhibit neurite initiation but not elongation of existing neurites in neuroblastoma. J Neurosci Res 1993; 36:66-76. [PMID: 8230322 DOI: 10.1002/jnr.490360108] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vimentin is initially expressed by nearly all neuronal precursors in vivo, and is gradually replaced by neurofilaments shortly after the immature neurons become postmitotic (Cochard and Paulin, 1984, J Neurosci 4:2080; Tapscott et al., 1981, Dev Biol 86:40). A transient increase in neuritic vimentin filaments occurs within the first day of dbcAMP-mediated neurite induction in NB2a/d1 neuroblastoma, after which vimentin levels rapidly decline and neurofilaments increase (Shea, 1990, Brain Res 521:343). In the present study, we tested the possibility that vimentin filaments may function in neurite elaboration by inducing neuritogenesis under conditions where vimentin expression and assembly was inhibited. Intracellular delivery of anti-vimentin antiserum into transiently permeabilized NB2a/d1 cells prevented the initial elaboration of neurites, but did not retract existing neurites. By contrast, intracellular delivery of antiserum directed against the low molecular weight neurofilament subunit or normal rabbit antiserum did not affect neurite outgrowth. Treatment with vimentin antisense oligonucleotides reversibly depleted vimentin synthesis and steady-state levels, and prevented neurite initiation, but did not induce retraction of existing neurites. These findings point toward an hitherto undetected role for vimentin in the initiation of neurite outgrowth.
Collapse
Affiliation(s)
- T B Shea
- Laboratory for Cellular and Developmental Neurobiology, McLean Hospital, Belmont, Massachusetts 02178
| | | | | |
Collapse
|
34
|
Kaplan DR, Matsumoto K, Lucarelli E, Thiele CJ. Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Eukaryotic Signal Transduction Group. Neuron 1993; 11:321-31. [PMID: 8394722 DOI: 10.1016/0896-6273(93)90187-v] [Citation(s) in RCA: 265] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Retinoic acid (RA) induces the neuronal differentiation of many human neuroblastoma cell lines. In this study, we show that RA treatment of neuroblastoma cells induces the expression of TrkB, the receptor for the neurotrophins BDNF, NT-3, and NT-4/5. BDNF addition to RA-treated SH-SY5Y neuroblastoma cells stimulated the tyrosine phosphorylation of TrkB and neuronal differentiation. RA treatment of KCNR neuroblastoma cells, which constitutively express BDNF mRNA, resulted in the expression of TrkB and differentiation in the absence of added BDNF. Finally, in 15N neuroblastoma cells, which express BDNF mRNA but do not differentiate in response to RA, RA induced only a truncated form of TrkB. 15N cells transfected with full-length TrkB differentiated in the absence of RA. These results indicate that RA induces the neuronal differentiation of neuroblastoma cells by modulating the expression of neurotrophin receptors.
Collapse
Affiliation(s)
- D R Kaplan
- ABL-Basic Research Program, National Cancer Institute, Frederick Cancer Research and Development Center, Maryland 21702
| | | | | | | |
Collapse
|
35
|
Shea TB, Beermann ML. Evidence that the monoclonal antibodies SMI-31 and SMI-34 recognize different phosphorylation-dependent epitopes of the murine high molecular mass neurofilament subunit. J Neuroimmunol 1993; 44:117-21. [PMID: 7684397 DOI: 10.1016/0165-5728(93)90274-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The monoclonal antibodies SMI-31 and SMI-34 react with phosphate-dependent epitopes of the high molecular mass (200 kDa) neurofilament protein (Hphos). Determination of whether or not these monoclonals react with different epitopes would assist in interpretation of post mortem immunocytochemical analyses in neurodegenerative disorders and in normal aging. We therefore examined the relative immunoreactivity of these antibodies against Triton-insoluble (cytoskeleton-associated) and Triton-soluble Hphos variants in NB2a/d1 neuroblastoma and post-natal mouse brain in immunoblot analysis. Densitometric analysis yielded a 'reactivity ratio' (soluble Hphos/insoluble Hphos) for each antibody. This ratio was approximately 44% and 87% less for SMI-34 than for SMI-31 in neuroblastoma and brain, respectively. These findings confirm that the SMI-34 epitope is distinct from that recognized by SMI-31, and, in these systems, is preferentially associated with the cytoskeleton.
Collapse
Affiliation(s)
- T B Shea
- Laboratories for Molecular Neuroscience, Mailman Research Center, McLean Hospital, Belmont, MA 02178
| | | |
Collapse
|
36
|
Shea TB, Beermann ML. Regulation of neuronal migration and neuritogenesis by distinct surface proteases. Relative contribution of plasmin and a thrombin-like protease. FEBS Lett 1992; 307:190-4. [PMID: 1386577 DOI: 10.1016/0014-5793(92)80765-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The relative contribution of two neuronal surface proteases, plasmin and a protease with thrombin-like specificity, on NB2a/dl neuroblastoma migration and neuritogenesis were examined. Exogenous plasmin induced cell body rounding and increased cell migration, but did not prevent or reverse neurite outgrowth. Inhibition of endogenous plasmin by its specific inhibitor, aprotinin, suppressed migration but did not induce neuritogenesis. Removal or inhibition of the thrombin-like protease by serum deprivation or hirudin addition, respectively, induced neurite outgrowth, as shown in our previous studies, but did not suppress migration. By contrast, trypsin induced simultaneous cell rounding and neurite retraction. These findings indicated that plasmin may regulate cell migration, while the thrombin-like protease may regulate facets of neurite outgrowth. Although unable to induce de novo neuritogenesis, plasmin inhibition potentiated the otherwise transient neurites induced by simultaneous inhibition of the thrombin-like protease. Since cultured neuronal cells migrate primarily in the direction of newly elaborated neurites, this finding is interpreted to indicate that cessation of neuronal migration by plasmin inhibition enhances net neurite outgrowth by inhibition of the putative thrombin-like protease.
Collapse
Affiliation(s)
- T B Shea
- Laboratory for Cellular and Developmental Neurobiology, Mailman Research Center, McLean Hospital, Belmont, MA 02178
| | | |
Collapse
|
37
|
Abstract
We consider the evidence that RA, the vitamin A metabolite, is involved in three fundamental aspects of the development of the CNS: 1) the stimulation of axon outgrowth in particular neuronal sub-types; 2) the migration of the neural crest; and 3) the specification of rostrocaudal position in the developing CNS (forebrain, midbrain, hindbrain, spinal cord). The evidence we discuss involves RA-induction of neurites in cell cultures and explants of neural tissue; the teratological effects of RA on the embryo's nervous system; the observation that RA can be detected endogenously in the spinal cord; and the fact that the receptors and binding proteins for RA are expressed in precise domains and neuronal cell types within the nervous system.
Collapse
Affiliation(s)
- M Maden
- Developmental Biology Research Centre, King's College London, UK
| | | |
Collapse
|
38
|
Shea TB, Beermann ML, Nixon RA, Fischer I. Microtubule-associated protein tau is required for axonal neurite elaboration by neuroblastoma cells. J Neurosci Res 1992; 32:363-74. [PMID: 1433385 DOI: 10.1002/jnr.490320308] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NB2a/d1 neuroblastoma cells constitutively express multiple isoforms of the microtubule-associated protein tau and incorporate this protein into the axonal neurites elaborated during serum deprivation. To examine whether or not tau played an essential role in axonal outgrowth, cells cultured in serum-free medium were treated at 24 h intervals with antisense- and sense-oriented cDNA oligonucleotides (25 or 36 mers that span or are upstream of tau initiation codon) and were simultaneously serum deprived. Oligonucleotide uptake was confirmed by determination of intracellular levels of radiolabeled oligonucleotides. Treatment for 48 h with tau antisense oligonucleotides reversibly inhibited the expression of tau and the number of neurite-bearing cells compared with treatment with sense oligonucleotides. By contrast, tubulin expression was not affected. When cells were treated with antisense oligonucleotide simultaneously with serum deprivation, the initial outgrowth of neurites was unaffected, but continued neurite elongation was prevented. By contrast, neurite outgrowth at 4 h was inhibited when cells were pretreated with tau antisense 24 h before serum deprivation. Furthermore, intracellular delivery of anti-tau antiserum prevented neurite outgrowth and, in cells that had previously been deprived of serum for 24 h, induced retraction of existing neurites. These findings indicate that both the initiation and the continued outgrowth of neurites are dependent on tau and that pre-existing cytoplasmic pools of tau can mediate initial neuritogenesis.
Collapse
Affiliation(s)
- T B Shea
- Laboratory for Cellular and Developmental Neurobiology, McLean Hospital, Belmont, Massachusetts
| | | | | | | |
Collapse
|
39
|
Wong KL, Bruch RC, Farbman AI. Amitriptyline-mediated inhibition of neurite outgrowth from chick embryonic cerebral explants involves a reduction in adenylate cyclase activity. J Neurochem 1991; 57:1223-30. [PMID: 1654388 DOI: 10.1111/j.1471-4159.1991.tb08283.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously shown that amitriptyline, a tricyclic antidepressant, inhibited neurite outgrowth from chick embryonic cerebral explants, and that dibutyryl cyclic AMP, 3-isobutyl-1-methylxanthine, or theophylline can enhance neurite outgrowth from embryonic olfactory explants. In the present study, we examined the mechanism(s) underlying amitriptyline-mediated inhibition of neurite outgrowth by studying the effects of amitriptyline on adenylate cyclase activity and cyclic AMP levels. In cultured chick embryonic cerebral explants, dibutyryl cyclic AMP or theophylline, but not dibutyryl cyclic GMP, enhanced neurite outgrowth and partially reduced the inhibitory effects of amitriptyline on neurite outgrowth. Explants treated with amitriptyline for 2 days showed decreased cyclic AMP levels that significantly correlated with the degree of neurite outgrowth. Amitriptyline inhibited both basal and forskolin-stimulated adenylate cyclase activity in vitro, but only in the presence of GTP. Taken together, these data suggest that amitriptyline inhibits the activity of adenylate cyclase via a GTP-dependent mechanism, and that the subsequent decrease in cyclic AMP level may be involved in amitriptyline-mediated inhibition of neurite outgrowth.
Collapse
Affiliation(s)
- K L Wong
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
| | | | | |
Collapse
|
40
|
Fischer I, Romano-Clarke G, Grynspan F. Calpain-mediated proteolysis of microtubule associated proteins MAP1B and MAP2 in developing brain. Neurochem Res 1991; 16:891-8. [PMID: 1787878 DOI: 10.1007/bf00965538] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microtubule associated proteins MAP1B and MAP2 are important components of the neuronal cytoskeleton. During early development of the brain, MAP1B (340 kDa) is present as two isoforms that differ in their level of phosphorylation, while MAP2 is expressed as a single high molecular weight isoform (MAP2B, 280 kDa) and a low molecular weight form (MAP2C, 70 kDa). In this study we examined and compared the sensitivities of MAP1B and MAP2, obtained from MT preparations and brain homogenates of young rats, to degradation by calcium-activated neutral protease, calpain II. We found that in MAPs prepared from microtubules the two isoforms of MAP1B had comparable sensitivity to calpain-mediated proteolysis. Similarly, the high and low molecular weight forms of MAP2 were equally sensitive to digestion by calpain. However, although both MAPs were very susceptible to calpain-mediated proteolysis, MAP1B was more resistant to degradation by calpain than MAP2. Furthermore, the endogenous degradation of MAPs in neonate brain homogenates was calcium-dependent and inhibited by leupeptin, and the pattern of degradation products for MAP1B and MAP2 was similar to that of calpain-mediated proteolysis. These data suggest that calpain can play a role in the regulation of MAPs levels during brain development, in relation to normal neuronal differentiation and disorders associated with neurodegeneration.
Collapse
Affiliation(s)
- I Fischer
- Department of Biochemistry, E. K. Shriver Center, Waltham, MA 02254
| | | | | |
Collapse
|
41
|
Fischer I, Richter-Landsberg C, Safaei R. Regulation of microtubule associated protein 2 (MAP2) expression by nerve growth factor in PC12 cells. Exp Cell Res 1991; 194:195-201. [PMID: 2026175 DOI: 10.1016/0014-4827(91)90354-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the presence of nerve growth factor (NGF), PC12 cells cease to divide and differentiate, extending long microtubule-containing neurites. We showed by immunoblot analysis that MAP2 was detectable in PC12 after 4 days of NGF treatment and that its levels increased five- to sevenfold after 12 days of NGF treatment. The apparent molecular weight of MAP2 in PC12 cells was similar to that of rat brain MAP2 (280,000), with a doublet representing the MAP2 isoforms. However, the relative levels of MAP2 in differentiated PC12 cells were 5-10% of those found in rat brain. Immunofluorescence analysis of NGF-treated PC12 cells revealed that MAP2 co-localized with tubulin and was present in cell bodies and neurites. Northern blot analysis showed that the levels of MAP2 mRNA increased in PC12 cells during NGF-treatment in a pattern that paralleled the protein levels, suggesting that MAP2 expression is transcriptionally regulated.
Collapse
Affiliation(s)
- I Fischer
- Department of Developmental Neurobiology, E. K. Shriver Center, Waltham, Massachusetts 02254
| | | | | |
Collapse
|
42
|
Wuarin L, Sidell N. Differential susceptibilities of spinal cord neurons to retinoic acid-induced survival and differentiation. Dev Biol 1991; 144:429-35. [PMID: 2010040 DOI: 10.1016/0012-1606(91)90435-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In a previous study, we demonstrated trophic effects of vitamin A and its active metabolite, retinoic acid (RA), on perinatal rat spinal cord neurons and astrocytes in vitro. We now report that RA increases the survival of cholinergic neurons without affecting that of GABAergic neurons. These results were supported by measured levels of acetylcholinesterase (AChE), choline acetyltransferase (ChAT), and glutamic acid decarboxylase (GAD) activities, key enzymes of acetylcholine and gamma-aminobutyric acid metabolism, respectively, which showed RA-induced increases in AChE and ChAT levels but no elevations of GAD activity. In contrast to these phenotype-specific effects, most neurons showed RA-induced increases in neuritic outgrowth, density, and silver impregnation. Taken together, these results demonstrate neurotransmitter-specific and generalized effects of RA on developing CNS neurons.
Collapse
Affiliation(s)
- L Wuarin
- Department of Pathology, UCLA School of Medicine 90024
| | | |
Collapse
|
43
|
Fischer I, Shea TB. Differential appearance of extensively phosphorylated forms of the high molecular weight neurofilament protein in regions of mouse brain during postnatal development. J Neuroimmunol 1991; 31:73-81. [PMID: 1898519 DOI: 10.1016/0165-5728(91)90089-p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The appearance and accumulation of extensively phosphorylated forms of the high molecular weight neurofilament protein (H-phos) was studied in six regions of mouse brain during postnatal development by quantitative immunoblot analyses. H-phos (migrating at 200 kDa) was detected in brainstem, cerebellum, cortex and hippocampus as early as postnatal day 1. While NF-H levels increased dramatically during subsequent postnatal development in these regions, and reached levels similar to those observed in adult brain by postnatal day 14, quantitative differences were observed in both the rate and the extent of increase among individual regions. The most rapid accumulation of H-phos was observed in brainstem and cortex, where H-phos increased within the first postnatal week to levels comparable to those of adult brain. However, H-phos exhibited a slower developmental change in cerebellum, where the levels increased uniformly over the first two postnatal weeks. In hippocampus, the major increase in H-phos levels was delayed until the second postnatal week. In contrast to its early detection in the above regions, H-phos was not detected in immunoblot analyses of olfactory bulb or hypothalamus cytoskeletons at postnatal day 1, indicating that in these regions the accumulated levels of posttranslationally modified forms of this protein appeared relatively late. Furthermore, H-phos levels in hippocampus did not level off at postnatal day 14 and continued to increase until at least postnatal day 21. Immunoblot analyses of whole embryonic brain revealed the presence of H-phos as early as embryonic day 17, demonstrating that some mouse brain regions carry out extensive phosphorylation of NF-H during embryonic development.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I Fischer
- Department of Biochemistry, E.K. Shriver Center, Waltham, MA 02254
| | | |
Collapse
|
44
|
Klann E, Shelton KR. A lead-associated nuclear protein which increases in maturing brain and in differentiating neuroblastoma 2A cells exposed to cyclic AMP-elevating agents. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1990; 57:71-5. [PMID: 1708708 DOI: 10.1016/0165-3806(90)90186-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The lead-associated nuclear protein, p32/6.3, increases significantly in the postnatally developing rat cerebral cortex (Egle and Shelton, J. Biol. Chem., 261 (1986) 2294-2298). In the present study, this increase has been identified with late development of the cerebral cortex or forebrain because p32/6.3 reached adult levels 10 to 14 days after birth in guinea pig (a precocial animal) and after hatching in chicken. Comparison with other developmental processes indicates that p32/6.3 reaches adult levels just before or during the period of synapse maturation. Thus p32/6.3 may prove useful as a biochemical indicator of nuclear maturation in this period. The developmental regulation of p32/6.3 was further studied in mouse neuroblastoma 2a (Nb2a) cells. In vitro induction of differentiation of Nb2a cells by serum withdrawal from the culture medium increased p32/6.3, implicating p32/6.3 with differentiating neurons. This association was further strengthened when treatment of the Nb2a cells for 24 h with dibutyryl cAMP (1-5 mM), papaverine (5-12.5 micrograms/ml) or 3-isobutyl-1-methylxanthine (IBMX; 50-250 microM) increased the abundance of p32/6.3 1.5- to 3-fold more than serum withdrawal alone. 8-Bromo-cAMP (2-4 mM), N6-benzoyl cAMP (4 mM) and forskolin (10 microM) also increased the abundance of p32/6.3 in Nb2a cells, arguing that cAMP is involved in p32/6.3 regulation. These results, in conjunction with the postnatal increase of p32/6.3 in cerebral cortex, suggest a relationship between p32/6.3 levels and neuronal maturation.
Collapse
Affiliation(s)
- E Klann
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0614
| | | |
Collapse
|
45
|
Shea TB, Sihag RK, Nixon RA. Dynamics of phosphorylation and assembly of the high molecular weight neurofilament subunit in NB2a/d1 neuroblastoma. J Neurochem 1990; 55:1784-92. [PMID: 2213024 DOI: 10.1111/j.1471-4159.1990.tb04969.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In neuronal systems thus far studied, newly synthesized neurofilament subunits rapidly associate with the Triton-insoluble cytoskeleton and subsequently undergo extensive phosphorylation. However, in the present study we demonstrate by biochemical and immunological criteria that NB2a/d1 neuroblastoma cells also contain Triton-soluble, extensively phosphorylated 200-kDa high molecular weight neurofilament subunits (NF-H). High-speed centrifugation (100,000 g) of the Triton-soluble fraction for 1 h sedimented some, but not all, soluble NF-H subunits; immunoelectron microscopic analyses of the resulting pellet indicated that a portion of the NF-H subunits in this fraction are assembled into (Triton-soluble) neurofilaments. When cells were pulse labeled for 15 min with [35S]methionine, radiolabel was first associated with the Triton-soluble 200-kDa NF-H variants. Because only extensively phosphorylated NF-H subunits migrate at 200 kDa, whereas hypophosphorylated subunits migrate instead at 160 kDa, these findings suggest that some newly synthesized subunits were phosphorylated before they polymerized. In pulse-chase analyses, radiolabeled 200-kDa NF-H migrated into the 100,000 g particulate fraction of Triton-soluble extracts before its arrival in the Triton-insoluble cytoskeleton. Undifferentiated cells, which do not possess axonal neurites and lack a significant amount of Triton-insoluble, extensively phosphorylated NF-H, contain a sizeable pool of Triton-soluble extensively phosphorylated NF-H subunits and polymers. We interpret these data to indicate that the integration of newly synthesized NF-H into the cytoskeleton occurs in a progression of distinct stages, and that assembly of NF-H into neurofilaments and integration into the Triton-insoluble cytoskeleton are not prerequisites for the incorporation of certain phosphate groups on these polypeptides.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T B Shea
- Ralph Lowell Laboratories, McLean Hospital, Belmont, MA 02178
| | | | | |
Collapse
|
46
|
Kirsch J, Zutra A, Littauer UZ. Characterization and intracellular distribution of microtubule-associated protein 2 in differentiating human neuroblastoma cells. J Neurochem 1990; 55:1031-41. [PMID: 1696615 DOI: 10.1111/j.1471-4159.1990.tb04593.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The use of a panel of monoclonal antibodies (mAbs) directed against different determinants of microtubule-associated protein 2 (MAP2) enabled us to identify two distinct high-molecular-mass MAP2 species (270 and 250 kDa) and a substantial amount of MAP2c (70 kDa) in human neuroblastoma cells. The 250-kDa MAP2 species appears to be confined to the human neuroblastoma cells and was not observed in microtubules (MTs) from bovine and rat brain, mouse neuroblastoma, or MTs from human cerebellum. A new overlay method was developed, which demonstrates binding of tubulin to human neuroblastoma high-molecular-mass MAP2 by exposing nitrocellulose-bound MT proteins under polymerization conditions to tubulin. Bound tubulin was detected with a mAb directed against beta-tubulin. The binding of tubulin to MAP2 could be abolished by a peptide homologous to positions 426-445 of the C-terminal region of beta-tubulin. Immunological cross-reactivity with several mAbs directed against bovine brain MAP2, taxol-promoted coassembly into MTs, and immunocytochemical visualization within cells were further criteria utilized to characterize these proteins as true MAPs. Indirect immunofluorescence with anti-MAP2 and anti-beta-tubulin mAbs demonstrated that there is a change in the spatial organization of MTs during induced cell differentiation, as indicated by the appearance of MT bundles and the redistribution of MAP2.
Collapse
Affiliation(s)
- J Kirsch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
47
|
Fischer I, Konola J, Cochary E. Microtubule associated protein (MAP1B) is present in cultured oligodendrocytes and co-localizes with tubulin. J Neurosci Res 1990; 27:112-24. [PMID: 2254953 DOI: 10.1002/jnr.490270117] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Differentiation of oligodendrocytes is accompanied by the extension of processes and the assembly of the myelin membrane. It is likely that the cytoskeleton plays an important role in this process in terms of changes in cell shape, transport of myelin components, and organization of the myelin membrane. Oligodendrocytes contain microtubules (MT) which associate with other components of the cytoskeleton, and microtubule associated proteins (MAPs) may mediate some of these interactions. In this study we have shown the presence of MAP1B in oligodendrocytes grown in primary glial cultures by double-label immunofluorescence using antibodies to galactocerebroside (GC) and MAP1B. The staining of the cultures showed that GC-positive oligodendrocytes were also stained with MAP1B antibodies. However, MAP1B stain was limited to cell bodies and processes, whereas GC stain was also seen in flattened membrane sheets and punctate staining in processes. MAP1B staining was also compared with that of myelin proteolipid (PLP), myelin basic protein (MBP) and beta-tubulin in secondary glial cultures that were enriched for oligodendrocytes. The results showed a typical staining of cell bodies and membranous profiles using PLP antibodies, and the staining of cell bodies and flattened regions of membranous sheets by MBP antibodies. In contrast, both polyclonal and monoclonal antibodies to MAP1B showed a uniform diffuse staining of cell bodies, major processes, and fine interconnected processes. Double-labeling of the cells showed that MAP1B was co-localized with tubulin, but was not present in glial fibrillary acidic protein (GFAP)-positive astrocytes. Western and Northern blot analyses of primary glial cultures showed that MAP1B had a molecular mass of 320 kDa and a mRNA of 10 kb. These values are identical to those previously reported for brain MAP1B (Safaei and Fischer, 1989) and demonstrate the presence of MAP1B in oligodendrocytes.
Collapse
Affiliation(s)
- I Fischer
- Department of Biochemistry, E.K. Shriver Center, Waltham, Massachusetts 02254
| | | | | |
Collapse
|
48
|
Fischer I, Romano-Clarke G. Changes in microtubule-associated protein MAP1B phosphorylation during rat brain development. J Neurochem 1990; 55:328-33. [PMID: 1693946 DOI: 10.1111/j.1471-4159.1990.tb08855.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microtubule-associated protein MAP1B from neonatal rat brain was separated on sodium dodecyl sulfate-containing polyacrylamide gels into two isoforms (high and low MAP1B), both of which were recognized by a panel of monoclonal and polyclonal antibodies against MAP1B. In addition, SMI31, a monoclonal antibody directed against phosphorylated epitopes of the neurofilament proteins, showed phosphatase-sensitive reactivity against the high isoform of MAP1B. The antigenic relationship between the phosphorylated isoform of MAP1B and neurofilaments was confirmed by the reactivity of SMI31 with the immunoprecipitated MAP1B protein. After dephosphorylation of MAP1B with alkaline phosphatase, the higher-molecular-weight isoform of MAP1B was no longer detectable with phosphate-insensitive anti-MAP1B antibodies, whereas there was a significant increase in the immunoreactivity of the lower-molecular-weight MAP1B isoform. These data suggest that the structural microheterogeneity of MAP1B is due to differences in phosphorylation. The two isoforms were present in all brain regions of the young rat. During brain development, the general decrease in MAP1B levels was accompanied by changes in the relative amount of the two isoforms. In particular, the phosphorylated isoform of MAP1B decreased dramatically to almost undetectable levels in adult brain. This conclusion was further supported by immunoblotting analysis that showed the disappearance of phosphorylated epitopes of MAP1B early during brain development. In addition, dephosphorylation experiments demonstrated the phosphatase sensitivity of the phosphorylated isoform throughout development.
Collapse
Affiliation(s)
- I Fischer
- Department of Biochemistry, E. K. Shriver Center, Waltham, MA 02254
| | | |
Collapse
|
49
|
Shea TB. Transient increase in vimentin in axonal cytoskeletons during differentiation in NB2a/d1 cells. Brain Res 1990; 521:338-42. [PMID: 2207672 DOI: 10.1016/0006-8993(90)91563-v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The localization of vimentin (Vm) within the Triton-insoluble cytoskeleton was characterized during differentiation of mouse NB2a/dl neuroblastoma cells. Vm staining increased within neurites during the first day of differentiation, and then rapidly declined in both perikarya and neurites. By contrast, immunoreactivity against extensively phosphorylated forms of the high molecular weight neurofilament subunit (NF-H) was absent until the third day after differentiation. Immunoblot analyses confirmed that these alterations reflected specific changes in Vm and NF-H steady-state levels. Metabolic labeling demonstrated a decrease in the rate of Vm synthesis by the third day of differentiation. We conclude that changes in incorporation of intermediate filament species into the axonal cytoskeleton reflect distinct stages in neurite outgrowth and maturation; i.e., the Vm filament system may participate in initial stages of neuritogenesis during which outgrowth is most rapid, while NFPs may subsequently function in the establishment of a stabilized axonal cytoskeleton.
Collapse
Affiliation(s)
- T B Shea
- Ralph Lowell Laboratories, McLean Hospital, Belmont, MA 02178
| |
Collapse
|
50
|
Kadowaki H, Evans JE, Rys-Sikora KE, Koff RS. Effect of differentiation and cell density on glycosphingolipid class and molecular species composition of mouse neuroblastoma NB2a cells. J Neurochem 1990; 54:2125-37. [PMID: 2338562 DOI: 10.1111/j.1471-4159.1990.tb04919.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of cell density and retinoic acid-induced differentiation on the class and molecular species composition of mouse neuroblastoma NB2a cell glycosphingolipids were examined under conditions where the period of culture was controlled. The total amount of neutral glycosphingolipids per cell decreased both with differentiation and as the cells became confluent. The relative amount of the neutral glycosphingolipid classes was not affected by differentiation, whereas there were small but significant changes in the relative amount of the neutral glycosphingolipid classes as the cells became confluent. The total amount of the gangliosides was unaffected by either differentiation or cell density, but there were significant changes in the ganglioside class composition as a result of both cell density and differentiation, and the effects were additive. The molecular species of all the major neutral glycosphingolipid and ganglioside classes were essentially identical, and were altered only slightly by either differentiation or cell density.
Collapse
Affiliation(s)
- H Kadowaki
- Department of Medicine, Framingham Union Hospital, Massachusetts 01701
| | | | | | | |
Collapse
|