1
|
Deng L, Song SY, Zhao WM, Meng XW, Liu H, Zheng Q, Peng K, Ji FH. Triggering Receptor Expressed on Myeloid Cells 2 Alleviated Sevoflurane-Induced Developmental Neurotoxicity via Microglial Pruning of Dendritic Spines in the CA1 Region of the Hippocampus. Neurosci Bull 2024; 40:1215-1229. [PMID: 39078595 PMCID: PMC11365924 DOI: 10.1007/s12264-024-01260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/14/2024] [Indexed: 07/31/2024] Open
Abstract
Sevoflurane induces developmental neurotoxicity in mice; however, the underlying mechanisms remain unclear. Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for microglia-mediated synaptic refinement during the early stages of brain development. We explored the effects of TREM2 on dendritic spine pruning during sevoflurane-induced developmental neurotoxicity in mice. Mice were anaesthetized with sevoflurane on postnatal days 6, 8, and 10. Behavioral performance was assessed using the open field test and Morris water maze test. Genetic knockdown of TREM2 and overexpression of TREM2 by stereotaxic injection were used for mechanistic experiments. Western blotting, immunofluorescence, electron microscopy, three-dimensional reconstruction, Golgi staining, and whole-cell patch-clamp recordings were performed. Sevoflurane exposures upregulated the protein expression of TREM2, increased microglia-mediated pruning of dendritic spines, and reduced synaptic multiplicity and excitability of CA1 neurons. TREM2 genetic knockdown significantly decreased dendritic spine pruning, and partially aggravated neuronal morphological abnormalities and cognitive impairments in sevoflurane-treated mice. In contrast, TREM2 overexpression enhanced microglia-mediated pruning of dendritic spines and rescued neuronal morphological abnormalities and cognitive dysfunction. TREM2 exerts a protective role against neurocognitive impairments in mice after neonatal exposures to sevoflurane by enhancing microglia-mediated pruning of dendritic spines in CA1 neurons. This provides a potential therapeutic target in the prevention of sevoflurane-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Li Deng
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Anaesthesiology, Soochow University, Suzhou, 215006, China
| | - Shao-Yong Song
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Anaesthesiology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Wei-Ming Zhao
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Anaesthesiology, Soochow University, Suzhou, 215006, China
| | - Xiao-Wen Meng
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Anaesthesiology, Soochow University, Suzhou, 215006, China
| | - Hong Liu
- Department of Anaesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Qing Zheng
- Center for Molecular Imaging and Nuclear Medicine, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Suzhou, 215006, China
| | - Ke Peng
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Anaesthesiology, Soochow University, Suzhou, 215006, China.
| | - Fu-Hai Ji
- Department of Anaesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Anaesthesiology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
2
|
Burnsed J, Matysik W, Yang L, Sun H, Joshi S, Kapur J. Increased glutamatergic synaptic transmission during development in layer II/III mouse motor cortex pyramidal neurons. Cereb Cortex 2023; 33:4645-4653. [PMID: 36137566 PMCID: PMC10110452 DOI: 10.1093/cercor/bhac368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal maturation of the motor cortex is vital to developing a variety of functions, including the capacity for motor learning. The first postnatal weeks involve many neuronal and synaptic changes, which differ by region and layer, likely due to different functions and needs during development. Motor cortex layer II/III is critical to receiving and integrating inputs from somatosensory cortex and generating attentional signals that are important in motor learning and planning. Here, we examined the neuronal and synaptic changes occurring in layer II/III pyramidal neurons of the mouse motor cortex from the neonatal (postnatal day 10) to young adult (postnatal day 30) period, using a combination of electrophysiology and biochemical measures of glutamatergic receptor subunits. There are several changes between p10 and p30 in these neurons, including increased dendritic branching, neuronal excitability, glutamatergic synapse number and synaptic transmission. These changes are critical to ongoing plasticity and capacity for motor learning during development. Understanding these changes will help inform future studies examining the impact of early-life injury and experiences on motor learning and development capacity.
Collapse
Affiliation(s)
- Jennifer Burnsed
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia 22908-0386, USA
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908-0386, USA
| | - Weronika Matysik
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia 22908-0386, USA
| | - Lu Yang
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908-0386, USA
- Department of Pediatrics, Shandong University, Jian, Shandong 250012, China
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908-0386, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908-0386, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908-0386, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908-0386, USA
- Brain Institute, University of Virginia, Charlottesville, Virginia 22908-0386, USA
| |
Collapse
|
3
|
5-HT-dependent synaptic plasticity of the prefrontal cortex in postnatal development. Sci Rep 2022; 12:21015. [PMID: 36470912 PMCID: PMC9723183 DOI: 10.1038/s41598-022-23767-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Important functions of the prefrontal cortex (PFC) are established during early life, when neurons exhibit enhanced synaptic plasticity and synaptogenesis. This developmental stage drives the organization of cortical connectivity, responsible for establishing behavioral patterns. Serotonin (5-HT) emerges among the most significant factors that modulate brain activity during postnatal development. In the PFC, activated 5-HT receptors modify neuronal excitability and interact with intracellular signaling involved in synaptic modifications, thus suggesting that 5-HT might participate in early postnatal plasticity. To test this hypothesis, we employed intracellular electrophysiological recordings of PFC layer 5 neurons to study the modulatory effects of 5-HT on plasticity induced by theta-burst stimulation (TBS) in two postnatal periods of rats. Our results indicate that 5-HT is essential for TBS to result in synaptic changes during the third postnatal week, but not later. TBS coupled with 5-HT2A or 5-HT1A and 5-HT7 receptors stimulation leads to long-term depression (LTD). On the other hand, TBS and synergic activation of 5-HT1A, 5-HT2A, and 5-HT7 receptors lead to long-term potentiation (LTP). Finally, we also show that 5-HT dependent synaptic plasticity of the PFC is impaired in animals that are exposed to early-life chronic stress.
Collapse
|
4
|
Ciganok-Hückels N, Jehasse K, Kricsfalussy-Hrabár L, Ritter M, Rüland T, Kampa BM. Postnatal development of electrophysiological and morphological properties in layer 2/3 and layer 5 pyramidal neurons in the mouse primary visual cortex. Cereb Cortex 2022; 33:5875-5884. [PMID: 36453454 PMCID: PMC10183751 DOI: 10.1093/cercor/bhac467] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Eye-opening is a critical point for laminar maturation of pyramidal neurons (PNs) in primary visual cortex. Knowing both the intrinsic properties and morphology of PNs from the visual cortex during development is crucial to contextualize the integration of visual inputs at different age stages. Few studies have reported changes in intrinsic excitability in these neurons but were restricted to only one layer or one stage of cortical development. Here, we used in vitro whole-cell patch-clamp to investigate the developmental impact on electrophysiological properties of layer 2/3 and layer 5 PNs in mouse visual cortex. Additionally, we evaluated the morphological changes before and after eye-opening and compared these in adult mice. Overall, we found a decrease in intrinsic excitability in both layers after eye-opening which remained stable between juvenile and adult mice. The basal dendritic length increased in layer 5 neurons, whereas spine density increased in layer 2/3 neurons after eye-opening. These data show increased number of synapses after onset of sensory input paralleled with a reduced excitability, presumably as homeostatic mechanism. Altogether, we provide a database of the properties of PNs in mouse visual cortex by considering the layer- and time-specific changes of these neurons during sensory development.
Collapse
Affiliation(s)
- Natalja Ciganok-Hückels
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University , 52074 Aachen , Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University , 52074 Aachen , Germany
| | - Kevin Jehasse
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University , 52074 Aachen , Germany
| | | | - Mira Ritter
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University , 52074 Aachen , Germany
| | - Thomas Rüland
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University , 52074 Aachen , Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University , 52074 Aachen , Germany
- Institute for Biological Information Processing (IBI-1), Forschungszentrum Jülich , 52428 Jülich , Germany
| | - Björn M Kampa
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University , 52074 Aachen , Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University , 52074 Aachen , Germany
- JARA BRAIN, Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich , 52428 Jülich , Germany
| |
Collapse
|
5
|
Perez-García P, Pardillo-Díaz R, Geribaldi-Doldán N, Gómez-Oliva R, Domínguez-García S, Castro C, Nunez-Abades P, Carrascal L. Refinement of Active and Passive Membrane Properties of Layer V Pyramidal Neurons in Rat Primary Motor Cortex During Postnatal Development. Front Mol Neurosci 2021; 14:754393. [PMID: 34924951 PMCID: PMC8671142 DOI: 10.3389/fnmol.2021.754393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Achieving the distinctive complex behaviors of adult mammals requires the development of a great variety of specialized neural circuits. Although the development of these circuits begins during the embryonic stage, they remain immature at birth, requiring a postnatal maturation process to achieve these complex tasks. Understanding how the neuronal membrane properties and circuits change during development is the first step to understand their transition into efficient ones. Thus, using whole cell patch clamp recordings, we have studied the changes in the electrophysiological properties of layer V pyramidal neurons of the rat primary motor cortex during postnatal development. Among all the parameters studied, only the voltage threshold was established at birth and, although some of the changes occurred mainly during the second postnatal week, other properties such as membrane potential, capacitance, duration of the post-hyperpolarization phase or the maximum firing rate were not defined until the beginning of adulthood. Those modifications lead to a decrease in neuronal excitability and to an increase in the working range in young adult neurons, allowing more sensitive and accurate responses. This maturation process, that involves an increase in neuronal size and changes in ionic conductances, seems to be influenced by the neuronal type and by the task that neurons perform as inferred from the comparison with other pyramidal and motor neuron populations.
Collapse
Affiliation(s)
- Patricia Perez-García
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain.,Department of Human Anatomy and Embriology, University of Cádiz, Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Carmen Castro
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Livia Carrascal
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
6
|
Uguagliati B, Stagni F, Emili M, Giacomini A, Russo C, Guidi S, Bartesaghi R. Early appearance of dendritic alterations in neocortical pyramidal neurons of the Ts65Dn model of Down syndrome. Dev Neurosci 2021; 44:23-38. [PMID: 34852343 DOI: 10.1159/000520925] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Down syndrome (DS), which is due to triplication of chromosome 21, is constantly associated with intellectual disability (ID). ID can be ascribed to both neurogenesis impairment and dendritic pathology. These defects are replicated in the Ts65Dn mouse, a widely used model of DS. While neurogenesis impairment in DS is a fetal event, dendritic pathology occurs after the first postnatal months. Neurogenesis alterations across the lifespan have been extensively studied in the Ts65Dn mouse. In contrast, there is scarce information regarding dendritic alterations at early life stages in this and other models, although there is evidence for dendritic alterations in adult mouse models. Thus, the goal of the current study was to establish whether dendritic alterations are already present in the neonatal period in Ts65Dn mice. In Golgi-stained brains we quantified the dendritic arbors of layer II/III pyramidal neurons in the frontal cortex of Ts65Dn mice aged 2 (P2) and 8 (P8) days and their euploid littermates. In P2 Ts65Dn mice we found a moderate hypotrophy of the apical and collateral dendrites but a patent hypotrophy of the basal dendrites. In P8 Ts65Dn mice the distalmost apical branches were missing or reduced in number but there were no alterations in the collateral and basal dendrites. No genotype effects were detected on either somatic or dendritic spine density. This study shows dendritic branching defects that mainly involve the basal domain in P2 Ts65Dn mice, and the apical but not the other domains in P8 Ts65Dn mice. This suggests that dendritic defects may be related to dendritic compartment and age. The lack of a severe dendritic pathology in Ts65Dn pups is reminiscent of the delayed appearance of patent dendritic alterations in newborns with DS. This similarly highlights the usefulness of the Ts65Dn model for the study of the mechanisms underlying dendritic alterations in DS and the design of possible therapeutic interventions.
Collapse
Affiliation(s)
- Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carla Russo
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Development of Auditory Cortex Circuits. J Assoc Res Otolaryngol 2021; 22:237-259. [PMID: 33909161 DOI: 10.1007/s10162-021-00794-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 02/03/2023] Open
Abstract
The ability to process and perceive sensory stimuli is an essential function for animals. Among the sensory modalities, audition is crucial for communication, pleasure, care for the young, and perceiving threats. The auditory cortex (ACtx) is a key sound processing region that combines ascending signals from the auditory periphery and inputs from other sensory and non-sensory regions. The development of ACtx is a protracted process starting prenatally and requires the complex interplay of molecular programs, spontaneous activity, and sensory experience. Here, we review the development of thalamic and cortical auditory circuits during pre- and early post-natal periods.
Collapse
|
8
|
Something Scary Is Out There: Remembrances of Where the Threat Was Located by Preschool Children and Adults with Nighttime Fear. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2021. [DOI: 10.1007/s40806-021-00279-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractYoung children frequently report imaginary scary things in their bedrooms at night. This study examined the remembrances of 140 preschool children and 404 adults selecting either above, side, or below locations for a scary thing relative to their beds. The theoretical framework for this investigation posited that sexual-size dimorphism in Australopithecus afarensis, the presumed human ancestor in the Middle Pliocene, constrained sleeping site choice to mitigate predation. Smaller-bodied females nesting in trees would have anticipated predatory attacks from below, while male nesting on the ground would have anticipated attacks from their side. Such anticipation of nighttime attacks from below is present in many arboreal primates and might still persist as a cognitive relict in humans. In remembrances of nighttime fear, girls and women were predicted to select the below location and males the side location. Following interviews of children and adult questionnaires, multinomial log-linear analyses indicated statistically significant interactions (p < 0.001) of sex by location for the combined sample and each age class driven, in part, by larger frequencies of males selecting the side location and females selecting the below location. Data partitioning further revealed that males selected the side location at larger frequencies (p < 0.001) than the below location, whereas female selection of side and below locations did not differ significantly. While indicative of evolutionary persistence in cognitive appraisal of threat locations, the female hypothesis did not consider natural selection acting on assessment of nighttime terrestrial threats following the advent of early Homo in the Late Pliocene.
Collapse
|
9
|
Pekala M, Doliwa M, Kalita K. Impact of maternal immune activation on dendritic spine development. Dev Neurobiol 2021; 81:524-545. [PMID: 33382515 DOI: 10.1002/dneu.22804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
Dendritic spines are small dendritic protrusions that harbor most excitatory synapses in the brain. The proper generation and maturation of dendritic spines are crucial for the regulation of synaptic transmission and formation of neuronal circuits. Abnormalities in dendritic spine density and morphology are common pathologies in autism and schizophrenia. According to epidemiological studies, one risk factor for these neurodevelopmental disorders is maternal infection during pregnancy. This review discusses spine alterations in animal models of maternal immune activation in the context of neurodevelopmental disorders. We describe potential mechanisms that might be responsible for prenatal infection-induced changes in the dendritic spine phenotype and behavior in offspring.
Collapse
Affiliation(s)
- Martyna Pekala
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Doliwa
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Swinehart BD, Bland KM, Holley ZL, Lopuch AJ, Casey ZO, Handwerk CJ, Vidal GS. Integrin β3 organizes dendritic complexity of cerebral cortical pyramidal neurons along a tangential gradient. Mol Brain 2020; 13:168. [PMID: 33317577 PMCID: PMC7734815 DOI: 10.1186/s13041-020-00707-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/01/2020] [Indexed: 11/10/2022] Open
Abstract
Dysfunctional dendritic arborization is a key feature of many developmental neurological disorders. Across various human brain regions, basal dendritic complexity is known to increase along a caudal-to-rostral gradient. We recently discovered that basal dendritic complexity of layer II/III cortical pyramidal neurons in the mouse increases along a caudomedial-to-rostrolateral gradient spanning multiple regions, but at the time, no molecules were known to regulate that exquisite pattern. Integrin subunits have been implicated in dendritic development, and the subunit with the strongest associations with autism spectrum disorder and intellectual disability is integrin β3 (Itgb3). In mice, global knockout of Itgb3 leads to autistic-like neuroanatomy and behavior. Here, we tested the hypothesis that Itgb3 is required for increasing dendritic complexity along the recently discovered tangential gradient among layer II/III cortical pyramidal neurons. We targeted a subset of layer II/III cortical pyramidal neurons for Itgb3 loss-of-function via Cre-loxP-mediated excision of Itgb3. We tracked the rostrocaudal and mediolateral position of the targeted neurons and reconstructed their dendritic arbors. In contrast to controls, the basal dendritic complexity of Itgb3 mutant neurons was not related to their cortical position. Basal dendritic complexity of mutant and control neurons differed because of overall changes in branch number across multiple branch orders (primary, secondary, etc.), rather than any changes in the average length at those branch orders. Furthermore, dendritic spine density was related to cortical position in control but not mutant neurons. Thus, the autism susceptibility gene Itgb3 is required for establishing a tangential pattern of basal dendritic complexity among layer II/III cortical pyramidal neurons, suggesting an early role for this molecule in the developing brain.
Collapse
Affiliation(s)
- Brian D Swinehart
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - Katherine M Bland
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - Z Logan Holley
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - Andrew J Lopuch
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - Zachary O Casey
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - Christopher J Handwerk
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA
| | - George S Vidal
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22801, USA.
| |
Collapse
|
11
|
Circuit-Specific Dendritic Development in the Piriform Cortex. eNeuro 2020; 7:ENEURO.0083-20.2020. [PMID: 32457067 PMCID: PMC7307633 DOI: 10.1523/eneuro.0083-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Dendritic geometry is largely determined during postnatal development and has a substantial impact on neural function. In sensory processing, postnatal development of the dendritic tree is affected by two dominant circuit motifs, ascending sensory feedforward inputs and descending and local recurrent connections. In the three-layered anterior piriform cortex (aPCx), neurons in the sublayers 2a and 2b display vertical segregation of these two circuit motifs. Here, we combined electrophysiology, detailed morphometry, and Ca2+ imaging in acute mouse brain slices and modeling to study circuit-specific aspects of dendritic development. We observed that determination of branching complexity, dendritic length increases, and pruning occurred in distinct developmental phases. Layer 2a and layer 2b neurons displayed developmental phase-specific differences between their apical and basal dendritic trees related to differences in circuit incorporation. We further identified functional candidate mechanisms for circuit-specific differences in postnatal dendritic growth in sublayers 2a and 2b at the mesoscale and microscale levels. Already in the first postnatal week, functional connectivity of layer 2a and layer 2b neurons during early spontaneous network activity scales with differences in basal dendritic growth. During the early critical period of sensory plasticity in the piriform cortex, our data are consistent with a model that proposes a role for dendritic NMDA-spikes in selecting branches for survival during developmental pruning in apical dendrites. The different stages of the morphologic and functional developmental pattern differences between layer 2a and layer 2b neurons demonstrate the complex interplay between dendritic development and circuit specificity.
Collapse
|
12
|
Patterns of Dendritic Basal Field Orientation of Pyramidal Neurons in the Rat Somatosensory Cortex. eNeuro 2019; 5:eN-NWR-0142-18. [PMID: 30656209 PMCID: PMC6335082 DOI: 10.1523/eneuro.0142-18.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/23/2022] Open
Abstract
The study of neuronal dendritic orientation is of interest because it is related to how neurons grow dendrites to establish the synaptic input that neurons receive. The dendritic orientations of neurons in the nervous system vary, ranging from rather heterogeneously distributed (asymmetric) to homogeneously distributed (symmetric) dendritic arbors. Here, we analyze the dendritic orientation of the basal dendrites of intracellularly labeled pyramidal neurons from horizontal sections of Layers II–VI of the hindlimb somatosensory (S1HL) cortex of 14-d-old (P14) rats. We used circular statistics and proposed two new graphical descriptive representations of the neuron. We found that the dendritic pattern of most neurons was asymmetric. Furthermore, we found that there is a mixture of different types of orientations within any given group of neurons in any cortical layer. In addition, we investigated whether dendritic orientation was related to the physical location within the brain with respect to the anterior, dorsal, posterior and ventral directions. Generally, there was a preference towards the anterior orientation. A comparison between layers revealed that the preference for the anterior orientation was more pronounced in neurons located in Layers II, III, IV, and Va than for the neurons located in Layers Vb and VI. The dorsal orientation was the least preferred orientation in all layers, except for Layers IV and Va, where the ventral orientation had the lowest preference. Therefore, the orientation of basal dendritic arbors of pyramidal cells is variable and asymmetric, although a majority has a single orientation with a preference for the anterior direction in P14 rats.
Collapse
|
13
|
Chang M, Suzuki N, Kawai HD. Laminar specific gene expression reveals differences in postnatal laminar maturation in mouse auditory, visual, and somatosensory cortex. J Comp Neurol 2018; 526:2257-2284. [DOI: 10.1002/cne.24481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/03/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Minzi Chang
- Department of Bioinformatics; Graduate School of Engineering; Hachioji Tokyo 192-8577 Japan
| | - Nobuko Suzuki
- Department of Bioinformatics; Graduate School of Engineering; Hachioji Tokyo 192-8577 Japan
| | - Hideki Derek Kawai
- Department of Bioinformatics; Graduate School of Engineering; Hachioji Tokyo 192-8577 Japan
- Department of Science and Engineering for Sustainable Innovation; Faculty of Science and Engineering; Hachioji Tokyo 192-8577 Japan
| |
Collapse
|
14
|
Macht VA. Neuro-immune interactions across development: A look at glutamate in the prefrontal cortex. Neurosci Biobehav Rev 2016; 71:267-280. [PMID: 27593444 DOI: 10.1016/j.neubiorev.2016.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
Abstract
Although the primary role for the immune system is to respond to pathogens, more recently, the immune system has been demonstrated to have a critical role in signaling developmental events. Of particular interest for this review is how immunocompetent microglia and astrocytes interact with glutamatergic systems to influence the development of neural circuits in the prefrontal cortex (PFC). Microglia are the resident macrophages of the brain, and astrocytes mediate both glutamatergic uptake and coordinate with microglia to respond to the general excitatory state of the brain. Cross-talk between microglia, astrocytes, and glutamatergic neurons forms a quad-partite synapse, and this review argues that interactions within this synapse have critical implications for the maturation of PFC-dependent cognitive function. Similarly, understanding developmental shifts in immune signaling may help elucidate variations in sensitivities to developmental disruptions.
Collapse
Affiliation(s)
- Victoria A Macht
- University of South Carolina, 1512 Pendleton St., Department of Psychology, Columbia, SC 29208, United States.
| |
Collapse
|
15
|
Wainwright P, Bulman-Fleming M, Lévesque S, Mutsaers L, McCutcheon D. A Saturated-Fat Diet during Development Alters Dendritic Growth in Mouse Brain. Nutr Neurosci 2016; 1:49-58. [DOI: 10.1080/1028415x.1998.11747212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Yang J, Chen J, Cai G, Lu R, Sun T, Luo T, Wu S, Ling S. Exposure to Sevoflurane Affects the Development of Parvalbumin Interneurons in the Main Olfactory Bulb in Mice. Front Neuroanat 2016; 10:72. [PMID: 27445710 PMCID: PMC4920108 DOI: 10.3389/fnana.2016.00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/09/2016] [Indexed: 11/13/2022] Open
Abstract
Sevoflurane is widely used in adult and pediatric patients during clinical surgeries. Although studies have shown that exposure to sevoflurane impairs solfactory memory after an operation, the neuropathological changes underlying this effect are not clear. This study detected the effect of sevoflurane exposure on the development of calcium-binding proteins-expressing interneurons in the main olfactory bulb (MOB). We exposed neonatal mice to 2% sevoflurane at two different developmental time points and found that exposing mice to sevoflurane at postnatal day (PD) 7 significantly decreased the expression of GAD67 and parvalbumin (PV) in the olfactory bulb (OB) but did not alter the expression of calretinin (CR) or calbindin D28k (CB). The number and dendritic morphology of PV-expressing interneurons in the MOB were impaired by exposure to sevoflurane at PD7. However, exposure to sevoflurane at PD10 had no effect on calcium-binding protein expression or the number and dendritic morphology of PV-expressing interneurons in the MOB. These results suggest that exposing neonatal mice to sevoflurane during a critical period of olfactory development affects the development of PV-expressing interneurons in the MOB.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University Hangzhou, China
| | - Jing Chen
- Department of Anatomy and K.K. Leung Brain Research Center, Fourth Military Medical University Xi'an, China
| | - Guohong Cai
- Department of Neurobiology and Collaborative Innovation Centre for Brain Science, Fourth Military Medical University Xi'an, China
| | - Rui Lu
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University Xi'an, China
| | - Tingting Sun
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University Hangzhou, China
| | - Tingting Luo
- Department of Neurobiology and Collaborative Innovation Centre for Brain Science, Fourth Military Medical University Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Centre for Brain Science, Fourth Military Medical University Xi'an, China
| | - Shucai Ling
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University Hangzhou, China
| |
Collapse
|
17
|
Reyes LD, Harland T, Reep RL, Sherwood CC, Jacobs B. Golgi Analysis of Neuron Morphology in the Presumptive Somatosensory Cortex and Visual Cortex of the Florida Manatee (Trichechus manatus latirostris). BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:105-16. [PMID: 27166161 DOI: 10.1159/000445495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/15/2016] [Indexed: 11/19/2022]
Abstract
The current study investigates neuron morphology in presumptive primary somatosensory (S1) and primary visual (V1) cortices of the Florida manatee (Trichechus manatus latirostris) as revealed by Golgi impregnation. Sirenians, including manatees, have an aquatic lifestyle, a large body size, and a relatively large lissencephalic brain. The present study examines neuron morphology in 3 cortical areas: in S1, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2) and in V1, dorsolateral cortex area 4 (DL4). Neurons exhibited a variety of morphological types, with pyramidal neurons being the most common. The large variety of neuron types present in the manatee cortex was comparable to that seen in other eutherian mammals, except for rodents and primates, where pyramid-shaped neurons predominate. A comparison between pyramidal neurons in S1 and V1 indicated relatively greater dendritic branching in S1. Across all 3 areas, the dendritic arborization pattern of pyramidal neurons was also similar to that observed previously in the afrotherian rock hyrax, cetartiodactyls, opossums, and echidnas but did not resemble the widely bifurcated dendrites seen in the large-brained African elephant. Despite adaptations for an aquatic environment, manatees did not share specific neuron types such as tritufted and star-like neurons that have been found in cetaceans. Manatees exhibit an evolutionarily primitive pattern of cortical neuron morphology shared with most other mammals and do not appear to have neuronal specializations for an aquatic niche.
Collapse
Affiliation(s)
- Laura D Reyes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, D.C., USA
| | | | | | | | | |
Collapse
|
18
|
Ray S, Brecht M. Structural development and dorsoventral maturation of the medial entorhinal cortex. eLife 2016; 5:e13343. [PMID: 27036175 PMCID: PMC4876644 DOI: 10.7554/elife.13343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/27/2016] [Indexed: 12/11/2022] Open
Abstract
We investigated the structural development of superficial-layers of medial entorhinal cortex and parasubiculum in rats. The grid-layout and cholinergic-innervation of calbindin-positive pyramidal-cells in layer-2 emerged around birth while reelin-positive stellate-cells were scattered throughout development. Layer-3 and parasubiculum neurons had a transient calbindin-expression, which declined with age. Early postnatally, layer-2 pyramidal but not stellate-cells co-localized with doublecortin - a marker of immature neurons - suggesting delayed functional-maturation of pyramidal-cells. Three observations indicated a dorsal-to-ventral maturation of entorhinal cortex and parasubiculum: (i) calbindin-expression in layer-3 neurons decreased progressively from dorsal-to-ventral, (ii) doublecortin in layer-2 calbindin-positive-patches disappeared dorsally before ventrally, and (iii) wolframin-expression emerged earlier in dorsal than ventral parasubiculum. The early appearance of calbindin-pyramidal-grid-organization in layer-2 suggests that this pattern is instructed by genetic information rather than experience. Superficial-layer-microcircuits mature earlier in dorsal entorhinal cortex, where small spatial-scales are represented. Maturation of ventral-entorhinal-microcircuits - representing larger spatial-scales - follows later around the onset of exploratory behavior.
Collapse
Affiliation(s)
- Saikat Ray
- Bernstein Center for Computational
Neuroscience, Humboldt University of
Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational
Neuroscience, Humboldt University of
Berlin, Berlin, Germany
| |
Collapse
|
19
|
Exposure to a mildly aversive early life experience leads to prefrontal cortex deficits in the rat. Brain Struct Funct 2015; 221:4141-4157. [DOI: 10.1007/s00429-015-1154-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
|
20
|
Lee JH, Zhang J, Wei L, Yu SP. Neurodevelopmental implications of the general anesthesia in neonate and infants. Exp Neurol 2015; 272:50-60. [PMID: 25862287 DOI: 10.1016/j.expneurol.2015.03.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
Abstract
Each year, about six million children, including 1.5 million infants, in the United States undergo surgery with general anesthesia, often requiring repeated exposures. However, a crucial question remains of whether neonatal anesthetics are safe for the developing central nervous system (CNS). General anesthesia encompasses the administration of agents that induce analgesic, sedative, and muscle relaxant effects. Although the mechanisms of action of general anesthetics are still not completely understood, recent data have suggested that anesthetics primarily modulate two major neurotransmitter receptor groups, either by inhibiting N-methyl-D-aspartate (NMDA) receptors, or conversely by activating γ-aminobutyric acid (GABA) receptors. Both of these mechanisms result in the same effect of inhibiting excitatory activity of neurons. In developing brains, which are more sensitive to disruptions in activity-dependent plasticity, this transient inhibition may have longterm neurodevelopmental consequences. Accumulating reports from preclinical studies show that anesthetics in neonates cause cellular toxicity including apoptosis and neurodegeneration in the developing brain. Importantly, animal and clinical studies indicate that exposure to general anesthetics may affect CNS development, resulting in long-lasting cognitive and behavioral deficiencies, such as learning and memory deficits, as well as abnormalities in social memory and social activity. While the casual relationship between cellular toxicity and neurological impairments is still not clear, recent reports in animal experiments showed that anesthetics in neonates can affect neurogenesis, which could be a possible mechanism underlying the chronic effect of anesthetics. Understanding the cellular and molecular mechanisms of anesthetic effects will help to define the scope of the problem in humans and may lead to preventive and therapeutic strategies. Therefore, in this review, we summarize the current evidence on neonatal anesthetic effects in the developmental CNS and discuss how factors influencing these processes can be translated into new therapeutic strategies.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Zhang
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Visual and Neurocognitive Rehabilitation, VA Medical Center, Atlanta, GA 30033, USA.
| |
Collapse
|
21
|
Park HYL, Kim JH, Park CK. Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Mol Brain 2014; 7:53. [PMID: 25116810 PMCID: PMC4237962 DOI: 10.1186/s13041-014-0053-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dendrites of retinal ganglion cells (RGCs) synapse with axon terminals of bipolar cells in the inner plexiform layer (IPL). Changes in RGC dendrites and synapses between bipolar cells in the inner retinal layer may critically alter the function of RGCs in glaucoma. Recently, synaptic plasticity has been observed in the adult central nervous system, including the outer retinal layers. However, few studies have focused on changes in the synapses between RGCs and bipolar cells in glaucoma. In the present study, we used a rat model of ocular hypertension induced by episcleral vein cauterization to investigate changes in synaptic structure and protein expression in the inner retinal layer at various time points after moderate intraocular pressure (IOP) elevation. RESULTS Synaptophysin, a presynaptic vesicle protein, increased throughout the IPL, outer plexiform layer, and outer nuclear layer after IOP elevation. Increased synaptophysin after IOP elevation was expressed in bipolar cells in the innermost IPL. The RGC marker, SMI-32, co-localized with synaptophysin in RGC dendrites and were significantly increased at 1 week and 4 weeks after IOP elevation. Both synaptophysin and postsynaptic vesicle protein, PSD-95, were increased after IOP elevation by western blot analysis. Ribbon synapses in the IPL were quantified and structurally evaluated in retinal sections by transmission electron microscopy. After IOP elevation the total number of ribbon synapses decreased. There were increases in synapse diameter and synaptic vesicle number and decreases in active zone length and the number of docked vesicles after IOP elevation. CONCLUSIONS Although the total number of synapses decreased as RGCs were lost after IOP elevation, there are attempts to increase synaptic vesicle proteins and immature synapse formation between RGCs and bipolar cells in the inner retinal layers after glaucoma induction.
Collapse
Affiliation(s)
| | | | - Chan Kee Park
- Department of Ophthalmology and Visual Science, Seoul St, Mary's Hospital, College of Medicine, The Catholic University of Korea, #505 Banpo-dong, Seocho-gu, Seoul 137-701, Korea.
| |
Collapse
|
22
|
Sinner B, Becke K, Engelhard K. General anaesthetics and the developing brain: an overview. Anaesthesia 2014; 69:1009-22. [DOI: 10.1111/anae.12637] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2014] [Indexed: 12/17/2022]
Affiliation(s)
- B. Sinner
- Department of Anaesthesiology; University of Regensburg; Regensburg Germany
| | - K. Becke
- Department of Anesthesiology and Intensive Care; Cnopf Childrens’ Hospital/Hospital Hallerwiese; Nuremberg Germany
| | - K. Engelhard
- Department of Anaesthesiology; University Medical Center of the Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
23
|
Markham JA, Mullins SE, Koenig JI. Periadolescent maturation of the prefrontal cortex is sex-specific and is disrupted by prenatal stress. J Comp Neurol 2013; 521:1828-43. [PMID: 23172080 DOI: 10.1002/cne.23262] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/01/2012] [Accepted: 11/06/2012] [Indexed: 12/19/2022]
Abstract
The prefrontal cortex (PFC) undergoes dramatic, sex-specific maturation during adolescence. Adolescence is a vulnerable window for developing mental illnesses that show significant sexual dimorphisms. Gestational stress is associated with increased risk for both schizophrenia, which is more common among men, and cognitive deficits. We have shown that male, but not female, rats exposed to prenatal stress develop postpubertal deficits in cognitive behaviors supported by the prefrontal cortex. Here we tested the hypothesis that repeated variable prenatal stress during the third week of rat gestation disrupts periadolescent development of prefrontal neurons in a sex-specific fashion. Using Golgi-Cox stained tissue, we compared dendritic arborization and spine density of prelimbic layer III neurons in prenatally stressed and control animals at juvenile (day 20), prepubertal (day 30), postpubertal (day 56), and adult (day 90) ages (N = 115). Dendritic ramification followed a sex-specific pattern that was disrupted during adolescence in prenatally stressed males, but not in females. In contrast, the impact of prenatal stress on the female PFC was not evident until adulthood. Prenatal stress also caused reductions in brain and body weights, and the latter effect was more pronounced among males. Additionally, there was a trend toward reduced testosterone levels for adult prenatally stressed males. Our findings indicate that, similarly to humans, the rat PFC undergoes sex-specific development during adolescence and furthermore that this process is disrupted by prenatal stress. These findings may be relevant to both the development of normal sex differences in cognition as well as differential male-female vulnerability to psychiatric conditions.
Collapse
Affiliation(s)
- Julie A Markham
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21228, USA.
| | | | | |
Collapse
|
24
|
Cook D, Nuro E, Murai KK. Increasing our understanding of human cognition through the study of Fragile X Syndrome. Dev Neurobiol 2013; 74:147-77. [PMID: 23723176 PMCID: PMC4216185 DOI: 10.1002/dneu.22096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
25
|
Srivastava U, Singh S, Chauhan P. Heterogeneity of spine density in pyramidal neurons of isocortex of mongoose,Herpestes edwardsii(É. Geoffroy Saint-Hilaire 1818). Microsc Res Tech 2013; 76:818-28. [DOI: 10.1002/jemt.22234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/09/2013] [Accepted: 05/05/2013] [Indexed: 11/08/2022]
Affiliation(s)
- U.C. Srivastava
- Department of Zoology; University of Allahabad; Allahabad 211002 India
| | - Sippy Singh
- Department of Zoology; University of Allahabad; Allahabad 211002 India
| | - Prashant Chauhan
- Department of Zoology; University of Allahabad; Allahabad 211002 India
| |
Collapse
|
26
|
Abstract
Cortical maturation was studied in 65 infants between 27 and 46 wk postconception using structural and diffusion magnetic resonance imaging. Alterations in neural structure and complexity were inferred from changes in mean diffusivity and fractional anisotropy, analyzed by sampling regions of interest and also by a unique whole-cortex mapping approach. Mean diffusivity was higher in gyri than sulci and in frontal compared with occipital lobes, decreasing consistently throughout the study period. Fractional anisotropy declined until 38 wk, with initial values and rates of change higher in gyri, frontal and temporal poles, and parietal cortex; and lower in sulcal, perirolandic, and medial occipital cortex. Neuroanatomical studies and experimental diffusion-anatomic correlations strongly suggested the interpretation that cellular and synaptic complexity and density increased steadily throughout the period, whereas elongation and branching of dendrites orthogonal to cortical columns was later and faster in higher-order association cortex, proceeding rapidly before becoming undetectable after 38 wk. The rate of microstructural maturation correlated locally with cortical growth, and predicted higher neurodevelopmental test scores at 2 y of age. Cortical microstructural development was reduced in a dose-dependent fashion by longer premature exposure to the extrauterine environment, and preterm infants at term-corrected age possessed less mature cortex than term-born infants. The results are compatible with predictions of the tension theory of cortical growth and show that rapidly developing cortical microstructure is vulnerable to the effects of premature birth, suggesting a mechanism for the adverse effects of preterm delivery on cognitive function.
Collapse
|
27
|
Marmolejo N, Paez J, Levitt JB, Jones LB. Early postnatal lesion of the medial dorsal nucleus leads to loss of dendrites and spines in adult prefrontal cortex. Dev Neurosci 2013; 34:463-76. [PMID: 23406908 DOI: 10.1159/000343911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Research suggests that the medial dorsal nucleus (MD) of the thalamus influences pyramidal cell development in the prefrontal cortex (PFC) in an activity-dependent manner. The MD is reciprocally connected to the PFC. Many psychiatric disorders, such as schizophrenia, affect the PFC, and one of the most consistent findings in schizophrenia is a decrease in volume and neuronal number in the MD. Therefore, understanding the role the MD plays in the development of the PFC is important and may help in understanding the progression of psychiatric disorders that have their root in development. Focusing on the interplay between the MD and the PFC, this study examined the hypothesis that the MD plays a role in the dendritic development of pyramidal cells in the PFC. Unilateral electrolytic lesions of the MD in Long-Evans rat pups were made on postnatal day 4 (P4), and the animals developed to P60. We then examined dendritic morphology by examining MAP2 immunostaining and by using Golgi techniques to determine basilar dendrite number and spine density. Additionally, we examined pyramidal cell density in cingulate area 1 (Cg1), prelimbic region, and dorsolateral anterior cortex, which receive afferents from the MD. Thalamic lesions caused a mean MD volume decrease of 12.4% which led to a significant decrease in MAP2 staining in both superficial and deep layers in all 3 cortical areas. The lesions also caused a significant decrease in spine density and in the number of primary and secondary basilar dendrites on superficial and deep layer pyramidal neurons in all 3 regions. No significant difference was observed in pyramidal cell density in any of the regions or layers, but a nonsignificant increase in cell density was observed in 2 regions. Our data are thus consistent with the hypothesis that the MD plays a role in the development of the PFC and, therefore, may be a good model to begin to examine neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Naydu Marmolejo
- Department of Biological Sciences, Lehman College, City College, New York, NY 10468, USA
| | | | | | | |
Collapse
|
28
|
|
29
|
Fiumelli H, Briner A, Puskarjov M, Blaesse P, Belem BJ, Dayer AG, Kaila K, Martin JL, Vutskits L. An ion transport-independent role for the cation-chloride cotransporter KCC2 in dendritic spinogenesis in vivo. Cereb Cortex 2013; 23:378-88. [PMID: 22345354 DOI: 10.1093/cercor/bhs027] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neuron-specific K-Cl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in pyramidal neurons, and recent in vitro data suggest that this protein plays a role in the development of dendritic spines. The in vivo relevance of these observations is, however, unknown. Using in utero electroporation combined with post hoc iontophoretic injection of Lucifer Yellow, we show that premature expression of KCC2 induces a highly significant and permanent increase in dendritic spine density of layer 2/3 pyramidal neurons in the somatosensory cortex. Whole-cell recordings revealed that this increased spine density is correlated with an enhanced spontaneous excitatory activity in KCC2-transfected neurons. Precocious expression of the N-terminal deleted form of KCC2, which lacks the chloride transporter function, also increased spine density. In contrast, no effect on spine density was observed following in utero electroporation of a point mutant of KCC2 (KCC2-C568A) where both the cotransporter function and the interaction with the cytoskeleton are disrupted. Transfection of the C-terminal domain of KCC2, a region involved in the interaction with the dendritic cytoskeleton, also increased spine density. Collectively, these results demonstrate a role for KCC2 in excitatory synaptogenesis in vivo through a mechanism that is independent of its ion transport function.
Collapse
Affiliation(s)
- Hubert Fiumelli
- Center for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital, 1008 Prilly-Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Massa H, Lacoh CM, Vutskits L. Effects of morphine on the differentiation and survival of developing pyramidal neurons during the brain growth spurt. Toxicol Sci 2012; 130:168-79. [PMID: 22843570 DOI: 10.1093/toxsci/kfs234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although morphine is frequently administered to treat procedural pain in neonates and young children, little is known about the effects of this drug on developing neural circuitry during the brain growth spurt. Here we systematically explored the impact of morphine on neuronal survival and differentiation during the peak synaptogenic period. By focusing on the rat medial prefrontal cortex, we show that single bolus ip injections of morphine, although it induces deep sedation and analgesia, do not entrain apoptosis in this cortical region either at postnatal day 7 or at postnatal day 15. Iontophoretic single cell injections of Lucifer Yellow followed by semiautomatic neuronal arbor tracing revealed that repeated daily administration of this drug between postnatal days 7 and 15 or 15 and 20 did not interfere with dendritic development of layer 5 pyramidal neurons. Confocal microscopic analysis of dendritic spines at the aforementioned distinct stages of the brain growth spurt demonstrated that neither single bolus nor repeated administration of morphine affected the density of these postsynaptic structures. Altogether, these preclinical rodent experimental observations argue against overt neurotoxic effects of morphine exposure during the brain growth spurt.
Collapse
Affiliation(s)
- Horace Massa
- Department of Anesthesiology, Pharmacology and Intensive Care, University Hospitals of Geneva, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
32
|
Abstract
Millions of human infants receive general anesthetics for surgery or diagnostic procedures every year worldwide, and there is a growing inquietude regarding the safety of these drugs for the developing brain. In fact, accumulating experimental evidence together with recent epidemiologic observations suggest that general anesthetics might exert undesirable effects on the immature nervous system. The goal of this review is to highlight basic science issues as well as to critically present experimental data and clinical observations relevant to this possibility. By acting on a plethora of ligand-gated ion channels, general anesthetics are powerful modulators of neural activity. Since even brief interference with physiologic activity patterns during critical periods of development are known to induce permanent alterations in brain circuitry, anesthetic-induced interference with brain development is highly plausible. In line with this hypothesis, compelling experimental evidence, from rodents to primates, suggests increased neuroapoptosis and associated long-term neurocognitive deficits following administration of these drugs at defined stages of development. Recent epidemiologic studies also indicate a potential association between anesthesia/surgery and subsequently impaired neurocognitive function in humans. It is, however, important to note that extrapolation of experimental studies to human practice requires extreme caution, and that currently available human data are hindered by a large number of potentially confounding factors. Thus, despite significant advances in the field, there is still insufficient evidence to determine whether anesthetics are harmful to the developing human brain. Consequently, no change in clinical practice can be recommended.
Collapse
Affiliation(s)
- Laszlo Vutskits
- Pediatric Anesthesia Unit, Department of Anesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
33
|
Schachtele SJ, Losh J, Dailey ME, Green SH. Spine formation and maturation in the developing rat auditory cortex. J Comp Neurol 2012; 519:3327-45. [PMID: 21800311 DOI: 10.1002/cne.22728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rat auditory cortex is organized as a tonotopic map of sound frequency. This map is broadly tuned at birth and is refined during the first 3 weeks postnatal. The structural correlates underlying tonotopic map maturation and reorganization during development are poorly understood. We employed fluorescent dye ballistic labeling ("DiOlistics") alone, or in conjunction with immunohistochemistry, to quantify synaptogenesis in the auditory cortex of normal hearing rats. We show that the developmental appearance of dendritic protrusions, which include both immature filopodia and mature spines, on layers 2/3, 4, and 5 pyramidal and layer 4 spiny nonpyramidal neurons occurs in three phases: slow addition of dendritic protrusions from postnatal day 4 (P4) to P9, rapid addition of dendritic protrusions from P9 to P19, and a final phase where mature protrusion density is achieved (>P21). Next, we combined DiOlistics with immunohistochemical labeling of bassoon, a presynaptic scaffolding protein, as a novel method to categorize dendritic protrusions as either filopodia or mature spines in cortex fixed in vivo. Using this method we observed an increase in the spine-to-filopodium ratio from P9-P16, indicating a period of rapid spine maturation. Previous studies report mature spines as being shorter in length compared to filopodia. We similarly observed a reduction in protrusion length between P9 and P16, corroborating our immunohistochemical spine maturation data. These studies show that dendritic protrusion formation and spine maturation occur rapidly at a time previously shown to correspond to auditory cortical tonotopic map refinement (P11-P14), providing a structural correlate of physiological maturation.
Collapse
Affiliation(s)
- Scott J Schachtele
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Anesthesia kills neurons in the brain of infantile animals, including primates, and causes permanent and progressive neurocognitive decline. The anesthesia community and regulatory authorities alike are concerned that is also true in humans. In this review, I summarize what we currently know about the risks of pediatric anesthesia to long-term cognitive function. If anesthesia is discovered to cause cognitive decline in humans, we need to know how to prevent and treat it. Prevention requires knowledge of the mechanisms of anesthesia-induced cognitive decline. This review gives an overview of some of the mechanisms that have been proposed for anesthesia-induced cognitive decline and discusses possible treatment options. If anesthesia induces cognitive decline in humans, we need to know what type and duration of anesthetic is safe, and which, if any, is not safe. This review discusses early results of comparative animal studies of anesthetic neurotoxicity. Until we know if and how pediatric anesthesia affects cognition in humans, a change in anesthetic practice would be premature, not guided by evidence of better alternatives, and therefore potentially dangerous. The SmartTots initiative jointly supported by the International Anesthesia Research Society and the Food and Drug Administration aims to fund research designed to shed light on these issues that are of high priority to the anesthesia community and the public alike and therefore deserves the full support of these interest groups.
Collapse
Affiliation(s)
- Greg Stratmann
- Department of Anesthesia and Perioperative Care, University of California San Francisco, Box 0464, Room U286, 513 Parnassus Ave., San Francisco, CA 94143, USA.
| |
Collapse
|
35
|
Toxic effects of midazolam on differentiating neurons in vitro as a consequence of suppressed neuronal Ca2+-oscillations. Toxicology 2011; 290:96-101. [PMID: 21920406 DOI: 10.1016/j.tox.2011.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/16/2011] [Accepted: 08/30/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND In immature neurons anesthetics induce apoptosis and influence neuronal differentiation. Neuronal Ca(2+)-oscillations regulate differentiation and synaptogenesis. We examined the effects of the long-term blockade of hippocampal Ca(2+)-oscillations with midazolam on neuronal synapsin expression. MATERIAL AND METHODS Hippocampal neurons were incubated at day 15 in culture with the specific GABA(A) receptor agonist muscimol (50μM) or with midazolam (100 and 300nM), respectively, for 24h. TUNEL and activated-Caspase-3 staining were used to detect apoptotic neurons. Ca(2+)-oscillations were detected using the Ca(2+)-sensitive dye FURA-2 and dual wavelength excitation fluorescence microscopy. Synapsin was identified with confocal anti-synapsin immunofluorescence microscopy. RESULTS Muscimol, when applied for 24h, decreased the amplitude and frequency Ca(2+)-oscillations significantly. Midazolam concentration-dependently suppressed the amplitude and frequency of the Ca(2+)-oscillations. This was associated by a downregulation of the synapsin expression 24h after washout. CONCLUSION Neuronal Ca(2+)-oscillations mediate neuronal differentiation and are involved in synaptogenesis. By acting via the GABA(A) receptor, midazolam exerts its toxic effect through the suppression of neuronal Ca(2+)-oscillations, a reduction in synapsin expression and consecutively reduced synaptic integrity.
Collapse
|
36
|
Romand S, Wang Y, Toledo-Rodriguez M, Markram H. Morphological development of thick-tufted layer v pyramidal cells in the rat somatosensory cortex. Front Neuroanat 2011; 5:5. [PMID: 21369363 PMCID: PMC3043270 DOI: 10.3389/fnana.2011.00005] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/19/2011] [Indexed: 11/13/2022] Open
Abstract
The thick-tufted layer V pyramidal (TTL5) neuron is a key neuron providing output from the neocortex. Although it has been extensively studied, principles governing its dendritic and axonal arborization during development are still not fully quantified. Using 3-D model neurons reconstructed from biocytin-labeled cells in the rat somatosensory cortex, this study provides a detailed morphological analysis of TTL5 cells at postnatal day (P) 7, 14, 21, 36, and 60. Three developmental periods were revealed, which were characterized by distinct growing rates and properties of alterations in different compartments. From P7 to P14, almost all compartments grew fast, and filopodia-like segments along apical dendrite disappeared; From P14 to P21, the growth was localized on specified segments of each compartment, and the densities of spines and boutons were significantly increased; From P21 to P60, the number of basal dendritic segments was significantly increased at specified branch orders, and some basal and oblique dendritic segments were lengthened or thickened. Development changes were therefore seen in two modes: the fast overall growth during the first period and the slow localized growth (thickening mainly on intermediates or lengthening mainly on terminals) at the subsequent stages. The lengthening may be accompanied by the retraction on different segments. These results reveal a differential regulation in the arborization of neuronal compartments during development, supporting the notion of functional compartmental development. This quantification provides new insight into the potential value of the TTL5 morphology for information processing, and for other purposes as well.
Collapse
Affiliation(s)
- Sandrine Romand
- Blue Brain Project, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Yun Wang
- School of Optometry and Ophthalmology, Wenzhou Medical CollegeWenzhou, Zhejiang, People's Republic of China
- Neurology Research, Caritas St. Elizabeth's Medical Center, Tufts UniversityBoston, MA, USA
| | | | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|
37
|
Osaki G, Mitsui S, Yuri K. The distribution of the seizure-related gene 6 (Sez-6) protein during postnatal development of the mouse forebrain suggests multiple functions for this protein: an analysis using a new antibody. Brain Res 2011; 1386:58-69. [PMID: 21334315 DOI: 10.1016/j.brainres.2011.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 02/10/2011] [Accepted: 02/10/2011] [Indexed: 11/16/2022]
Abstract
The seizure-related gene 6 (Sez-6) encodes a transmembrane protein that is expressed in neuronal cells. A Sez-6-deficient mouse exhibits impaired spatial memory, motor deficits, and decreased anxiety levels. To understand the function of Sez-6 during the postnatal development of the forebrain, the spatiotemporal pattern of distribution of the Sez-6 protein was immunohistochemically analyzed using a new anti-Sez-6 antibody. Western blot analysis confirmed the specificity of this new antibody, and showed that the content of the Sez-6 protein in the cerebral cortex was highest during the neonatal period and decreased gradually thereafter. Immunohistochemical analysis revealed that Sez-6 immunoreactivity (IR) was detected in various brain regions, such as the hippocampus, cerebral cortex, piriform cortex, striatum, lateral amygdala, and olfactory tubercle. The expression patterns of Sez-6 in these brain regions was divided into three groups: i) in the cerebral cortex, hippocampus, and lateral amygdala, moderate-to-strong Sez-6 IR was detected in the first postnatal week and decreased gradually thereafter; ii) Sez-6 IR was not observed during the neonatal period in the striatum and the intensity of the signal increased gradually toward adulthood; and iii) strong Sez-6 IR was observed in the olfactory tubercle, regardless of the developmental stage. Furthermore, Sez-6 IR was detected in dendrites of hippocampal and cortical pyramidal neurons neonatally, whereas it localized around the soma after postnatal day 10. These spatiotemporal alterations of the regional and intracellular distribution of the Sez-6 protein suggest multiple functions for this protein during the postnatal development of the forebrain.
Collapse
Affiliation(s)
- George Osaki
- Department of Neurobiology and Anatomy, Kochi Medical School, Oko-cho, Nankoku 783–8505, Japan
| | | | | |
Collapse
|
38
|
Briner A, De Roo M, Dayer A, Muller D, Kiss JZ, Vutskits L. Bilateral whisker trimming during early postnatal life impairs dendritic spine development in the mouse somatosensory barrel cortex. J Comp Neurol 2010; 518:1711-23. [PMID: 20235164 DOI: 10.1002/cne.22297] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The rodent somatosensory barrel cortex is an ideal model for studying the impact of sensory experience on developing brain circuitry. To examine whether and how interference with sensory perception in the early postnatal period can affect the development of synaptic networks in this system, we took advantage of a transgenic mouse strain expressing the yellow fluorescent protein in layer 5B pyramidal neurons of the somatosensory cortex. By using ex vivo confocal imaging, we first demonstrate a cortical-layer-specific increase in the number of dendritic spines during postnatal development on apical dendritic shafts of these cells extending up to cortical layer 1. Next, by performing bilateral whisker trimming at distinct developmental stages, we show that disruption of sensory perception before postnatal day 20 impairs dendritic spine development in apical dendritic segments within layers 1 and 2/3 but not in layer 4. The whisker trimming-induced decrease in dendritic spine density during this period is accompanied by a highly significant decrease in dendritic spine head diameter. Finally, we also show that these whisker trimming-induced morphological alterations of dendritic spines during the early postnatal period are no longer detectable in adult animals. Altogether, these findings further emphasize the important role of sensory activity in synaptic network assembly in the developing barrel cortex. They also support an as yet unidentified structural mechanism that might contribute to the layer- and cell-type-specific physiological effects of whisker trimming during the early postnatal period.
Collapse
Affiliation(s)
- Adrian Briner
- Department of Anesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Hercher C, Canetti L, Turecki G, Mechawar N. Anterior cingulate pyramidal neurons display altered dendritic branching in depressed suicides. J Psychiatr Res 2010; 44:286-93. [PMID: 19765721 DOI: 10.1016/j.jpsychires.2009.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/30/2009] [Accepted: 08/18/2009] [Indexed: 12/31/2022]
Abstract
BACKGROUND It is hypothesized that mood disorders are accompanied by altered wiring and plasticity in key limbic brain regions such as the anterior cingulate cortex (ACC). To test this hypothesis at the cellular level, we analyzed basilar dendritic arborizations extended by layer VI pyramidal neurons in silver-impregnated postmortem ACC samples from well-characterized depressed suicide subjects (n=12) and matched sudden-death controls (n=7). METHODS One cm(3) tissue blocks were stained using a Golgi preparation, cut on a microtome, and mounted on slides. Basilar dendritic arbors from 195 neurons were reconstructed, and the number, length, and diameter of branches were determined at each branch order. The size and number of spines borne by these branches were also assessed. RESULTS Third-order branches were significantly reduced in number (24% fewer; p=0.00262) in depressed suicides compared to controls. The size and average length of these branches, as well as their number of spines/length were unaltered. On average, for each pyramidal neuron analyzed in depressed subjects, the fewer third-order branches resulted in a significant reduction in branch length (28% shorter; p=0.00976) at this branch order. CONCLUSIONS These results provide the first evidence of altered cortical dendritic branching in mood disorders. Given that proximal dendritic branches grow during perinatal development, and that they are generally less plastic at maturity than distal segments, we speculate that these differences in dendritic branching may reflect a biological predisposition to depression and suicide.
Collapse
Affiliation(s)
- Christa Hercher
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Québec, Canada
| | | | | | | |
Collapse
|
40
|
Brown CE, Boyd JD, Murphy TH. Longitudinal in vivo imaging reveals balanced and branch-specific remodeling of mature cortical pyramidal dendritic arbors after stroke. J Cereb Blood Flow Metab 2010; 30:783-91. [PMID: 19920846 PMCID: PMC2949167 DOI: 10.1038/jcbfm.2009.241] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The manner in which fully mature peri-infarct cortical dendritic arbors remodel after stroke, and thus may possibly contribute to stroke-induced changes in cortical receptive fields, is unknown. In this study, we used longitudinal in vivo two-photon imaging to investigate the extent to which brain ischemia can trigger dendritic remodeling of pyramidal neurons in the adult mouse somatosensory cortex, and to determine the nature by which remodeling proceeds over time and space. Before the induction of stroke, dendritic arbors were relatively stable over several weeks. However, after stroke, apical dendritic arbor remodeling increased significantly (dendritic tip growth and retraction), particularly within the first 2 weeks after stroke. Despite a threefold increase in structural remodeling, the net length of arbors did not change significantly over time because dendrite extensions away from the stroke were balanced by the shortening of tips near the infarct. Therefore, fully mature cortical pyramidal neurons retain the capacity for extensive structural plasticity and remodel in a balanced and branch-specific manner.
Collapse
Affiliation(s)
- Craig E Brown
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
41
|
Li M, Cui Z, Niu Y, Liu B, Fan W, Yu D, Deng J. Synaptogenesis in the developing mouse visual cortex. Brain Res Bull 2010; 81:107-13. [DOI: 10.1016/j.brainresbull.2009.08.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 01/05/2023]
|
42
|
Anesthetics rapidly promote synaptogenesis during a critical period of brain development. PLoS One 2009; 4:e7043. [PMID: 19756154 PMCID: PMC2738943 DOI: 10.1371/journal.pone.0007043] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/20/2009] [Indexed: 11/19/2022] Open
Abstract
Experience-driven activity plays an essential role in the development of brain circuitry during critical periods of early postnatal life, a process that depends upon a dynamic balance between excitatory and inhibitory signals. Since general anesthetics are powerful pharmacological modulators of neuronal activity, an important question is whether and how these drugs can affect the development of synaptic networks. To address this issue, we examined here the impact of anesthetics on synapse growth and dynamics. We show that exposure of young rodents to anesthetics that either enhance GABAergic inhibition or block NMDA receptors rapidly induce a significant increase in dendritic spine density in the somatosensory cortex and hippocampus. This effect is developmentally regulated; it is transient but lasts for several days and is also reproduced by selective antagonists of excitatory receptors. Analyses of spine dynamics in hippocampal slice cultures reveals that this effect is mediated through an increased rate of protrusions formation, a better stabilization of newly formed spines, and leads to the formation of functional synapses. Altogether, these findings point to anesthesia as an important modulator of spine dynamics in the developing brain and suggest the existence of a homeostatic process regulating spine formation as a function of neural activity. Importantly, they also raise concern about the potential impact of these drugs on human practice, when applied during critical periods of development in infants.
Collapse
|
43
|
Stillman AA, Krsnik Ž, Sun J, Rašin MR, State MW, Šestan N, Louvi A. Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome. J Comp Neurol 2009; 513:21-37. [PMID: 19105198 PMCID: PMC3292218 DOI: 10.1002/cne.21919] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tourette syndrome (TS) is an inherited developmental neuropsychiatric disorder characterized by vocal and motor tics. Multiple lines of neurophysiological evidence implicate dysfunction in the corticostriatal-thalamocortical circuits in the etiology of TS. We recently identified rare sequence variants in the Slit and Trk-like family member 1 (SLITRK1) gene associated with TS. SLITRK1, a single-pass transmembrane protein, displays similarities to the SLIT family of secreted ligands, which have roles in axonal repulsion and dendritic patterning, but its function and developmental expression remain largely unknown. Here we provide evidence that SLITRK1 has a developmentally regulated expression pattern in projection neurons of the corticostriatal-thalamocortical circuits. SLITRK1 is further enriched in the somatodendritic compartment and cytoplasmic vesicles of cortical pyramidal neurons in mouse, monkey, and human brain, observations suggestive of an evolutionarily conserved function in mammals. SLITRK1 is transiently expressed in the striosomal/patch compartment of the mammalian striatum and moreover is associated with the direct output pathway; adult striatal expression is confined to cholinergic interneurons. These analyses demonstrate that the expression of SLITRK1 is dynamic and specifically associated with the circuits most commonly implicated in TS and related disorders, suggesting that SLITRK1 contributes to the development of corticostriatal-thalamocortical circuits.
Collapse
Affiliation(s)
- Althea A. Stillman
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Željka Krsnik
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jinhao Sun
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Mladen-Roko Rašin
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Matthew W. State
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520
- Program on Neurogenetics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Nenad Šestan
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Angeliki Louvi
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
- Program on Neurogenetics, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
44
|
Broadbelt K, Jones LB. Evidence of altered calmodulin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex. J Psychiatr Res 2008; 42:612-21. [PMID: 18289558 DOI: 10.1016/j.jpsychires.2007.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 07/03/2007] [Indexed: 10/22/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disorder. Previous studies have implicated the prefrontal cortex (PFC) [Harrison PJ. The neuropathology of schizophrenia a critical review of the data and their interpretation. Brain 1999;122:593-624; Jones LB. Recent cytoarchitectonic changes in the prefrontal cortex of schizophrenics. Frontiers of Bioscience 2001;6:E148-53]. Recent immunocytochemical studies have shown a dramatic decrease in MAP2 and neurogranin [Jones L, Johnson N, Byne W. Alterations in MAP2 staining in area 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Research 2002;114:137-48; Broadbelt K, Pamprasaud A, Jones LB. Evidence of altered neurogranin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex. Schizophrenia Research 2006;87:6-14] a loss of either is suggestive of dendritic lesions [Li GL, Farooque M, Lewen A., Lennmyr F, Holtz A., Olsson Y. MAP2 and neurogranin as markers for dendritic lesions in cns injury an immunohistochemical study in the rat. APMIS 2002;108:98-106.]. Neurogranin is an upstream regulator of calcium and calmodulin [Prichard L, Deloulmes JC, Storm DR. Interactions between Neurogranin and Calmodulin in vivo. Journal of Biological Chemistry 1999;274:7689-94]. A direct action of this pathway is the phosphorylation of MAP2, which is required for microtubule stabilization. Because of the above findings as well as moropholigical alterations [Broadbelt K, Byne W, Jones LB. Evidence for a decrease in primary and secondary basilar dendrites on pyramidal cells in area 32 of schizophrenic prefrontal cortex. Schizophrenia Research 2002;58:75-81] we examined the expression of the active form of calmodulin in layers III and V of areas 9 and 32 in six controls and six schizophrenics matched for age, sex, and postmortem interval. Using area fraction analysis we quantified immunostaining and counted the number of immunopositive pyramidal cells and interneurons as well as immunonegative pyramidal cells. Area fraction analysis showed a significant decrease in immunostaining in area nine layers III (58%) and V (44%), area 32 layers III (51%) and V (32%). We found a significant reduction in the density of immunopositive pyramidal cells in area 9 (11%) layer III, (20%) layer V, area 32 (16%) layer III and (17%) layer V with no difference in immunopositive interneurons. These data suggest a loss of the active form of calmodulin with pyramidal cells being preferentially affected suggesting that the calcium calmodulin dependent pathway may be altered in the pyramidal cells in the PFC.
Collapse
Affiliation(s)
- Kevin Broadbelt
- Lehman College, CUNY, Department of Biological Sciences, 250 Bedford Park Blvd., Bronx, NY 10468, USA
| | | |
Collapse
|
45
|
Sani M, Sebai H, Gadacha W, Boughattas NA, Reinberg A, Ben-Attia M. Age-related changes in the activity of cerebral rhodanese in mice during the first four months of life. Brain Dev 2008; 30:279-86. [PMID: 17997247 DOI: 10.1016/j.braindev.2007.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/27/2007] [Accepted: 09/09/2007] [Indexed: 10/22/2022]
Abstract
Rhodanese (thiosulfate sulfurtransferase) is a ubiquitous enzyme that accelerates the transformation of cyanide into the very less toxic thiocyante. Influence of cerebral rhodanese level on cyanide toxicity has already been shown in mice. However, age-related changes in rhodanese activity have not been previously examined. The aim of the experiments was to investigate age-related changes of cerebral rhodanese activity in male and female mice maintained from birth to age 16 weeks under 12:12 light:dark (LD) cycle conditions. The rhythm of enzyme activity was quantified by Cosinor test programme in 2-, 4-, 8-, 12-, and 16-week-old mice. Significant ultradian (tau =1 2h) rhythms were validated both by ANOVA (P < 0.05) and Cosinor analyses (P < or = 0.01) in 2- and 4-week-old mice. However, in addition to the ultradian rhythm, a significant (P < or = 0.01) prominent circadian (tau = 24h) rhythm, whose peak time located at approximately 9 Hours After Light Onset (HALO), was detected in 4-week-old females. In 8-, 12-, and 16-week-old mice, the Cosinor validated significant (P < or = 0.0001) circadian rhythms in both genders. The circadian peak time initially located at approximately 5 HALO in 8-week-old mice, moved to approximately 9 HALO and then to be stabilized at approximately 17 HALO in 12- and 16-week-old mice, respectively. Furthermore, the ultradian components were detected in 8- and 12-week-old females. On the other hand, at age 16 weeks, no significant ultradian rhythm was detected in males or in females. The enzyme activity was greater in females compared to males during the first 8 postnatal weeks. Two-way ANOVA revealed a significant (P < 0.02) interaction between circadian time and gender in 4-, 8-, 12-, and 16-week-old mice, suggesting the influence of gender on time-related changes in rhodanese activity. However, though ANOVA validated significant changes related to both sampling-time and gender, no interaction was detected between the two factors in 2-week-old mice, illustrating the gender-related difference in enzyme activity was greater. Moreover, the obtained results showed that rhodanese activity significantly increased with age during the postnatal development (PND). However, this increase would be limited by age in old mice as early as 12 weeks after birth. The data also showed a 12h phase-shift of the circadian rhodanese peak time during PND, suggesting that the rhythm stabilization is age dependent. The main findings of this study indicated that the increased sensitivity to cyanide, generally reported in old mice, may be due in part to a decrease in the activity of brain rhodanese.
Collapse
Affiliation(s)
- Mamane Sani
- Laboratory of Environmental Biosurveillance, Faculty of Sciences of Bizerte, 7021 Zarzouna, Tunisia.
| | | | | | | | | | | |
Collapse
|
46
|
Lyck L, Krøigård T, Finsen B. Unbiased cell quantification reveals a continued increase in the number of neocortical neurones during early post-natal development in mice. Eur J Neurosci 2008; 26:1749-64. [PMID: 17897392 DOI: 10.1111/j.1460-9568.2007.05763.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The post-natal growth spurt of the mammalian neocortex has been attributed to maturation of dendritic arborizations, growth and myelination of axons, and addition of glia. It is unclear whether this growth may also involve recruitment of additional neurones. Using stereological methods, we analysed the number of neurones and glia in the neocortex during post-natal development in two separate strains of mice. Cell counting by the optical fractionator revealed that the number of neurones increased 80-100% from the time of birth to post-natal day (P)16, followed by a reduction by approximately 25% in the young adult mouse at P50-55. Unexpectedly, at the time of birth less than half of the neurones and at P8 only 65% of the neurones expressed neuronal nuclear antigen (NeuN), a marker of mature post-migratory neurones. In accordance with these observations, NeuN acquisition by neurones in layer VIa was delayed until P16. The number of glia reached its maximum at P16, whereas the number of oligodendroglia, identified using a transgenic marker, increased until P55, the latest time of observation. Neurones continued to accumulate in the developing neocortex during the first 2 weeks of post-natal development, underscoring fundamental differences in brain development in the mouse compared with human and non-human primates. Further, delayed acquisition of NeuN by neurones in the deepest neocortical layers and continued addition of oligodendroglia to the neocortex suggested that neocortical maturation should be regarded as an ongoing process continuing into the young adult mouse.
Collapse
Affiliation(s)
- Lise Lyck
- Medical Biotechnology Center, University of Southern Denmark, Odense
| | | | | |
Collapse
|
47
|
Pascual R, Zamora-León SP. Chronic (–)-Deprenyl Administration Attenuates Dendritic Developmental Impairment Induced by Early Social Isolation in the Rat. Dev Neurosci 2006; 29:261-7. [PMID: 17047320 DOI: 10.1159/000096413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/05/2006] [Indexed: 11/19/2022] Open
Abstract
It has been demonstrated that postweaning social isolation alters dendritic development in the medial prefrontal cortex (mPFC) of the rat. In addition, (-)-deprenyl, a monoamine oxidase B (MAO-B) inhibitor, promotes dendritic growth in prefrontocortical pyramidal cells. This study examined whether prefrontocortical dendritic developmental impairment induced by postweaning social isolation is attenuated by chronic (-)-deprenyl administration. Weanling Sprague-Dawley male rats were randomly reared in social and isolated environments between postnatal days 21 and 51 (P21-P51). At P52, half of the animals were behaviorally evaluated in the open-field test and sacrificed for histological analysis. The remaining isolated rats were subdivided into saline- and daily (-)-deprenyl-treated animals for 30 additional days (P52-P82). Socially-reared rats remained undisturbed except for daily saline administration. At P82, all animals were behaviorally evaluated and sacrificed for histological analysis. Dendritic quantification of the Golgi-Cox-Sholl-stained neurons indicated that chronic (-)-deprenyl administration partially compensated the dendritic growth impairment induced by social isolation. In addition, both isolated-saline- and (-)-deprenyl-treated rats showed a sustained locomotor hyperactivity in the open-field test.
Collapse
Affiliation(s)
- Rodrigo Pascual
- Instituto de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.
| | | |
Collapse
|
48
|
Wedzony K, Fijał K, Maćkowiak M. Alterations in the dendritic morphology of prefrontal pyramidal neurons in adult rats after blockade of NMDA receptors in the postnatal period. Brain Res 2005; 1062:166-70. [PMID: 16257395 DOI: 10.1016/j.brainres.2005.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 09/07/2005] [Accepted: 09/25/2005] [Indexed: 11/25/2022]
Abstract
The present study assessed whether the blockade of NMDA receptors in the postnatal period, used to model the symptoms of schizophrenia altered morphology of pyramidal neurons in the medial prefrontal cortex of rats. CGP 40116, an antagonist of NMDA receptors, was given postnatally (days 1-21 after birth). The analysis of the morphology of pyramidal neurons visualized by the Golgi-Cox technique revealed that the exposure to an antagonist of NMDA receptors in the postnatal period diminished the length of basilar dendrites, while that of apical dendrites remained unchanged. The number of dendritic branches and the spine density remained unchanged. It is concluded that the blockade of NMDA receptors in the postnatal period only partially models morphological changes in pyramidal neurons of the medial prefrontal cortex, which are observed in some cases of schizophrenia.
Collapse
Affiliation(s)
- Krzysztof Wedzony
- Institute of Pharmacology Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smetna 12 Street, 31-343 Kraków, Poland.
| | | | | |
Collapse
|
49
|
Oray S, Majewska A, Sur M. Effects of Synaptic Activity on Dendritic Spine Motility of Developing Cortical Layer V Pyramidal Neurons. Cereb Cortex 2005; 16:730-41. [PMID: 16120796 DOI: 10.1093/cercor/bhj019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is increasingly clear that dendritic spines play an important role in compartmentalizing post-synaptic signals and that their dynamic morphological properties have functional consequences. Here, we examine this issue using two-photon microscopy to characterize spine motility on layer V pyramidal neurons in acute slices of the developing mouse cortex. In this system, all spine classes except filopodia become less dynamic as development proceeds. General manipulations of activity (TTX or KCl treatment) do not alter spine dynamics, although increased glutamatergic transmission (AMPA or NMDA treatment) stabilizes developing cortical spines. These effects on spine dynamics do not appear to be related to AMPA or NMDA receptor expression as assessed with immunolabeling, as there is no correlation between spine motility and AMPA (GluR1/2) or NMDA (NR1/NR2B) receptor subunit expression on a spine by spine basis. These results indicate that activity through glutamatergic synapses is important for regulating spine motility in the developing mouse cortex, and that the relative complement of receptors, while different across morphological classifications, cannot account for differences in dynamic structural changes in dendritic spines.
Collapse
Affiliation(s)
- Serkan Oray
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
50
|
Byers DM, Irwin LN, Moss DE, Sumaya IC, Hohmann CF. Prenatal exposure to the acetylcholinesterase inhibitor methanesulfonyl fluoride alters forebrain morphology and gene expression. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 158:13-22. [PMID: 15964079 DOI: 10.1016/j.devbrainres.2005.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/28/2005] [Accepted: 05/09/2005] [Indexed: 11/26/2022]
Abstract
Methanesulfonyl fluoride (MSF) is a CNS-selective acetylcholinesterase (AChE) inhibitor, currently being developed and tested for the treatment of symptoms of Alzheimer's disease. We have previously confirmed that a single in utero exposure to MSF at clinically appropriate doses inhibits AChE activity in fetal rat brain by 20%, and when administered throughout gestation, MSF achieves a 40% level of inhibition. Here, we show that rats chronically exposed in utero to MSF display marked sex-specific differences in morphological development of the cerebral cortical layers compared with controls at 7 days of age. Forebrain size and cortical thickness were increased in females and decreased in males. An analysis of gene expression in neonate brain on the day of birth revealed sex-specific differential expression of over 25 genes, including choline acetyltransferase (ChAT), which were affected by prenatal MSF exposure. Many of these genes are associated with sexual differentiation and brain development, while others are involved in more generalized cellular and metabolic processes. The changes observed in cortical morphology and gene expression suggest a critical developmental role for AChE in the fetal nervous system, most likely through its effect on cholinergic neurotransmission.
Collapse
Affiliation(s)
- Donna M Byers
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA.
| | | | | | | | | |
Collapse
|