1
|
Orav E, Kokinovic B, Teppola H, Siimon M, Lauri SE, Hartung H. Arginine vasopressin activates serotonergic neurons in the dorsal raphe nucleus during neonatal development in vitro and in vivo. Neuropharmacology 2024; 258:110068. [PMID: 38996832 DOI: 10.1016/j.neuropharm.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Birth stress is a risk factor for psychiatric disorders and associated with exaggerated release of the stress hormone arginine vasopressin (AVP) into circulation and in the brain. In perinatal hippocampus, AVP activates GABAergic interneurons which leads to suppression of spontaneous network events and suggests a protective function of AVP on cortical networks during birth. However, the role of AVP in developing subcortical networks is not known. Here we tested the effect of AVP on the dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT, serotonin) system in male and female neonatal rats, since early 5-HT homeostasis is critical for the development of cortical brain regions and emotional behaviors. We show that AVP is strongly excitatory in neonatal DRN: it increases excitatory synaptic inputs of 5-HT neurons via V1A receptors in vitro and promotes their action potential firing through a combination of its effect on glutamatergic synaptic transmission and a direct effect on the excitability of these neurons. Furthermore, we identified two major firing patterns of neonatal 5-HT neurons in vivo, tonic regular firing and low frequency oscillations of regular spike trains and confirmed that these neurons are also activated by AVP in vivo. Finally, we show that the sparse vasopressinergic innervation in neonatal DRN originates exclusively from cell groups in medial amygdala and bed nucleus of stria terminalis. Hyperactivation of the neonatal 5-HT system by AVP during birth stress may impact its own functional development and affect the maturation of cortical target regions, which may increase the risk for psychiatric conditions later on.
Collapse
Affiliation(s)
- Ester Orav
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Bojana Kokinovic
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Heidi Teppola
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Mari Siimon
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Sari E Lauri
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Henrike Hartung
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Bolte KN, Wealing JC, Revill AL. Arginine vasopressin potentiates inspiratory bursting in hypoglossal motoneurons of neonatal mice. Respir Physiol Neurobiol 2023; 314:104087. [PMID: 37269889 PMCID: PMC10443434 DOI: 10.1016/j.resp.2023.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Vasopressin (AVP) acts as a neurotransmitter and its activity can potentiate respiratory activity. Hypoglossal (XII) motoneurons that innervate the tongue express V1a vasopressin receptors, which are excitatory. Therefore, we hypothesized that V1a receptor activation at XII motoneurons would potentiate inspiratory bursting. We developed this study to determine whether AVP can potentiate inspiratory bursting in rhythmic medullary slice preparations in neonatal (postnatal, P0-5) mice. Bath or local application of AVP potentiated inspiratory bursting compared to baseline XII inspiratory burst amplitude. Antagonizing V1a receptors revealed significant attenuation of the AVP-mediated potentiation of inspiratory bursting, while antagonism of oxytocin receptors (at which AVP has similar binding affinity) revealed a trend to attenuate AVP-mediated potentiation of inspiratory bursting. Finally, we discovered that the AVP-mediated potentiation of inspiratory bursting increases significantly with postnatal maturation from P0-5. Overall, these data support that AVP potentiates inspiratory bursting directly at XII motoneurons.
Collapse
Affiliation(s)
- K N Bolte
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - J C Wealing
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - A L Revill
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States; Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States.
| |
Collapse
|
3
|
Muscatelli F. [As early as birth, oxytocin plays a key role in both food and social behavior]. Biol Aujourdhui 2023; 216:131-143. [PMID: 36744979 DOI: 10.1051/jbio/2022017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 02/07/2023]
Abstract
Oxytocin (OT) is a neurohormone that regulates the so-called "social brain" and is mainly studied in adulthood. During postnatal development, the mechanisms by which the OT system structures various behaviors are little studied. Here we present the dynamic process of postnatal development of the OT system as well as the OT functions in the perinatal period that are essential for shaping social behaviors. Specifically, we discuss the role of OT, in the newborn, in integrating and adapting responses to early sensory stimuli and in stimulating suckling activity. Sensory dialogue and suckling are involved in mother-infant bonds and structure future social interactions. In rodents and humans, neurodevelopmental diseases with autism spectrum disorders (ASD), such as Prader-Willi and Schaaf-Yang syndromes, are associated with sensory, feeding and behavioral deficits in infancy. We propose that in early postnatal life, OT plays a key role in stimulating the maturation of neural networks controlling feeding behavior and early social interactions from birth. Administration of OT at birth improves sensory integration of environmental factors and the relationship with the mother as well as sucking activity as we have shown in mouse models and in babies with Prader-Willi syndrome. Long-term effects have also been observed on social and cognitive behavior. Therefore, early feeding difficulties might be an early predictive marker of ASD, and OT treatment a promising option to improve feeding behavior and, in the longer term, social behavioral problems.
Collapse
Affiliation(s)
- Françoise Muscatelli
- INMED (Institut de Neurobiologie de la Méditerranée), INSERM, Aix Marseille Univ, Marseille, France
| |
Collapse
|
4
|
Muscatelli F, Matarazzo V, Chini B. Neonatal oxytocin gives the tempo of social and feeding behaviors. Front Mol Neurosci 2022; 15:1071719. [PMID: 36583080 PMCID: PMC9792990 DOI: 10.3389/fnmol.2022.1071719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The nonapeptide oxytocin (OT) is a master regulator of the social brain in early infancy, adolescence, and adult life. Here, we review the postnatal dynamic development of OT-system as well as early-life OT functions that are essential for shaping social behaviors. We specifically address the role of OT in neonates, focusing on its role in modulating/adapting sensory input and feeding behavior; both processes are involved in the establishing mother-infant bond, a crucial event for structuring all future social interactions. In patients and rodent models of Prader-Willi and Schaaf-Yang syndromes, two neurodevelopmental diseases characterized by autism-related features, sensory impairments, and feeding difficulties in early infancy are linked to an alteration of OT-system. Successful preclinical studies in mice and a phase I/II clinical trial in Prader-Willi babies constitute a proof of concept that OT-treatment in early life not only improves suckling deficit but has also a positive long-term effect on learning and social behavior. We propose that in early postnatal life, OT plays a pivotal role in stimulating and coordinating the maturation of neuronal networks controlling feeding behavior and the first social interactions. Consequently, OT therapy might be considered to improve feeding behavior and, all over the life, social cognition, and learning capabilities.
Collapse
Affiliation(s)
- Françoise Muscatelli
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France,*Correspondence: Françoise Muscatelli,
| | - Valery Matarazzo
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Bice Chini
- Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy and NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
5
|
Török B, Fodor A, Zsebők S, Sipos E, Zelena D. The Effect of Vasopressin Antagonists on Maternal-Separation-Induced Ultrasonic Vocalization and Stress-Hormone Level Increase during the Early Postnatal Period. Brain Sci 2021; 11:brainsci11040444. [PMID: 33808441 PMCID: PMC8065579 DOI: 10.3390/brainsci11040444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
In adults, vasopressin exerts an anxiogenic effect, but less is known about the perinatal period. As a sign of distress, rat pups emit ultrasonic vocalizations when they are separated from their mothers, known as maternal separation-induced ultrasonic vocalization (MS-USV). Previously, reduced MS-USV was reported in 7–8-day-old genetically vasopressin-deficient Brattleboro rats. Here, we aimed to examine the contributing vasopressin receptor (VR) subtypes using Wistar pups. MS-USV was recorded for 10 min, 30 min after vasopressin (V) 1aR, V1bR or V2R antagonist treatment (SR49059, SSR149415, SR121463B; 3, 10 and 30 mg/kg, intraperitoneal). Sedation was studied by the righting reflex and negative geotaxis, and finally, the stress hormone levels were measured by radioimmunoassay. The vasopressin-deficient pups showed decreased MS-USV and adrenocorticotropin levels even after a saline injection, with unchanged corticosterone levels. Thirty mg/kg of V1aR-antagonist increased the corticosterone levels. All V1bR antagonist doses decreased the MS-USV and adrenocorticotropin, while 10 + 10 mg/kg of V1aR and V1bR antagonists decreased MS-USV without influencing the stress hormones. Three mg/kg of V2R antagonist enhanced MS-USV, while 30 mg/kg increased the stress hormone levels. We confirmed that vasopressin deficiency already caused anxiolytic effects in pups. V1bRs are the most important player in connection with their adrenocorticotropin (ACTH)-regulatory role, but a combination of V1aR and V1bR antagonists might be also beneficial through other mechanisms, reducing the possibility of side effects. In contrast, antagonizing the V2Rs may be stressful due to an induction of imbalance in saltwater homeostasis.
Collapse
Affiliation(s)
- Bibiána Török
- Institute of Experimental Medicine, 1085 Budapest, Hungary; (B.T.); (A.F.); (E.S.)
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Anna Fodor
- Institute of Experimental Medicine, 1085 Budapest, Hungary; (B.T.); (A.F.); (E.S.)
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Sándor Zsebők
- Centre for Ecological Research, Institute of Ecology and Botany, 2163 Vácrátót, Hungary;
| | - Eszter Sipos
- Institute of Experimental Medicine, 1085 Budapest, Hungary; (B.T.); (A.F.); (E.S.)
| | - Dóra Zelena
- Institute of Experimental Medicine, 1085 Budapest, Hungary; (B.T.); (A.F.); (E.S.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7622 Pécs, Hungary
- Correspondence:
| |
Collapse
|
6
|
Aulino EA, Caldwell HK. Subtle sex differences in vasopressin mRNA expression in the embryonic mouse brain. J Neuroendocrinol 2020; 32:e12835. [PMID: 31961993 PMCID: PMC7043242 DOI: 10.1111/jne.12835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 11/28/2022]
Abstract
Arginine vasopressin (AVP) is a neuropeptide which acts centrally to modulate numerous social behaviors. One receptor subtype through which these effects occur is the AVP 1a receptor (AVPR1A). The modulatory effects of Avp via the AVPR1A varies by species as well as sex, since both AVP and the AVPR1A tend to be expressed more prominently in males. Beyond these neuromodulatory effects there are also indications that the AVP system may play a role in early development to, in part, organize sex-specific neural circuitry that is important to sexually dimorphic social behaviors in adulthood. However, to date, AVP's role in early development is poorly understood, particularly with respect to its differential effect on males and females. In order to determine the timing and distribution of the AVP system in early brain development, we examined the brains of male and female C57BL/6J mice between embryonic day (E) 12.5 and postnatal day (P) 2 and quantified Avp and Avpr1a mRNA using qPCR and AVPR1A protein using receptor autoradiography. The mRNA for Avp was measurable in males and females starting at E14.5, with males producing more than females, while Avpr1a mRNA was found as early as E12.5, with no difference in expression between sexes. AVPR1A binding was observed in both sexes starting at E16.5, and while there were no observed sex differences, binding density and the number of neuroanatomical areas did increase over time. These data are significant as they provide the first whole-brain characterization of the vasopressin system in the embryonic mouse. Further, these findings are consistent with data from other species, that have documented a sex difference in the vasopressin system during early brain formation.
Collapse
Affiliation(s)
| | - Heather K. Caldwell
- Corresponding author: Heather K. Caldwell, 114 Cunningham Hall, Department of Biological Sciences, Kent State University, Kent, OH 44242,
| |
Collapse
|
7
|
Orlowska-Feuer P, Smyk MK, Palus-Chramiec K, Dyl K, Lewandowski MH. Orexin A as a modulator of dorsal lateral geniculate neuronal activity: a comprehensive electrophysiological study on adult rats. Sci Rep 2019; 9:16729. [PMID: 31723155 PMCID: PMC6853907 DOI: 10.1038/s41598-019-53012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Orexins (OXA, OXB) are hypothalamic peptides playing crucial roles in arousal, feeding, social and reward-related behaviours. A recent study on juvenile rats suggested their involvement in vision modulation due to their direct action on dorsal lateral geniculate (dLGN) neurons. The present study aimed to verify whether a similar action of OXA can be observed in adulthood. Thus, in vivo and in vitro electrophysiological recordings on adult Wistar rats across light-dark and cortical cycles were conducted under urethane anaesthesia. OXA influenced ~28% of dLGN neurons recorded in vivo by either excitation or suppression of neuronal firing. OXA-responsive neurons did not show any spatial distribution nor represent a coherent group of dLGN cells, and responded to OXA similarly across the light-dark cycle. Interestingly, some OXA-responsive neurons worked in a cortical state-dependent manner, especially during the dark phase, and 'preferred' cortical activation over slow-wave activity induced by urethane. The corresponding patch clamp study confirmed these results by showing that < 20% of dLGN neurons were excited by OXA under both light regimes. The results suggest that OXA is involved in the development of the visual system rather than in visual processes and further implicate OXA in the mediation of circadian and arousal-related activity.
Collapse
Affiliation(s)
- Patrycja Orlowska-Feuer
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Krakow, Krakow, Poland.
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| | - Magdalena Kinga Smyk
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Krakow, Krakow, Poland
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Katarzyna Dyl
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
8
|
Hartman S, Belsky J. Prenatal stress and enhanced developmental plasticity. J Neural Transm (Vienna) 2018; 125:1759-1779. [PMID: 30206701 DOI: 10.1007/s00702-018-1926-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/07/2018] [Indexed: 01/18/2023]
Abstract
Two separate lines of inquiry indicate (a) that prenatal stress is associated with heightened behavioral and physiological reactivity, and (b) that these postnatal phenotypes are associated with increased susceptibility to both positive and negative developmental experiences and environmental exposures. This research considered together raises the intriguing hypothesis first advanced by Pluess and Belsky (Dev Psychopathol 23:29-38, 2011) that prenatal-stress fosters, promotes or "programs" postnatal developmental plasticity. In this paper, we review further evidence consistent with this proposition, including a novel animal study which experimentally manipulated both prenatal stress and postnatal rearing. Directions for future work focused on mechanisms mediating the plasticity-inducing effects of prenatal stress and the moderators of such effects are outlined.
Collapse
Affiliation(s)
- Sarah Hartman
- Department of Human Development and Family Studies, University of California, One Shields Avenue, 3321 Hart Hall, Davis, CA, 95616, USA.
| | - Jay Belsky
- Department of Human Development and Family Studies, University of California, One Shields Avenue, 3321 Hart Hall, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Prounis GS, Thomas K, Ophir AG. Developmental trajectories and influences of environmental complexity on oxytocin receptor and vasopressin 1A receptor expression in male and female prairie voles. J Comp Neurol 2018; 526:1820-1842. [PMID: 29665010 PMCID: PMC5990463 DOI: 10.1002/cne.24450] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022]
Abstract
Nonapeptide receptors, like oxytocin receptor (OTR) and vasopressin 1a receptor (V1aR), modulate a variety of functions across taxa, and mediate phenotypic variation within and between species. Despite the popularity of studying nonapeptides in adults, developmental perspectives on properties of OTR and V1aR expression are lacking. Study of prairie voles (Microtus ochrogaster) has facilitated an understanding of mechanisms of social behavior and provides great potential to inform how early life experiences alter phenotype. We provide the first comprehensive profiling of OTR and V1aR in male and female prairie voles across postnatal development and into adulthood. Differences in receptor densities across the forebrain were region- and sex-specific. Postnatal changes in receptor expression fell into four themes: (a) constant over time, (b) increasing with age, (c) decreasing with age, or (d) peaking during late pre-weaning (postnatal day 15-21). We also examined the influence of post-weaning social and spatial enrichment (i.e., environmental complexity) on OTR and V1aR. Environmental complexity appeared to promote expression of OTR in males and females, and reduced expression of V1aR across several brain regions in males. Our results show that nonapeptide receptor profiles are plastic over development and suggest that different patterns of expression might represent functional differences in sensitivity to nonapeptide activation over a period when social environments are dynamic. Our results on environmental complexity suggest that nonapeptide sensitivity responds flexibly to different environmental contexts during development. Understanding the developmental trajectories of nonapeptide receptors provides a better understanding of the dynamic nature of social behavior and the underlying mechanisms.
Collapse
Affiliation(s)
| | - Kyle Thomas
- Department of Zoology, Oklahoma State University, Stillwater, OK
74078
| | | |
Collapse
|
10
|
Hammock EAD. Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology 2015; 40:24-42. [PMID: 24863032 PMCID: PMC4262889 DOI: 10.1038/npp.2014.120] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/08/2022]
Abstract
The related neuropeptides oxytocin and vasopressin are involved in species-typical behavior, including social recognition behavior, maternal behavior, social bonding, communication, and aggression. A wealth of evidence from animal models demonstrates significant modulation of adult social behavior by both of these neuropeptides and their receptors. Over the last decade, there has been a flood of studies in humans also implicating a role for these neuropeptides in human social behavior. Despite popular assumptions that oxytocin is a molecule of social bonding in the infant brain, less mechanistic research emphasis has been placed on the potential role of these neuropeptides in the developmental emergence of the neural substrates of behavior. This review summarizes what is known and assumed about the developmental influence of these neuropeptides and outlines the important unanswered questions and testable hypotheses. There is tremendous translational need to understand the functions of these neuropeptides in mammalian experience-dependent development of the social brain. The activity of oxytocin and vasopressin during development should inform our understanding of individual, sex, and species differences in social behavior later in life.
Collapse
Affiliation(s)
- Elizabeth A D Hammock
- Vanderbilt Kennedy Center and Department of Pediatrics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
11
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
12
|
Haller J, Harold G, Sandi C, Neumann ID. Effects of adverse early-life events on aggression and anti-social behaviours in animals and humans. J Neuroendocrinol 2014; 26:724-38. [PMID: 25059307 DOI: 10.1111/jne.12182] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 12/12/2022]
Abstract
We review the impact of early adversities on the development of violence and antisocial behaviour in humans, and present three aetiological animal models of escalated rodent aggression, each disentangling the consequences of one particular adverse early-life factor. A review of the human data, as well as those obtained with the animal models of repeated maternal separation, post-weaning social isolation and peripubertal stress, clearly shows that adverse developmental conditions strongly affect aggressive behaviour displayed in adulthood, the emotional responses to social challenges and the neuronal mechanisms activated by conflict. Although similarities between models are evident, important differences were also noted, demonstrating that the behavioural, emotional and neuronal consequences of early adversities are to a large extent dependent on aetiological factors. These findings support recent theories on human aggression, which suggest that particular developmental trajectories lead to specific forms of aggressive behaviour and brain dysfunctions. However, dissecting the roles of particular aetiological factors in humans is difficult because these occur in various combinations; in addition, the neuroscientific tools employed in humans still lack the depth of analysis of those used in animal research. We suggest that the analytical approach of the rodent models presented here may be successfully used to complement human findings and to develop integrative models of the complex relationship between early adversity, brain development and aggressive behaviour.
Collapse
Affiliation(s)
- J Haller
- Institute of Experimental Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
13
|
Hammock EA, Law CS, Levitt P. Vasopressin eliminates the expression of familiar odor bias in neonatal female mice through V1aR. Horm Behav 2013; 63:352-60. [PMID: 23261858 PMCID: PMC4285782 DOI: 10.1016/j.yhbeh.2012.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022]
Abstract
V1aR has a well established role in the neural regulation of adult mammalian social behavior. The role of V1aR in developmentally emerging social behavior is less well understood. We mapped V1aR at post-natal day 8 (P8) and demonstrate developmentally-specific expression in the neocortex and hippocampus. We tested the ability of male and female C57BL/6J mice to show orienting bias to a familiar odor at this age. We demonstrate that females, but not males, show an orienting bias for odors previously paired with the mother, which is eliminated by V1aR signaling.
Collapse
Affiliation(s)
- Elizabeth A.D. Hammock
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville TN, 37232
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville TN, 37232
| | - Caitlin S. Law
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville TN, 37232
| | - Pat Levitt
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
14
|
Abstract
Oxytocin (OT) and vasopressin (VP) are two closely related neuropeptides, widely known for their peripheral hormonal effects. Specific receptors have also been found in the brain, where their neuromodulatory actions have meanwhile been described in a large number of regions. Recently, it has become possible to study their endogenous neuropeptide release with the help of OT/VP promoter-driven expression of fluorescent proteins and light-activated ion channels. In this review, I summarize the neuromodulatory effects of OT and VP in different brain regions by grouping these into different behavioral systems, highlighting their concerted, and at times opposite, effects on different aspects of behavior.
Collapse
Affiliation(s)
- Ron Stoop
- Centre for Psychiatric Neurosciences, Lausanne University Hospital Center, Lausanne, Switzerland.
| |
Collapse
|
15
|
Hammock EA, Levitt P. Modulation of parvalbumin interneuron number by developmentally transient neocortical vasopressin receptor 1a (V1aR). Neuroscience 2012; 222:20-8. [PMID: 22820266 PMCID: PMC3444161 DOI: 10.1016/j.neuroscience.2012.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 11/30/2022]
Abstract
Arginine-vasopressin (AVP) and the vasopressin 1a receptor (V1aR) modulate social behavior and learning and memory in adult animals. Both functions depend upon the normal emergence of the balance of excitation and inhibition (E/I balance) in the neocortex. Here, we tested the hypothesis that V1aR signaling and E/I balance converge through the influence of the neuropeptide on interneuron number achieved in the neocortex. Postnatal mapping of forebrain V1aR binding in male and female mice revealed a transient expression of high levels of receptor in the neocortex and hippocampus in the second and third post-natal weeks. Receptor binding levels in these cortical structures fell dramatically in the adult, maintaining high levels of expression subcortically. Surprisingly, we observed sex differences in the number of calbindin interneurons, and a contribution of V1aR to the number of parvalbumin-immunoreactive neurons in the adult mouse neocortex. These data suggest that individual differences in developmentally transient V1aR signaling and even sex may alter the development of E/I balance in the neocortex, with long-lasting influence on information processing.
Collapse
Affiliation(s)
- Elizabeth A.D. Hammock
- Department of Pediatrics, Vanderbilt University School of Medicine & Vanderbilt Kennedy Center, Vanderbilt University, Nashville TN, 37232
| | - Pat Levitt
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
16
|
Shi L, Fan Y, Xu Z. Development of oxytocin- and vasopressin-network in the supraoptic and paraventricular nuclei of fetal sheep. Physiol Res 2012; 61:277-86. [PMID: 22480425 DOI: 10.33549/physiolres.932257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The hypothalamic supraoptic and paraventricular nuclei consist of oxytocin and arginine vasopressin synthesizing neurons that send projections to the neurohypophysis. A growing body of evidence in adult animals and young animals at near term confirmed the structure and function in the vasopressinergic and oxytocinergic network. However, whether those distinctive neural networks are formed before near term is largely unknown. This study determined the special patterns in location and distribution of oxytocin- and vasopressin-neurons in the paraventricular and supraoptic nuclei from preterm to term in the ovine fetuses. The results showed that oxytocin- and vasopressin-neurons were present in both nuclei at the three gestational time periods (preterm, near term, and term). In the paraventricular nuclei, vasopressin-cells concentrated mainly in the core of the middle magnocellular paraventricular nuclei, and oxytocin-cells were scattered surrounding the core. In the supraoptic nuclei, vasopressin-cells mostly located in the ventral part, and oxytocin-cells in the dorsal part. The data demonstrated that the special distributed patterns of vasopressin- and oxytocin-neuron network have formed in those two nuclei at least from preterm. Intracerebroventricular injection of angiotensin II significantly increased fetal plasma oxytocin and vasopressin levels at preterm, which was associated with an increase of oxytocin- and vasopressin-neuron activity marked with c-fos expression. The data provided new evidence for the structural and functional development of the oxytocin- and vasopressin-network before birth.
Collapse
Affiliation(s)
- L Shi
- Beijing Sport University, Beijing China
| | | | | |
Collapse
|
17
|
Bales KL, Perkeybile AM. Developmental experiences and the oxytocin receptor system. Horm Behav 2012; 61:313-9. [PMID: 22245313 DOI: 10.1016/j.yhbeh.2011.12.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 12/17/2022]
Abstract
The long-term effects of developmental experiences on social behavior, and the neuropeptide systems such as oxytocin which subserve the behavior, are still little understood. In this article, we review various types of early experience, including normal development, knockout models, pharmacological exposures, and early social experiences. We consider the processes by which experience can affect oxytocin receptor binding, and what is known about the directionality of experience effects on oxytocin receptors. Finally, we attempt to synthesize the literature into a predictive model as to the direction of early experience effects on oxytocin receptor binding potential, and whether these changes have functional significance. These predictions are relevant to current human health practice, given proposals to use chronic intranasal oxytocin to treat developmental disorders including autism and schizophrenia. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Karen L Bales
- Dept of Psychology, One Shields Ave., University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
18
|
Walker C, Anand K, Plotsky PAULM. Development of the Hypothalamic‐Pituitary‐Adrenal Axis and the Stress Response. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Wrobel LJ, Dupré A, Raggenbass M. Excitatory action of vasopressin in the brain of the rat: role of cAMP signaling. Neuroscience 2010; 172:177-86. [PMID: 20933582 DOI: 10.1016/j.neuroscience.2010.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 02/02/2023]
Abstract
Brain vasopressin plays a role in behavioral and cognitive functions and in pathological conditions. Relevant examples are pair bonding, social recognition, fear responses, stress disorders, anxiety and depression. At the neuronal level, vasopressin exerts its effects by binding to V1a receptors. In the brainstem, vasopressin can excite facial motoneurons by generating a sustained inward current which is sodium-dependent, tetrodotoxin-insensitive and voltage-gated. This effect is independent of intracellular calcium mobilization and is unaffected by phospholipase Cβ (PLCβ) or protein kinase C (PKC) inhibitors. There are two major unsolved problems. (i) What is the intracellular signaling pathway activated by vasopressin? (ii) What is the exact nature of the vasopressin-sensitive cation channels? We performed recordings in brainstem slices. Facial motoneurons were voltage-clamped in the whole-cell configuration. We show that a major fraction, if not the totality, of the peptide effect was mediated by cAMP signaling and that the vasopressin-sensitive cation channels were directly gated by cAMP. These channels appear to exclude lithium, are suppressed by 2-aminoethoxydiphenylborane (2-APB) and flufenamic acid (FFA) but not by ruthenium red or amiloride. They are distinct from transient receptor channels and from cyclic nucleotide-regulated channels involved in visual and olfactory transduction. They present striking similarities with cation channels present in a variety of molluscan neurons. To our knowledge, the presence in mammalian neurons of channels having these properties has not been previously reported. Our data should contribute to a better knowledge of the neural mechanism of the central actions of vasopressin, and may be potentially significant in view of clinical applications.
Collapse
Affiliation(s)
- L J Wrobel
- Department of Basic Neurosciences, University Medical Center, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
20
|
Agirregoitia N, Bizet P, Agirregoitia E, Boutelet I, Peralta L, Vaudry H, Jégou S. Prolyl endopeptidase mRNA expression in the central nervous system during rat development. J Chem Neuroanat 2010; 40:53-62. [PMID: 20304043 DOI: 10.1016/j.jchemneu.2010.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 12/01/2022]
Abstract
Prolyl endopeptidase (PEP) is a serine protease that cleaves small peptides at the carboxyl side of L-proline. PEP has been reported to have important functions in the brain being implicated in learning and memory processes, psychological disorders and neurodegenerative diseases. Several PEP substrates have been shown to play a role during brain development and this observation led us to investigate the expression of PEP mRNA in the rat brain and spinal cord, from embryo to adult stages. In situ hybridization revealed that PEP mRNA is expressed early, from embryonic day 15, notably in germinative areas including the neocortical, hippocampal, pallidal, thalamic, anterior hypothalamic, tectal, cerebellar, pontine and medullary neuroepithelia. PEP mRNA was also found in the differentiating fields of the olfactory bulb, the orbital and cingulate cortex, the hippocampal formation, the cortical plate and the subventricular zone of the cortex. Quantitative RT-PCR analysis in various brain areas and the spinal cord showed that PEP mRNA levels are more abundant during the perinatal stages, coinciding with a period of neuronal migration and differentiation. From then on, PEP mRNA expression decreased, reaching its lowest levels at adulthood. Overall, the present data support the possibility that PEP exerts specific functions related to neurodevelopment besides those proposed to date.
Collapse
Affiliation(s)
- N Agirregoitia
- INSERM U413/U982, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), University of Rouen, 76821 Mont-Saint-Aignan, France.
| | | | | | | | | | | | | |
Collapse
|
21
|
Developing Brain as an Endocrine Organ: A Paradoxical Reality. Neurochem Res 2010; 35:837-50. [DOI: 10.1007/s11064-010-0127-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2010] [Indexed: 01/09/2023]
|
22
|
Maternal separation interferes with developmental changes in brain vasopressin and oxytocin receptor binding in male rats. Neuropharmacology 2009; 58:78-87. [PMID: 19560475 DOI: 10.1016/j.neuropharm.2009.06.020] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/15/2009] [Accepted: 06/17/2009] [Indexed: 11/22/2022]
Abstract
Brain vasopressin V(1A) receptors (V(1A)-R) and oxytocin receptors (OT-R) are important modulators of social behaviors. We recently showed that exposure to maternal separation (MS; 3 h daily, postnatal days 1-14) induces changes in social behaviors in juvenile and adult male rats. Here, we hypothesize that MS induces brain region-specific changes in V(1A)-R and OT-R across development, which in turn, may underlie MS-induced changes in social behaviors. We examined the effects of MS on V(1A)-R and OT-R binding in forebrain regions of juvenile (5 weeks), adolescent (8 weeks), and adult (16 weeks) male rats. Robust age-related changes were found for V(1A)-R and OT-R binding in several brain regions. For example, in the lateral septum V(1A)-R binding increased while OT-R binding decreased with age. Most notably, OT-R binding in the caudate putamen showed a 2-fold decrease while OT-R binding in the ventromedial hypothalamus showed a 4-fold increase with age. Importantly, exposure to MS interfered with these developmental changes in several brain regions. Specifically, MS significantly increased V(1A)-R binding in the piriform cortex (at adolescent and adult ages), the lateral septum (at juvenile age), the hypothalamic attack area (at adolescent age), and the dentate gyrus of the hippocampus (at adolescent age), and decreased V(1A)-R binding in the arcuate nucleus (at juvenile age). Moreover, OT-R binding was significantly lower in the agranular cortex (at juvenile and adolescent age), the lateral septum (at adult age) and the caudate putamen (at adult age), but higher in the medial preoptic area (at adolescent age) and ventromedial hypothalamus (at adult age) after exposure to MS. In conclusion, age-dependent changes in V(1A)-R and OT-R binding are likely associated with the maturation of behaviors, such as sexual and aggressive behaviors, while disruption of these changes by MS might contribute to previously observed changes in social behaviors after MS.
Collapse
|
23
|
|
24
|
Vargas KJ, Sarmiento JM, Ehrenfeld P, Añazco CC, Villanueva CI, Carmona PL, Brenet M, Navarro J, Müller-Esterl W, González CB. Postnatal expression of V2 vasopressin receptor splice variants in the rat cerebellum. Differentiation 2009; 77:377-85. [PMID: 19281786 DOI: 10.1016/j.diff.2008.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/29/2008] [Accepted: 11/30/2008] [Indexed: 11/30/2022]
Abstract
The V(2) vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V(2a) and V(2b)) first identified in the kidney. The open reading frame of the alternatively spliced V(2b) transcript encodes a truncated receptor, showing the same amino acid sequence as the canonical V(2a) receptor up to the sixth transmembrane segment, but displaying a distinct sequence to the corresponding seventh transmembrane segment and C-terminal domain relative to the V(2a) receptor. Here, we demonstrate the postnatal expression of V(2a) and V(2b) variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V(2) splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V(2) receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 expressing similar amounts of both V(2) splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V(2a) receptors, suggesting that the differential expression of the V(2) splice variants regulates the vasopressin signaling in the cerebellum.
Collapse
Affiliation(s)
- Karina J Vargas
- Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Raggenbass M. Overview of cellular electrophysiological actions of vasopressin. Eur J Pharmacol 2008; 583:243-54. [PMID: 18280467 DOI: 10.1016/j.ejphar.2007.11.074] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/24/2007] [Accepted: 11/07/2007] [Indexed: 11/24/2022]
Abstract
The nonapeptide vasopressin acts both as a hormone and as a neurotransmitter/neuromodulator. As a hormone, its target organs include kidney, blood vessels, liver, platelets and anterior pituitary. As a neurotransmitter/neuromodulator, vasopressin plays a role in autonomic functions, such as cardiovascular regulation and temperature regulation and is involved in complex behavioral and cognitive functions, such as sexual behavior, pair-bond formation and social recognition. At the neuronal level, vasopressin acts by enhancing membrane excitability and by modulating synaptic transmission. The present review will focus on the electrophysiological effects of vasopressin at the cellular level. A large proportion of the experiments summarized here have been performed in in vitro systems, especially in brain and spinal cord slices of the rat. Vasopressin exerts a powerful excitatory action on motoneurons of young rats and mice. It acts by generating a cationic inward current and/or by reducing a potassium conductance. In addition, vasopressin enhances the inhibitory synaptic input to motoneurons. By virtue of these actions, vasopressin may regulate the functioning of neuronal networks involved in motor control. In the amygdala, vasopressin can directly excite a subpopulation of neurons, whereas oxytocin, a related neuropeptide, can indirectly inhibit these same neurons. In the lateral septum, vasopressin exerts a similar dual action: it excites directly a neuronal subpopulation, but causes indirect inhibition of virtually all lateral septal neurons. The actions of vasopressin in the amygdala and lateral septum may represent at least part of the neuronal substrate by which vasopressin influences fear and anxiety-related behavior and social recognition, respectively. Central vasopressin can modulate cardiovascular parameters by causing excitation of spinal sympathetic preganglionic neurons, by increasing the inhibitory input to cardiac parasympathetic neurons in the nucleus ambiguus, by depressing the excitatory input to parabrachial neurons, or by inhibiting glutamate release at solitary tract axon terminals. By acting in or near the hypothalamic supraoptic nucleus, vasopressin can influence magnocellular neuron activity, suggesting that the peptide may exert some control on its own release at neurohypophyseal axon terminals. The central actions of vasopressin are mainly mediated by receptors of the V(1A) type, although recent studies have also reported the presence of vasopressin V(1B) receptors in the brain. Major unsolved problems are: (i) what is the transduction pathway activated following stimulation of central vasopressin V(1A) receptors? (ii) What is the precise nature of the cation channels and/or potassium channels operated by vasopressin? (iii) Does vasopressin, by virtue of its second messenger(s), interfere with other neurotransmitter/neuromodulator systems? In recent years, information concerning the mechanism of action of vasopressin at the neuronal level and its possible role and function at the whole-animal level has been accumulating. Translation of peptide actions at the cellular level into autonomic, behavioral and cognitive effects requires an intermediate level of integration, i.e. the level of neuronal circuitry. Here, detailed information is lacking. Further progress will probably require the introduction of new techniques, such as targeted in vivo whole-cell recording, large-scale recordings from neuronal ensembles or in vivo imaging in small animals.
Collapse
Affiliation(s)
- Mario Raggenbass
- Department of Basic Neurosciences, University Medical Center, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
26
|
Koibuchi H, Hayashi S. Development of neurons expressing estrogen receptor α transiently in facial nucleus of prenatal and postnatal rat brains. Neurosci Res 2007; 58:190-8. [PMID: 17395327 DOI: 10.1016/j.neures.2007.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/20/2007] [Accepted: 02/21/2007] [Indexed: 11/28/2022]
Abstract
The transient expression of estrogen receptor alpha (ERalpha) in the facial nucleus of rats during development was already reported. However, how and whether the receptor functions physiologically in the nucleus of developing rats are as yet unclear. In this study, we applied a retrograde tracer into one of the possible target muscles of the motoneurons in the nucleus, that is, the transverse auricular muscle (Mta), and examined whether ERalpha-immunopositive neurons take up the tracer. Because it is probable that neurogenesis, apoptosis, and maturation may be associated with the transient expression of ERalpha, we attempted to analyze the neurons expressing the receptor in the nucleus. We found that ERalpha-immunopositive neurons in the medial facial subnucleus innervate mostly the Mta. Quantitative analyses showed that the number of motoneurons projecting to the Mta remained the same throughout the ages examined, whereas that of ERalpha-immunopositive neurons decreased between postnatal days 6 and 11. Apoptosis and neurogenesis in the nucleus were not affected by the expression of ERalpha during development. ERalpha expression coincided with the maturation of neurons in the nucleus. Thus, it is possible that ERalpha expression in the facial nucleus during development plays important roles in the development of motoneurons and/or external pinna muscles.
Collapse
Affiliation(s)
- Hiroshi Koibuchi
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | | |
Collapse
|
27
|
Ogier R, Tribollet E, Suarez P, Raggenbass M. Identified motoneurons involved in sexual and eliminative functions in the rat are powerfully excited by vasopressin and tachykinins. J Neurosci 2006; 26:10717-26. [PMID: 17050711 PMCID: PMC6674731 DOI: 10.1523/jneurosci.3364-06.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pudendal motor system is constituted by striated muscles of the pelvic floor and the spinal motoneurons that innervate them. It plays a role in eliminative functions of the bladder and intestine and in sexual function. Pudendal motoneurons are located in the ventral horn of the caudal lumbar spinal cord and send their axon into the pudendal nerve. In the rat, binding sites for vasopressin and tachykinin are present in the dorsomedial and dorsolateral pudendal nuclei, suggesting that these neuropeptides may affect pudendal motoneurons. The aim of the present study was to investigate possible effects of vasopressin and tachykinins on these motoneurons. Recordings were performed in spinal cord slices of young male rats using the whole-cell patch-clamp technique. Before recording, motoneurons were identified by 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine, 4-chlorobenzenesulfonate retrograde labeling. The identification was confirmed, a posteriori, by choline acetyltransferase immunocytochemistry. Vasopressin and tachykinins caused a powerful excitation of pudendal motoneurons. The peptide-evoked depolarization, or the peptide-evoked inward current, persisted in the presence of tetrodotoxin, indicating that these effects were mainly postsynaptic. By using selective receptor agonists and antagonist, we determined that vasopressin acted via vasopressin 1a (V1a), but not V1b, V2, or oxytocin receptors, whereas tachykinins acted via neurokinin 1 (NK1), but not NK2 or NK3, receptors. Vasopressin acted by enhancing a nonselective cationic conductance; in some motoneurons, it also probably suppressed a resting K+ conductance. Our data show that vasopressin and tachykinins can excite pudendal motoneurons and thus influence the force of striated perineal muscles involved in eliminative and sexual functions.
Collapse
Affiliation(s)
- Roch Ogier
- Department of Basic Neurosciences, University Medical Center, CH-1211 Geneva 4, Switzerland
| | - Eliane Tribollet
- Department of Basic Neurosciences, University Medical Center, CH-1211 Geneva 4, Switzerland
| | - Philippe Suarez
- Department of Basic Neurosciences, University Medical Center, CH-1211 Geneva 4, Switzerland
| | - Mario Raggenbass
- Department of Basic Neurosciences, University Medical Center, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
28
|
Reymond-Marron I, Tribollet E, Raggenbass M. The vasopressin-induced excitation of hypoglossal and facial motoneurons in young rats is mediated by V1a but not V1b receptors, and is independent of intracellular calcium signalling. Eur J Neurosci 2006; 24:1565-74. [PMID: 17004920 DOI: 10.1111/j.1460-9568.2006.05038.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a hormone, vasopressin binds to three distinct receptors: V1a and V1b receptors, which induce phospholipase-Cbeta (PLCbeta) activation and Ca2+ mobilization; and V2 receptors, which are coupled to adenylyl cyclase. V1a and V1b receptors are also present in neurons. In particular, hypoglossal (XII) and facial (VII) motoneurons are excited following vasopressin-V1a receptor binding. The aim of the present study was double: (i) to determine whether V1b receptors contribute to the excitatory effect of vasopressin in XII and VII motoneurons; and (ii) to establish whether the action of vasopressin on motoneurons is mediated by Ca2+ signalling. Patch-clamp recordings were performed in brainstem slices of young rats. Vasopressin depolarized the membrane or generated an inward current. By contrast, [1-deamino-4-cyclohexylalanine] arginine vasopressin (d[Cha4]AVP), a V1b agonist, had no effect. The action of vasopressin was suppressed by Phaa-D-Tyr(Et)-Phe-Gln-Asn-Lys-Pro-Arg-NH2, a V1a antagonist, but not by SSR149415, a V1b antagonist. Thus, the vasopressin-induced excitation of brainstem motoneurons was exclusively mediated by V1a receptors. Light microscopic autoradiography failed to detect V1b binding sites in the facial nucleus. In motoneurons loaded with GTP-gamma-S, a non-hydrolysable analogue of GTP, the effect of vasopressin was suppressed, indicating that neuronal V1a receptors are G-protein-coupled. Intracellular Ca2+ chelation suppressed a Ca2+-activated potassium current, but did not affect the vasopressin-evoked current. H7 and GF109203, inhibitors of protein kinase C, were without effect on the vasopressin-induced excitation. U73122 and D609, PLCbeta inhibitors, were also without effect. Thus, excitation of brainstem motoneurons by V1a receptor activation is probably mediated by a second messenger distinct from that associated with peripheral V1a receptors.
Collapse
Affiliation(s)
- I Reymond-Marron
- Department of Basic Neurosciences, University Medical Center, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
29
|
Zhang L, Doroshenko P, Cao XY, Irfan N, Coderre E, Kolaj M, Renaud LP. Vasopressin induces depolarization and state-dependent firing patterns in rat thalamic paraventricular nucleus neurons in vitro. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1226-32. [PMID: 16339383 DOI: 10.1152/ajpregu.00770.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thalamic midline paraventricular nucleus (PVT) is prominently innervated by vasopressin-immunoreactive neurons from the suprachiasmatic nucleus (SCN), site of the brain's biological clock. Using patch-clamp recordings in slice preparations taken from Wistar rats during the subjective day, we examined 90 PVT neurons for responses to bath-applied AVP (0.5–2 μM; 1–3 min). In current clamp at resting membrane potentials (−65 ± 1 mV), PVT neurons displayed low-threshold spikes (LTSs) and burst firing patterns. In 50% of cells tested, AVP induced a slowly rising, prolonged membrane depolarization and tonic firing, returning to burst firing upon recovery. AVP modulated hyperpolarization-activated LTSs by decreasing the time to the initial sodium spike at the onset of LTS, also increasing the duration of the afterdepolarization. Responses were blockable with a V1a receptor antagonist (Manning compound). Under voltage clamp, AVP induced a TTX-resistant, slowly rising, and prolonged (∼15 min) inward current (<40 pA). Current-voltage relationship ( I-V) analyses of the AVP responses revealed a decrease in membrane conductance to 73.1 ± 6.2% of control, with net AVP current reversing at −106 ± 4 mV, and decreased inward rectification at negative potentials. These observations are consistent with an AVP-induced closure of an inwardly rectifying potassium conductance. On the basis of these in vitro observations, we suggest that the SCN vasopressinergic innervation of PVT is excitatory in nature, possibly releasing AVP with circadian rhythmicity and contributing to state-dependent firing patterns in PVT neurons over the sleep-wake cycle.
Collapse
Affiliation(s)
- L Zhang
- Neurosciences, Ottawa Health Research Institute and University of Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | | | | | |
Collapse
|
30
|
Wu S, Jia M, Ruan Y, Liu J, Guo Y, Shuang M, Gong X, Zhang Y, Yang X, Zhang D. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry 2005; 58:74-7. [PMID: 15992526 DOI: 10.1016/j.biopsych.2005.03.013] [Citation(s) in RCA: 366] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 02/22/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Previous research has suggested that the social impairments exhibited by individuals with autism are associated with changes in plasma oxytocin (OT) levels. The physiologic effects of oxytocin are mediated through its specific receptors (OTRs), and numerous studies have implicated OTRs in the regulation of social cognition and behavior. Animal models and linkage data from genome screens indicate that the oxytocin receptor gene (OXTR) is an excellent candidate for research concerning psychiatric disorders, particularly those involving social impairments, such as autism. METHODS We genotyped four single nucleotide polymorphisms (SNPs) located within the OXTR gene of 195 Chinese Han autism trios, using polymerase chain reaction-restriction fragment length polymorphism analysis. RESULTS The family-based association test (FBAT) revealed a significant genetic association between autism and two of the SNPs tested (rs2254298 A: Z = 2.287, p = .0222; rs53576 A: Z = 2.573, p = .0101). When haplotypes were constructed with two, three, and four markers, the haplotype-specific FBAT revealed that a number of haplotypes, particularly those involving rs53576, were significantly associated with autism. Furthermore, haplotypes constructed with all markers showed a significant excess transmission for the specific and global haplotype analyses (p = .0020 and .0289, respectively). CONCLUSIONS These data suggest an involvement of OXTR in the susceptibility to autism, and replication is important.
Collapse
Affiliation(s)
- Suping Wu
- Institute of Mental Health, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ugrumov MV. Developing Brain as a Giant Multipotent Endocrine Gland. NEUROPHYSIOLOGY+ 2005. [DOI: 10.1007/s11062-005-0069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Reymond-Marron I, Raggenbass M, Zaninetti M. Vasopressin facilitates glycinergic and GABAergic synaptic transmission in developing hypoglossal motoneurons. Eur J Neurosci 2005; 21:1601-9. [PMID: 15845087 DOI: 10.1111/j.1460-9568.2005.03996.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hypoglossal nucleus of young rats contains vasopressin binding sites and vasopressin can directly excite hypoglossal motoneurons. In addition, indirect evidence suggests that vasopressin can enhance the synaptic input to motoneurons. We have characterized this latter effect by using brainstem slices and whole-cell recordings. We found that, in the presence of blockers of fast glutamatergic transmission, vasopressin strongly facilitated inhibitory synaptic activity. On average, vasopressin caused a six-fold increase in the frequency and a 1.5-fold increase in the amplitude of GABAergic postsynaptic currents. The effect of vasopressin on glycinergic postsynaptic currents was similar in magnitude. Vasopressin did not affect the frequency of GABAergic or glycinergic miniature postsynaptic currents, indicating that the peptide-induced facilitation of inhibitory transmission was mediated by receptors located on the somatodendritic region rather than on axon terminals of presynaptic neurons. The pharmacological profile of these receptors was determined by using d[Cha4]AVP and dVDAVP, selective agonists of V1b and V2 vasopressin receptors, respectively, and Phaa-D-Tyr-(Et)-Phe-Gln-Pro-Arg-Arg-NH2, a selective antagonist of V1a vasopressin receptors. The two agonists had no effect on the frequency of inhibitory postsynaptic currents. By contrast, the antagonist suppressed the vasopressin-induced facilitation of these currents, indicating that the receptors involved were exclusively of the V1a type. Thus, vasopressin exerts a dual action on hypoglossal motoneurons: a direct excitatory action and an indirect action mediated by GABAergic and glycinergic synapses. By virtue of this dual effect, vasopressin could alter the input-output properties of these motoneurons. Alternatively, it could play a role in generating or modulating specific motor patterns.
Collapse
Affiliation(s)
- I Reymond-Marron
- Department of Basic Neuroscience, University Medical Center, 1, rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
33
|
Carro-Juárez M, Rodríguez-Manzo G. Evidence for the presence and functioning of the spinal generator for ejaculation in the neonatal male rat. Int J Impot Res 2005; 17:270-6. [PMID: 15703769 DOI: 10.1038/sj.ijir.3901305] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A spinal pattern generator controls ejaculation in the male rat. In the present study, the hypothesis that the spinal generator for ejaculation was functional at early postnatal stages was evaluated. To this purpose, the expression of the ejaculatory motor pattern and its pharmacological activation in spinally transected neonatal rats from postnatal day 2 to weaning were investigated. Results revealed the presence of the rhythmic ejaculatory motor pattern in neonatal male rats. As in adult sexually experienced animals, the neonatal ejaculatory motor pattern could be elicited after the application of an ejaculation-like-releasing stimulus. The rhythmic genital motor response of neonates exhibited a gradual maturation that was reflected in its motor parameters until showing the features of the adult response at postnatal day 28. Besides, the ejaculatory motor pattern could be induced by the systemic injection of oxytocin in 7-day-old neonates as well as in adult animals. Present findings provide evidence for the presence of the spinal generator for ejaculation early during postnatal development, suggesting that its organisation is innate.
Collapse
Affiliation(s)
- M Carro-Juárez
- Laboratorio de Comportamiento Reproductivo, Escuela de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| | | |
Collapse
|
34
|
Ross MG, Desai M, Guerra C, Wang S. Prenatal programming of hypernatremia and hypertension in neonatal lambs. Am J Physiol Regul Integr Comp Physiol 2005; 288:R97-103. [PMID: 15374819 DOI: 10.1152/ajpregu.00315.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal water restriction and the accompanying dehydration-induced anorexia may induce long-term physiological changes in offspring. We determined the impact of prenatal hypertonicity (Pre-Dehy) on offspring cardiovascular and osmoregulatory function. Pre-Dehy lambs were exposed to in utero hypernatremia (8- to 10-meq increase; 110–150 days of gestation) induced by maternal water restriction. Control lambs were born to ewes provided ad libitum water and food throughout gestation. After delivery, all ewes were provided ad libitum water and all newborns were allowed ad libitum nursing. Lambs were prepared with vascular and bladder catheters at 15 ± 2 days of age and studied at 21 ± 2 days. After a 2-h basal period, lambs received an infusion of hypotonic (0.075 M) NaCl (0.15 ml·kg−1·h−1 iv) for 2 h. Lamb arterial blood pressure was monitored, and blood samples were obtained before, during, and after infusion. During the neonatal basal period, Pre-Dehy lambs had significantly increased plasma osmolality (302 ± 1 vs. 294 ± 1 mosmol/kgH2O, P < 0.01), sodium levels (144 ± 1 vs. 140 ± 1 meq/l, P < 0.01), hematocrit (28 ± 1% vs. 25 ± 1%, P < 0.05), and mean arterial blood pressure (79 ± 2 vs. 68 ± 1 mmHg, P < 0.001) compared with control lambs. Despite the infusion of hypotonic saline, Pre-Dehy lambs maintained relative hypertonicity, hypernatremia, and hypertension. However, plasma arginine vasopressin, glomerular filtration rate, and urinary osmolar and sodium excretion and clearance (per kg body wt) were similar in the groups. Offspring of prenatally water-restricted ewes exhibit hypernatremia, hypertonicity, and hypertension, which persist despite hypotonic saline infusion. In utero hypertonicity and perhaps maternal nutrient stress may program offspring osmoregulation and systemic arterial hypertension.
Collapse
Affiliation(s)
- Michael G Ross
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Harbor-UCLA Medical Center, 1000 W. Carson St., Box 3, Torrance, CA 90509, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
It is not known if the fetus can actually feel pain, but noxious stimulation during fetal life does cause detectable stress responses. These responses cause both short and long-term changes in the central nervous system, which can affect subsequent pain behaviour. Reducing the stress response is known to be beneficial in children and adults and recent evidence suggests this is also true for the fetus. However, the optimal amount of suppression required and the best method of achieving this (opioid or regional anaesthesia techniques) remain unknown. Prevention and treatment of pain is a basic human right, regardless of age, and if the technique of fetal surgery is to progress then a greater understanding of nociception and the stress response is required.
Collapse
Affiliation(s)
- Michelle C White
- Department of Anaesthesia, Bristol School of Anaesthesia, Southmead Hospital, Southmead Road, Bristol BS10 5NB, UK
| | | |
Collapse
|
36
|
Steininger TL, Kilduff TS, Behan M, Benca RM, Landry CF. Comparison of hypocretin/orexin and melanin-concentrating hormone neurons and axonal projections in the embryonic and postnatal rat brain. J Chem Neuroanat 2004; 27:165-81. [PMID: 15183202 DOI: 10.1016/j.jchemneu.2004.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 02/13/2004] [Indexed: 11/15/2022]
Abstract
Hypocretin/orexin (H/O) and melanin-concentrating hormone (MCH) are peptide neuromodulators found in separate populations of neurons located within the lateral and perifornical hypothalamic regions. H/O has been linked to sleep-wakefulness regulation and to the sleep disorder narcolepsy, and both systems have been implicated in energy homeostasis, including the regulation of food intake. In the present study we compared the development of H/O and MCH-expressing neuronal populations with in situ hybridization and immunohistochemistry on adjacent sections in the embryonic and postnatal rat brain. We found that MCH mRNA and protein were present in developing neurons of the hypothalamus by embryonic day 16 (E16), whereas H/O mRNA and protein were not detected until E18. We also identified previously undescribed populations of MCH-immunoreactive cells in the lateral septum, paraventricular hypothalamic nucleus, lateral zona incerta, and ventral lateral geniculate nucleus that may play a specific role in the development of these regions. MCH immunoreactive axonal processes were also evident earlier than H/O stained fibers and at the time H/O immunoreactive processes were first identified in the hypothalamus at E20, extensive MCH axonal fiber systems were already present in many brain regions. Interestingly, however, the density of axonal fibers immunoreactive for H/O in the locus coeruleus reached peak levels at the same developmental age (P21) as MCH immunoreactive axons in the diagonal band of Broca (DBB). The peak of axon density coincided with the developmental stage at which adult patterns of feeding and sleep-waking activity become established. The present results demonstrate developmental differences and similarities between the MCH and H/O systems that may relate to their respective roles in feeding and sleep regulation.
Collapse
Affiliation(s)
- Teresa L Steininger
- Molecular Neurobiology Laboratory, SRI International, Menlo Park, CA 94025, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
The development of motor networks in the spinal cord is partly activity-dependent. We have observed receptor-mediated excitatory effects of two peptides, arginine vasopressin (AVP) and oxytocin (OXT), on motor network activity in the neonate. With the use of an en bloc in vitro preparation of mouse spinal cord (2-3 d old), which either was isolated completely or had muscles of the hindlimb left intact, we show that the bath application of AVP or OXT can evoke an increase in population bursting of motoneurons recorded from the lumbar ventral roots. By using antagonists for AVP and OXT, we found that these peptides were binding primarily to V1a and OXT receptors, respectively. Western blot analysis revealed a 48 kDa V1a and a 55 kDa OXT receptor immunoreactive band that was expressed in tissue obtained from L1-L6 sections of spinal cord. AVP, but not OXT, could, on occasion, evoke sustained periods of locomotor-like activity. In addition, when we applied AVP or OXT in combination with a 5-HT2 agonist, bouts of locomotor-like activity could be observed in a majority of preparations. Collectively, these data point to a novel role for AVP and OXT in the activation of spinal motor networks.
Collapse
|
38
|
Whelan PJ. Developmental aspects of spinal locomotor function: insights from using the in vitro mouse spinal cord preparation. J Physiol 2003; 553:695-706. [PMID: 14528025 PMCID: PMC2343637 DOI: 10.1113/jphysiol.2003.046219] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over the last five years, rapid advances have been made in our understanding of the location, function, and recently, organization of the central pattern generator (CPG) for locomotion. In the mammal, the use of the neonatal rat has largely contributed to these advances. Additionally, the use of the in vitro mouse spinal cord preparation is becoming more common, catalysed in part by the potential for the use of genetic approaches to study locomotor function. Although tempting, it is necessary to resist the a priori assumption that the organization of the spinal CPG is identical in the rat and mouse. This review will describe the development of locomotor-like behaviour in the mouse from embryonic day 12 to postnatal day 14. While there are still many gaps in our knowledge, compared with the rat, the in vitro mouse appears to follow a qualitatively similar course of locomotor development. The emphasis in this review is the use or potential use of the mouse as a complement to existing data using the neonatal rat preparation.
Collapse
Affiliation(s)
- Patrick J Whelan
- Neuroscience Research Group and Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
39
|
Cushing BS, Yamamoto Y, Hoffman GE, Carter CS. Central expression of c-Fos in neonatal male and female prairie voles in response to treatment with oxytocin. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:129-36. [PMID: 12855184 DOI: 10.1016/s0165-3806(03)00105-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Early postnatal exposure to both exogenous and endogenous oxytocin (OT) can have long-term effects on behavior and physiology, although the mechanisms of these effects are not known. c-Fos expression was used to investigate the immediate neural effects of neonatal manipulations of OT in male and female prairie voles. On the day of birth prairie vole pups received an intraperitoneal injection of OT, a selective OT antagonist (OTA), or saline (vehicle control), while an additional group was handled but not injected. One hour after treatment brains were collected and fixed via spinning immersion and immunocytochemistry was then used to label for c-Fos immunoreactivity (IR). There were significant differences between males and females. Handled only females displayed significantly higher levels of c-Fos IR in the mediodorsal thalamic nucleus (MD) than males while handled males had higher c-Fos IR in the paraventricular nucleus of the hypothalamus than females. Exogenous OT stimulated neuronal activity in the supraoptic nucleus (SON) in males, while treatment with OTA increased Fos IR in the SON and was associated with reduced Fos IR in the MD in females. The results indicate that neuronal activity and responses to OT are sexually dimorphic in newborn prairie voles. In females changes in Fos expression were stimulated by treatment with OTA, suggesting that endogenous OT affects cellular activity while males responded to exogenous OT.
Collapse
Affiliation(s)
- Bruce S Cushing
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | | | | | | |
Collapse
|
40
|
Liu X, Tribollet E, Ogier R, Barberis C, Raggenbass M. Presence of functional vasopressin receptors in spinal ventral horn neurons of young rats: a morphological and electrophysiological study. Eur J Neurosci 2003; 17:1833-46. [PMID: 12752783 DOI: 10.1046/j.1460-9568.2003.02625.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of the present work was double. (i) Light microscopic autoradiography was used to determine the distribution of vasopressin and oxytocin binding sites in the spinal cord of rats. (ii) Whole-cell recordings were performed in lumbar spinal cord slices in order to assess whether these receptors are functional, whether they are located pre- or postsynaptically and whether they are present in motoneurons. In newborns, vasopressin binding sites of the V1a type were present in all laminae of the central gray at all segmental levels, whereas oxytocin binding sites were found only in the superficial layers of the dorsal horn. In adults, binding sites for both neuropeptides were also present, but were less dense. The dissociation constants for vasopressin were similar in newborns and adults. Whole-cell recordings showed that in identified motoneurons vasopressin exerted a direct effect, by inducing a membrane depolarization or by generating a sustained inward current, and an indirect effect, by enhancing glycinergic and GABAergic inhibitory transmission. Vasopressin-induced facilitation of inhibitory transmission could also be demonstrated in unidentified ventral horn neurons. All these effects were mediated by V1a but not V1b receptors. In some neurons, glycinergic transmission was also facilitated by a selective oxytocin receptor agonist. Our data, together with data obtained previously in brainstem motor nuclei, suggest that vasopressin of hypothalamic origin could play a role in motricity. The neuropeptide could act as a neuromodulator, because it would not directly activate motoneurons, but rather render them more responsive to incoming excitatory inputs. Vasopressin may thus act as a regulator of muscular force.
Collapse
Affiliation(s)
- X Liu
- Department of Physiology, University of Western Ontario, London N6A 5C1, ON, Canada
| | | | | | | | | |
Collapse
|
41
|
Wang J, Irnaten M, Venkatesan P, Evans C, Mendelowitz D. Arginine vasopressin enhances GABAergic inhibition of cardiac parasympathetic neurons in the nucleus ambiguus. Neuroscience 2002; 111:699-705. [PMID: 12031355 DOI: 10.1016/s0306-4522(02)00046-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Previous studies have shown that arginine vasopressin is an important neuropeptide that can modulate the reflex control of blood pressure and heart rate. The nucleus ambiguus, where cardiac parasympathetic neurons are located, receives dense arginine vasopressin projections. However the mechanisms by which arginine vasopressin alters cardiac parasympathetic activity are unknown. We tested the hypothesis that arginine vasopressin can alter the activity of cardiac parasympathetic neurons by altering the spontaneous GABAergic input to these neurons. Experiments were conducted using whole cell patch clamp recordings of cardiac parasympathetic neurons in an in vitro slice preparation in rats. The results of this study demonstrate that arginine vasopressin increases the frequency and amplitude of GABAergic inhibitory post-synaptic currents in cardiac parasympathetic neurons. Arginine vasopressin did not alter the GABAergic currents evoked by exogenous application of GABA. Similarly, in the presence of tetrodotoxin, arginine vasopressin did not alter the frequency, amplitude or decay time of GABAergic miniature synaptic events evoked by high osmolarity. These results indicate that arginine vasopressin likely acts on neurons precedent to cardiac parasympathetic neurons and that arginine vasopressin likely acts not at the synaptic terminal but at the soma or dendrites of the precedent neuron. Oxytocin and agonists for the V(2)-arginine vasopressin and V(1b)-arginine vasopressin receptors had no effect. By contrast, the arginine vasopressin-evoked responses were completely abolished by a selective V(1a)-arginine vasopressin receptor antagonist indicating arginine vasopressin responses are mediated by V(1a)-arginine vasopressin receptors. We conclude that the V(1a)-arginine vasopressin receptor-mediated increase in frequency and amplitude of inhibitory GABAergic activity to cardiac parasympathetic neurons may be at least one mechanism by which central arginine vasopressin may increase heart rate and inhibit reflex bradycardia.
Collapse
Affiliation(s)
- J Wang
- Department of Pharmacology, George Washington University, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
42
|
Interplay between presynaptic and postsynaptic activities is required for dendritic plasticity and synaptogenesis in the supraoptic nucleus. J Neurosci 2002. [PMID: 11756510 DOI: 10.1523/jneurosci.22-01-00265.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Developing oxytocin and vasopressin (OT/AVP) supraoptic nucleus (SON) neurons positively autocontrol their electrical activity via dendritic release of their respective peptide. The effects of this autocontrol are maximum during the second postnatal week (PW2), when the dendritic arbor transiently increases and glutamatergic postsynaptic potentials appear. Here, we studied the role and interaction of dendritic OT/AVP release and glutamate release in dendritic plasticity and synaptogenesis in SON. In vivo treatment with the peptides antagonists or with an NMDA antagonist suppressed the transient increase in dendritic arbor of SON neurons at the beginning of PW2. Incubation of acute slices with these compounds decreased the dendritic arbor on a short time scale (3-8 hr) in slices of postnatal day 7 (P7) to P9 rats. Conversely, application of OT/AVP or NMDA increased dendritic branches in slices of P3-P6 rats. Their effects were inhibited by blockade of electrical activity, voltage-gated Ca2+ channels, or intracellular Ca2+ mobilization. They were also interdependent because both OT/AVP and NMDA (but not AMPA) receptor activation were required for increasing the dendritic arbor. Part of this interdependence probably results from a retrograde action of the peptides facilitating glutamate release. Finally, blocking OT/AVP receptors by in vivo treatment with the peptides antagonists during development decreased spontaneous glutamatergic synaptic activity recorded in young adults. These results show that an interplay between postsynaptic dendritic peptide release and presynaptic glutamate release is involved in the transient increase in dendritic arbor of SON neurons and indicate that OT/AVP are required for normal synaptogenesis of glutamatergic inputs in SON.
Collapse
|
43
|
Pierson P, Tribollet E, Raggenbass M. Effect of vasopressin on the input-output properties of rat facial motoneurons. Eur J Neurosci 2001; 14:957-67. [PMID: 11595034 DOI: 10.1046/j.0953-816x.2001.01718.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vasopressin can directly excite facial motoneurons in young rats and mice. It acts by generating a persistent inward current, which is Na(+)-dependent, tetrodotoxin-insensitive and voltage-gated. This peptide-evoked current is unaffected by Ca(++) or K(+) channel blockade and is modulated by extracellular divalent cations. In the present work, we determined how vasopressin alters the input-output properties of facial motoneurons. Whole-cell recordings were obtained from these neurons in the current clamp mode, in brainstem slices of young rats. Repetitive firing was evoked by injecting depolarizing current pulses. Steady-state frequency-current (f-I) relationships were constructed and the effect of vasopressin on these relationships was studied. We found that vasopressin caused a parallel shift to the left of the cell steady-state f-I relationship. This effect persisted in the presence of blockers of K(+) or Ca(++) channels. The peptide effect was distinct from that brought about by Ca(++) channel suppression or by apamin, a blocker of the mAHP. These latter manipulations resulted in an increase in the slope of the steady-state f-I relationship. We conclude that the vasopressin-induced modification of the input-output properties of facial motoneurons is probably exclusively caused by the sodium-dependent, voltage-modulated inward current elicited by the peptide, rather than being due to indirect effects of the peptide on Ca(++) channels, K(+) channels or Ca(++)-dependent K(+) channels. Computer simulation, based on a simple model of facial motoneurons, indicates that the introduction of a conductance having the properties of the vasopressin-dependent conductance can entirely account for the observed peptide-induced shift of the f-I relationship.
Collapse
Affiliation(s)
- P Pierson
- Department of Physiology, University Medical Center, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
44
|
Raggenbass M. Vasopressin- and oxytocin-induced activity in the central nervous system: electrophysiological studies using in-vitro systems. Prog Neurobiol 2001; 64:307-26. [PMID: 11240311 DOI: 10.1016/s0301-0082(00)00064-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During the last two decades, it has become apparent that vasopressin and oxytocin, in addition to playing a role as peptide hormones, also act as neurotransmitters/neuromodulators. A number of arguments support this notion: (i) vasopressin and oxytocin are synthesized not only in hypothalamo-neurohypophysial cells, but also in other hypothalamic and extrahypothalamic cell bodies, whose axon projects to the limbic system, the brainstem and the spinal cord. (ii) Vasopressin and oxytocin can be shed from central axons as are classical neurotransmitters. (iii) Specific binding sites, i.e. membrane receptors having high affinity for vasopressin and oxytocin are present in the central nervous system. (iv) Vasopressin and oxytocin can alter the firing rate of selected neuronal populations. (v) In-situ injection of vasopressin and oxytocin receptor agonists and antagonists can interfere with behavior or physiological regulations. Morphological studies and electrophysiological recordings have evidenced a close anatomical correlation between the presence of vasopressin and oxytocin receptors in the brain and the neuronal responsiveness to vasopressin or oxytocin. These compounds have been found to affect membrane excitability in neurons located in the limbic system, hypothalamus, circumventricular organs, brainstem, and spinal cord. Sharp electrode intracellular recordings and whole-cell recordings, done in brainstem motoneurons or in spinal cord neurons, have revealed that vasopressin and oxytocin can directly affect neuronal excitability by opening non-specific cationic channels or by closing K(+) channels. These neuropeptides can also influence synaptic transmission, by acting either postsynaptically or upon presynaptic target neurons or axon terminals. Whereas, in cultured neurons, vasopressin and oxytocin appear to mobilize intracellular Ca(++), in brainstem slices, the action of oxytocin is mediated by a second messenger that is distinct from the second messenger activated in peripheral target cells. In this review, we will summarize studies carried out at the cellular level, i.e. we will concentrate on in-vitro approaches. Vasopressin and oxytocin will be treated together. Though acting via distinct receptors in distinct brain areas, these two neuropeptides appear to exert similar effects upon neuronal excitability.
Collapse
Affiliation(s)
- M Raggenbass
- Department of Physiology, University Medical Center, 1, rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
45
|
Van Den Pol AN, Patrylo PR, Ghosh PK, Gao XB. Lateral hypothalamus: early developmental expression and response to hypocretin (orexin). J Comp Neurol 2001; 433:349-63. [PMID: 11298360 DOI: 10.1002/cne.1144] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypocretin is a recently discovered peptide that is synthesized by neurons in the lateral hypothalamic area (LH) and is believed to play a role in sleep regulation, arousal, endocrine control, and food intake. These functions are critical for the development of independent survival. We investigated the developmental profile of the hypocretin system in rats. Northern blot analysis showed that the expression of hypocretin mRNA increased from postnatal day 1 to adulthood. Both of the identified hypocretin receptor mRNAs were strongly expressed very early in hypothalamic development, and expression subsequently decreased in the mature brain. Immunocytochemistry revealed hypocretin-2 peptide expression in the cell bodies of LH neurons and in axons in the brain and spinal cord as early as embryonic day 19. Whole-cell patch clamp recordings from postnatal P1-P14 LH slices demonstrated a robust increase in synaptic activity in all LH neurons tested (n = 20) with a 383% increase in the frequency of spontaneous activity upon hypocretin-2 (1.5 microM) application. A similar increase in activity was found with hypocretin-1 application to LH slices. Hypocretin-2 evoked a robust increase in synaptic activity even on the earliest day tested, the day of birth. Furthermore, voltage-clamp recordings and calcium digital imaging experiments using cultured LH cells revealed that both hypocretin-1 and -2 induced enhancement of neuronal activity occurred as early as synaptic activity was detected. Thus, as in the adult central nervous system, hypocretin exerts a profound excitatory influence on neuronal activity early in development, which might contribute to the development of arousal, sleep regulation, feeding, and endocrine control.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Animals, Newborn/growth & development
- Animals, Newborn/physiology
- Brain/embryology
- Calcium/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/pharmacology
- Cells, Cultured
- Electrophysiology
- Embryo, Mammalian/metabolism
- Hypothalamic Area, Lateral/drug effects
- Hypothalamic Area, Lateral/embryology
- Hypothalamic Area, Lateral/growth & development
- Hypothalamic Area, Lateral/physiology
- Immunohistochemistry
- In Vitro Techniques
- Intracellular Signaling Peptides and Proteins
- Neurons/physiology
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Neuropeptides/pharmacology
- Orexin Receptors
- Orexins
- RNA, Messenger/metabolism
- Rats/physiology
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled
- Receptors, Neuropeptide/genetics
Collapse
Affiliation(s)
- A N Van Den Pol
- Department of Neurosurgery, Yale University Medical School, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
46
|
Chevaleyre V, Moos FC, Desarménien MG. Correlation between electrophysiological and morphological characteristics during maturation of rat supraoptic neurons. Eur J Neurosci 2001; 13:1136-46. [PMID: 11285011 DOI: 10.1046/j.0953-816x.2001.01489.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neurohypophysial peptides oxytocin (OT) and vasopressin (AVP) are well known for their role in reproductive functions and fluid balance regulation, respectively. During development, these peptides are thought to act as trophic factors on both peripheral and central structures. However, despite this early developmental function, the maturation of their secreting neurons remains poorly investigated. In this study, we have characterized the electrical and morphological characteristics displayed by OT and AVP supraoptic (SO) neurons between embryonic day 21 and postnatal day 20. Transient changes in passive membrane properties, correlated with a transient increase in the dendritic arborization, were observed at the beginning of the second postnatal week (PW2). The action potential matured mostly during PW1 and its threshold progressively hyperpolarized in parallel with the resting membrane potential. During PW1, SO neurons displayed unique characteristics with a low-threshold Ca(2+)-dependent depolarizing potential and a prominent hyperpolarization-activated current (I(h) ). This latter is involved in a depolarizing sag during hyperpolarization and an after hyperpolarizing potential following a depolarization. During this period, maintaining E(Cl) unchanged by the use of gramicidin-perforated patch recordings revealed excitatory GABAergic potentials, that became inhibitory during PW2, whilst glutamatergic potential appeared. The electrical activity was very erratic in young neurons and progressively differentiated in the typical firing observed in mature neurons (tonic and phasic for OT and AVP neurons, respectively) during PW2--3. These results show that the development of electrical properties of SO neurons is correlated with the maturation of their dendritic arborization.
Collapse
Affiliation(s)
- V Chevaleyre
- CNRS UMR 5101 Biologie des Neurons Endocrines, 141 Rue de la Cardonille, F34094 Montpellier Cedex 5 France
| | | | | |
Collapse
|
47
|
Makarenko IG, Ugrumov MV, Derer P, Calas A. Projections from the hypothalamus to the posterior lobe in rats during ontogenesis: 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate tracing study. J Comp Neurol 2000; 422:327-37. [PMID: 10861510 DOI: 10.1002/1096-9861(20000703)422:3<327::aid-cne1>3.0.co;2-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The objective of this study was to determine the schedule of the arrival of the axons from the hypothalamus to the posterior lobe of the pituitary (PL) in rats during ontogenesis by using the fluorescent lipophilic carbocyanine dye 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI) as a retrograde tracer. After preliminary fixation of the brain, DiI crystals were implanted in the PL on embryonic day 15 (E15), E16, E17, and E19 as well as on postnatal day 2 (P2) and P9. This was followed by a DiI retrograde diffusion along the plasma membrane and subsequent staining of hypothalamic neuronal cell bodies. The supraoptic nucleus (SO) contained an accumulation of fluorescent cells that extended toward the diamond-like swelling of the third ventricle as early as E15. These data suggest that the magnocellular neurons of the SO send their axons to the PL at the very beginning of differentiation, perhaps even before reaching their final position. The initial axons of the neurons of the paraventricular nucleus proper (PV) appeared to reach the PL significantly later, at E17. In addition to the SO and the PV, accessory magnocellular nuclei contributed to the innervation of the PL in perinatal rats. The neurons of the retrochiasmatic accessory nucleus first sent their axons to the PL on E16-E17. Axons that originated from other accessory hypothalamic nuclei reached the PL after birth, suggesting a delay in their involvement in the regulation of visceral functions compared with other magnocellular nuclei. Thus, the axons of magnocellular neurons reach the PL unexpectedly early in embryogenesis, raising the possibility of the functional significance of vasopressin and oxytocin as fetal neurohormones.
Collapse
Affiliation(s)
- I G Makarenko
- Laboratory of Hormonal Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808, Russia
| | | | | | | |
Collapse
|
48
|
Lépée-Lorgeoux I, Betancur C, Souazé F, Rostène W, Bérod A, Pélaprat D. Regulation of the neurotensin NT(1) receptor in the developing rat brain following chronic treatment with the antagonist SR 48692. J Neurosci Res 2000; 60:362-9. [PMID: 10797539 PMCID: PMC2556440 DOI: 10.1002/(sici)1097-4547(20000501)60:3<362::aid-jnr11>3.0.co;2-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of the present study was to investigate the role of neurotensin in the regulation of NT(1) receptors during postnatal development in the rat brain. Characterization of the ontogeny of neurotensin concentration and [(125)I]neurotensin binding to NT(1) receptors in the brain at different embryonic and postnatal stages showed that neurotensin was highly expressed at birth, reaching peak levels at postnatal day 5 (P5) and decreasing thereafter. The transient rise in neurotensin levels preceded the maximal expression of NT(1) receptors, observed at P10, suggesting that neurotensin may influence the developmental profile of NT(1) receptors. Using primary cultures of cerebral cortex neurons from fetal rats, we showed that exposure to the neurotensin agonist JMV 449 (1 nM) decreased (-43%) the amount of NT(1) receptor mRNA measured by reverse transcription-PCR, an effect that was abolished by the nonpeptide NT(1) receptor antagonist SR 48692 (1 microM). However, daily injection of SR 48692 to rat pups from birth for 5, 9, or 15 days did not modify [(125)I]neurotensin binding in brain membrane homogenates. Moreover, postnatal blockade of neurotensin transmission did not alter the density and distribution of NT(1) receptors assessed by quantitative autoradiography nor NT(1) receptor mRNA expression measured by in situ hybridization in the cerebral cortex, caudate-putamen, and midbrain. These results suggest that although NT(1) receptor expression can be regulated in vitro by the agonist at an early developmental stage, neurotensin is not a major factor in the establishment of the ontogenetic pattern of NT receptors in the rat brain.
Collapse
|
49
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
50
|
Dayanithi G, Sabatier N, Widmer H. Intracellular calcium signalling in magnocellular neurones of the rat supraoptic nucleus: understanding the autoregulatory mechanisms. Exp Physiol 2000; 85 Spec No:75S-84S. [PMID: 10795909 DOI: 10.1111/j.1469-445x.2000.tb00010.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxytocin and vasopressin, released at the soma and dendrites of neurones, bind to specific autoreceptors and induce an increase in [Ca2+]i. In oxytocin cells, the increase results from a mobilisation of Ca2+ from intracellular stores, whereas in vasopressin cells, it results mainly from an influx of Ca2+ through voltage-dependent channels. The response to vasopressin is coupled to phospholipase C and adenylyl-cyclase pathways which are activated by V1 (V1a and V1b)- and V2-type receptors respectively. Measurements of [Ca2+]i in response to V1a and V2 agonists and antagonists suggest the functional expression of these two types of receptors in vasopressin neurones. The intracellular mechanisms involved are similar to those observed for the action of the pituitary adenylyl-cyclase-activating peptide (PACAP). Isolated vasopressin neurones exhibit spontaneous [Ca2+]i oscillations and these are synchronised with phasic bursts of electrical activity. Vasopressin modulates these spontaneous [Ca2+]i oscillations in a manner that depends on the initial state of the neurone, and such varied effects of vasopressin may be related to those observed on the electrical activity of vasopressin neurones in vivo.
Collapse
Affiliation(s)
- G Dayanithi
- UPR 9055-CNRS, Biologie des Neurones Endocrines, Montpellier, France.
| | | | | |
Collapse
|