1
|
Murakami S, Ohki‐Hamazaki H, Uchiyama Y. Olfactory placode generates a diverse population of neurons expressing GnRH, somatostatin mRNA, neuropeptide Y, or calbindin in the chick forebrain. J Comp Neurol 2022; 530:2977-2993. [PMID: 35844047 PMCID: PMC9796302 DOI: 10.1002/cne.25389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
The olfactory placode (OP) of vertebrates generates several classes of migrating cells, including hypothalamic gonadotropin-releasing hormone (GnRH)-producing neurons, which play essential roles in the reproduction system. Previous studies using OP cell labeling have demonstrated that OP-derived non-GnRH cells enter the developing forebrain; however, their final fates and phenotypes are less well understood. In chick embryos, a subpopulation of migratory cells from the OP that is distinct from GnRH neurons transiently expresses somatostatin (SS). We postulated that these cells are destined to develop into brain neurons. In this study, we examined the expression pattern of SS mRNA in the olfactory-forebrain region during development, as well as the destination of OP-derived migratory cells, including SS mRNA-expressing cells. Utilizing the Tol2 genomic integration system to induce long-term fluorescent protein expression in OP cells, we found that OP-derived migratory cells labeled at embryonic day (E) 3 resided in the olfactory nerve and medial forebrain at E17-19. A subpopulation of green fluorescent protein (GFP)-labeled GnRH neurons that remained in the olfactory nerve was considered to comprise terminal nerve neurons. In the forebrain, GFP-labeled cells showed a distribution pattern similar to that of GnRH neurons. A large proportion of GFP-labeled cells expressed the mature neuronal marker NeuN. Among the GFP-labeled cells, the percentage of GnRH neurons was low, while the remaining GnRH-negative neurons either expressed SS mRNA, neuropeptide Y, or calbindin D-28k or did not express any of them. These results indicate that a diverse population of OP-derived neuronal cells, other than GnRH neurons, integrates into the chick medial forebrain.
Collapse
Affiliation(s)
- Shizuko Murakami
- Department of Cellular and Molecular NeuropathologyJuntendo University Graduate School of MedicineTokyoJapan
| | | | - Yasuo Uchiyama
- Department of Cellular and Molecular NeuropathologyJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
2
|
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol 2019; 7:121. [PMID: 31355196 PMCID: PMC6637222 DOI: 10.3389/fcell.2019.00121] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Gonadotropin releasing hormone-1 (GnRH) neurons is important for a functional reproduction system in vertebrates. Disruption of GnRH results in hypogonadism and if accompanied by anosmia is termed Kallmann Syndrome (KS). From their origin in the nasal placode, GnRH neurons migrate along the olfactory-derived vomeronasal axons to the nasal forebrain junction and then turn caudally into the developing forebrain. Although research on the origin of GnRH neurons, their migration and genes associated with KS has identified multiple factors that influence development of this system, several aspects still remain unclear. This review discusses development of the olfactory system, factors that regulate GnRH neuron formation and development of the olfactory system, migration of the GnRH neurons from the nose into the brain, and mutations in humans with KS that result from disruption of normal GnRH/olfactory systems development.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Niteace C Whittington
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Quintana-Urzainqui I, Rodríguez-Moldes I, Candal E. Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve. Brain Struct Funct 2014; 219:85-104. [PMID: 23224251 PMCID: PMC3889696 DOI: 10.1007/s00429-012-0486-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/16/2012] [Indexed: 11/02/2022]
Abstract
The olfactory system represents an excellent model for studying different aspects of the development of the nervous system ranging from neurogenesis to mechanisms of axon growth and guidance. Important findings in this field come from comparative studies. We have analyzed key events in the development of the olfactory system of the shark Scyliorhinus canicula by combining immunohistochemical and tract-tracing methods. We describe for the first time in a cartilaginous fish an early population of pioneer HuC/D-immunoreactive (ir) neurons that seemed to delaminate from the olfactory pit epithelium and migrate toward the telencephalon before the olfactory nerve was identifiable. A distinct, transient cell population, namely the migratory mass, courses later on in apposition to the developing olfactory nerve. It contains olfactory ensheathing glial (GFAP-ir) cells and HuC/D-ir neurons, some of which course toward an extrabulbar region. We also demonstrate that Pax6-ir cells coursing along the developing olfactory pathways in S. canicula are young migrating (HuC/D and DCX-ir) neurons of the migratory mass that do not form part of the terminal nerve pathway. Evidences that these Pax6 neurons originate in the olfactory epithelium are also reported. As Pax6 neurons in the olfactory epithelium show characteristics of olfactory receptor neurons, and migrating Pax6-ir neurons formed transient corridors along the course of olfactory axons at the entrance of the olfactory bulb, we propose that these neurons could play a role as guideposts for axons of olfactory receptor neurons growing toward the olfactory bulb.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eva Candal
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Miller AM, Treloar HB, Greer CA. Composition of the migratory mass during development of the olfactory nerve. J Comp Neurol 2011; 518:4825-41. [PMID: 21031554 DOI: 10.1002/cne.22497] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The embryonic development of the olfactory nerve includes the differentiation of cells within the olfactory placode, migration of cells into the mesenchyme from the placode, and extension of axons by the olfactory sensory neurons (OSNs). The coalition of both placode-derived migratory cells and OSN axons within the mesenchyme is collectively termed the "migratory mass." Here we address the sequence and coordination of the events that give rise to the migratory mass. Using neuronal and developmental markers, we show subpopulations of neurons emerging from the placode by embryonic day (E)10, a time at which the migratory mass is largely cellular and only a few isolated OSN axons are seen, prior to the first appearance of OSN axon fascicles at E11. These neurons also precede the emergence of the gonadotropin-releasing hormone neurons and ensheathing glia which are also resident in the mesenchyme as part of the migratory mass beginning at about E11. The data reported here begin to establish a spatiotemporal framework for the migration of molecularly heterogeneous placode-derived cells in the mesenchyme. The precocious emigration of the early arriving neurons in the mesenchyme suggests they may serve as "guidepost cells" that contribute to the establishment of a scaffold for the extension and coalescence of the OSN axons.
Collapse
Affiliation(s)
- Alexandra M Miller
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
5
|
Ohmomo H, Ehara A, Yoshida S, Shutoh F, Ueda SI, Hisano S. Temporally distinct expression of vesicular glutamate transporters 1 and 2 during embryonic development of the rat olfactory system. Neurosci Res 2011; 70:376-82. [PMID: 21609737 DOI: 10.1016/j.neures.2011.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
To study the development of glutamatergic neurons during the main olfactory bulb morphogenesis in rats, we examined the expression of vesicular glutamate transporters 1 (VGLUT1) and 2 (VGLUT2). On VGLUT1, expressions of mRNA and immunoreactivity were first detected in the mitral cell layer on embryonic day (E) 17.5 and E18.5, respectively, and persisted in the E20.5 olfactory bulb. Much earlier (on E12.5) than VGLUT1, expressions of VGLUT2 mRNA and/or immunoreactivity were found in the olfactory epithelium, migratory cells and telencephalon. On E14.5, the mRNA expression was also observed in the prospective bulbar region and vomeronasal organ, while immunoreactivity existed in migratory cells and growing fibers. Some fibers were observed in the deep telencephalic wall. From E16.5 onward, mRNA expression became gradually detectable in cells of the mitral cell layer with development. On E17.5, immunoreactivity was first found in fibers of the developing olfactory bulb and in some immature mitral cells from E18.5 to E20.5. The present study clarifies the expression of VGLUT2 precedent to VGLUT1 during olfactory bulb morphogenesis, suggesting differential contribution of the two VGLUT subtypes to glutamate-mediated embryonic events.
Collapse
Affiliation(s)
- Hideki Ohmomo
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Blanchart A, Martín-López E, De Carlos JA, López-Mascaraque L. Peripheral contributions to olfactory bulb cell populations (migrations towards the olfactory bulb). Glia 2011; 59:278-92. [PMID: 21125652 DOI: 10.1002/glia.21100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The olfactory system represents one of the most suitable models to study interactions between the peripheral and central nervous systems. The developing olfactory epithelium (olfactory placode and pit) gives rise to several cell populations that migrate towards the telencephalic vesicle. One of these cell populations, called the Migratory Mass (MM), accompanies the first emerging olfactory axons from the olfactory placode, but the fate of these cells and their contribution to the Olfactory Bulb (OB) populations has not been properly addressed. To asses this issue we performed ultrasound-guided in utero retroviral injections at embryonic day (E) 11 revealing the MM as an early source of Olfactory Ensheathing Cells in later postnatal stages. Employing a wide number of antibodies to identify the nature of the infected cells we described that those cells generated within the MM at E11 belong to different cell populations both in the mesenchyma, where they envelop olfactory axons and express the most common glial markers, and in the olfactory bulb, where they are restricted to the Olfactory Nerve and Glomerular layers. Thus, the data reveal the existence of a novel progenitor class within the MM, potentially derived from the olfactory placode which gives rise to different neural cell population including some CNS neurons, glia and olfactory ensheathing cells.
Collapse
Affiliation(s)
- A Blanchart
- Instituto Cajal, CSIC, Department of Cellular, Molecular and Developmental Neurobiology, Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Abstract
AbstractThe olfactory system represents a perfect model to study the interactions between the central and peripheral nervous systems in order to establish a neural circuit during early embryonic development. In addition, another important feature of this system is the capability to integrate new cells generated in two neurogenic zones: the olfactory epithelium in the periphery and the wall of the lateral ventricles in the CNS, both during development and adulthood. In all these processes the combination and sequence of specific molecular signals plays a critical role in the wiring of the olfactory axons, as well as the precise location of the incoming cell populations to the olfactory bulb. The purpose of this review is to summarize recent insights into the cellular and molecular events that dictate cell settling position and axonal trajectories from their origin in the olfactory placode to the formation of synapses in the olfactory bulb to ensure rapid and reliable transmission of olfactory information from the nose to the brain.
Collapse
|
8
|
Richard M, Sacquet J, Jourdan F, Pellier-Monnin V. Spatio-temporal expression pattern of receptors for myelin-associated inhibitors in the developing rat olfactory system. Brain Res 2008; 1252:52-65. [PMID: 19063867 DOI: 10.1016/j.brainres.2008.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 12/11/2022]
Abstract
The myelin-associated inhibitory proteins (Nogo-A, MAG and OMgp) that prevent axon regeneration in adult CNS, mediate their effects via a receptor referred as NgR1. Beside their inhibitory role in the adult CNS, Nogo-A and NgR1 might also be functionally involved in the developing nervous system. At the present time, no detailed study is available regarding either the onset of NgR1 expression during development or its spatio-temporal pattern of expression relative to the presence of Nogo-A. Two homologs of NgR1, NgR2 and NgR3, have been recently identified, but their function in the nervous system is still unknown in adult as well as during development. We have examined the spatio-temporal expression pattern of both NgR1, NgR2 and NgR3 mRNAs and corresponding proteins in the developing rat olfactory system using in situ hybridization and immunohistochemistry. From E15-E16 onwards, NgR1 mRNA was expressed by differentiating neurons in both the olfactory epithelium and the olfactory bulb. At all developmental stages, including adult animals, NgR1 protein was preferentially targeted to olfactory axons emerging from the olfactory epithelium. Using double-immunostainings in the postnatal olfactory mucosa, we confirm the neuronal localization of NgR1 and its preferential distribution along the olfactory axons. The NgR2 and NgR3 transcripts and their proteins display similar expression profiles in the olfactory system. Together, our data suggest that, in non-pathological conditions, NgR1 and its homologs may play a role in axon outgrowth in the rat olfactory system and may be relevant for the confinement of neural projections within the developing olfactory bulb.
Collapse
Affiliation(s)
- Marion Richard
- Laboratoire Neurosciences Sensorielles, Comportement, Cognition, CNRS-UMR 5020, Université de Lyon, Lyon 1, F-69366, France.
| | | | | | | |
Collapse
|
9
|
Blanchart A, Romaguera M, García-Verdugo JM, de Carlos JA, López-Mascaraque L. Synaptogenesis in the mouse olfactory bulb during glomerulus development. Eur J Neurosci 2008; 27:2838-46. [PMID: 18588529 DOI: 10.1111/j.1460-9568.2008.06283.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptogenesis is essential for the development of neuronal networks in the brain. In the olfactory bulb (OB) glomeruli, numerous synapses must form between sensory olfactory neurons and the dendrites of mitral/tufted and periglomerular cells. Glomeruli develop from E13 to E16 in the mouse, coincident with an increment of the neuropil in the border between the external plexiform (EPL) and olfactory nerve layers (ONL), coupled to an extensive labelling of phalloidin and GAP-43 from the ONL to EPL. We have tracked synaptogenesis in the OB during this period by electron microscopy (EM) and immunolabelling of the transmembrane synaptic vesicle glycoprotein SV-2. No SV-2 labelling or synapses were detected at E13, although electrodense junctions lacking synaptic vesicles could be observed by EM. At E14, sparse SV-2 labelling appears in the most ventral and medial part of the incipient OB, which displays a ventro-dorsal gradient by E15 but covers the entire OB by E16. These data establish a spatio-temporal pattern of synaptogenesis, which perfectly matches with the glomeruli formation in developing OB.
Collapse
Affiliation(s)
- Albert Blanchart
- Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Weiler E, Benali A. Olfactory epithelia differentially express neuronal markers. ACTA ACUST UNITED AC 2006; 34:217-40. [PMID: 16841165 DOI: 10.1007/s11068-005-8355-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 02/17/2006] [Accepted: 03/02/2006] [Indexed: 01/09/2023]
Abstract
All three olfactory epithelia, the olfactory epithelium proper (OE), the septal organ of Masera (SO), and the vomeronasal organ of Jacobson (VNO) originate from the olfactory placode. Here, their diverse neurochemical phenotypes were analyzed using the immunohistochemical expression pattern of different neuronal markers. The olfactory bulb (OB) served as neuronal control. Neuronal Nuclei Marker (NeuN) is neither expressed in sensory neurons in any of the three olfactory epithelia, nor in relay neurons (mitral/tufted cells) of the OB. However, OB interneurons (periglomerular/granule cells) labeled, as did supranuclear structures of VNO supporting cells and VNO glands. Protein Gene Product 9.5 (PGP9.5 = C-terminal ubiquitin hydrolase L1 = UCHL1) expression is exactly the opposite: all olfactory sensory neurons express PGP9.5 as do OB mitral/tufted cells but not interneurons. Neuron Specific Enolase (NSE) expression is highest in the most apically located OE and SO sensory neurons and patchy in VNO. In contrast, the cytoplasm of the most basally located neurons of OE and SO immunoreacted for Growth Associated Protein 43 (GAP-43/B50). In VNO neurons GAP-43 labeling is also nuclear. In the cytoplasm, Olfactory Marker Protein (OMP) is most intensely expressed in SO, followed by OE and least in VNO neurons; further, OMP is also expressed in the nucleus of basally located VNO neurons. OB mitral/tufted cells express OMP at low levels. Neurons closer to respiratory epithelium often expressed a higher level of neuronal markers, suggesting a role of those markers for neuronal protection against take-over. Within the VNO the neurons show clear apical-basal expression diversity, as they do for factors of the signal transduction cascade. Overall, expression patterns of the investigated neuronal markers suggest that OE and SO are more similar to each other than to VNO.
Collapse
Affiliation(s)
- Elke Weiler
- Department of Neurophysiology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | | |
Collapse
|
11
|
Richard M, Giannetti N, Saucier D, Sacquet J, Jourdan F, Pellier-Monnin V. Neuronal expression of Nogo-A mRNA and protein during neurite outgrowth in the developing rat olfactory system. Eur J Neurosci 2006; 22:2145-58. [PMID: 16262653 DOI: 10.1111/j.1460-9568.2005.04418.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The major impediments to axonal regeneration in the central nervous system are growth-inhibitory proteins present in the myelin sheath, and Nogo-A is one of the most potent inhibitors synthesized by oligodendrocytes. However, neuronal expression of Nogo-A during development suggests that it may have an additional role. The spatio-temporal regulation of both Nogo-A mRNA and protein expression was examined by in situ hybridization and immunohistochemistry in the developing rat olfactory system. During embryonic and postnatal development (from E13 to P6), Nogo-A mRNA and protein were strongly expressed by differentiating neurons in the olfactory epithelium and in the olfactory bulb. From the second postnatal week, a progressive down-regulation of both Nogo-A mRNA and protein occurred, such that only a weak expression persisted in the adult olfactory system. Using double-immunostainings in the adult olfactory epithelium, we determined that Nogo-A was preferentially expressed by immature olfactory receptor neurons extending axonal processes toward the olfactory bulb. At all developmental stages, Nogo-A protein was preferentially targeted in olfactory axons emerging from the olfactory epithelium. Using an in vitro model of olfactory axon growth, we demonstrated that, in addition to its presence along the entire axon length, Nogo-A accumulated in axonal growth cone and at axonal branching points, with a distribution similar to that of microtubule-associated proteins. Moreover, Nogo-A was transiently expressed in dendritic processes in the postnatal olfactory bulb. Together, our data suggest that, in non-pathological conditions, Nogo-A may be involved in the processes of axonal growth and dendritic modeling through the regulation of microtubule dynamics.
Collapse
Affiliation(s)
- Marion Richard
- Laboratoire Neurosciences et Systèmes Sensoriels, CNRS-UMR 5020, Université Claude Bernard--Lyon 1, IFR19, Institut Fédératif des Neurosciences de Lyon, Lyon, France
| | | | | | | | | | | |
Collapse
|
12
|
Von Bartheld CS. The terminal nerve and its relation with extrabulbar "olfactory" projections: lessons from lampreys and lungfishes. Microsc Res Tech 2005; 65:13-24. [PMID: 15570592 DOI: 10.1002/jemt.20095] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The definition of the terminal nerve has led to considerable confusion and controversy. This review analyzes the current state of knowledge as well as diverging opinions about the existence, components, and definition of terminal nerves or their components, with emphasis on lampreys and lungfishes. I will argue that the historical terminology regarding this cranial nerve embraces a definition of a terminal nerve that is compatible with its existence in all vertebrate species. This review further summarizes classical and more recent anatomical, developmental, neurochemical, and molecular evidence suggesting that a multitude of terminalis cell types, not only those expressing gonadotropin-releasing hormone, migrate various distances into the forebrain. This results in numerous morphological and neurochemically distinct phenotypes of neurons, with a continuum spanning from olfactory receptor-like neurons in the olfactory epithelium to typical large ganglion cells that accompany the classical olfactory projections. These cell bodies may lose their peripheral connections with the olfactory epithelium, and their central projections or cell bodies may enter the forebrain at several locations. Since "olfactory" marker proteins can be expressed in bona fide nervus terminalis cells, so-called extrabulbar "olfactory" projections may be a collection of disguised nervus terminalis components. If we do not allow this pleiomorphic collection of nerves to be considered within a terminal nerve framework, then the only alternative is to invent a highly species- and stage-specific, and, ultimately, thoroughly confusing nomenclature for neurons and nerve fibers that associate with the olfactory nerve and forebrain.
Collapse
Affiliation(s)
- Christopher S Von Bartheld
- Department of Physiology and Cell Biology, Mailstop 352, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
13
|
Honma S, Kawano M, Hayashi S, Kawano H, Hisano S. Expression and immunohistochemical localization of vesicular glutamate transporter 2 in the migratory pathway from the rat olfactory placode. Eur J Neurosci 2004; 20:923-36. [PMID: 15305861 DOI: 10.1111/j.1460-9568.2004.03544.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The localization of vesicular glutamate transporter 2 (VGLUT2) was examined by immunohistochemistry and in situ hybridization histochemistry in the developing rat olfactory region with special relation to the spatiotemporal location of NCAM, a neural cell adhesion molecule expressed in differentiated neurons, and the calcium-binding protein calbindin D-28k, a marker of neurons migrating from the vomeronasal organ anlage (Y. Toba et al. (2001) J. Neuroendocrinol., 13, 683-694). Both VGLUT2 and NCAM immunoreactivities were first detected at embryonic day 11.5 (E11.5) in the neuronal cell mass beneath the telencephalic vesicle. After E12.5, VGLUT2-immunoreactive cells were detected in the migratory pathways from both medial and lateral olfactory pits, anlagen of the vomeronasal organ and olfactory epithelium. Between E15.5 and E19.5, moderate to intense VGLUT2 immunoreactivity was observed in cell clusters situated along NCAM-bearing vomeronasal nerves, and frequently colocalized with calbindin D-28k immunoreactivity. Using in situ hybridization histochemistry, VGLUT2 mRNA signals were detected in the clustered cells as well as in cells of the vomeronasal and olfactory epithelium. After E20.5, migrating cells gradually decreased in number and VGLUT2 immunoreactivity attenuated in the clustered cells, although calbindin D-28k immunoreactivity in these residual cells was still intense. The presence of intense VGLUT2 immunoreactivity in neurons actively migrating from the olfactory placode suggests that this transporter is involved in the migratory process of these neurons.
Collapse
Affiliation(s)
- Shizuka Honma
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | |
Collapse
|
14
|
Schwarzenbacher K, Fleischer J, Breer H, Conzelmann S. Expression of olfactory receptors in the cribriform mesenchyme during prenatal development. Gene Expr Patterns 2004; 4:543-52. [PMID: 15261832 DOI: 10.1016/j.modgep.2004.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/17/2004] [Accepted: 02/18/2004] [Indexed: 11/22/2022]
Abstract
Olfactory receptors (ORs) are expressed in sensory neurons of the nasal epithelium, where they are supposed to be involved in the recognition of suitable odorous compounds and in the guidance of outgrowing axons towards the appropriate glomeruli in the olfactory bulb. During development, some olfactory receptor subtypes have also been found in non-sensory tissues, including the cribriform mesenchyme between the prospective olfactory epithelium and the developing telencephalon, but it is elusive if this is a typical phenomenon for ORs. Monitoring the onset and time course of expression for several receptor subtypes revealed that 'extraepithelial' expression of ORs occurs very early and transiently, in particular between embryonic stages E10.25 and E14.0. In later stages, a progressive loss of receptor expressing cells was observed. Molecular phenotyping demonstrated that the receptor expressing cells in the cribriform mesenchyme co-express key elements, including Galpha(olf), ACIII and OMP, characteristic for olfactory neurons in the nasal epithelium. Studies on transgenic OMP/GFP-mice showed that 'extraepithelial' OMP/GFP-positive cells are located in close vicinity to axon bundles projecting from the nasal epithelium to the presumptive olfactory bulb. Moreover, these cells are primarily located where axons fasciculate and change direction towards the anterior part of the forebrain.
Collapse
Affiliation(s)
- Karin Schwarzenbacher
- Institute of Physiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
15
|
Balmer CW, LaMantia AS. Loss of Gli3 and Shh function disrupts olfactory axon trajectories. J Comp Neurol 2004; 472:292-307. [PMID: 15065125 DOI: 10.1002/cne.20053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The transcriptional regulator Gli3 and the secreted signal Shh influence induction, patterning, and differentiation at several sites of mesenchymal/epithelial (M/E) interaction including the limbs, heart, face, and forebrain. We asked whether loss of function of these two genes has specific consequences for early differentiation of the primary olfactory pathway-which comprises both craniofacial and forebrain structures and depends on M/E induction during initial stages of development. Loss of Gli3 or Shh function does not compromise several aspects of olfactory receptor neuron (ORN) and olfactory ensheathing cell maturation; however, directed outgrowth of ORN axons and their initial targeting to the telencephalon is altered. In Gli3 mutant extra toes-Jackson (Xt(J)Xt(J)) embryos, ORN axons defasciculate and project aberrantly near the forebrain. They rarely enter the central nervous system, and their association with mesenchymal laminin is disrupted. In Shh-/-embryos, ORN axons exit a single olfactory epithelium (OE) that develops centrally within an altered mesenchymal environment in a dysmorphic proboscis. These axons project as a single nerve toward the mutant forebrain; however, their trajectory varies according to the position of the proboscis relative to the forebrain. These alterations in axon outgrowth probably reflect compromised inductive interactions in the olfactory primordia because neither Gli3 nor Shh are expressed in olfactory neurons. Thus, two genes that influence induction and subsequent differentiation of craniofacial structures and the forebrain have distinct consequences for ORN axon growth during the initial genesis of the olfactory pathway.
Collapse
Affiliation(s)
- Curtis William Balmer
- Department of Cell & Molecular Physiology, Curriculum in Neurobiology and University of North Carolina Neuroscience Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
16
|
Iwema CL, Schwob JE. Odorant receptor expression as a function of neuronal maturity in the adult rodent olfactory system. J Comp Neurol 2003; 459:209-22. [PMID: 12655505 DOI: 10.1002/cne.10583] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Odorant receptors (ORs) are expressed in a spatially restricted manner in the mammalian olfactory epithelium (OE), and this patterning probably contributes to innervation specificity within the olfactory bulb (OB). Furthermore, glomerular targeting appears to be contingent on receptor choice. Central to the mechanism by which ORs influence axonal specificity is the timing of OR expression during the life cycle of the olfactory sensory neurons (OSNs). Data indicate that OSNs express ORs in the absence of the OB but do not address whether OR expression is an early event in OSN differentiation. Accordingly, we evaluated whether ORs are expressed in mature [olfactory marker protein (OMP(+))] and/or immature [growth-associated protein of 43 kDa m.w. (GAP-43(+))] OSNs by assessing the expression of the P2 OR subtype via immunostaining for beta-gal and concurrent OMP or GAP-43 expression in P2-IRES-tauLacZ mice. Nearly 90% of P2(+) OSNs expressed OMP, whereas approximately 10% expressed GAP-43. One month after unilateral bulb ablation, the number of P2(+) OSNs decreased on the lesioned side; however, the percent of P2(+)/GAP-43(+) OSNs dramatically increased. We also determined that onset of P2 OR expression is slightly delayed when evaluated in the context of neuronal differentiation. Additionally, we defined the expression of OR(+) OSNs in the OE of rats via in situ hybridization with a panel of eight ORs followed by OMP immunostaining. All eight ORs were found in neurons situated throughout the height of the OE, including those OSNs deep to OMP staining, thus demonstrating definitively that ORs are expressed prior to the maturational state defined by OMP expression.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- GAP-43 Protein/analysis
- GAP-43 Protein/biosynthesis
- Gene Expression Regulation, Developmental/physiology
- Male
- Mice
- Mice, Transgenic
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/biosynthesis
- Neurons, Afferent/chemistry
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Olfactory Bulb/chemistry
- Olfactory Bulb/growth & development
- Olfactory Bulb/metabolism
- Olfactory Marker Protein
- Olfactory Mucosa/chemistry
- Olfactory Mucosa/growth & development
- Olfactory Mucosa/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Odorant/analysis
- Receptors, Odorant/biosynthesis
- Receptors, Purinergic P2/analysis
- Receptors, Purinergic P2/biosynthesis
Collapse
Affiliation(s)
- Carrie L Iwema
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
17
|
Astic L, Pellier-Monnin V, Saucier D, Charrier C, Mehlen P. Expression of netrin-1 and netrin-1 receptor, DCC, in the rat olfactory nerve pathway during development and axonal regeneration. Neuroscience 2002; 109:643-56. [PMID: 11927147 DOI: 10.1016/s0306-4522(01)00535-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Netrin-1 is a bifunctional secreted protein that directs axon extension in various groups of developing axonal tracts. The transmembrane DCC (deleted in colorectal cancer) receptor is described as netrin-1 receptor and is involved in the attractive effects of netrin-1. In this study, we examined the spatio-temporal expression patterns of both netrin-1 and DCC in the rat olfactory system at different stages of development and during axonal regeneration following unilateral bulbectomy. High DCC expression was detected on the pioneer olfactory axons as they are extending toward the telencephalon. This expression was transient since from embryonic day 16 onwards, DCC was no longer detected along the olfactory nerve path. From embryonic day 14 until birth, DCC was also expressed within the mesenchyme surrounding the olfactory epithelium. During the same period, netrin-1 protein was detected along the trajectory of olfactory axons up to the olfactory bulb and its expression pattern in the nasal mesenchyme largely overlapped that of DCC. Moreover, netrin-1 continued to be present during the two first post-natal weeks, and a weak protein expression still persisted in the dorso-medial region of the olfactory epithelium in adult rats. While unilateral bulbectomy induced a transient up-regulation of netrin-1 in the lamina propria, particularly in the dorso-medial region of the neuroepithelium, no DCC expression was detected on the regenerating olfactory axons. In the developing olfactory bulb, the extension of mitral cell axons was associated with DCC presence while netrin-1 was absent along this axonal path. DCC was also highly expressed in the newly formed glomeruli after birth, and a weak DCC expression was still detected in the glomerular layer in adult rats. Taken together, these data support the notion that netrin-1, via DCC expressed on axons, may play a role in promoting outgrowth and/or guidance of pioneering olfactory axons toward the olfactory bulb primordium. Moreover, association of netrin-1 with mesenchymal DCC may provide a permissive environment to the growth of both pioneer and later-growing axons. The maintenance of netrin-1 expression in the nasal mesenchyme of adult rats as well as its regional up-regulation following unilateral bulbectomy infer that netrin-1, even in the absence of DCC, may be involved in the process of axonal growth of newly differentiated olfactory receptor neurons probably through the use of other receptors.
Collapse
Affiliation(s)
- L Astic
- Laboratoire de Neurosciences et Systèmes Sensoriels, CNRS UMR 5020, Université VClaude Bernard/Lyon 1, France.
| | | | | | | | | |
Collapse
|
18
|
Wang X, Gao C, Norgren RB. Cellular interactions in the development of the olfactory system: an ablation and homotypic transplantation analysis. JOURNAL OF NEUROBIOLOGY 2001; 49:29-39. [PMID: 11536195 DOI: 10.1002/neu.1063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the current study, we addressed two questions: First, is the olfactory placode necessary for the development of the olfactory bulb and the entire telencephalon? Second, does the olfactory placode contribute cells to the olfactory bulb? We addressed these questions by unilaterally ablating the olfactory placode in chick embryos before an olfactory nerve was produced and, in a second series of experiments, by replacing the ablated chick olfactory placode with a quail olfactory placode. Our results indicate that the olfactory placode is critical for olfactory bulb development, but is not necessary for the development of the rest of the telencephalon. Further, our results support the hypothesis that LHRH neurons and olfactory nerve glia originate in the olfactory placode, but do not support an olfactory placodal origin for other cell types within the olfactory bulb.
Collapse
Affiliation(s)
- X Wang
- Department of Cell Biology and Anatomy, University of Nebraska Medical Center, 600 S. 42(nd) Street, Omaha, Nebraska 69198-6395, USA
| | | | | |
Collapse
|
19
|
Pellier-Monnin V, Astic L, Bichet S, Riederer BM, Grenningloh G. Expression of SCG10 and stathmin proteins in the rat olfactory system during development and axonal regeneration. J Comp Neurol 2001; 433:239-54. [PMID: 11283962 DOI: 10.1002/cne.1138] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The membrane-associated protein SCG10 is expressed specifically by neuronal cells. Recent experiments have suggested that it promotes neurite outgrowth by increasing microtubule dynamics in growth cones. SCG10 is related to the ubiquitous but neuron-enriched cytosolic protein stathmin. To better understand the role played by SCG10 and stathmin in vivo, we have analyzed the expression and localization of these proteins in both the olfactory epithelium and the olfactory bulb in developing and adult rats, as well as in adult bulbectomized rats. The olfactory epithelium is exceptional in that olfactory receptor neurons constantly regenerate and reinnervate the olfactory bulb throughout animal life-span. SCG10 and stathmin expression in the olfactory receptor neurons was found to be regulated during embryonic and postnatal development and to correlate with neuronal maturation. Whereas SCG10 expression was restricted to immature olfactory receptor neurons (GAP-43-positive, olfactory marker protein-negative), stathmin was also expressed by the basal cells. In the olfactory bulb of postnatal and adult rats, a moderate to strong SCG10 immunoreactivity was present in the olfactory nerve layer, whereas no labeling was detected in the glomerular layer. Olfactory glomeruli also showed no apparent immunoreactivity for several cytoskeletal proteins such as tubulin and microtubule-associated proteins. In unilaterally bulbectomized rats, SCG10 and stathmin were seen to be up-regulated in the regenerating olfactory epithelium at postsurgery stages corresponding to olfactory axon regeneration. Our data strongly suggest that, in vivo, both SCG10 and stathmin may play a role in axonal outgrowth during ontogenesis as well as during axonal regeneration.
Collapse
Affiliation(s)
- V Pellier-Monnin
- Laboratoire de Neurosciences et Systèmes sensoriels, Université Claude Bernard/Lyon I, 69622 Villeurbanne Cedex, France.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Abstract
Gonadotropin releasing hormone (GnRH) is produced and secreted by neurons dispersed throughout the septal-preoptic and anterior hypothalamic areas in adult birds and mammals. These neurons, essential for a functional brain-pituitary-gonadal axis, differentiate in the olfactory placode, the superior aspect of which forms the olfactory epithelium. To reach their final placement within the brain, GnRH neurons migrate out of the epithelium and along the olfactory nerve to the CNS. This nerve is essential for the entrance of GnRH neurons into the CNS. Due to the importance of the nerve for the proper migration of these neurons, we have used immunocytochemistry, DiI labeling and 1 microm serial plastic-embedded sections to characterize the nerve's earliest development in the embryonic chick (stages 17-21). Initially (stage 17) the zone between the placode and prosencephalon is a cellular mass contiguous with the placode. This cluster, known as epithelioid cells, is positive for some but not all neuronal markers studied. The epithelium itself is negative for all neuronal and glial markers at this early stage. By stage 18, the first neurites emerge from the epithelium; this was confirmed at stage 19 by examination of serial 1 microm plastic sections. There is sequential acquisition of immunoreactivity to neuronal markers from stage 18 to 21. The glial component of the nerve appears at stage 21. Axons originating from epithelium, extend to the border of the CNS as confirmed by DiI labeling at stage 21. Small fascicles have entered the CNS at this stage. As previously reported, GnRH neurons begin their migration between stages 20-21 and have also arrived at the border of the brain at stage 21. Despite the penetration of neurites from the olfactory nerve into the CNS, GnRH neurons pause at the nerve-brain junction until stage 29 (2 1/2 days later) before entering the brain. Subsequent studies will examine the nature of the impediment to continued GnRH neuronal migration.
Collapse
Affiliation(s)
- P T Drapkin
- Columbia University, College of Physicians and Surgeons, Department of Anatomy and Cell Biology, New York, New York 10032, USA
| | | |
Collapse
|
22
|
Abstract
There are, at least, two major questions concerning the molecular development of the olfactory nerve pathway. First, what are the molecular cues responsible for guiding axons from the nasal cavity to the olfactory bulb? Second, what is the molecular basis of axon targeting to specific glomeruli once axons reach the olfactory bulb? Studies in the primary olfactory pathway have focused on the role of extracellular matrix and ensheathing cells in establishing an initial substrate for growth of pioneer axons between the periphery and brain. The primary axons also express a multitude of cell adhesion molecules that regulate fasciculation of axons and hence may play a role in fascicle formation in the olfactory nerve. Although the olfactory neuroepithelium principally consists of a morphologically homogeneous class of primary olfactory neurons, there are numerous subpopulations of olfactory neurons expressing chemically distinct phenotypes. In particular, numerous subpopulations have been characterized by expression of unique carbohydrate residues and olfactory receptor proteins. Some of these molecules have recently been implicated in axon guidance and targeting to specific glomeruli.
Collapse
Affiliation(s)
- B Key
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
23
|
Julliard AK, Hartmann DJ. Spatiotemporal patterns of expression of extracellular matrix molecules in the developing and adult rat olfactory system. Neuroscience 1998; 84:1135-50. [PMID: 9578401 DOI: 10.1016/s0306-4522(97)00544-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using immunocytochemical methods, we have examined extensively the spatial and temporal patterns of expression of three extracellular matrix molecules-laminin, fibronectin, and type IV collagen-in the embryonic, postnatal (days 2 and 11) and adult rat olfactory system. The study started at embryonic day 14 when olfactory fibres and their associated migrating cells course through the nasal mesenchyme. From embryonic day 14 to the adult, a sheet-like pattern of labelling for laminin, fibronectin and type IV collagen was observed along the basal surface of the olfactory epithelium and around the telencephalon. This type of labelling was continuous around the telencephalic vesicle, whereas it appeared disrupted in the basal lamina of the olfactory epithelium to permit exit of the olfactory axons and their associated migrating cells into the mesenchyme. From embryonic day 14 to day 20, punctate labelling for the three molecules studied was observed along the mesenchymal olfactory pathway, the ventral part of the olfactory bulb, the olfactory nerve layer and the presumptive glomerular layer, respectively. By embryonic day 17, the punctate labelling initially detected in the mesenchymal olfactory pathway was replaced by a sheet-like pattern related to the mature basal lamina surrounding the olfactory axon fascicles. Punctate labelling for laminin and type IV collagen persisted in the olfactory nerve layer and around the glomeruli through adult life whereas that of fibronectin declined and disappeared by postnatal day 2. The spatiotemporal distribution of the punctate pattern for laminin, fibronectin and type IV collagen observed in the embryonic olfactory system suggests a role in delineating the pathway for olfactory axon elongation. The continuous expression of laminin and type IV collagen in the adult olfactory bulb may be related to the regenerative activity and high plasticity of the olfactory system.
Collapse
Affiliation(s)
- A K Julliard
- Laboratoire de Physiologie Neurosensorielle, Université Claude Bernard/Lyon I, Villeurbanne, France
| | | |
Collapse
|
24
|
Astic L, Pellier-Monnin V, Godinot F. Spatio-temporal patterns of ensheathing cell differentiation in the rat olfactory system during development. Neuroscience 1998; 84:295-307. [PMID: 9522382 DOI: 10.1016/s0306-4522(97)00496-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An immunocytochemical approach with specific glial markers was used to investigate the temporal and spatial patterns of differentiation of ensheathing glia wrapping axon fascicles along the primary olfactory pathway of the rat during development. The two glial markers tested, the proteins S-100 and glial fibrillary acidic protein, are known to be expressed at different stages of maturation in glial cells. The S-100 protein was first weakly expressed in cells accompanying the olfactory axons at embryonic day 14 (E14), while a first faint glial fibrillary acidic protein staining was detected along the olfactory axons at E15 and along the vomeronasal nerves at E16. A strong S-100 immunoreactivity was already present from E16 onwards along the axon fascicles through their course in both the nasal mesenchyme and the subarachnoid space before entering the olfactory nerve layer of the olfactory bulb. A gradual increase in glial fibrillary acidic protein expression was observed along this part of the developing olfactory pathway from E16 up to E20, when an adult-like pattern of staining intensity was seen. By contrast, most of the ensheathing cells residing in the olfactory nerve layer exhibited some delay in their differentiation timing and also a noticeable delayed maturation. It was only from E20 onwards that a weak to moderate S-100 expression was detected in an increasing number of cells throughout this layer, and only few of them appeared weakly glial fibrillary acidic protein positive at postnatal days 1 and 5. The immunocytochemical data indicate that there is a proximodistal gradient of differentiation of ensheathing cells along the developing olfactory pathway. The prolonged immaturity of ensheathing cells in the olfactory nerve layer, which coincides with the formation of the first glomeruli, might facilitate the sorting out of olfactory axons leading to a radical reorganization of afferents before they end in specific glomeruli.
Collapse
Affiliation(s)
- L Astic
- Laboratoire de Neurosciences et Systèmes sensoriels, Université Claude Bernard/Lyon 1, Villeurbanne, France
| | | | | |
Collapse
|
25
|
Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J, Schrama LH. B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 1997; 53:627-86. [PMID: 9447616 DOI: 10.1016/s0301-0082(97)00043-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The growth-associated protein B-50 (GAP-43) is a presynaptic protein. Its expression is largely restricted to the nervous system. B-50 is frequently used as a marker for sprouting, because it is located in growth cones, maximally expressed during nervous system development and re-induced in injured and regenerating neural tissues. The B-50 gene is highly conserved during evolution. The B-50 gene contains two promoters and three exons which specify functional domains of the protein. The first exon encoding the 1-10 sequence, harbors the palmitoylation site for attachment to the axolemma and the minimal domain for interaction with G0 protein. The second exon contains the "GAP module", including the calmodulin binding and the protein kinase C phosphorylation domain which is shared by the family of IQ proteins. Downstream sequences of the second and non-coding sequences in the third exon encode species variability. The third exon also contains a conserved domain for phosphorylation by casein kinase II. Functional interference experiments using antisense oligonucleotides or antibodies, have shown inhibition of neurite outgrowth and neurotransmitter release. Overexpression of B-50 in cells or transgenic mice results in excessive sprouting. The various interactions, specified by the structural domains, are thought to underlie the role of B-50 in synaptic plasticity, participating in membrane extension during neuritogenesis, in neurotransmitter release and long-term potentiation. Apparently, B-50 null-mutant mice do not display gross phenotypic changes of the nervous system, although the B-50 deletion affects neuronal pathfinding and reduces postnatal survival. The experimental evidence suggests that neuronal morphology and communication are critically modulated by, but not absolutely dependent on, (enhanced) B-50 presence.
Collapse
Affiliation(s)
- A B Oestreicher
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Tobet SA, Sower SA, Schwarting GA. Gonadotropin-releasing hormone containing neurons and olfactory fibers during development: from lamprey to mammals. Brain Res Bull 1997; 44:479-86. [PMID: 9370214 DOI: 10.1016/s0361-9230(97)00229-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gonadotropin releasing-hormone (GnRH) regulates the hypothalamo-pituitary-gonadal axis in all vertebrates. The vast majority of GnRH neurons are thought to be derived from progenitor cells in medial olfactory placodes. Several antibodies and lectins that recognize cell surface carbohydrates have been useful for delineating the migratory pathway from the olfactory placodes and vomeronasal organ, through the nasal compartment, and across the cribriform plate into the brain. In rats, alpha-galactosyl-linked glycoconjugates (immunoreactive with the CC2 monoclonal antibody) are expressed on fibers along the GnRH migration pathway and approximately 10% of the GnRH neuronal population. In lamprey, the alpha-galactosyl binding lectin, Grifonia simplicifolia-I (GS-1), identifies cells and fibers of the developing olfactory system. In contrast to the CC2 immunoreactive GnRH neurons in rats, the GS-1 does not label a subpopulation of presumptive GnRH neurons in lamprey. Results from these and other experiments suggest that GnRH neurons in developing lamprey do not originate within the olfactory placode, but rather within proliferative zones of the diencephalon. However, the overlap of olfactory- and GnRH-containing fibers from prolarval stages to metamorphosis, suggest that olfactory stimuli may play a major role in the regulation of GnRH secretion in lamprey throughout life. By contrast, olfactory fibers are directly relevant to the migration of GnRH neurons from the olfactory placodes in mammalian species. Primary interactions between olfactory fibers and GnRH neurons are likely transient in mammals, and so in later life olfactory modulation of GnRH secretion is likely to be indirect.
Collapse
Affiliation(s)
- S A Tobet
- Program in Neuroscience, The Shriver Center and Harvard Medical School, Waltham, MA 02254, USA
| | | | | |
Collapse
|
27
|
Kulkarni-Narla A, Getchell TV, Getchell ML. Differential expression of manganese and copper-zinc superoxide dismutases in the olfactory and vomeronasal receptor neurons of rats during ontogeny. J Comp Neurol 1997; 381:31-40. [PMID: 9087417 DOI: 10.1002/(sici)1096-9861(19970428)381:1<31::aid-cne3>3.0.co;2-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Superoxide dismutases (SODs) protect cells from damage by oxygen free radicals. Manganese (Mn) SOD is preferentially induced in terminally differentiating cells; induction of copper-zinc (CuZn) SOD is more closely associated with postnatal exposure to environmental sources of oxygen free radicals. The purpose of this study was to investigate ontogenetic changes in immunoreactivity for MnSOD and CuZnSOD relative to the expression of markers of neuronal and chemosensory differentiation in olfactory and vomeronasal receptor neurons (ORNs and VRNs, respectively), which mature with different time courses. Immunoreactivity for both SODs was detected in rat ORNs at embryonic day (E) 14, the earliest time point investigated, but not until E16 in vomeronasal neuroblasts. ORNs also expressed the neuronal marker protein gene product (PGP) 9.5 and the chemosensory cell marker olfactory marker protein (OMP) at E14; vomeronasal neuroblasts expressed PGP 9.5 at E16 but were not immunoreactive for OMP until postnatal day (P) 2. Immunoreactivity for MnSOD in ORNs and VRNs generally increased pre- and postnatally to a maximum at P11. Immunoreactivity for CuZnSOD did not increase markedly until after birth, reaching maximal levels at P11-P24. Within ORNs and VRNs, the most intense immunoreactivity was localized in the dendritic and supranuclear regions. The results indicate that in ORNs and VRNs, increases in MnSOD immunoreactivity during ontogeny parallel the ongoing differentiation and maturation of chemosensory receptor neurons; in contrast, the induction of immunoreactivity for CuZnSOD is associated with postnatal exposure to the ambient oxygen and xenobiotic environment.
Collapse
Affiliation(s)
- A Kulkarni-Narla
- Department of Physiology, University of Kentucky College of Medicine, Lexington, 40536, USA
| | | | | |
Collapse
|
28
|
Abstract
The Olf-1 transcription factor is expressed in olfactory sensory neurons where it regulates the expression of genes that encode components of the odorant signal transduction cascade and contributes to the terminal phenotype of these sensory neurons. We examined the pattern of expression of Olf-1 protein during mouse embryogenesis and observed Olf-1 expression transiently in a subset of neural precursor cells in the CNS and peripheral nervous system. The expression of Olf-1 protein was enriched in sensory components and coincided with postmitotic cells and the initiation of overt differentiation within the nervous system. The spatial and temporal patterns of Olf-1 expression during development suggest a role in neurogenesis that is common among different neural cell types. In parallel, the expression pattern of Pax-6, a transcription factor that is widely expressed in the developing nervous system, including the visual and olfactory systems, was examined with a C-terminal antibody. In the retina, Pax-6 protein is detected in the lens, the cornea, and the neural and pigmented retinas. In the olfactory epithelium, Pax-6 protein is expressed exclusively in cells of non-neuronal lineage, including sustentacular cells, basal cells, and Bowman's glands. The nonoverlapping, cellular localization patterns of Pax-6 and Olf-1 demarcate distinct cell lineages within the developing olfactory epithelium.
Collapse
|
29
|
Tobet SA, Chickering TW, Sower SA. Relationship of gonadotropin-releasing hormone (GnRH) neurons to the olfactory system in developing lamprey (Petromyzon marinus). J Comp Neurol 1996; 376:97-111. [PMID: 8946286 DOI: 10.1002/(sici)1096-9861(19961202)376:1<97::aid-cne6>3.0.co;2-j] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gonadotropin releasing-hormone (GnRH) regulates the hypothalamo-pituitary-gonadal axis in vertebrates. The regulation of GnRH is intimately related to information from the olfactory system. Additionally, GnRH neurons are thought to be derived from progenitor cells in medial olfactory placodes. The present experiments were conducted to characterize the earliest development of GnRH neurons in lamprey and to determine their relationship to cells and fibers derived from the olfactory system. Eggs from fertile adult sea lamprey were fertilized in the laboratory, and larvae were maintained for up to 100 days. GnRH neurons were visualized within the lamprey preoptic area and hypothalamus as soon as GnRH was detectable (22 days after fertilization). The number of neurons increased with age through day 100. GnRH neurons were never seen within the olfactory system. The cells and fibers of the olfactory system were identified using the lectin, Grifonia Simplicifolia-1 (GS-1). Overlap between the olfactory and GnRH systems were at the level of fiber projections. GS-1 reactive cells of apparent placodal origin did not enter the region of the preoptic area or hypothalamus that contained GnRH neurons. Recently divided cells were labeled with the thymidine analog, bromodeoxyuridine (BrdU). The positions of BrdU-labeled cells after different survival times suggest a predominant medial-lateral radial neuron migration with a small number in positions suggestive of migration between the olfactory epithelium and the telencephalic lobes. Regardless of survival time, these cells were always found close to their entry point into the brain, suggesting minimal rostral-caudal migration. Based on these results, we hypothesize that GnRH neurons in developing lamprey originate within proliferative zones of the diencephalon and not in the olfactory system. Based on the overlap of olfactory- and GnRH-containing fibers from prolarval stages to metamorphosis, olfactory stimuli may play a major role in the regulation of GnRH secretion in lamprey.
Collapse
Affiliation(s)
- S A Tobet
- Program in Neuroscience, Shriver Center, Waltham, Massachusetts 02254, USA.
| | | | | |
Collapse
|
30
|
Hilal EM, Chen JH, Silverman AJ. Joint migration of gonadotropin-releasing hormone (GnRH) and neuropeptide Y (NPY) neurons from olfactory placode to central nervous system. JOURNAL OF NEUROBIOLOGY 1996; 31:487-502. [PMID: 8951106 DOI: 10.1002/(sici)1097-4695(199612)31:4<487::aid-neu8>3.0.co;2-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The olfactory epithelium in vertebrates generates the olfactory sensory neurons and several migratory cell types. Prominent among the latter are the gonadotropin-releasing hormone (GnRH) neurons that differentiate within the olfactory epithelium during embryogenesis and migrate along the olfactory nerve to the central nervous system. We initiated studies to characterize additional neuronal phenotypes of olfactory epithelial derivation. Neuropeptide Y (NPY) neurons are functionally related to the reproductive axis, modulating the release of GnRH and directly enhancing GnRH-induced luteinizing hormone (LH) secretion from gonadotrophs. We demonstrate that a population of migratory NPY neurons originates within the olfactory epithelium of the chick. At stage 25, NPY-positive fibers, but not cells, were detected in the epithelium and the nerve. By stages 28-34, NPY neurons and processes were present in the olfactory epithelium, olfactory nerve, and at the junction of the olfactory nerve and forebrain. In these regions the number of NPY neurons increased until stage 30 and then declined as development progressed. Electron microscopic immunocytochemistry confirmed the neuronal phenotype of the NPY-positive cells. The origin and migratory nature of some of these NPY cells was confirmed by double-label immunocytochemical detection of NPY and GnRH. A large percentage of the NPY-cells coexpressed the GnRH peptide. Between stages 28 and 34 single- and double-labeled NPY and GnRH neurons were found side by side along the GnRH migratory route emanating from the nasal epithelium, along the olfactory nerve, and into the ventral forebrain. These data suggest that an NPY population originates in the olfactory epithelium and migrates into the central nervous system during embryogenesis. By stage 42, no NPY/GnRH double-labeled cells were detected.
Collapse
Affiliation(s)
- E M Hilal
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
31
|
Walters E, Grillo M, Oestreicher AB, Margolis FL. LacZ and OMP are co-expressed during ontogeny and regeneration in olfactory receptor neurons of OMP promoter-lacZ transgenic mice. Int J Dev Neurosci 1996; 14:813-22. [PMID: 9010727 DOI: 10.1016/s0736-5748(96)00063-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The ontogeny and cellular specificity of expression of beta-galactosidase activity and olfactory marker protein (OMP) are compared in olfactory tissue of the H-OMP-lacZ-3 line of transgenic mice. In this line the expression of lacZ is driven by a 0.3 kb fragment of the rat OMP promoter. During fetal development, lacZ expression is detectable in olfactory receptor neurons (ORNs) shortly after the initial appearance of endogenous OMP. The beta-galactosidase marker was observed only in mature olfactory receptor neurons where it co-localized with endogenous OMP. It was absent from immature neurons that express the growth associated phosphoprotein B50/GAP43. Lesion of the peripheral olfactory pathway by intranasal irrigation with Triton X-100 eliminated expression of both OMP and lacZ in the olfactory neuroepithelium. Subsequent regeneration of the full complement of olfactory receptor neurons was associated with co-expression of both OMP and beta-galactosidase activity. Neither OMP nor beta-galactosidase activity was induced in any other cell type of the regenerating olfactory mucosa. Thus, as little as 0.3 kb of the OMP promoter has the ability to target lacZ expression to olfactory receptor neurons in a temporally and spatially defined manner. We discuss the potential utility of this transgenic line for future studies of the olfactory system.
Collapse
Affiliation(s)
- E Walters
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC 20059, USA
| | | | | | | |
Collapse
|
32
|
Console-Bram LM, Fitzpatrick-McElligott SG, McElligott JG. Distribution of GAP-43 mRNA in the immature and adult cerebellum: a role for GAP-43 in cerebellar development and neuroplasticity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 95:97-106. [PMID: 8873980 DOI: 10.1016/0165-3806(96)00079-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Expression of GAP-43 mRNA in the rat cerebellum and inferior olivary nucleus was examined at birth, during postnatal development and in the adult by both Northern and in situ hybridization. Northern blot analysis revealed that cerebellar GAP-43 mRNA expression increases from birth to postnatal day (PD) 7 and then declines to a lower level in the adult. At birth, in situ hybridization experiments showed intense labeling of GAP-43 mRNA in the premigratory, but not the germinal, zone of the cerebellar external granule cell layer. Localization of GAP-43 within the premigratory zone, a layer containing post-mitotic granule cells, indicates that granule cells begin expressing GAP-43 mRNA after final mitosis and during axonal outgrowth of the parallel fibers. The deep cerebellar nuclei and the inferior olive were also intensely labeled at birth. GAP-43 mRNA was localized in granule cells during their migration through the molecular layer of the developing cerebellum and after their arrival in the internal granule cell layer. By PD 21, the pattern of GAP-43 expression was similar to that observed in the adult; GAP-43 mRNA was localized to the internal granule layer and the inferior olive with minimal to no hybridization in the deep cerebellar nuclei and none in the molecular layer. Purkinje cells were devoid of GAP-43 mRNA throughout the postnatal and adult periods. In light of our observations, we propose that GAP-43 is a critical factor in granule cell differentiation/migration, as well as in the parallel and climbing fiber axonal outgrowth and synaptogenesis during development. Localization of GAP-43 mRNA within granule and inferior olivary cells of adult animals indicates that GAP-43 protein observed in the molecular layer is transported from these cells to their terminals in the molecular layer suggesting that GAP-43 is also an intrinsic presynaptic determinant in cerebellar neuroplasticity.
Collapse
Affiliation(s)
- L M Console-Bram
- Temple University School of Medicine, Department of Pharmacology, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
33
|
Abstract
Primary sensory olfactory neurons exhibit a mosaic topographical projection from the olfactory neuroepithelium in the nasal cavity to the olfactory bulb formation of the telencephalon. Axons from primary neurons that are widely scattered in the epithelium terminate in discrete regions of the olfactory bulb. It has been hypothesised that carbohydrates present on the surface of primary olfactory axons mediate selective fasciculation and the formation of the topographical pathway. We examined the expression of the disaccharide N-acetyl-lactosamine in both the developing and the adult rat olfactory system. N-acetyl-lactosamine was expressed by all primary sensory olfactory neurons and by their terminations in the olfactory bulb throughout embryonic development and early postnatal life. In adults, N-acetyl-lactosamine was restricted to a subpopulation of primary sensory olfactory neurons that were dispersed throughout the neuroepithelium but that projected predominantly to the ventrolateral and ventromedial surfaces of the olfactory bulb. The axons of these neurons sort out in the outer layer of the bulb and preferentially self-fasciculate to form distinct axon bundles that terminate within select glomeruli. The role of N-acetyl-lactosamine in axon growth was tested by culturing primary sensory olfactory neurons on substrate-bound carbohydrates. Olfactory neuroepithelium cultures from both embryonic and postnatal rats revealed that substrate-bound N-acetyl-lactosamine was a strong and specific neurite growth-promoting agent. These data suggest that, during development of the olfactory projection, N-acetyl-lactosamine, which is present on all olfactory axons, acts as a nonselective permissive substrate for axon growth. In adults, however, the restricted distribution of N-acetyl-lactosamine on a subpopulation of axons may facilitate sorting out and self-fasciculation, which is necessary for preserving the mosaic nature of the olfactory pathway in this highly plastic region of the nervous system. These results support the hypothesis that cell surface carbohydrates are involved in axon growth in the olfactory system.
Collapse
Affiliation(s)
- A C Puche
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville Victoria, Australia
| | | |
Collapse
|
34
|
Tarozzo G, Peretto P, Biffo S, Varga Z, Nicholls JG, Fasolo A. Development and migration of olfactory neurones in the nervous system of the neonatal opossum. Proc Biol Sci 1995; 262:95-101. [PMID: 7479995 DOI: 10.1098/rspb.1995.0181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neonatal opossum (Monodelphis domestica) was used to assess how different populations of cells are generated in the olfactory region, and how they migrate along pathways to the central nervous system. Developing nerve cells were immunocytochemically labelled using antisera directed against two specific markers of olfactory receptor neurones: olfactory marker protein (OMP) and the dipeptide carnosine. In new-born opossums both carnosine and OMP are already co-expressed in primary olfactory neurones and in those axons that extend towards the olfactory bulb. Expression of these markers in olfactory receptor neurones during the first postnatal days reflects the advanced developmental state of this system compared to other regions of the central nervous system (such as the cortex and cerebellum), which are highly immature and less developed in comparison with those of new-born rats or mice. A second, distinct population of carnosine/OMP expressing cells was also identified during the first postnatal week. These neurones were present as clusters along the olfactory nerve bundles, on the ventral-medial aspect of the olfactory bulb and in the basal prosencephalon. The distribution of this cell population was compared to another group of well characterized migratory neurones derived from the olfactory placode, which express the decapeptide GnRH (Gonadotropin-releasing hormone, also known as LHRH). GnRH was never co-localized with carnosine/OMP in the same migratory cells. These observations show that distinct cell populations arise from the olfactory placode in the neonatal opossum and that they migrate to colonize the central nervous system by following common pathways.
Collapse
Affiliation(s)
- G Tarozzo
- Dipartimento di Biologia Animale, Università di Torino, Italy
| | | | | | | | | | | |
Collapse
|
35
|
De Carlos JA, López-Mascaraque L, Valverde F. The telencephalic vesicles are innervated by olfactory placode-derived cells: a possible mechanism to induce neocortical development. Neuroscience 1995; 68:1167-78. [PMID: 8544990 DOI: 10.1016/0306-4522(95)00199-s] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During early embryonic development, the olfactory placode is the source of different cell types migrating toward the telencephalic vesicle. Among these cell types are the ensheathing cells, the luteinizing hormone-releasing hormone-producing cells and the olfactory marker protein-immunoreactive cells. We have identified a novel group of olfactory placode-derived migratory cells using an antibody against beta-tubulin to label neurons and acetylcholinesterase histochemistry to label posmitotic cells. In this paper we describe the morphology, migration and fate of this novel group of cells. The first neurons detected in the rostral prosencephalon with acetylcholinesterase and anti-beta-tubulin antibody are localized in the olfactory placodes at embryonic day 11 in the rate. At embryonic day 12, anti-beta-tubulin antibody-positive cells were observed in the mesenchymal tissue between the olfactory pit and the rostral pole of the telencephalic vesicle. Anti-beta-tubulin antibody-positive cells were seen running superficially over the pial (dorsal) side of the telencephalic vesicle at embryonic day 13. The majority of these cells have a bipolar profile with short leading and trailing processes, suggesting that they are migratory elements. However, some of these cells showed elaborate processes extending for quite long distances, overlying the pial surface of the telencephalic vesicle. A mass of cells extending over the telencephalic vesicle from the developing olfactory epithelium were observed at embryonic day 13 using acetylcholinesterase histochemistry. Some of these acetylcholinesterase-positive cells were identified as neurons with the specific neuronal marker anti-beta-tubulin antibody. On embryonic day 12, neurons from the olfactory epithelium send axonal fibers toward the telencephalic vesicles. Most of these fibers spread over the anteroventral pole of the vesicles but others entered deep into the telencephalon, reaching the germinal ventricular zone. We also show that fibers run rostrocaudally over the surface of the telencephalic vesicles. We suggest that these cells and fibers, apparently originating in the olfactory placode and migrating through non-conventional routes, might play a significant role in the earliest stages of telencephalic vesicle development.
Collapse
|
36
|
Tarozzo G, Peretto P, Fasolo A. Cell migration from the olfactory placode and the ontogeny of the neuroendocrine compartments. Zoolog Sci 1995; 12:367-83. [PMID: 8528012 DOI: 10.2108/zsj.12.367] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The olfactory placode and its derivative, the olfactory pit, give rise to several different populations of migrating cells, which contribute to drive the organization of the prosencephalon, but also to form a part of the central neuroendocrine compartments. Some cell types are seemingly transient and can play a role in the establishment of the final connections. The understanding of the mechanisms involved in the migration and differentiation of these cell populations can give an insight on the interplay between peripheral structures and central nervous system and on the mechanisms of commitment, phenotype selection and control for neuroendocrine cells able to selectively "colonize" the brain.
Collapse
Affiliation(s)
- G Tarozzo
- Dipartmento Biologia Animale University of Torino, Italy
| | | | | |
Collapse
|
37
|
Giannetti N, Pellier V, Oestreicher AB, Astic L. Immunocytochemical study of the differentiation process of the septal organ of Masera in developing rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 84:287-93. [PMID: 7743649 DOI: 10.1016/0165-3806(94)00195-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The septal organ of Masera is a small patch of olfactory epithelium located near the base of the nasal septum. Using the growth-associated protein B-50/GAP-43 as neuronal marker, we have studied the differentiation process of this organ from the olfactory sheet in embryonic and newborn rats. Results show that the septal organ first appeared at embryonic day 16. Even though it was included in the olfactory sheet, the presumptive septal organ could be distinguished by a higher density of B-50/GAP-43-positive neurons. Concomitantly to its morphological development, the septal organ progressively isolated from the main olfactory epithelium. This isolation resulted from the extension of a transitional area which progressively lost its typical features of olfactory epithelium to become a putative respiratory epithelium in late embryonic stages. Results strongly suggest that the septal organ should be a proper chemosensory system with its own time-course of development.
Collapse
Affiliation(s)
- N Giannetti
- Laboratoire de Physiologie Neurosensorielle, UCB/Lyon I, Villeurbanne, France
| | | | | | | |
Collapse
|