1
|
Henkel AW, Al-Abdullah LAAD, Al-Qallaf MS, Redzic ZB. Quantitative Determination of Cellular-and Neurite Motility Speed in Dense Cell Cultures. Front Neuroinform 2019; 13:15. [PMID: 30914941 PMCID: PMC6423175 DOI: 10.3389/fninf.2019.00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
Mobility quantification of single cells and cellular processes in dense cultures is a challenge, because single cell tracking is impossible. We developed a software for cell structure segmentation and implemented 2 algorithms to measure motility speed. Complex algorithms were tested to separate cells and cellular components, an important prerequisite for the acquisition of meaningful motility data. Plasma membrane segmentation was performed to measure membrane contraction dynamics and organelle trafficking. The discriminative performance and sensitivity of the algorithms were tested on different cell types and calibrated on computer-simulated cells to obtain absolute values for cellular velocity. Both motility algorithms had advantages in different experimental setups, depending on the complexity of the cellular movement. The correlation algorithm (COPRAMove) performed best under most tested conditions and appeared less sensitive to variable cell densities, brightness and focus changes than the differentiation algorithm (DiffMove). In summary, our software can be used successfully to analyze and quantify cellular and subcellular movements in dense cell cultures.
Collapse
Affiliation(s)
- Andreas W Henkel
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | | | - Mohammed S Al-Qallaf
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Zoran B Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
2
|
Ramikie TS, Nyilas R, Bluett RJ, Gamble-George JC, Hartley ND, Mackie K, Watanabe M, Katona I, Patel S. Multiple mechanistically distinct modes of endocannabinoid mobilization at central amygdala glutamatergic synapses. Neuron 2014; 81:1111-1125. [PMID: 24607231 PMCID: PMC3955008 DOI: 10.1016/j.neuron.2014.01.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 11/26/2022]
Abstract
The central amygdala (CeA) is a key structure at the limbic-motor interface regulating stress responses and emotional learning. Endocannabinoid (eCB) signaling is heavily implicated in the regulation of stress-response physiology and emotional learning processes; however, the role of eCBs in the modulation of synaptic efficacy in the CeA is not well understood. Here we describe the subcellular localization of CB1 cannabinoid receptors and eCB synthetic machinery at glutamatergic synapses in the CeA and find that CeA neurons exhibit multiple mechanistically and temporally distinct modes of postsynaptic eCB mobilization. These data identify a prominent role for eCBs in the modulation of excitatory drive to CeA neurons and provide insight into the mechanisms by which eCB signaling and exogenous cannabinoids could regulate stress responses and emotional learning.
Collapse
Affiliation(s)
- Teniel S Ramikie
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Rita Nyilas
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rebecca J Bluett
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Joyonna C Gamble-George
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Nolan D Hartley
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Ken Mackie
- Gill Institute and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sachin Patel
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.
| |
Collapse
|
3
|
Joardar A, Sen AK, Das S. Docosahexaenoic acid facilitates cell maturation and β-adrenergic transmission in astrocytes. J Lipid Res 2006; 47:571-81. [PMID: 16352524 DOI: 10.1194/jlr.m500415-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of docosahexaenoic acid (DHA; 22:6 n-3), a major omega-3 PUFA in the mammalian brain, on the structure and function of astrocytes were studied using primary cultures from rat cerebra. Gas-liquid chromatography of methyl esters of FAs isolated from cultures exposed to individual FAs, namely, stearic acid, linoleic acid, arachidonic acid, and DHA, showed alterations in the lipid profiles of the membranes, with a preferential incorporation of the FA to which the cells were exposed. Immunofluorescence studies demonstrated that unlike treatment with other FAs, after which the astrocytes remained as immature radial forms, DHA-treated astrocytes showed distinct differentiation, having morphology comparable to those grown in normal serum-containing medium. Receptor binding studies to determine the concentration of various neurotransmitter receptors showed that DHA selectively increased the number of beta-adrenergic receptors (beta-ARs) compared with FA-untreated controls, suggesting a greater role of DHA on beta-AR expression in membranes. This was also reflected by an increase in downstream events of the beta-AR pathways, such as the induction of protein kinase A and glycogen turnover by isoproterenol (ISP), a beta-AR agonist in DHA-treated cells. Moreover, ISP completely transformed DHA-treated cells into mature astrocytes bearing long processes, as in cells grown under normal conditions. Together, our observations suggest that DHA plays a unique role in facilitating some of the vital functions of astrocytes in the developing brain.
Collapse
Affiliation(s)
- Anindita Joardar
- Neurobiology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | | | | |
Collapse
|
4
|
Abstract
Ten years after the isoforms of mammalian phospholipase D (PLD), PLD1 and 2, were cloned, their roles in the brain remain speculative but several lines of evidence now implicate these enzymes in basic cell functions such as vesicular trafficking as well as in brain development. Many mitogenic factors, including neurotransmitters and growth factors, activate PLD in neurons and astrocytes. Activation of PLD downstream of protein kinase C seems to be a required step for astroglial proliferation. The characteristic disruption of the PLD signaling pathway by ethanol probably contributes to the delay of brain growth in fetal alcohol syndrome. The post-natal increase of PLD activities concurs with synapto- and myelinogenesis in the brain and PLD is apparently involved in neurite formation. In the adult and aging brain, PLD activity has antiapoptotic properties suppressing ceramide formation. Increased PLD activities in acute and chronic neurodegeneration as well as in inflammatory processes are evidently due to astrogliosis and may be associated with protective responses of tissue repair and remodeling. ARF-regulated PLD participates in receptor endocytosis as well as in exocytosis of neurotransmitters where PLD seems to favor vesicle fusion by modifications of the shape and charge of lipid membranes. Finally, PLD activities contribute free choline for the synthesis of acetylcholine in the brain. Novel tools such as RNA interference should help to further elucidate the roles of PLD isoforms in brain physiology and pathology.
Collapse
Affiliation(s)
- Jochen Klein
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, USA.
| |
Collapse
|
5
|
Schatter B, Jin S, Löffelholz K, Klein J. Cross-talk between phosphatidic acid and ceramide during ethanol-induced apoptosis in astrocytes. BMC Pharmacol 2005; 5:3. [PMID: 15694004 PMCID: PMC549038 DOI: 10.1186/1471-2210-5-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 02/04/2005] [Indexed: 01/08/2023] Open
Abstract
Background Ethanol inhibits proliferation in astrocytes, an effect that was recently linked to the suppression of phosphatidic acid (PA) formation by phospholipase D (PLD). The present study investigates ethanol's effect on the induction of apoptosis in astrocytes and the formation of ceramide, an apoptotic signal. Evidence is presented that the formation of PA and ceramide may be reciprocally linked during ethanol exposure. Results In cultured rat cortical astrocytes, ethanol (0.3–1 %, v/v) induced nuclear fragmentation and DNA laddering indicative of apoptosis. Concomitantly, in cells prelabeled with [3H]-serine, ethanol caused a dose-dependent, biphasic increase of the [3H]-ceramide/ [3H]-sphingomyelin ratio after 1 and 18 hours of incubation. As primary alcohols such as ethanol and 1-butanol were shown to inhibit the phospholipase D (PLD)-mediated formation of PA, a mitogenic lipid messenger, we tested their effects on ceramide formation. In astrocytes prelabeled with [3H]-serine, ethanol and 1-butanol, in contrast to t-butanol, significantly increased the formation of [3H]-ceramide. Moreover, exogenous PA, added to transiently permeabilized astrocytes, suppressed ethanol-induced [3H]-ceramide formation. Vice versa, addition of C2-ceramide to astrocytes inhibited PLD activity induced by serum or phorbol ester. Conclusion We propose that the formation of ceramide in ethanol-exposed astrocytes is secondary to the disruption of phospholipase D signaling. Ethanol reduces the PA:ceramide ratio in fetal astrocytes, a mechanism which likely participates in ethanol-induced glial apoptosis during brain development.
Collapse
Affiliation(s)
- Beate Schatter
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Shenchu Jin
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Konrad Löffelholz
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Jochen Klein
- Department of Pharmacology, School of Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas, USA
| |
Collapse
|
6
|
Rujano MA, Pina P, Servitja JM, Ahumada AM, Picatoste F, Farrés J, Sabrià J. Retinoic acid-induced differentiation into astrocytes and glutamatergic neurons is associated with expression of functional and activable phospholipase D. Biochem Biophys Res Commun 2004; 316:387-92. [PMID: 15020229 DOI: 10.1016/j.bbrc.2004.02.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Indexed: 11/22/2022]
Abstract
Phospholipase D (PLD) activity in mammalian cells has been associated with cell proliferation and differentiation. Here, we investigated the expression of PLD during differentiation of pluripotent embryonal carcinoma cells (P19) into astrocytes and neurons. Retinoic acid (RA)-induced differentiation increased PLD1 and PLD2 mRNA levels and PLD activity that was responsive to phorbol myristate acetate. Various agonists of membrane receptors activated PLD in RA-differentiated cells. Glutamate was a potent activator of PLD in neurons but not in astrocytes, whereas noradrenaline and carbachol increased PLD activity only in astrocytes. P19 neurons but not astrocytes released glutamate in response to a depolarizing stimulus, confirming the glutamatergic phenotype of these neurons. These results indicate upregulation of PLD gene expression associated with RA-induced neural differentiation.
Collapse
Affiliation(s)
- María A Rujano
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Kanumilli S, Toms NJ, Venkateswarlu K, Mellor H, Roberts PJ. Functional coupling of rat metabotropic glutamate 1a receptors to phospholipase D in CHO cells: involvement of extracellular Ca2+, protein kinase C, tyrosine kinase and Rho-A. Neuropharmacology 2002; 42:1-8. [PMID: 11750911 DOI: 10.1016/s0028-3908(01)00161-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report here that metabotropic glutamate 1a (mGlu1a) receptors, stably expressed in CHO cells, stimulate phospholipase D (PLD) activity. Several mGlu receptor agonists were found to exert this effect, with a rank order of potency of: L-quisqualate>L-glutamate>(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD]=(S)-3,5-dihydroxyphenylglycine [(S)-DHPG]. Both L-glutamate- and (1S,3R)-ACPD-stimulated PLD activity were attenuated by the selective mGlu receptor antagonist (S)-alpha-methyl-4-carboxyphenylglycine. mGlu1a receptor-stimulated PLD was inhibited either by the selective protein kinase C (PKC) inhibitor, GF109203X, or via PKC downregulation. MGlu1a receptor-PLD coupling required extracellular Ca2+ and was sensitive to La3+ and Zn2+, inhibitors of intracellular Ca2+ store-operated Ca2+ influx. mGlu1a receptor-PLD coupling was inhibited by the selective tyrosine kinase inhibitor, genistein. In addition, mGlu1a receptor-PLD coupling was also inhibited by cell transfection with the selective Rho (small GTP-binding protein) inhibitors: C3-exoenzyme and dominant negative mutant RhoA constructs. Brefeldin A, a selective ADP-ribosylation factor (ARF) inhibitor, and a dominant negative ARF6 mutant, failed to significantly influence mGlu1a receptor-stimulated PLD activity. We conclude that mGlu1a receptors activate PLD via a mechanism that is dependent on extracellular Ca2+, PKC, tyrosine kinase and RhoA but independent of ARF.
Collapse
Affiliation(s)
- S Kanumilli
- Department of Pharmacology, School of Medical Sciences, University of Bristol, BS8 1TD, Bristol, UK
| | | | | | | | | |
Collapse
|
8
|
Kötter K, Jin S, Klein J. Inhibition of astroglial cell proliferation by alcohols: interference with the protein kinase C-phospholipase D signaling pathway. Int J Dev Neurosci 2000; 18:825-31. [PMID: 11154852 DOI: 10.1016/s0736-5748(00)00044-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Ethanol inhibits astroglial cell proliferation, an effect that may contribute to the development of alcoholic embryopathy in humans. In the present study, we investigated inhibitory effects of ethanol and butanol isomers (1-, 2- and t-butanol) on astroglial cell proliferation induced by the strongly mitogenic phorbol ester, 4beta-phorbol-12alpha,13beta-dibutyrate (PDB). 4beta-Phorbol-12alpha,13beta-dibutyrate (PDB) induced a 10-fold increase of [3H] thymidine incorporation in cortical astrocytes prepared from newborn rats (EC50: 70 nM) which was blocked by Ro 31-8220, a cell-permeable protein kinase C (PKC) inhibitor. Ethanol blocked PDB-induced astroglial proliferation in a concentration-dependent manner; significant effects were already seen at 0.1% (v/v). Concomitantly, ethanol caused the formation of phosphatidylethanol (PEth) by phospholipase D (PLD) and reduced PLD-mediated formation of phosphatidic acid (PA). The butanols also inhibited the mitogenic action of phorbol ester; the inhibitory potency of the butanols was 1-butanol > 2-butanol > t-butanol. The same range of potencies was observed for the inhibitory activity of the butanols towards protein kinase C activity measured in vitro. At 0.3% concentration, 1-butanol potently suppressed the PDB-induced formation of phosphatidic acid while 2- and t-butanol were less active. Taken together, our results suggest that ethanol and 1-butanol exert a specific inhibitory effect on PKC-dependent astroglial cell proliferation by synergistically inhibiting PKC activity and the PLD signaling pathway.
Collapse
Affiliation(s)
- K Kötter
- Department of Pharmacology, University of Mainz, Germany
| | | | | |
Collapse
|
9
|
Mangoura D, Pelletiere C, Leung S, Sakellaridis N, Wang DX. Prolactin concurrently activates src-PLD and JAK/Stat signaling pathways to induce proliferation while promoting differentiation in embryonic astrocytes. Int J Dev Neurosci 2000; 18:693-704. [PMID: 10978848 DOI: 10.1016/s0736-5748(00)00031-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In normal development, embryonic astrocytes progress through their cell lineage by acquiring differentiation, by apoptosis, and by proliferation. In this study, we show that embryonic astrocytes may maintain and make gains in differentiation as they simultaneously progress through one cell cycle when induced by prolactin (PRL). Prolactin induced the majority of astrocytes to incorporate bromodeoxyuridine (BrdU) with a four-fold increase over controls after 18 h of exposure. Investigating possible mitogenic signaling pathways we show for the first time that prolactin is coupled to a sustained phospholipase D (PLD) activation, with an efficacy similar to the phorbol ester and astrocytic mitogen 12-tetradecanoylphorbol-13-acetate (TPA). Both cyclosporine and suramin abolished this activation. Staurosporine and calphostin C also inhibited the PRL effect by 50%, consistent with involvement of protein kinase C-(PKC)-alpha, the major PKC isoform in astrocytes. Genistein and PP1 blocked the activation indicating additional regulation by cytosolic tyrosine kinases. This profile of PLD activation was suggestive of a PLD I isoform and a mitogenic response. Upon completion of the cell cycle, analysis of glia fibrillary acidic protein (GFAP) and vimentin abundance, and glutamine synthetase (GS) activity showed that astrocytes had gained in expression of differentiation markers. Moreover, the intensity of GFAP immunofluorescence was greater per cell, as was the length of the cell processes. In exploring the signaling for prolactin-induced differentiation we found that prolactin activated the tyrosine kinase Janus kinase (JAK) 2 and significantly stimulated tyrosine, phosphorylation of the prolactin receptor. Stat 1 and 3 were also activated presumably downstream to JAK2 activation. A rapid translocation of the cytosolic Stats over the nucleus was seen in nearly every astrocyte corresponding well with the gains in GFAP per cell. The Stats translocation did not depend on MEK-ERK inhibition by PD98059, inhibition of p38 by 1 microm SB203580, or Src kinase family inhibition by PP1. Our results demonstrate the ability of PRL to concurrently induce activation of PLD, a mitogenic signaling pathway in astrocytes, and prolonged stimulation of Stat1, compatible with the increased GFAP upregulation and cell differentiation. Considered together this data may provide an explanation on the fast gain in both numbers and differentiation in the astrocytic population during development (HD 09402, CRF).
Collapse
Affiliation(s)
- D Mangoura
- Department of Pediatrics, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
10
|
Kötter K, Ji a S, von Eichel-Streiber C, Park JB, Ryu SH, Klein J. Activation of astroglial phospholipase D activity by phorbol ester involves ARF and Rho proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1485:153-62. [PMID: 10832096 DOI: 10.1016/s1388-1981(00)00036-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary cultures of rat cortical astrocytes express phospholipase D (PLD) isoforms 1 and 2 as determined by RT-PCR and Western blot. Basal PLD activity was strongly (10-fold) increased by 4beta-phorbol-12beta,13alpha-dibutyrate (PDB) (EC(50): 56 nM), an effect which was inhibited by Ro 31-8220 (0.1-1 microM), an inhibitor of protein kinase C (PKC), and by brefeldin A (10-100 microg/ml), an inhibitor of ADP-ribosylating factor (ARF) activation. Pretreatment of the cultures with Clostridium difficile toxin B-10463 (0.1-1 ng/ml), which inactivates small G proteins of the Rho family, led to a breakdown of the astroglial cytoskeleton; concomitantly, PLD activation by PDB was reduced by up to 50%. In contrast, inactivation of proteins of the Ras family by Clostridium sordellii lethal toxin 1522 did not affect PLD activation. In parallel experiments, serum-induced PLD activation was sensitive to brefeldin A, but not to Ro 31-8220 and not to clostridial toxins. We conclude that, in astrocytes, the PLD isoform which is activated by phorbol ester requires PKC, ARF and Rho proteins for full activity and probably represents PLD1.
Collapse
Affiliation(s)
- K Kötter
- Department of Pharmacology, University of Mainz, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Kötter K, Klein J. Ethanol inhibits astroglial cell proliferation by disruption of phospholipase D-mediated signaling. J Neurochem 1999; 73:2517-23. [PMID: 10582613 DOI: 10.1046/j.1471-4159.1999.0732517.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activation of phospholipase D (PLD) is a common response to mitogenic stimuli in various cell types. As PLD-mediated signaling is known to be disrupted in the presence of ethanol, we tested whether PLD is involved in the ethanol-induced inhibition of cell proliferation in rat cortical primary astrocytes. Readdition of fetal calf serum (FCS) to serum-deprived astroglial cultures caused a rapid, threefold increase of PLD activity and a strong mitogenic response; both effects were dependent on tyrosine kinases but not on protein kinase C. Ethanol (0.1-2%) suppressed the FCS-induced, PLD-mediated formation of phosphatidic acid (PA) as well as astroglial cell proliferation in a concentration-dependent manner. Moreover, exogenous bacterial PLD increased astroglial proliferation in an ethanol-sensitive manner, whereas exogenous PA or lysophosphatidic acid was less effective. Formation of PA and astroglial proliferation were strongly inhibited by 1-butanol (0.1-1%), a substrate of PLD, but were unaffected by t-butanol, a non-substrate; 2-butanol had intermediate effects. Platelet-derived growth factor and endothelin-1 mimicked the mitogenic effect of FCS; their effects were also inhibited by the butanols in the potency order 1-butanol > 2-butanol > tert-butanol. Our results, in particular, the differential effects of 1-, 2-, and tert-butanol with respect to PA formation and astroglial proliferation, strongly suggest that the antiproliferative effects of ethanol in glial cells are due to the disruption of the PLD signaling pathway. This mechanism may also contribute to the inhibition of astroglial growth and brain development observed in alcoholic embryopathy.
Collapse
Affiliation(s)
- K Kötter
- Department of Pharmacology, University of Mainz, Germany
| | | |
Collapse
|
12
|
Abstract
As phospholipase D (PLD) activation has been associated with mitogenic signalling in several cell types, we tested an association between adrenergic activation of PLD and cellular proliferation in primary cultures of rat cortical astrocytes. In 2-week old cultures, PLD activation by noradrenaline (EC50: 0.49 microM) was inhibited by prazosin, a specific antagonist at alpha1-adrenergic receptors (IC50: 0.23 microM). Adrenergic PLD activation was not affected by genistein, an inhibitor of tyrosine kinases, or by Ro 31-8220, an inhibitor of protein kinase C (PKC), but was dose-dependently depressed in the presence of brefeldin A (1-100 microg/ml), an inhibitor of ARF activation. In experiments measuring cell proliferation, noradrenaline potently (EC50: 20 nM) reduced [3H]thymidine incorporation to 20-30% of basal values. This action was mimicked by the beta-specific agonist isoprenaline and was inhibited by the beta-antagonist propranolol in a concentration-dependent manner. The alpha1-adrenergic agonists, phenylephrine and methoxamine, also reduced DNA synthesis. The adrenergic inhibition of astroglial DNA synthesis was not reduced, but further potentiated in the presence of brefeldin A, ethanol, and 1- and 2-butanol; 1-butanol, a substrate of PLD, was equally effective as 2-butanol, a non-substrate. We conclude that adrenergic PLD activation in astrocytes is not involved in mitogenic signalling. The involvement of ARF in the activation of PLD via alpha1-adrenoceptors indicates a role in protein trafficking.
Collapse
Affiliation(s)
- K Kötter
- Department of Pharmacology, University of Mainz, Obere Zahlbacher Strasse 67, D-55101, Mainz, Germany
| | | |
Collapse
|
13
|
Servitja JM, Masgrau R, Sarri E, Picatoste F. Group I metabotropic glutamate receptors mediate phospholipase D stimulation in rat cultured astrocytes. J Neurochem 1999; 72:1441-7. [PMID: 10098847 DOI: 10.1046/j.1471-4159.1999.721441.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have studied the activation of phospholipase D (PLD) by glutamate in rat cultured astrocytes by measuring the PLD-catalyzed formation of [32P]phosphatidylbutanol in [32P]Pi-prelabeled cells, stimulated in the presence of butanol. Glutamate elicited the activation of PLD in cortical astrocytes but not in cortical neurons, whereas similar glutamate activation of phosphoinositide phospholipase C was found in both astrocytes and neurons. The extent of PLD stimulation by glutamate was similar in astrocytes from brain cortex and hippocampus, but no effect was found in cerebellar astrocytes. In cortical astrocytes, the glutamate response was insensitive to antagonists of ionotropic glutamate receptors and was reproduced by agonists of metabotropic glutamate receptors (mGluRs) with a rank order of agonist potency similar to that reported for group I mGluR-mediated phosphoinositide phospholipase activation [quisqualate > (S)-3,5-dihydroxyphenylglycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid]. The response to (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid was inhibited by the mGluR antagonist (S)-alpha-methyl-4-carboxyphenylglycine and, less potently, by 1-aminoindan-1,5-dicarboxylic acid and 4-carboxyphenylglycine, two antagonists of group I mGluRs that display higher potency on mGluR1 than on mGluR5. The mGluR5-selective agonist (RS)-2-chloro-5-hydroxyphenylglycine also activated PLD in astrocytes. These findings indicate the involvement of group I mGluRs, most likely mGluR5, in the glutamate activation of PLD in cultured rat cortical astrocytes.
Collapse
Affiliation(s)
- J M Servitja
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | | | | | | |
Collapse
|
14
|
Servitja JM, Masgrau R, Sarri E, Picatoste F. Involvement of ET(A) and ET(B) receptors in the activation of phospholipase D by endothelins in cultured rat cortical astrocytes. Br J Pharmacol 1998; 124:1728-34. [PMID: 9756390 PMCID: PMC1565560 DOI: 10.1038/sj.bjp.0701997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study was performed to characterize the receptor subtypes involved in the endothelin stimulation of phospholipase D (PLD) in rat cortical astrocytes in primary culture. PLD activity was determined by measuring the formation of [32P]phosphatidylbutanol in [32P]orthophosphate prelabelled cells stimulated in the presence of 25 mM butanol. The agonists endothelin-1 (ET-1), endothelin-3 (ET-3), sarafotoxin 6c (S6c) and IRL 1620 elicited PLD activation in a concentration-dependent manner. The potencies of ET-1, ET-3 and S6c were similar. The maximal effects evoked by the ET(B)-preferring agonists, ET-3, S6c and IRL 1620, were significantly lower than the maximal response to the non-selective agonist ET-1. The response to 1 nM ET-1 was inhibited by increasing concentrations of the ET(A) receptor antagonist BQ-123 in a biphasic manner. A high potency component of the inhibition curve (24.2+/-3.5% of the ET-1 response) was defined at low (up to 1 microM) concentrations of BQ-123, yielding an estimated Ki value for BQ-123 of 21.3+/-2.5 nM. In addition, the presence of 1 microM BQ-123 significantly reduced the maximal response to ET-1 but did not change the pD2 value. Increasing concentrations of the ET(B) selective antagonist BQ-788 inhibited the S6c response with a Ki of 17.8+/-0.8 nM. BQ-788 also inhibited the effect of ET-1, although, in this case, two components were defined, accounting for approximately 50% of the response, and showing Ki values of 20.9+/-5.1 nM and 439+/-110 nM, respectively. The ET-1 concentration-response curve was shifted to the right by 1 microM BQ-788, also revealing two components. Only one of them, corresponding to 69.8+/-4.4% of the response, was sensitive to BQ-788 which showed a Ki value of 28.8+/-8.9 nM. Rapid desensitization was achieved by preincubation with ET-1 or S6c. In cells pretreated with S6c neither ET-3 nor S6c activated PLD, but ET-1 still induced approximately 40% of the response shown by non-desensitised cells. This remaining response was insensitive to BQ-788, but fully inhibited by BQ-123. In conclusion, endothelins activate PLD in rat cortical astrocytes acting through both ET(A) and ET(B) receptors, and this response desensitizes rapidly in an apparently homologous fashion. The percentage contribution of ET(A) and ET(B) receptors to the ET-1 response was found to be approximately 20% and 80%, respectively, when ET(B) receptors were not blocked, and 30-50% and 50-70%, respectively, when ET(B) receptors were inhibited or desensitized. These results may be relevant to the study of a possible role of PLD in the proliferative effects shown by endothelins on cultured and reactive astrocytes.
Collapse
Affiliation(s)
- J M Servitja
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
15
|
Jalonen TO, Margraf RR, Wielt DB, Charniga CJ, Linne ML, Kimelberg HK. Serotonin induces inward potassium and calcium currents in rat cortical astrocytes. Brain Res 1997; 758:69-82. [PMID: 9203535 DOI: 10.1016/s0006-8993(97)00163-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ca2+ imaging and patch-clamp techniques were used to study the effects of serotonin (5-HT) on ionic conductances in rat cortical astrocytes. 1 and 10 microM serotonin caused a transient increase in intracellular calcium (Ca(i)) levels in fura-2AM-loaded cultured astrocytes and in astrocytes acutely isolated and then cultured in horse serum-containing medium for over 24 h. However, the acutely isolated (less than 6 h from isolation) astrocytes, as well as acutely isolated astrocytes cultured in serum-free media, failed to respond to 5-HT by changes in Ca(i). Coinciding with the changes in Ca(i) levels, inward currents were activated by 10 microM 5-HT in cultured, but not in acutely isolated astrocytes. Two separate types of serotonin-induced, small-conductance inward single-channel currents were found. First, in both Ca2+-containing and Ca2+-free media serotonin transiently activated a small-conductance apamin-sensitive channel. Apamin is a specific blocker of the small-conductance Ca2+-activated K+ channel (sK(Ca)) When cells were pre-treated with phospholipase C inhibitor U73122 no 5-HT-induced sK(Ca) channel openings were seen, indicating that this channel was activated by Ca2+ released from intracellular stores via IP3. A second type of small inward channel activated later, but only in the presence of external Ca2+. It was inhibited by the L-type Ca2+ channel blockers, nimodipine and nifedipine. Both types of channel activity were inhibited by ketanserin, indicating activation of the 5-HT2A receptor.
Collapse
Affiliation(s)
- T O Jalonen
- Division of Neurosurgery, Albany Medical College, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
16
|
Mangoura DA, Pelletiere C, Wang D, Sakellaridis N, Sogos V. Plasticity in Astrocytic Phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997. [DOI: 10.1007/978-1-4757-9551-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
17
|
Gonzalez R, Löffelholz K, Klein J. Adrenergic activation of phospholipase D in primary rat astrocytes. Neurosci Lett 1996; 219:53-6. [PMID: 8961302 DOI: 10.1016/s0304-3940(96)13178-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phospholipase D (PLD) activity was investigated in astrocytes prepared from newborn rat cerebral cortex using the transphosphatidylation assay. Basal PLD activity was measurable and was found to be enhanced by ATP, carbachol and noradrenaline. The activation by noradrenaline (EC50, 0.68 microM) was mimicked by methoxamine (EC50, 65 microM), an alpha 1-specific adrenergic agonist, and was inhibited by prazosine, an alpha 1-specific adrenergic antagonist. Clonidin, an alpha 2-adrenergic agonist, slightly lowered PLD activity whereas beta-adrenergic drugs were without effect. Experiments with mitogens indicate that PLD activation in astrocytes may be involved in the control of astrocytic cell proliferation.
Collapse
Affiliation(s)
- R Gonzalez
- Department of Pharmacology, University of Costa Rica School of Medicine, San Pedro, San Jose, Costa Rica
| | | | | |
Collapse
|
18
|
Hauser KF, Stiene-Martin A, Mattson MP, Elde RP, Ryan SE, Godleske CC. mu-Opioid receptor-induced Ca2+ mobilization and astroglial development: morphine inhibits DNA synthesis and stimulates cellular hypertrophy through a Ca(2+)-dependent mechanism. Brain Res 1996; 720:191-203. [PMID: 8782912 PMCID: PMC4338004 DOI: 10.1016/0006-8993(96)00103-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Morphine, a preferential mu-opioid receptor agonist, alters astroglial development by inhibiting cell proliferation and by promoting cellular differentiation. Although morphine affects cellular differentiation through a Ca(2+)-dependent mechanism, few studies have examined whether Ca2+ mediates the effect of opioids on cell proliferation, or whether a particular Ca2+ signal transduction pathway mediates opioid actions. Moreover, it is uncertain whether one or more opioid receptor types mediates the developmental effects of opioids. To address these questions, the present study examined the role of mu-opioid receptors and Ca2+ mobilization in morphine-induced astrocyte development. Morphine (1 microM) and non-morphine exposed cultures enriched in murine astrocytes were incubated in Ca(2+)-free media supplemented with < 0.005, 0.3, 1.0, or 3.0 mM Ca2+ ([Ca2+]o), or in unmodified media containing Ca2+ ionophore (A23187), nifedipine (1 microM), dantrolene (10 microM), thapsigargin (100 nM), or L-glutamate (100 microM) for 0-72 h. mu-Opioid receptor expression was examined immunocytochemically using specific (MOR1) antibodies. Intracellular Ca2+ ([Ca2+]i) was measured by microfluorometric analysis using fura-2. Astrocyte morphology and bromodeoxyuridine (BrdU) incorporation (DNA synthesis) were assessed in glial fibrillary acidic protein (GFAP) immunoreactive astrocytes. The results showed that morphine inhibited astroglial growth by activating mu-opioid receptors. Astrocytes expressed MOR1 immunoreactivity and morphine's actions were mimicked by the selective mu agonist PL017. In addition, morphine inhibited DNA synthesis by mobilizing [Ca2+]i in developing astroglia. At normal [Ca2+]o, morphine attenuated DNA synthesis by increasing [Ca2+]i; low [Ca2+]o (0.3 mM) blocked this effect, while treatment with Ca2+ ionophore or glutamate mimicked morphine's actions. At extremely low [Ca2+]o (< 0.005 mM), morphine paradoxically increased BrdU incorporation. Although opioids can increase [Ca2+]i in astrocytes through several pathways, not all affect DNA synthesis or cellular morphology. Nifedipine (which blocks L-type Ca2+ channels) did not prevent morphine-induced reductions in BrdU incorporation or cellular differentiation, while thapsigargin (which depletes IP3-sensitive Ca2+ stores) severely affected inhibited DNA synthesis and cellular differentiation-irrespective of morphine treatment. However, dantrolene (an inhibitor of Ca(2+)-dependent Ca2+ release) selectively blocked the effects of morphine. Collectively, the findings suggest that opioids suppress astroglial DNA synthesis and promote cellular hypertrophy by inhibiting Ca(2+)-dependent Ca2+ release from dantrolene-sensitive intracellular stores. This implies a fundamental mechanism by which opioids affect central nervous system maturation.
Collapse
Affiliation(s)
- K F Hauser
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington 40536-0084, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Mangoura D, Sogos V, Dawson G. Phorbol esters and PKC signaling regulate proliferation, vimentin cytoskeleton assembly and glutamine synthetase activity of chick embryo cerebrum astrocytes in culture. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 87:1-11. [PMID: 7554227 DOI: 10.1016/0165-3806(95)00046-g] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have recently shown that expression of specific protein kinase C (PKC) isoforms correlates with cell fate in neural chicken embryo cells. Therefore we investigated the effects of PKC activation by phorbol esters on acquisition of the astrocytic phenotype, using cultured embryonic cortical astrocytes, derived from 15-day-old chick embryos (E15CH), as a model. Short term treatment with the phorbol ester 12-tetradecanoylphorbol-13-acetate (TPA), which activates PKC-alpha/beta in E15CH, caused association of PKC with the cytoskeleton. In vitro kinase assays of cytoskeleton-associated PKC demonstrated phosphorylation of many cytoskeletal proteins. Phosphorylation was blocked by protein kinase inhibitors (H8), and enhanced by phosphatase inhibitors (calyculin A). Among these PKC substrates, a most prominent 60-kDa protein was identified as vimentin. Assembly of vimentin into the cytoskeleton depends on cell type and state of differentiation. To establish that TPA (PKC) regulates assembly of vimentin into the cytoskeleton of astrocytes, we used pulse-chase (20/5 min) labeling with [35S]methionine, and immunoprecipitations with an anti-vimentin mAb from extractable and cytoskeletal fractions. These studies revealed that 20 min treatment with TPA leads to a 3-fold increase in the rate of newly synthesized full-length vimentin assembly (posttranslational assembly). Furthermore, TPA increased cotranslational assembly of vimentin. The protein kinase A activator forskolin, did not have such effects on vimentin assembly. Long-term TPA treatment, which correlates with a prolonged phospholipase D (PLD) activation, was mitogenic and caused dramatic changes in the morphology of astrocytes. In addition these fibrous, polarized astrocytes had decreased activity of the astrocyte specific enzyme, glutamine synthetase, but had increased abundance of vimentin protein. These studies provide biochemical evidence on acquisition of a different astrocytic phenotype after activation of the PKC/PLD pathway, in the chick embryo. Therefore PKC and PLD activation is pivotal for the acquisition and maintenance of phenotypes in chick embryonic astrocytes.
Collapse
Affiliation(s)
- D Mangoura
- Department of Pediatrics MC 5058, University of Chicago Medical School, IL 60637, USA
| | | | | |
Collapse
|