1
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Baradaran M, Salabi F. Genome-wide identification, structural homology analysis, and evolutionary diversification of the phospholipase D gene family in the venom gland of three scorpion species. BMC Genomics 2023; 24:730. [PMID: 38049721 PMCID: PMC10694872 DOI: 10.1186/s12864-023-09851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Venom phospholipase D (PLDs), dermonecrotic toxins like, are the major molecules in the crude venom of scorpions, which are mainly responsible for lethality and dermonecrotic lesions during scorpion envenoming. The purpose of this study was fivefold: First, to identify transcripts coding for venom PLDs by transcriptomic analysis of the venom glands from Androctonus crassicauda, Hottentotta saulcyi, and Hemiscorpius lepturus; second, to classify them by sequence similarity to known PLDs and motif extraction method; third, to characterize scorpion PLDs; fourth to structural homology analysis with known dermonecrotic toxins; and fifth to investigate phylogenetic relationships of the PLD proteins. RESULTS We found that the venom gland of scorpions encodes two PLD isoforms: PLD1 ScoTox-beta and PLD2 ScoTox-alpha I. Two highly conserved regions shared by all PLD1s beta are GAN and HPCDC (HX2PCDC), and the most important conserved regions shared by all PLD2s alpha are two copies of the HKDG (HxKx4Dx6G) motif. We found that PLD1 beta is a 31-43 kDa acidic protein containing signal sequences, and PLD2 alpha is a 128 kDa basic protein without known signal sequences. The gene structures of PLD1 beta and PLD2 alpha contain 6 and 21 exons, respectively. Significant structural homology and similarities were found between the modeled PLD1 ScoTox-beta and the crystal structure of dermonecrotic toxins from Loxosceles intermedia. CONCLUSIONS This is the first report on identifying PLDs from A. crassicauda and H. saulcyi venom glands. Our work provides valuable insights into the diversity of scorpion PLD genes and could be helpful in future studies on recombinant antivenoms production.
Collapse
Affiliation(s)
- Masoumeh Baradaran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Salabi
- Department of Venomous Animals and Anti-Venom Production, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Ahvaz, Iran.
| |
Collapse
|
3
|
Li C, Xia Y, Li M, Zhang T. ARTP mutagenesis of phospholipase D-producing strain Streptomyces hiroshimensis SK43.001, and its enzymatic properties. Heliyon 2022; 8:e12587. [PMID: 36619468 PMCID: PMC9816975 DOI: 10.1016/j.heliyon.2022.e12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 12/14/2022] [Indexed: 12/26/2022] Open
Abstract
Phospholipase D (PLD) is a group of enzymes that act on phospholipid molecules, which is widely used in the fields of food and medicine. PLD is extracted from animals and plants with low transesterification activity and high price. Therefore, it is benefit to screen an efficient PLD producing strain from microorganisms. A highly productive strain of PLD with transphosphatidylation activity, named Streptomyces hiroshimensis SK43.001, was screened from soil in our laboratory and mutated using atmospheric room temperature plasma (ARTP). A mutant strain SK43.001-11 with the highest enzyme activity and superior genetic stability was obtained, and its fermentation enzyme activity was 5.3 U/mL, which was 82% increased comparing to wild strain. The purification of PLD showed that the specific enzyme activity increased to 49.48 U/mg, which was 54.37-fold higher than that of the crude enzyme, with a recovery of 32.31%. In addition, enzymatic properties of PLD have revealed that the optimal pH and temperature were 7.0 and 60 °C, respectively. Metal ion Mg2+ and surfactant Triton X-100 made the enzymatic activity increased by 16% and 100%, respectively. The reaction kinetic parameters showed that the mutant PLD had higher affinity for the substrate of egg PC and better catalytic efficiency with K m, V max and K cat of 30.20 mmol/L, 99.70 μmol/min and 76.33 s-1, respectively. This study may provide important inspiration for obtaining high enzyme activity strains with PLD.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China,Corresponding author.
| |
Collapse
|
4
|
Sadat MA, Ullah MW, Hossain MS, Ahmed B, Bashar KK. Genome-wide in silico identification of phospholipase D (PLD) gene family from Corchorus capsularis and Corchorus olitorius: reveals their responses to plant stress. J Genet Eng Biotechnol 2022; 20:28. [PMID: 35147846 PMCID: PMC8837719 DOI: 10.1186/s43141-022-00311-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
Background Plant grows in nature facing various types of abiotic stresses for their normal growth and development. During abiotic stress, plants evolve different types of mechanisms to survive in a hostile environment. Phospholipase D (PLD) plays important role in the regulation of diverse cellular processes including stress responses in plants. Member of PLD genes are well studied in different model plants; however, their functions in the jute are not clear yet. Result In the present study, a total of 12 and 11 PLD genes were identified in the genome of C. capsularis and C. olitorius, respectively. The presence of the two conserved HKD motifs in PLD genes except for CoPLDδ-2 in jute suggests their strong lipase activity. Twenty different motifs were found in the identified PLD genes, and PLD-β1, PLD-γ1, and all members of PLD-δ1 of both jute species contained the highest number of motifs. Phylogenetic analysis showed the close evolutionary relationship among the five groups of jute PLD proteins along with the PLD proteins from Arabidopsis. Tissue-specific expression pattern of PLDα1-2, PLD-α2, PLDβ1, PLDγ1, and PLDδ1 of two jute species suggested their involvement in plant growth and development. However, the expression pattern of PLDα1-2, PLDα1-3, PLD-α4, PLDδ1, and PLDδ3 indicated their association during waterlogging stress. In addition, PLD-α2, PLDβ1, and PLDδ2 seemed to be involved in drought stress as well as salinity stress. Conclusion This genome-wide identification of jute PLD genes from C. capsularis and C. olitorius will help to further functional characterization of the PLD genes for developing stress-tolerant jute variety.
Collapse
Affiliation(s)
- Md Abu Sadat
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh.
| | - Md Wali Ullah
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Sabbir Hossain
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Borhan Ahmed
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Kazi Khayrul Bashar
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| |
Collapse
|
5
|
Auclair N, Sané AT, Delvin E, Spahis S, Levy E. Phospholipase D as a Potential Modulator of Metabolic Syndrome: Impact of Functional Foods. Antioxid Redox Signal 2021; 34:252-278. [PMID: 32586106 DOI: 10.1089/ars.2020.8081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Cardiometabolic disorders (CMD) are composed of a plethora of metabolic dysfunctions such as dyslipidemia, nonalcoholic fatty liver disease, insulin resistance, and hypertension. The development of these disorders is highly linked to inflammation and oxidative stress (OxS), two metabolic states closely related to physiological and pathological conditions. Given the drastically rising CMD prevalence, the discovery of new therapeutic targets/novel nutritional approaches is of utmost importance. Recent Advances: The tremendous progress in methods/technologies and animal modeling has allowed the clarification of phospholipase D (PLD) critical roles in multiple cellular processes, whether directly or indirectly via phosphatidic acid, the lipid product mediating signaling functions. In view of its multiple features and implications in various diseases, PLD has emerged as a drug target. Critical Issues: Although insulin stimulates PLD activity and, in turn, PLD regulates insulin signaling, the impact of the two important PLD isoforms on the metabolic syndrome components remains vague. Therefore, after outlining PLD1/PLD2 characteristics and functions, their role in inflammation, OxS, and CMD has been analyzed and critically reported in the present exhaustive review. The influence of functional foods and nutrients in the regulation of PLD has also been examined. Future Directions: Available evidence supports the implication of PLD in CMD, but only few studies emphasize its mechanisms of action and specific regulation by nutraceutical compounds. Therefore, additional investigations are first needed to clarify the functional role of nutraceutics and, second, to elucidate whether targeting PLDs with food compounds represents an appropriate therapeutic strategy to treat CMD. Antioxid. Redox Signal. 34, 252-278.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Metrick CM, Peterson EA, Santoro JC, Enyedy IJ, Murugan P, Chen T, Michelsen K, Cullivan M, Spilker KA, Kumar PR, May-Dracka TL, Chodaparambil JV. Human PLD structures enable drug design and characterization of isoenzyme selectivity. Nat Chem Biol 2020; 16:391-399. [PMID: 32042197 DOI: 10.1038/s41589-019-0458-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Phospholipase D enzymes (PLDs) are ubiquitous phosphodiesterases that produce phosphatidic acid (PA), a key second messenger and biosynthetic building block. Although an orthologous bacterial Streptomyces sp. strain PMF PLD structure was solved two decades ago, the molecular basis underlying the functions of the human PLD enzymes (hPLD) remained unclear based on this structure due to the low homology between these sequences. Here, we describe the first crystal structures of hPLD1 and hPLD2 catalytic domains and identify novel structural elements and functional differences between the prokaryotic and eukaryotic enzymes. Furthermore, structure-based mutation studies and structures of inhibitor-hPLD complexes allowed us to elucidate the binding modes of dual and isoform-selective inhibitors, highlight key determinants of isoenzyme selectivity and provide a basis for further structure-based drug discovery and functional characterization of this therapeutically important superfamily of enzymes.
Collapse
Affiliation(s)
- Claire M Metrick
- Physical Biochemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA.,Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, USA
| | - Emily A Peterson
- Medicinal Chemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Joseph C Santoro
- Bioassays and High Throughput Screens, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Istvan J Enyedy
- Medicinal Chemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Paramasivam Murugan
- Bioassays and High Throughput Screens, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - TeYu Chen
- Medicinal Chemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Klaus Michelsen
- Physical Biochemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Michael Cullivan
- Physical Biochemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Kerri A Spilker
- Physical Biochemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - P Rajesh Kumar
- Physical Biochemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Tricia L May-Dracka
- Medicinal Chemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
7
|
Abstract
Functions for phospholipase D1 and D2 (PLD1 and PLD2), the canonical isoforms of the PLD superfamily in mammals, have been explored using cell biological and animal disease models for two decades. PLD1 and PLD2, which are activated as a consequence of extracellular signaling events and generate the second messenger signaling lipid phosphatidic acid (PA), have been reported to play roles in settings ranging from platelet activation to the response to cardiac ischemia, viral infection, neurodegenerative disease, and cancer. Of these, the most tractable as therapeutic targets may be thrombotic disease and cancer, as will be discussed here in the context of ongoing efforts to develop small molecule PLD inhibitors.
Collapse
Affiliation(s)
- Christian Salazar
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Michael A Frohman
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
8
|
Cao Z, Li W, Liu R, Li X, Li H, Liu L, Chen Y, Lv C, Liu Y. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed Pharmacother 2019; 118:109340. [PMID: 31545284 DOI: 10.1016/j.biopha.2019.109340] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
It is necessary to design a reasonable drug delivery system(DDS) for targeted release to overcome the potential toxicity and poor selectivity of anti-tumor drug. How a drug is released from a DDS is a critical issue that determines whether the DDS is designed successfully. We all know that the microenvironment of tumors is quite different from normal tissues, such as its acidic environment, different expression levels of some enzymes, etc. These features are widely used in the design of DDSs and play an important role in the drug release process in vivo. Numerous DDSs have been designed and synthesized. This article attention to how drugs are released from DDSs. We summarizes and classify the characteristic enzymes and chemical bonds used in the drug release process by browsing a large number of papers, and describes how they are applied in DDSs with specific examples. By understanding these acid-sensitive chemical bonds and over-expressed enzymes in tumors, different DDSs can be designed for different drug structures to solve specific problems of anti-tumor drugs.
Collapse
Affiliation(s)
- Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Lv
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Arhab Y, Abousalham A, Noiriel A. Plant phospholipase D mining unravels new conserved residues important for catalytic activity. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:688-703. [DOI: 10.1016/j.bbalip.2019.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 01/16/2023]
|
10
|
Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res 2018; 209:55-69. [DOI: 10.1016/j.micres.2017.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
|
11
|
Mendez-Gomez HR, Singh J, Meyers C, Chen W, Gorbatyuk OS, Muzyczka N. The Lipase Activity of Phospholipase D2 is Responsible for Nigral Neurodegeneration in a Rat Model of Parkinson's Disease. Neuroscience 2018. [PMID: 29526688 DOI: 10.1016/j.neuroscience.2018.02.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Phospholipase D2 (PLD2), an enzyme involved in vesicle trafficking and membrane signaling, interacts with α-synuclein, a protein known to contribute in the development of Parkinson disease (PD). We previously reported that PLD2 overexpression in rat substantia nigra pars compacta (SNc) causes a rapid neurodegeneration of dopamine neurons, and that α-synuclein suppresses PLD2-induced nigral degeneration (Gorbatyuk et al., 2010). Here, we report that PLD2 toxicity is due to its lipase activity. Overexpression of a catalytically inactive mutant (K758R) of PLD2 prevents the loss of dopaminergic neurons in the SNc and does not show signs of toxicity after 10 weeks of overexpression. Further, mutant K758R does not affect dopamine levels in the striatum. In contrast, mutants that prevent PLD2 interaction with dynamin or growth factor receptor bound protein 2 (Grb2) but retained lipase activity, continued to show rapid neurodegeneration. These findings suggest that neither the interaction of PLD2 with dynamin, which has a role in vesicle trafficking, nor the PLD2 interaction with Grb2, which has multiple roles in cell cycle control, chemotaxis and activation of tyrosine kinase complexes, are the primary cause of neurodegeneration. Instead, the synthesis of phosphatidic acid (the product of PLD2), which is a second messenger in multiple cellular pathways, appears to be the key to PLD2 induced neurodegeneration. The fact that α-synuclein is a regulator of PLD2 activity suggests that regulation of PLD2 activity could be important in the progression of PD.
Collapse
Affiliation(s)
- Hector R Mendez-Gomez
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; UF Genetics Institute and Powell Gene Therapy Center, USA.
| | - Jasbir Singh
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; UF Genetics Institute and Powell Gene Therapy Center, USA
| | - Craig Meyers
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; UF Genetics Institute and Powell Gene Therapy Center, USA
| | - Weijun Chen
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; UF Genetics Institute and Powell Gene Therapy Center, USA
| | - Oleg S Gorbatyuk
- Department of Vision Sciences, Center for Neurodegeneration and Experimental Therapy, University of Alabama at Birmingham, AL, USA
| | - Nicholas Muzyczka
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; UF Genetics Institute and Powell Gene Therapy Center, USA
| |
Collapse
|
12
|
Behera DK, Behera PM, Acharya L, Dixit A. Pharmacophore modelling, virtual screening and molecular docking studies on PLD1 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:991-1009. [PMID: 29113495 DOI: 10.1080/1062936x.2017.1393774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Lipid metabolism plays a significant role in influenza virus replication and subsequent infection. The regulatory mechanism governing lipid metabolism and viral replication is not properly understood to date, but both Phospholipase D (PLD1 and PLD2) activities are stimulated in viral infection. In vitro studies indicate that chemical inhibition of PLD1 delays viral entry and reduction of viral loads. The current study reports a three-dimensional pharmacophore model based on 35 known PLD1 inhibitors. A sub-set of 25 compounds was selected as the training set and the remaining 10 compounds were kept in the test set. One hundred and twelve pharmacophore models were generated; a six-featured pharmacophore model (AADDHR.57) with survival score (2.69) produced a statistically significant three-dimensional quantitative structure-activity relationship model with r2 = 0.97 (internal training set), r2 = 0.71 (internal test set) and Q2 = 0.64. The predictive power of the pharmacophore model was validated with an external test set (r2 = 0.73) and a systematic virtual screening work-flow was employed showing an enrichment factor of 23.68 at the top 2% of the dataset (active and decoys). Finally, the model was used for screening of the filtered PubChem database to fetch molecules which can be proposed as potential PLD1 inhibitors for blocking influenza infection.
Collapse
Affiliation(s)
- D K Behera
- a Centre for Biotechnology , Siksha O Anusandhan University , Bhubaneswar , Odisha , India
| | - P M Behera
- b Computational Biology and Bioinformatics Lab, Department of Translational Research and Technology Development , Institute of Life Sciences , Bhubaneswar , Odisha , India
| | - L Acharya
- a Centre for Biotechnology , Siksha O Anusandhan University , Bhubaneswar , Odisha , India
| | - A Dixit
- b Computational Biology and Bioinformatics Lab, Department of Translational Research and Technology Development , Institute of Life Sciences , Bhubaneswar , Odisha , India
| |
Collapse
|
13
|
Tao X, Jia N, Cheng N, Ren Y, Cao X, Liu M, Wei D, Wang FQ. Design and evaluation of a phospholipase D based drug delivery strategy of novel phosphatidyl-prodrug. Biomaterials 2017; 131:1-14. [DOI: 10.1016/j.biomaterials.2017.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/25/2022]
|
14
|
Zhou WB, Gong JS, Hou HJ, Li H, Lu ZM, Xu HY, Xu ZH, Shi JS. Mining of a phospholipase D and its application in enzymatic preparation of phosphatidylserine. Bioengineered 2017; 9:80-89. [PMID: 28509615 PMCID: PMC5972935 DOI: 10.1080/21655979.2017.1308992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Phosphatidylserine (PS) is useful as the additive in industries for memory improvement, mood enhancement and drug delivery. Conventionally, PS was extracted from soybeans, vegetable oils, egg yolk, and biomass; however, their low availability and high extraction cost were limiting factors. Phospholipase D (PLD) is a promising tool for enzymatic synthesis of PS due to its transphosphatidylation activity. In this contribution, a new and uncharacterized PLD was first obtained from GenBank database via genome mining strategy. The open reading frame consisted of 1614 bp and potentially encoded a protein of 538-amino-acid with a theoretical molecular mass of 60 kDa. The gene was successfully cloned and expressed in Escherichia coli. Its enzymatic properties were experimentally characterized. The temperature and pH optima of PLD were determined to be 60°C and 7.5, respectively. Its hydrolytic activity was improved by addition of Ca2+ at 5 mM as compared with the control. The enzyme displayed suitable transphosphatidylation activity and PS could be synthesized with L-serine and soybean lecithin as substrates under the catalysis of PLD. This PLD enzyme might be a potential candidate for industrial applications in PS production. To the best of our knowledge, this is the first report on genome mining of PLDs from GenBank database.
Collapse
Affiliation(s)
- Wen-Bin Zhou
- a School of Pharmaceutical Science , Jiangnan University , Wuxi , PR China
| | - Jin-Song Gong
- a School of Pharmaceutical Science , Jiangnan University , Wuxi , PR China
| | - Hai-Juan Hou
- a School of Pharmaceutical Science , Jiangnan University , Wuxi , PR China
| | - Heng Li
- a School of Pharmaceutical Science , Jiangnan University , Wuxi , PR China
| | - Zhen-Ming Lu
- a School of Pharmaceutical Science , Jiangnan University , Wuxi , PR China.,b National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , PR China
| | - Hong-Yu Xu
- a School of Pharmaceutical Science , Jiangnan University , Wuxi , PR China.,b National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , PR China
| | - Zheng-Hong Xu
- a School of Pharmaceutical Science , Jiangnan University , Wuxi , PR China.,b National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , PR China
| | - Jin-Song Shi
- a School of Pharmaceutical Science , Jiangnan University , Wuxi , PR China
| |
Collapse
|
15
|
Abstract
Phospholipase D (PLD) enzymes are one source of receptor-generated phosphatidic acid (PtdOH),which may subsequently be metabolized to diacylglycerol (DAG) and lysophosphatidic acid. There are other pathways that lead to PtdOH generation, but differences in pathways and in the acyl composition of the products seem to provide some specificity. Both direct and indirect inhibitors of PLD activity have been identified despite a long-held suspicion that this pathway was undruggable. The identification of raloxifene and halopemide as direct inhibitors was followed by the systematic development of isoenzyme-preferring compounds that have been used to further differentiate the functions of PLD1 and PLD2. PLD2 in host cells has been associated with viral entry processes and innate immune response pathways such that inhibition blocks efficient infection. This PLD2 pathway has been linked to autophagy via AKT kinases. As a potential target in antiretroviral therapy, PLD1 works through the CAD enzyme (which contains carbamoyl aspartate synthase, aspartate transcarbamylase and dihydro-orotase domains) to modulate pyrimidine biosynthesis. PLD activity and expression have been shown to be upregulated in several types of human cancers, in which PLD enzymes function downstream of a variety of known oncogenes. Inhibition of PtdOH production has a marked effect on tumorigenesis and malignant invasion. PLD1, PLD2 and PLD3 have each been suggested to have a role in Alzheimer disease and other neurodegenerative conditions, but a mechanism has not yet emerged to explain the roles of these proteins in central nervous system pathophysiology.
Lipid second messengers such as phosphatidic acid (PtdOH) have a role in a wide range of pathological processes, and phospholipase D (PLD) enzymes are one of the major sources of signal-activated PtdOH generation. In this Review, Brown, Thomas and Lindsley discuss the development of PLD inhibitors, with a focus on isoform-specific inhibitors, and their potential applications in the treatment of cancer, neurodegeneration and infection. Lipid second messengers have essential roles in cellular function and contribute to the molecular mechanisms that underlie inflammation, malignant transformation, invasiveness, neurodegenerative disorders, and infectious and other pathophysiological processes. The phospholipase D (PLD) isoenzymes PLD1 and PLD2 are one of the major sources of signal-activated phosphatidic acid (PtdOH) generation downstream of a variety of cell-surface receptors, including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and integrins. Recent advances in the development of isoenzyme-selective PLD inhibitors and in molecular genetics have suggested that PLD isoenzymes in mammalian cells and pathogenic organisms may be valuable targets for the treatment of several human diseases. Isoenzyme-selective inhibitors have revealed complex inter-relationships between PtdOH biosynthetic pathways and the role of PtdOH in pathophysiology. PLD enzymes were once thought to be undruggable owing to the ubiquitous nature of PtdOH in cell signalling and concerns that inhibitors would be too toxic for use in humans. However, recent promising discoveries suggest that small-molecule isoenzyme-selective inhibitors may provide novel compounds for a unique approach to the treatment of cancers, neurodegenerative disorders and other afflictions of the central nervous system, and potentially serve as broad-spectrum antiviral and antimicrobial therapeutics.
Collapse
|
16
|
Liu C, Ding F, Hao F, Yu M, Lei H, Wu X, Zhao Z, Guo H, Yin J, Wang Y, Tang H. Reprogramming of Seed Metabolism Facilitates Pre-harvest Sprouting Resistance of Wheat. Sci Rep 2016; 6:20593. [PMID: 26860057 PMCID: PMC4748292 DOI: 10.1038/srep20593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Pre-harvest sprouting (PHS) is a worldwide problem for wheat production and transgene antisense-thioredoxin-s (anti-trx-s) facilitates outstanding resistance. To understand the molecular details of PHS resistance, we analyzed the metabonomes of the transgenic and wild-type (control) wheat seeds at various stages using NMR and GC-FID/MS. 60 metabolites were dominant in these seeds including sugars, organic acids, amino acids, choline metabolites and fatty acids. At day-20 post-anthesis, only malate level in transgenic wheat differed significantly from that in controls whereas at day-30 post-anthesis, levels of amino acids and sucrose were significantly different between these two groups. For mature seeds, most metabolites in glycolysis, TCA cycle, choline metabolism, biosynthesis of proteins, nucleotides and fatty acids had significantly lower levels in transgenic seeds than in controls. After 30-days post-harvest ripening, most metabolites in transgenic seeds had higher levels than in controls including amino acids, sugars, organic acids, fatty acids, choline metabolites and NAD+. These indicated that anti-trx-s lowered overall metabolic activities of mature seeds eliminating pre-harvest sprouting potential. Post-harvest ripening reactivated the metabolic activities of transgenic seeds to restore their germination vigor. These findings provided essential molecular phenomic information for PHS resistance of anti-trx-s and a credible strategy for future developing PHS resistant crops.
Collapse
Affiliation(s)
- Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Ding
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Men Yu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,Wuhan Zhongke Metaboss Ltd, 128 Guang-Gu-Qi-Lu, Wuhan 430074, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiangyu Wu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhengxi Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxiang Guo
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
| | - Jun Yin
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Developmental Biology, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
17
|
Kim JD, Park KE, Ishida J, Kako K, Hamada J, Kani S, Takeuchi M, Namiki K, Fukui H, Fukuhara S, Hibi M, Kobayashi M, Kanaho Y, Kasuya Y, Mochizuki N, Fukamizu A. PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination. SCIENCE ADVANCES 2015; 1:e1500615. [PMID: 26665171 PMCID: PMC4672763 DOI: 10.1126/sciadv.1500615] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/21/2015] [Indexed: 06/02/2023]
Abstract
The development of vertebrate neurons requires a change in membrane phosphatidylcholine (PC) metabolism. Although PC hydrolysis is essential for enhanced axonal outgrowth mediated by phospholipase D (PLD), less is known about the determinants of PC metabolism on dendritic arborization. We show that protein arginine methyltransferase 8 (PRMT8) acts as a phospholipase that directly hydrolyzes PC, generating choline and phosphatidic acid. We found that PRMT8 knockout mice (prmt8 (-/-)) displayed abnormal motor behaviors, including hindlimb clasping and hyperactivity. Moreover, prmt8 (-/-) mice and TALEN-induced zebrafish prmt8 mutants and morphants showed abnormal phenotypes, including the development of dendritic trees in Purkinje cells and altered cerebellar structure. Choline and acetylcholine levels were significantly decreased, whereas PC levels were increased, in the cerebellum of prmt8 (-/-) mice. Our findings suggest that PRMT8 acts both as an arginine methyltransferase and as a PC-hydrolyzing PLD that is essential for proper neurological functions.
Collapse
Affiliation(s)
- Jun-Dal Kim
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | - Kyung-Eui Park
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8572, Japan
| | - Junji Ishida
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | - Koichiro Kako
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8572, Japan
| | - Juri Hamada
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | - Shuichi Kani
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Miki Takeuchi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan
| | - Kana Namiki
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Masahiko Hibi
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
- AMED-CREST, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8572, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan
| |
Collapse
|
18
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2015; 66:1033-79. [PMID: 25244928 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
19
|
Choojit S, Bornscheuer UT, Upaichit A, H-Kittikun A. Efficient phosphatidylserine synthesis by a phospholipase D fromStreptomycessp. SC734 isolated from soil-contaminated palm oil. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Saovanee Choojit
- Department of Industrial Biotechnology, Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Thailand
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry; University of Greifswald; Greifswald Germany
| | - Apichat Upaichit
- Department of Industrial Biotechnology, Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Thailand
| | - Aran H-Kittikun
- Department of Industrial Biotechnology, Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Thailand
| |
Collapse
|
20
|
Majd S, Yusko EC, Yang J, Sept D, Mayer M. A model for the interfacial kinetics of phospholipase D activity on long-chain lipids. Biophys J 2014; 105:146-53. [PMID: 23823233 DOI: 10.1016/j.bpj.2013.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 11/26/2022] Open
Abstract
The membrane-active enzyme phospholipase D (PLD) catalyzes the hydrolysis of the phosphodiester bond in phospholipids and plays a critical role in cell signaling. This catalytic reaction proceeds on lipid-water interfaces and is an example of heterogeneous catalysis in biology. Recently we showed that planar lipid bilayers, a previously unexplored model membrane for these kinetic studies, can be used for monitoring interfacial catalytic reactions under well-defined experimental conditions with chemical and electrical access to both sides of the lipid membrane. Employing an assay that relies on the conductance of the pore-forming peptide gramicidin A to monitor PLD activity, the work presented here reveals the kinetics of hydrolysis of long-chain phosphatidylcholine lipids in situ. We have developed an extension of a basic kinetic model for interfacial catalysis that includes product activation and substrate depletion. This model describes the kinetic behavior very well and reveals two kinetic parameters, the specificity constant and the interfacial quality constant. This approach results in a simple and general model to account for product accumulation in interfacial enzyme kinetics.
Collapse
Affiliation(s)
- Sheereen Majd
- Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
21
|
Continuous monitoring of phospholipid vesicle hydrolysis by phospholipase D (PLD) reveals differences in hydrolysis by PLDs from 2 Streptomyces species. Colloids Surf B Biointerfaces 2012; 94:1-6. [DOI: 10.1016/j.colsurfb.2011.11.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/21/2011] [Indexed: 11/23/2022]
|
22
|
Lee YJ, Ahn MY, Kim HS, Kwack SJ, Park KL, Yoon S, Min D. Role of phospholipase D in regulation of testicular Leydig cell hyperplasia in Sprague–Dawley rats treated with di(2-ethylhexyl) phthalate. Arch Toxicol 2010; 85:975-85. [PMID: 21079920 DOI: 10.1007/s00204-010-0618-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
|
23
|
Gomez-Cambronero J. New concepts in phospholipase D signaling in inflammation and cancer. ScientificWorldJournal 2010; 10:1356-69. [PMID: 20623096 PMCID: PMC3070604 DOI: 10.1100/tsw.2010.116] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA) and choline. PLD regulation in cells falls into two major signaling categories. One is via growth factors/mitogens, such as EGF, PDGF, insulin, and serum, and implicates tyrosine kinases; the other is via the small GTPase proteins Arf and Rho. We summarize here our lab's and other groups' contributions to those pathways and introduce several novel concepts. For the mitogen-induced signaling, new data indicate that an increase in cell transformation in PLD2-overexpressing cells is due to an increase of de novo DNA synthesis induced by PLD2, with the specific tyrosine residues involved in those functions being Y and Y. Recent research has also implicated Grb2 in tyrosine phosphorylation of PLD2 that also involves Sos and the ERK pathway. The targets of phosphorylation within the PLD2 molecule that are key to its regulation have recently been precisely mapped. They are Y, Y, and Y and the responsible kinases are, respectively, EGFR, JAK3, and Src. Y is an inhibitory site and its phosphorylation explains the low PLD2 activity that exists in low-invasive MCF-7 breast cancer cells. Advances along the small GTPase front have implicated cell migration, as PLD1 and PLD2 cause an increase in chemotaxis of leukocytes and inflammation. PA is necessary for full chemotaxis. PA enriches the localization of the atypical guanine exchange factor (GEF), DOCK2, at the leading edge of polarized neutrophils. Further, extracellular PA serves as a neutrophil chemoattractant; PA enters the cell and activates the mTOR/S6K pathway (specifically, S6K). A clear connection between PLD with the mTOR/S6K pathway has been established, in that PA binds to mTOR and also binds to S6K independently of mTOR. Lastly, there is evidence in the upstream direction of cell signaling that mTOR and S6K keep PLD2 gene expression function down-regulated in basal conditions. In summary, the involvement of PLD2 in cell signaling continues to expand geometrically. It involves gene transcription, mitogenic and cell migration effects as seen in normal growth, tumor development, and inflammation.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, OH, USA.
| |
Collapse
|
24
|
A comprehensive model that explains the regulation of phospholipase D2 activity by phosphorylation-dephosphorylation. Mol Cell Biol 2010; 30:2251-63. [PMID: 20176813 DOI: 10.1128/mcb.01239-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report here that the enzymatic activity of phospholipase D2 (PLD2) is regulated by phosphorylation-dephosphorylation. Phosphatase treatment of PLD2-overexpressing cells showed a biphasic nature of changes in activity that indicated the existence of "activator" and "inhibitory" sites. We identified three kinases capable of phosphorylating PLD2 in vitro-epidermal growth factor receptor (EGFR), JAK3, and Src (with JAK3 reported for the first time in this study)-that phosphorylate an inhibitory, an activator, and an ambivalent (one that can yield either effect) site, respectively. Mass spectrometry analyses indicated the target of each of these kinases as Y(296) for EGFR, Y(415) for JAK3, and Y(511) for Src. The extent to which each site is activated or inhibited depends on the cell type considered. In COS-7, cells that show the highest level of PLD2 activity, the Y(415) is a prominent site, and JAK3 compensates the negative modulation by EGFR on Y(296). In MCF-7, cells that show the lowest level of PLD2 activity, the converse is the case, with Y(296) unable to compensate the positive modulation by Y(415). MTLn3, with medium to low levels of lipase activity, show an intermediate pattern of regulation but closer to MCF-7 than to COS-7 cells. The negative effect of EGFR on the two cancer cell lines MTLn3 and MCF-7 is further proven by RNA silencing experiments that yield COS-7 showing lower PLD2 activity, and MTLn3 and MCF-7 cells showing an elevated activity. MCF-7 is a cancer cell line derived from a low-aggressive/invasive form of breast cancer that has relatively low levels of PLD activity. We propose that PLD2 activity is low in the breast cancer cell line MCF-7 because it is kept downregulated by tyrosyl phosphorylation of Y(296) by EGFR kinase. Thus, phosphorylation of PLD2-Y(296) could be the signal for lowering the level of PLD2 activity in transformed cells with low invasive capabilities.
Collapse
|
25
|
Garrido JL, Wheeler D, Vega LL, Friedman PA, Romero G. Role of phospholipase D in parathyroid hormone type 1 receptor signaling and trafficking. Mol Endocrinol 2009; 23:2048-59. [PMID: 19837945 DOI: 10.1210/me.2008-0436] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The role of phospholipase D (PLD) in the regulation of the traffic of the PTH type 1 receptor (PTH1R) was studied in Chinese hamster ovary cells stably transfected with a human PTH1R (CHO-R3) and in rat osteosarcoma 17/2.8 (ROS) cells. PTH(1-34) increased total PLD activity by 3-fold in CHO-R3 cells and by 2-fold in ROS cells. Overexpression of wild-type (WT) PLD1 and WT-PLD2 increased basal PLD activity in CHO-R3 but not in ROS cells. Ligand-stimulated PLD activity greatly increased in CHO-R3 cells transfected with WT-PLD1 and WT-PLD2. However, only WT-PLD2 expression increased PTH-dependent PLD activity in ROS cells. Expression of the catalytically inactive mutants R898K-PLD1 (DN-PLD1) and R758K-PLD2 (DN-PLD2) inhibited ligand-dependent PLD activity in both cell lines. PTH(1-34) induced internalization of the PTH1R with a concomitant increase in the colocalization of the receptor with PLD1 in intracellular vesicles and in a perinuclear, ADP ribosylation factor-1-positive compartment. The distribution of PLD1 and PLD2 remained unaltered after PTH treatment. Expression of DN-PLD1 had a small effect on endocytosis of the PTH1R; however, DN-PLD1 prevented accumulation of the PTH1R in the perinuclear compartment. Expression of DN-PLD2 significantly retarded ligand-induced PTH1R internalization in both cell lines. The differential effects of PLD1 and PLD2 on receptor traffic were confirmed using isoform-specific short hairpin RNA constructs. We conclude that PLD1 and PLD2 play distinct roles in regulating PTH1R traffic; PLD2 primarily regulates endocytosis, whereas PLD1 regulates receptor internalization and intracellular receptor traffic.
Collapse
Affiliation(s)
- José Luis Garrido
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
26
|
Phospholipase D function in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:970-4. [DOI: 10.1016/j.bbalip.2009.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 11/21/2022]
|
27
|
Mansfeld J, Ulbrich-Hofmann R. Modulation of phospholipase D activity in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:913-26. [DOI: 10.1016/j.bbalip.2009.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/30/2022]
|
28
|
Kanaho Y, Funakoshi Y, Hasegawa H. Phospholipase D signalling and its involvement in neurite outgrowth. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:898-904. [DOI: 10.1016/j.bbalip.2009.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 03/12/2009] [Accepted: 03/19/2009] [Indexed: 11/26/2022]
|
29
|
Molecular cloning of the phospholipase D gene from Streptomyces sp. YU100 and its expression in Escherichia coli. J Microbiol 2009; 47:116-22. [DOI: 10.1007/s12275-008-0161-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
|
30
|
Li G, Lin F, Xue HW. Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLDβ1 in seed germination. Cell Res 2007; 17:881-94. [PMID: 17876344 DOI: 10.1038/cr.2007.77] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phospholipase D (PLD) plays a critical role in plant growth and development, as well as in hormone and stress responses. PLD encoding genes constitute a large gene family that are present in higher plants. There are 12 members of the PLD family in Arabidopsis thaliana and several of them have been functionally characterized; however, the members of the PLD family in Oryza sativa remain to be fully described. Through genome-wide analysis, 17 PLD members found in different chromosomes have been identified in rice. Protein domain structural analysis reveals a novel subfamily, besides the C2-PLDs and PXPH-PLDs, that is present in rice - the SP-PLD. SP-PLD harbors a signal peptide instead of the C2 or PXPH domains at the N-terminus. Expression pattern analysis indicates that most PLD-encoding genes are differentially expressed in various tissues, or are induced by hormones or stress conditions, suggesting the involvement of PLD in multiple developmental processes. Transgenic studies have shown that the suppressed expression of rice PLD beta 1 results in reduced sensitivity to exogenous ABA during seed germination. Further analysis of the expression of ABA signaling-related genes has revealed that PLD beta 1 stimulates ABA signaling by activating SAPK, thus repressing GAmyb expression and inhibiting seed germination.
Collapse
Affiliation(s)
- Gang Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | |
Collapse
|
31
|
Ogino C, Daido H, Ohmura Y, Takada N, Itou Y, Kondo A, Fukuda H, Shimizu N. Remarkable enhancement in PLD activity from Streptoverticillium cinnamoneum by substituting serine residue into the GG/GS motif. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:671-8. [PMID: 17499030 DOI: 10.1016/j.bbapap.2007.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 04/05/2007] [Accepted: 04/06/2007] [Indexed: 11/21/2022]
Abstract
The gene that encodes phospholipase D (PLD) from Streptoverticillium cinnamoneum contains three consensus regions (Region I, II and IV as shown in Fig. 1A) that are conserved among the PLD superfamily. The glycine-glycine (GG) motif in Region I and the glycine-serine (GS) motif in Region IV are also conserved in the PLD superfamily. These (GG and GS) motifs are located 7 residues downstream from each HKD motif. In an investigation of fifteen GG/GS motif mutants, generated as fusion proteins with maltose-binding protein (MBP-PLDs), three highly active mutants were identified. Three of the mutants (G215S, G216S, and G216S-S489G) contained a serine residue in the GG motif, and exhibited approximately a 9-27-fold increased transphosphatidylation activity to DPPC compared with recombinant wild type MBP-PLD. When heat stability was compared between three mutants and the recombinant wild type, only G216S-S489G showed heat labile properties. It appears that the 489th serine residue in the GS motif also contributes to the thermal stability of the enzyme. In addition, the GG/GS motif was very close to the active center residue, including two HKD motifs, as shown by computer modeling. The findings suggest that the GG/GS motif of PLD is a key motif that affects catalytic function and enzymatic stability.
Collapse
Affiliation(s)
- Chiaki Ogino
- The Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ciervo A, Mancini F, Cassone A. Transcription, expression, localization and immunoreactivity of Chlamydophila pneumoniae Phospholipase D protein. Microb Pathog 2007; 43:96-105. [PMID: 17570631 DOI: 10.1016/j.micpath.2007.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 04/27/2007] [Indexed: 11/22/2022]
Abstract
Chlamydophila pneumoniae, a recognized aethiological agent of respiratory infection, is also suspected to play a immuno-pathogenetic role in atherosclerosis by contributing to inflammation and plaque instability. Phospholipase D (PLD) is an enzyme involved in lipid metabolism, in protein transport and signal transduction, all events which can direct or indirect impact on virulence and inflammatory response. To better understand the role of PLD in cell biology and infection by C. pneumoniae, we cloned and expressed the pld gene in Escherichia coli and generated the recombinant PLD (rCpPLD). This product was highly immunogenic in mice, and capable to efficiently detect anti-PLD antibodies in humans. As shown by real-time PCR, PLD gene was expressed in a bi-phasic pattern, with transcriptional peaks corresponding to early and late chlamydial development. Fluorescence microscopy showed that CpPLD localized mostly in the center of inclusion bodies between 8 and 48h from infection and at the periphery of inclusions at 72h. Overall, PLD appears consistently expressed during the developmental cycle of C. pneumoniae and is sensed by the host as an antigen target during infection/exposure to this microorganism. rCpPLD may be a useful tool for future studies concerning the role that this enzyme plays in the pathology of, and immune response to, C. pneumoniae.
Collapse
Affiliation(s)
- Alessandra Ciervo
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy.
| | | | | |
Collapse
|
33
|
Santiago MF, López-Aparicio P, Recio MN, Pérez-Albarsanz MA. Effect of aroclor 1248 and two pure PCB congeners on phospholipase D activity in rat renal tubular cell cultures. J Biochem Mol Toxicol 2007; 21:68-75. [PMID: 17427178 DOI: 10.1002/jbt.20160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper elucidates the effect of different polychlorinated biphenyls (PCBs) on the phospholipase D (PLD) activity in soluble and particulate fractions of rat renal proximal tubular culture cells. Treatment with Aroclor 1248 (a commercial PCB mixture) caused a marked increase in the activity of PLD in intact renal tubular cells. The PLD activity was increased by Aroclor 1248 in the particulate fraction while the enzyme activity was unaffected in the soluble fraction. This work also shows that PCB 153 (2,2',4,4',5,5'-hexachlorobiphenyl, a di-ortho-substituted nonplanar congener) can increase the activity of PLD only in the particulate fraction. The exposure of cell cultures to PCB 77 (3,3',4,4'-tetrachlorobiphenyl, a non-ortho-substituted planar congener) does not alter PLD activity. These results suggest that PCB effects are structure dependent. Therefore, in order to clarify the molecular mechanism of activation of PLD by PCBs, the contents of immunoreactive PLD were examined by immunoblot analysis. Renal tubular cells expressed a PLD protein of 120 kDa corresponding with the PLD1 mammalian isoform in both the particulate and the soluble fraction. Aroclor 1248, PCB 153, and PCB 77 do not induce changes in the levels of PLD protein. These data indicate that PCBs, particularly nonplanar congeners, increase PLD activity. Moreover, these changes could not be demonstrated in the enzyme content in rat renal tubular cell cultures.
Collapse
Affiliation(s)
- Mercedes Fernández Santiago
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Li G, Xue HW. Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. THE PLANT CELL 2007; 19:281-95. [PMID: 17259265 PMCID: PMC1820954 DOI: 10.1105/tpc.106.041426] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phospholipase D (PLD) and its product, phosphatidic acid (PA), play key roles in cellular processes, including stress and hormonal responses, vesicle trafficking, and cytoskeletal rearrangements. We isolated and functionally characterized Arabidopsis thaliana PLDzeta2, which is expressed in various tissues and enhanced by auxin. A PLDzeta2-defective mutant, pldzeta2, and transgenic plants deficient in PLDzeta2 were less sensitive to auxin, had reduced root gravitropism, and suppressed auxin-dependent hypocotyl elongation at 29 degrees C, whereas transgenic seedlings overexpressing PLDzeta2 showed opposite phenotypes, suggesting that PLDzeta2 positively mediates auxin responses. Studies on the expression of auxin-responsive genes and observation of the beta-glucuronidase (GUS) expression in crosses between pldzeta2 and lines containing DR5-GUS indicated that PLDzeta2, or PA, stimulated auxin responses. Observations of the membrane-selective dye FM4-64 showed suppressed vesicle trafficking under PLDzeta2 deficiency or by treatment with 1-butanol, a PLD-specific inhibitor. By contrast, vesicle trafficking was enhanced by PA or PLDzeta2 overexpression. Analyses of crosses between pldzeta2 and lines containing PIN-FORMED2 (PIN2)-enhanced green fluorescent protein showed that PLDzeta2 deficiency had no effect on the localization of PIN2 but blocked the inhibition of brefeldin A on PIN2 cycling. These results suggest that PLDzeta2 and PA are required for the normal cycling of PIN2-containing vesicles as well as for function in auxin transport and distribution, and hence auxin responses.
Collapse
Affiliation(s)
- Gang Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | |
Collapse
|
35
|
Yamada Y, Banno Y, Yoshida H, Kikuchi R, Akao Y, Murate T, Nozawa Y. Catalytic inactivation of human phospholipase D2 by a naturally occurring Gly901Asp mutation. Arch Med Res 2006; 37:696-9. [PMID: 16824927 DOI: 10.1016/j.arcmed.2006.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/04/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND We previously showed that the 1814C-->T (Thr577Ile) polymorphism of the human phospholipase D2 (PLD2) gene is associated with the prevalence of colorectal cancer, with the T allele representing a risk factor for this condition. However, we failed to detect a difference in PLD activity of cell lysates or membrane fractions between cells transfected with cDNAs encoding the Thr577 or Ile577 variants of PLD2. In the present study, we have examined the possible functional relevance of other naturally occurring polymorphisms (or mutations) of the human PLD2 gene that result in amino acid substitutions. METHODS Human embryonic kidney cells were transfected with expression vectors for each PLD2 variant and assayed for enzyme activity in vitro and in vivo. RESULTS AND CONCLUSIONS The G-->A (Gly901Asp) mutation of the human PLD2 gene was found to result in catalytic inactivation of the encoded protein.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lehman N, Di Fulvio M, McCray N, Campos I, Tabatabaian F, Gomez-Cambronero J. Phagocyte cell migration is mediated by phospholipases PLD1 and PLD2. Blood 2006; 108:3564-72. [PMID: 16873675 PMCID: PMC1895436 DOI: 10.1182/blood-2006-02-005959] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have investigated whether the signaling protein phospholipase D is implicated in leukocyte cell motility. Treating differentiated HL-60 cells with small interfering RNAs (siRNAs), to deplete endogenous expression of the PLD1 isoform, led to an abolishment of basal chemokinesis that could not be rescued with chemoattractants ENA-78, FMLP, and IL-8. Transient overexpression of PLD1 increased both chemokinesis and chemotaxis toward IL-8 and FMLP but not toward ENA-78. Chemokinesis was not mediated by the enzymatic activity of PLD1, but the chemotactic response was, because a lipase-inactive mutant (PLD1-K830R) negated all chemokine-induced potentiating actions and because IL-8 and FMLP increased activity in vitro. Gene expression silencing of the other mammalian isoform, PLD2, also led to cell migration arrest, whereas ENA-78 selectively increased endogenous PLD2 activity and chemotaxis of HL-60 cells overexpressing a myc-pcDNA-PLD2 construct. Thus, PLD1 is differentially activated by CXCR-1, whereas CXCR-2 (and possibly CXCR-1) mediates PLD2 activation. Finally, immunofluorescence microscopy showed that both isoforms were associated with cell polarity and directionality concomitantly with adhesion and F-actin polymerization in response to IL-8. These data represent the first demonstration of the involvement of PLD and its enzymatic activity toward chemokines in the key physiologic process of leukocyte migration.
Collapse
Affiliation(s)
- Nicholas Lehman
- Department of Cell Biology and Physiology, Wright State University School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ferguson CG, Bigman CS, Richardson RD, van Meeteren LA, Moolenaar WH, Prestwich GD. Fluorogenic phospholipid substrate to detect lysophospholipase D/autotaxin activity. Org Lett 2006; 8:2023-6. [PMID: 16671772 PMCID: PMC2528860 DOI: 10.1021/ol060414i] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[reaction: see text] Lysophospholipase D (lysoPLD), also known as autotaxin (ATX), is an important source of the potent mitogen lysophosphatidic acid (LPA). Two fluorogenic substrate analogues for lysoPLD were synthesized in nine steps from (S)-PMB-glycerol. The substrates (FS-2 and FS-3) show significant increases in fluorescence when treated with recombinant ATX and have potential applications in screening for this emerging drug target.
Collapse
|
38
|
Nelson DE, Crane DD, Taylor LD, Dorward DW, Goheen MM, Caldwell HD. Inhibition of chlamydiae by primary alcohols correlates with the strain-specific complement of plasticity zone phospholipase D genes. Infect Immun 2006; 74:73-80. [PMID: 16368959 PMCID: PMC1346656 DOI: 10.1128/iai.74.1.73-80.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Chlamydia are obligate intracellular pathogens that have a unique biphasic developmental cycle and interactions with host cells. Many genes that dictate host infection tropism and, putatively, pathogenic manifestations of disease are clustered in a hypervariable region of the genome termed the plasticity zone (PZ). Comparative genomics studies have determined that an uncharacterized family of PZ genes encoding orthologs of eukaryotic and prokaryotic members of the phospholipase D (PLD) enzyme family varies among chlamydiae. Here, we show that the PZ PLD (pzPLD) of Chlamydia trachomatis are transcribed during both normal and persistent infection and that the corresponding PLD proteins are predominantly localized in reticulate bodies on the inner leaflet of the inclusion membrane. Further, we show that strains of chlamydiae encoding the pzPLD, but not a strain lacking these genes, are inhibited by primary alcohols, potent PLD inhibitors, during growth in HeLa 229 cells. This inhibitory effect is amplified approximately 5,000-fold during recovery from persistent infection. These findings suggest that the chlamydial pzPLD may be important, strain-specific, pathogenesis factors in vivo.
Collapse
Affiliation(s)
- David E Nelson
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | | | | | | | |
Collapse
|
39
|
Interthal H, Chen HJ, Champoux JJ. Human Tdp1 cleaves a broad spectrum of substrates, including phosphoamide linkages. J Biol Chem 2005; 280:36518-28. [PMID: 16141202 PMCID: PMC1351008 DOI: 10.1074/jbc.m508898200] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human tyrosyl-DNA phosphodiesterase (Tdp1) hydrolyzes the phosphodiester bond between a DNA 3' end and a tyrosyl moiety. In eukaryotic cells, this type of linkage is found in stalled topoisomerase I-DNA covalent complexes, and Tdp1 has been implicated in the repair of such complexes in vivo. We confirm here that the Tdp1 catalytic cycle involves a covalent reaction intermediate in which a histidine residue is connected to a DNA 3'-phosphate through a phosphoamide linkage. Most surprisingly, this linkage can be hydrolyzed by Tdp1, and unlike a topoisomerase I-DNA complex, which requires modification to be an efficient substrate for Tdp1, the native form of Tdp1 can be removed from the DNA. The spinocerebellar ataxia with axonal neuropathy neurodegenerative disease is caused by the H493R mutant form of Tdp1, which shows reduced enzymatic activity and accumulates the Tdp1-DNA covalent intermediate. The ability of wild type Tdp1 to remove the stalled mutant protein from the DNA likely explains the recessive nature of spinocerebellar ataxia with axonal neuropathy. In addition to its activity on phosphotyrosine and phosphohistidine substrates, Tdp1 also possesses a limited DNA and RNA 3'-exonuclease activity in which a single nucleoside is removed from the 3'-hydroxyl end of the substrate. Furthermore, Tdp1 also removes a 3' abasic site and an artificial 3'-biotin adduct from the DNA. In combination with earlier data showing that Tdp1 can use 3'-phosphoglycolate as a substrate, these data suggest that Tdp1 may function to remove a variety of 3' adducts from DNA during DNA repair.
Collapse
Affiliation(s)
- Heidrun Interthal
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195-7242, USA
| | | | | |
Collapse
|
40
|
Horn J, Lopez I, Miller M, Gomez-Cambronero J. The uncovering of a novel regulatory mechanism for PLD2: formation of a ternary complex with protein tyrosine phosphatase PTP1B and growth factor receptor-bound protein GRB2. Biochem Biophys Res Commun 2005; 332:58-67. [PMID: 15896299 PMCID: PMC3073396 DOI: 10.1016/j.bbrc.2005.04.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 11/18/2022]
Abstract
The regulation of PLD2 activation is poorly understood at present. Transient transfection of COS-7 with a mycPLD2 construct results in elevated levels of PLD2 enzymatic activity and tyrosyl phosphorylation. To investigate whether this phosphorylation affects PLD2 enzymatic activity, anti-myc immunoprecipitates were treated with recombinant protein tyrosine phosphatase PTP1B. Surprisingly, lipase activity and PY levels both increased over a range of PTP1B concentrations. These increases occurred in parallel to a measurable PTP1B-associated phosphatase activity. Inhibitor studies demonstrated that an EGF-receptor type kinase is involved in phosphorylation. In a COS-7 cell line created in the laboratory that stably expressed myc-PLD2, PTP1B induced a robust (>6-fold) augmentation of myc-PLD2 phosphotyrosine content. The addition of growth factor receptor-bound protein 2 (Grb2) to cell extracts also elevated PY levels of myc-PLD (>10-fold). Systematic co-immunoprecipitation-immunoblotting experiments pointed at a physical association between PLD2, Grb2, and PTP1B in both physiological conditions and in overexpressed cells. This is the first report of a demonstration of the mammalian isoform PLD2 existing in a ternary complex with a protein tyrosine phosphatase, PTP1b, and the docking protein Grb2 which greatly enhances tyrosyl phosphorylation of the lipase.
Collapse
Affiliation(s)
- Jeff Horn
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, Ohio 45435
| | - Isabel Lopez
- Department of Pharmacology, The University of Illinois at Chicago, Illinois 60612
| | - Mill Miller
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435
| | - Julian Gomez-Cambronero
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, Ohio 45435
- Corresponding author: Julian Gomez-Cambronero, Ph.D., Department of Physiology & Biophysics, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, Phone: (937) 775-3601, Fax: (937) 775-3391,
| |
Collapse
|
41
|
Di Fulvio M, Gomez-Cambronero J. Phospholipase D (PLD) gene expression in human neutrophils and HL-60 differentiation. J Leukoc Biol 2005; 77:999-1007. [PMID: 15774548 DOI: 10.1189/jlb.1104684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human neutrophils exhibit a regulated phospholipase D (PLD) activity that can be measured biochemically in vitro. However, the precise expression pattern of PLD isoforms and their specific biological role(s) are not well understood. Neutrophil mRNA is intrinsically difficult to isolate as a result of the extremely high content of lytic enzymes in the cell's lysosomal granules. Reverse transcription coupled to polymerase chain reaction indicated that pure populations of human neutrophils had the CD16b(+)/CD115(-)/CD20(-)/CD3zeta(-)/interleukin-5 receptor alpha(-) phenotype. These cells expressed the following splice variants of the PLD1 isoform: PLD1a, PLD1b, PLD1a2, and PLD1b2. As for the PLD2 isoform, neutrophils expressed the PLD2a but not the PLD2b mRNA variant. The relative amount of PLD1/PLD2 transcripts exists in an approximate 4:1 ratio. The expression of PLD isoforms varies during granulocytic differentiation, as demonstrated in the promyelocytic leukemia HL-60 cell line. Further, the pattern of mRNA expression is dependent on the differentiation-inducing agent, 1.25% dimethyl sulfoxide causes a dramatic increase in PLD2a and PLD1b transcripts, and 300 nM all-trans-retinoic acid induced PLD1a expression. These results demonstrate for the first time that human neutrophils express five PLD transcripts and that the PLD genes undergo qualitative changes in transcription regulation during granulocytic differentiation.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Department of Physiology and Biophysics, Wright State University, Dayton, OH 45435, USA
| | | |
Collapse
|
42
|
Aikens CL, Laederach A, Reilly PJ. Visualizing complexes of phospholipids with Streptomyces phospholipase D by automated docking. Proteins 2005; 57:27-35. [PMID: 15326592 DOI: 10.1002/prot.20180] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The automated docking program AutoDock was used to dock nine phosphatidic acids (PAs), six phosphatidylcholines, five phosphatidylethanolamines, four phosphatidylglycerols, one phosphatidylinositol and two phosphatidylserines, which have two identical saturated fatty acid residues with an even numbers of carbon atoms, onto the active site of Streptomyces sp. PMF phospholipase D (PLD). Two PAs with one double bond on the fatty acid chain linked to the C2 of the glycerol residue were also docked. In general, binding energies become progressively more negative as fatty acid residues become longer. When these residues are of sufficient length, one is coiled against a hydrophobic cliff in a well that also holds the glycerol and phosphate residues and the head group, while the other generally is bound by a hydrophobic surface outside the well. Phosphatidylcholines have the only head group that is firmly bound by the active site, giving a possible structural explanation for the low selectivity of Streptomyces PLD for other phospholipid substrates.
Collapse
Affiliation(s)
- Christopher L Aikens
- Department of Chemical Engineering, Iowa State University, Ames, Iowa 50011-2230, USA
| | | | | |
Collapse
|
43
|
Zambonelli C, Roberts MF. Non-HKD Phospholipase D Enzymes: New Players in Phosphatidic Acid Signaling? ACTA ACUST UNITED AC 2005; 79:133-81. [PMID: 16096028 DOI: 10.1016/s0079-6603(04)79003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Carlo Zambonelli
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|
44
|
Abstract
Phospholipase D catalyses the hydrolysis of the phosphodiester bond of glycerophospholipids to generate phosphatidic acid and a free headgroup. Phospholipase D activities have been detected in simple to complex organisms from viruses and bacteria to yeast, plants, and mammals. Although enzymes with broader selectivity are found in some of the lower organisms, the plant, yeast, and mammalian enzymes are selective for phosphatidylcholine. The two mammalian phospholipase D isoforms are regulated by protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families. Mammalian and yeast phospholipases D are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. This review discusses the identification, characterization, structure, and regulation of phospholipase D. Genetic and pharmacological approaches implicate phospholipase D in a diverse range of cellular processes that include receptor signaling, control of intracellular membrane transport, and reorganization of the actin cytoskeleton. Most ideas about phospholipase D function consider that the phosphatidic acid product is an intracellular lipid messenger. Candidate targets for phospholipase-D-generated phosphatidic acid include phosphatidylinositol 4-phosphate 5-kinases and the raf protein kinase. Phosphatidic acid can also be converted to two other lipid mediators, diacylglycerol and lyso phosphatidic acid. Coordinated activation of these phospholipase-D-dependent pathways likely accounts for the pleitropic roles for these enzymes in many aspects of cell regulation.
Collapse
Affiliation(s)
- Mark McDermott
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7090, USA
| | | | | |
Collapse
|
45
|
Leiros I, McSweeney S, Hough E. The reaction mechanism of phospholipase D from Streptomyces sp. strain PMF. Snapshots along the reaction pathway reveal a pentacoordinate reaction intermediate and an unexpected final product. J Mol Biol 2004; 339:805-20. [PMID: 15165852 DOI: 10.1016/j.jmb.2004.04.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 03/25/2004] [Accepted: 04/06/2004] [Indexed: 11/27/2022]
Abstract
Almost all enzyme-catalysed phosphohydrolytic or phosphoryl transfer reactions proceed through a five-coordinated phosphorus transition state. This is also true for the phospholipase D superfamily of enzymes, where the active site usually is made up of two identical sequence repeats of an HKD motif, positioned around an approximate 2-fold axis, where the histidine and lysine residues are essential for catalysis. An almost complete reaction pathway has been elucidated by a series of experiments where crystals of phospholipase D from Streptomyces sp. strain PMF (PLD(PMF)) were soaked for different times with (i) a soluble poor, short-chained phospholipid substrate and (ii) with a product. The various crystal structures were determined to a resolution of 1.35-1.75 A for the different time-steps. Both substrate and product-structures were determined in order to identify the different reaction states and to examine if the reaction actually terminated on formation of phosphatidic acid (the true product of phospholipase D action) or could proceed even further. The results presented support the theory that the phospholipase D superfamily shares a common reaction mechanism, although different family members have very different substrate preferences and perform different catalytic reactions. Results also show that the reaction proceeds via a phosphohistidine intermediate and provide unambiguous identification of a catalytic water molecule, ideally positioned for apical attack on the phosphorus and consistent with an associative in-line phosphoryl transfer reaction. In one of the experiments an apparent five-coordinate phosphorus transition state is observed.
Collapse
Affiliation(s)
- Ingar Leiros
- Department of Chemistry, Faculty of Science, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|
46
|
Zhao H, Hao WD, Xu HE, Shang LQ, Lu YY. Gene expression profiles of hepatocytes treated with La (NO 3) 3 of rare earth in rats. World J Gastroenterol 2004; 10:1625-9. [PMID: 15162537 PMCID: PMC4572766 DOI: 10.3748/wjg.v10.i11.1625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To compare the gene expression between La (NO3) 3-exposed and control rats in vivo.
METHODS: Rats were fed La (NO3) 3 once daily at a dose of 20 mg/kg for one month by gavage. Gene expression of hepatocytes was detected using mRNA differential display (DD) technique and cDNA microarray and compared between treated and control groups.
RESULTS: Six differentially expressed sequence tags were cloned by DD, of which five were up regulated and one was down regulated in treated rats. Two sequences were determined. One band was novel. The other shared 100% sequence homology with AU080263 Sugano mouse brain mncb Mus musculus cDNA clone MNCb-5435 5’. With DNA microarray, 136 differentially expressed genes were identified including 131 over-expressed genes and 5 under-expressed genes. Most of these differentially expressed genes were cell signal and transmission genes, genes associated with metabolism, protein translation and synthesis.
CONCLUSION: La (NO3) 3 could change the expression levels of some kinds of genes. Further analysis of the differentially expressed genes would be helpful for understanding the wide biological effect spectrum of rare earth elements.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Toxicology, Peking University Health Science Center, Beijing 100083, China
| | | | | | | | | |
Collapse
|
47
|
Abstract
Lipid signaling by phosphoinositides (PIP(n)s) involves an array of proteins with lipid recognition, kinase, phosphatase, and phospholipase functions. Understanding PIP(n) pathway signaling requires identification and characterization of PIP(n)-interacting proteins. Moreover, spatiotemporal localization and physiological function of PIP(n)-protein complexes must be elucidated in cellular and organismal contexts. For protein discovery to functional elucidation, reporter-linked phosphoinositides or tethered PIP(n)s have been essential. The phosphoinositide 3-kinase (PI 3-K) signaling pathway has recently emerged as an important source of potential "druggable" therapeutic targets in human pathophysiology in both academic and pharmaceutical environments. This review summarizes the chemistry of PIP(n) affinity probes and their use in identifying macromolecular targets. The process of target validation will be described, i.e., the use of tethered PIP(n)s in determining PIP(n) selectivity in vitro and in establishing the function of PIP(n)-protein complexes in living cells.
Collapse
Affiliation(s)
- Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108, USA.
| |
Collapse
|
48
|
Lim HK, Choi YA, Park W, Lee T, Ryu SH, Kim SY, Kim JR, Kim JH, Baek SH. Phosphatidic acid regulates systemic inflammatory responses by modulating the Akt-mammalian target of rapamycin-p70 S6 kinase 1 pathway. J Biol Chem 2003; 278:45117-27. [PMID: 12960176 DOI: 10.1074/jbc.m303789200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages are pivotal effector cells in the innate immune system. When microbial products bind to pathogen recognition receptors, macrophages are activated and release a broad array of mediators, such as cytokines, that orchestrate the inflammatory responses of the host. Phosphatidic acid (PA) has been implicated as an important metabolite of phospholipid biosynthesis and in membrane remodeling and has been further suggested to be a crucial second messenger in various cellular signaling events. Here we show that PA is an essential regulator of inflammatory response. Deleterious effects of PA are associated with the secretion of proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and the production of nitric oxide, prostaglandin E2, which are predominantly released by macrophage Raw264.7 cells. Furthermore, the administration of PA to mice increased the serum cytokine level. Moreover, direct or lipopolysaccharide-induced PA accumulation by macrophages led to the Akt-dependent activation of the mammalian target of rapamycin-p70 S6 kinase 1, a process required for the induction of inflammatory mediators. These findings demonstrate the importance of the role of PA in systemic inflammatory responses, and provide a potential usefulness as specific targets for the development of therapies.
Collapse
Affiliation(s)
- Hyung-Kyu Lim
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ogino C, Kuroda S, Tokuyama S, Kondo A, Shimizu N, Tanizawa K, Fukuda H. Phospholipase D from Streptoverticillium cinnamoneum: protein engineering and application for phospholipid production. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(03)00077-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Davies DR, Interthal H, Champoux JJ, Hol WGJ. Crystal structure of a transition state mimic for Tdp1 assembled from vanadate, DNA, and a topoisomerase I-derived peptide. CHEMISTRY & BIOLOGY 2003; 10:139-47. [PMID: 12618186 DOI: 10.1016/s1074-5521(03)00021-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tyrosyl-DNA phosphodiesterase (Tdp1) is a member of the phospholipase D superfamily and acts as a DNA repair enzyme that removes stalled topoisomerase I- DNA complexes by hydrolyzing the bond between a tyrosine side chain and a DNA 3' phosphate. Despite the complexity of the substrate of this phosphodiesterase, vanadate succeeded in linking human Tdp1, a tyrosine-containing peptide, and a single-stranded DNA oligonucleotide into a quaternary complex that mimics the transition state for the first step of the catalytic reaction. The conformation of the bound substrate mimic gives compelling evidence that the topoisomerase I-DNA complex must undergo extensive modification prior to cleavage by Tdp1. The structure also illustrates that the use of vanadate as the central moiety in high-order complexes has the potential to be a general method for capturing protein-substrate interactions for phosphoryl transfer enzymes, even when the substrates are large, complicated, and unusual.
Collapse
Affiliation(s)
- Douglas R Davies
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|