1
|
Sennikov S, Volynets M, Alrhmoun S, Perik-Zavodskii R, Perik-Zavodskaia O, Fisher M, Lopatnikova J, Shevchenko J, Nazarov K, Philippova J, Alsalloum A, Kurilin V, Silkov A. Modified Dendritic cell-based T-cell expansion protocol and single-cell multi-omics allow for the selection of the most expanded and in vitro-effective clonotype via profiling of thousands of MAGE-A3-specific T-cells. Front Immunol 2024; 15:1470130. [PMID: 39450161 PMCID: PMC11499154 DOI: 10.3389/fimmu.2024.1470130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Adoptive cell therapy using TCR-engineered T-cells is one of the most effective strategies against tumor cells. The TCR T-cell approach has been well tested against a variety of blood neoplasms but is yet to be deeply tested against solid tumors. Among solid tumors, cancer-testis antigens are the most prominent targets for tumor-specific therapy, as they are usually found on cells that lie behind blood-tissue barriers. Methods We have employed a novel efficient protocol for MAGE-A3-specific T-cell clonal expansion, performed single-cell multi-omic analysis of the expanded T-cells via BD Rhapsody, engineered a selected T-cell receptor into a lentiviral construct, and tested it in an in vitro LDH-cytotoxicity test. Results and discussion We have observed a 191-fold increase in the MAGE-A3-specific T-cell abundance, obtained a dominant T-cell receptor via single-cell multi-omic BD Rhapsody data analysis in the TCRscape bioinformatics tool, and observed potent cytotoxicity of the dominant-clonotype transduced TCR T-cells against a MAGE-A3-positive tumor. We have demonstrated the efficiency of our T-cell enrichment protocol in obtaining potent anti-tumor T-cells and their T-cell receptors, especially when paired with the modern single-cell analysis methods.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Humans
- Neoplasm Proteins/immunology
- Neoplasm Proteins/genetics
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Single-Cell Analysis/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Line, Tumor
- Clone Cells
- Cell Proliferation
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Cytotoxicity, Immunologic
- Multiomics
Collapse
Affiliation(s)
- Sergey Sennikov
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Giommetti A, Papanikolaou E. Advancements in Hematopoietic Stem Cell Gene Therapy: A Journey of Progress for Viral Transduction. Cells 2024; 13:1039. [PMID: 38920667 PMCID: PMC11201829 DOI: 10.3390/cells13121039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Hematopoietic stem cell (HSC) transduction has undergone remarkable advancements in recent years, revolutionizing the landscape of gene therapy specifically for inherited hematologic disorders. The evolution of viral vector-based transduction technologies, including retroviral and lentiviral vectors, has significantly enhanced the efficiency and specificity of gene delivery to HSCs. Additionally, the emergence of small molecules acting as transduction enhancers has addressed critical barriers in HSC transduction, unlocking new possibilities for therapeutic intervention. Furthermore, the advent of gene editing technologies, notably CRISPR-Cas9, has empowered precise genome modification in HSCs, paving the way for targeted gene correction. These striking progresses have led to the clinical approval of medicinal products based on engineered HSCs with impressive therapeutic benefits for patients. This review provides a comprehensive overview of the collective progress in HSC transduction via viral vectors for gene therapy with a specific focus on transduction enhancers, highlighting the latest key developments, challenges, and future directions towards personalized and curative treatments.
Collapse
Affiliation(s)
- Aurora Giommetti
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany;
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eleni Papanikolaou
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany;
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
3
|
Kitawi R, Ledger S, Kelleher AD, Ahlenstiel CL. Advances in HIV Gene Therapy. Int J Mol Sci 2024; 25:2771. [PMID: 38474018 DOI: 10.3390/ijms25052771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Early gene therapy studies held great promise for the cure of heritable diseases, but the occurrence of various genotoxic events led to a pause in clinical trials and a more guarded approach to progress. Recent advances in genetic engineering technologies have reignited interest, leading to the approval of the first gene therapy product targeting genetic mutations in 2017. Gene therapy (GT) can be delivered either in vivo or ex vivo. An ex vivo approach to gene therapy is advantageous, as it allows for the characterization of the gene-modified cells and the selection of desired properties before patient administration. Autologous cells can also be used during this process which eliminates the possibility of immune rejection. This review highlights the various stages of ex vivo gene therapy, current research developments that have increased the efficiency and safety of this process, and a comprehensive summary of Human Immunodeficiency Virus (HIV) gene therapy studies, the majority of which have employed the ex vivo approach.
Collapse
Affiliation(s)
- Rose Kitawi
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Anthony D Kelleher
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
- St. Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- UNSW RNA Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Chantelle L Ahlenstiel
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
4
|
Ayala Ceja M, Khericha M, Harris CM, Puig-Saus C, Chen YY. CAR-T cell manufacturing: Major process parameters and next-generation strategies. J Exp Med 2024; 221:e20230903. [PMID: 38226974 PMCID: PMC10791545 DOI: 10.1084/jem.20230903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have demonstrated strong curative potential and become a critical component in the array of B-cell malignancy treatments. Successful deployment of CAR-T cell therapies to treat hematologic and solid cancers, as well as other indications such as autoimmune diseases, is dependent on effective CAR-T cell manufacturing that impacts not only product safety and efficacy but also overall accessibility to patients in need. In this review, we discuss the major process parameters of autologous CAR-T cell manufacturing, as well as regulatory considerations and ongoing developments that will enable the next generation of CAR-T cell therapies.
Collapse
Affiliation(s)
- Melanie Ayala Ceja
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Mobina Khericha
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Caitlin M. Harris
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Cristina Puig-Saus
- Department of Medicine, University of California−Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California−Los Angeles, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at University of California−Los Angeles, Los Angeles, CA, USA
| | - Yvonne Y. Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California−Los Angeles, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at University of California−Los Angeles, Los Angeles, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California−Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Streltsova MA, Palamarchuk AI, Vavilova JD, Ustiuzhanina MO, Boyko AA, Velichinskii RA, Alekseeva NA, Grechikhina MV, Shustova OA, Sapozhnikov AM, Kovalenko EI. Methodological Approaches for Increasing the Retroviral Transduction Efficiency of Primary NK Cells. Curr Pharm Des 2024; 30:2947-2958. [PMID: 39136515 DOI: 10.2174/0113816128314633240724060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/13/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The growing attention to NK cells for cancer cell therapy is associated with the need to establish highly efficient protocols for their genetic modification, particularly by retroviral transduction. OBJECTIVE In this work, we have optimized several stages of the retroviral-based modification process, and determined the distribution of the amino acid transporter ASCT2 between NK cell subsets. METHODS Retroviral particles were produced using the Phoenix Ampho cell line transfected with the calcium phosphate method . We used RD114-based retroviral transduction for lymphocyte cell lines and primary NK cells. RESULTS We have determined the optimal time to collect the RD114-pseudotyped viral supernatants resulting in the titer of viral particles required for efficient NK cell modification to be between 48 and 72 hours. Retroviral modification by retronectin-based method did not alter NK cell functional activity and cell survival. We identified differences in the Multiplicity of Infection (MOI) among cell lines that were partially associated with the ASCT2 surface expression. Cells with higher ASCT2 levels were more susceptible to transduction with RD114-pseudotyped viral particles. Higher ASCT2 expression levels were revealed in activated CD57+ and KIR2DL2DL3+ NK cells compared to their negative counterparts. CONCLUSION Our findings provide a more nuanced understanding of NK cell transduction, offering valuable insights for improving therapeutic applications involving NK cell modification.
Collapse
Affiliation(s)
- Maria A Streltsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Anastasia I Palamarchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Julia D Vavilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Maria O Ustiuzhanina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Anna A Boyko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Rodion A Velichinskii
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Nadezhda A Alekseeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Maria V Grechikhina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Olga A Shustova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Alexander M Sapozhnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Elena I Kovalenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| |
Collapse
|
6
|
Malach P, Kay C, Tinworth C, Patel F, Joosse B, Wade J, Rosa do Carmo M, Donovan B, Brugman M, Montiel-Equihua C, Francis N. Identification of a small molecule for enhancing lentiviral transduction of T cells. Mol Ther Methods Clin Dev 2023; 31:101113. [PMID: 37790244 PMCID: PMC10544093 DOI: 10.1016/j.omtm.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Genetic modification of cells using viral vectors has shown huge therapeutic benefit in multiple diseases. However, inefficient transduction contributes to the high cost of these therapies. Several transduction-enhancing small molecules have previously been identified; however, some may be toxic to the cells or patient, otherwise alter cellular characteristics, or further increase manufacturing complexity. In this study, we aimed to identify molecules capable of enhancing lentiviral transduction of T cells from available small-molecule libraries. We conducted a high-throughput flow-cytometry-based screen of 27,892 compounds, which subsequently was narrowed down to six transduction-enhancing small molecules for further testing with two therapeutic lentiviral vectors used to manufacture GSK's clinical T cell therapy products. We demonstrate enhanced transduction without a negative impact on other product attributes. Furthermore, we present results of transcriptomic analysis, suggesting alteration of ribosome biogenesis, resulting in reduced interferon response, as a potential mechanism of action for the transduction-enhancing activity of the lead compound. Finally, we demonstrate the ability of the lead transduction enhancer to produce a comparable T cell product using a 3-fold reduction in vector volume in our clinical manufacturing process, resulting in a predicted 15% reduction in the overall cost of goods.
Collapse
Affiliation(s)
- Paulina Malach
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Charlotte Kay
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Chris Tinworth
- Medicinal Chemistry, Medicine Design, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Florence Patel
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Bryan Joosse
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Jennifer Wade
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Marlene Rosa do Carmo
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Brian Donovan
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Martijn Brugman
- Analytical Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Claudia Montiel-Equihua
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Natalie Francis
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| |
Collapse
|
7
|
García-Murria MJ, Gadea-Salom L, Moreno S, Rius-Salvador M, Zaragoza O, Brun A, Mingarro I, Martínez-Gil L. Identification of small molecules capable of enhancing viral membrane fusion. Virol J 2023; 20:99. [PMID: 37226231 DOI: 10.1186/s12985-023-02068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Several approaches have been developed to analyze the entry of highly pathogenic viruses. In this study, we report the implementation of a Bimolecular Multicellular Complementation (BiMuC) assay to safely and efficiently monitor SARS-CoV-2 S-mediated membrane fusion without the need for microscopy-based equipment. Using BiMuC, we screened a library of approved drugs and identified compounds that enhance S protein-mediated cell-cell membrane fusion. Among them, ethynylestradiol promotes the growth of SARS-CoV-2 and Influenza A virus in vitro. Our findings demonstrate the potential of BiMuC for identifying small molecules that modulate the life cycle of enveloped viruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Mª Jesús García-Murria
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Laura Gadea-Salom
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Marina Rius-Salvador
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC, Health Institute Carlos III, CB21/13/00105), Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain
| | - Luis Martínez-Gil
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, E-46100, Spain.
| |
Collapse
|
8
|
Amadeo F, Hanson V, Murray P, Taylor A. DEAE-Dextran Enhances the Lentiviral Transduction of Primary Human Mesenchymal Stromal Cells from All Major Tissue Sources Without Affecting Their Proliferation and Phenotype. Mol Biotechnol 2023; 65:544-555. [PMID: 35999479 PMCID: PMC9974715 DOI: 10.1007/s12033-022-00549-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Genetic engineering of mesenchymal stromal cells (MSCs) is a tool widely used to explore MSC properties in vitro and in vivo. Lentiviral infection with the use of polycations as an adjuvant is a method that is commonly used to generate stably transduced cells. However, it is known that some polycations can negatively affect primary MSCs and to date, no study has explored the effect of different polycations on the transduction efficiency and properties of all main types of MSCs, namely those derived from umbilical cord, bone marrow and adipose tissue. Here we explore a range of polycations, using transduction protocols with and without spinoculation, to produce stably transduced MSCs from these three tissue sources. We identified that an overnight incubation with diethylaminoethyl-dextran (DEAE-Dextran) is the protocol associated with the best transduction efficiency without compromising the viability of the cells, and which worked consistently with lentiviral particles encoding for different transgenes. Transduced and sorted MSC populations revealed no significant changes in proliferation, morphology and expression of MSC markers compared to naïve MSCs. Following this study, we conclude that DEAE-Dextran is a polycation that can be successfully used to enhance the transduction of MSCs from all major tissue sources.
Collapse
Affiliation(s)
- Francesco Amadeo
- grid.436365.10000 0000 8685 6563Cellular Therapies Laboratory, NHS Blood and Transplant, Liverpool, UK ,grid.10025.360000 0004 1936 8470Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
| | - Vivien Hanson
- grid.436365.10000 0000 8685 6563Cellular Therapies Laboratory, NHS Blood and Transplant, Liverpool, UK
| | - Patricia Murray
- grid.10025.360000 0004 1936 8470Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
| | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK.
| |
Collapse
|
9
|
Collon K, Gallo MC, Bell JA, Chang SW, Rodman JCS, Sugiyama O, Kohn DB, Lieberman JR. Improving Lentiviral Transduction of Human Adipose-Derived Mesenchymal Stem Cells. Hum Gene Ther 2022; 33:1260-1268. [PMID: 35859364 PMCID: PMC9808795 DOI: 10.1089/hum.2022.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/03/2022] [Indexed: 01/25/2023] Open
Abstract
Lentiviral transduction of human mesenchymal stem cells (MSCs) induces long-term transgene expression and holds great promise for multiple gene therapy applications. Polybrene is the most commonly used reagent to improve viral gene transfer efficiency in laboratory research; however, it is not approved for human use and has also been shown to impair MSC proliferation and differentiation. Therefore, there is a need for optimized transduction protocols that can also be adapted to clinical settings. LentiBOOST (LB) and protamine sulfate are alternative transduction enhancers (TEs) that can be manufactured to current Good Manufacturing Practice standards, are easily applied to existing protocols, and have been previously studied for the transduction of human CD34+ hematopoietic stem cells. In this study, we investigated these reagents for the enhancement of lentiviral transduction of adipose-derived MSCs. We found that the combination of LB and protamine sulfate could yield comparable or even superior transduction efficiency to polybrene, with no dose-dependent adverse effects on cell viability or stem cell characteristics. This combination of TEs represents a valuable clinically compatible alternative to polybrene with the potential to significantly improve the efficiency of lentiviral transduction of MSCs for gene therapy applications.
Collapse
Affiliation(s)
- Kevin Collon
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Matthew C. Gallo
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jennifer A. Bell
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Stephanie W. Chang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - John Croom Sueiro Rodman
- Southern California Clinical and Translational Science Institute, University of Southern California, Los Angeles, California, USA; and
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Donald B. Kohn
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Zhang W, Gaikwad H, Groman EV, Purev E, Simberg D, Wang G. Highly aminated iron oxide nanoworms for simultaneous manufacturing and labeling of chimeric antigen receptor T cells. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 2022; 541:168480. [PMID: 34720339 PMCID: PMC8553019 DOI: 10.1016/j.jmmm.2021.168480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cell based therapies including chimeric antigen receptor (CAR) T cells are promising for treating leukemias and solid cancers. At the same time, there is interest in enhancing the functionality of these cells via surface decoration with nanoparticles (backpacking). Magnetic nanoparticle cell labeling is of particular interest due to opportunities for magnetic separation, in vivo manipulation, drug delivery and magnetic resonance imaging (MRI). While modification of T cells with magnetic nanoparticles (MNPs) was explored before, we questioned whether MNPs are compatible with CAR-T cells when introduced during the manufacturing process. We chose highly aminated 120 nm crosslinked iron oxide nanoworms (CLIO NWs, ~36,000 amines per NW) that could efficiently label different adherent cell lines and we used CD123 CAR-T cells as the labeling model. The CD123 CAR-T cells were produced in the presence of CLIO NWs, CLIO NWs plus protamine sulfate (PS), or PS only. The transduction efficiency of lentiviral CD123 CAR with only NWs was ~23% lower than NW+PS and PS groups (~33% and 35%, respectively). The cell viability from these three transduction conditions was not reduced within CAR-T cell groups, though lower compared to non-transduced T cells (mock T). Use of CLIO NWs instead of, or together with cationic protamine sulfate for enhancement of lentiviral transduction resulted in comparable levels of CAR expression and viability but decreased the proportion of CD8+ cells and increased the proportion of CD4+ cells. CD123 CAR-T transduced in the presence of CLIO NWs, CLIO NWs plus PS, or PS only, showed similar level of cytotoxicity against leukemic cell lines. Furthermore, fluorescence microscopy imaging demonstrated that CD123 CAR-T cells labeled with CLIO NW formed rosettes with CD123+ leukemic cells as the non-labeled CAR-T cells, indicating that the CAR-T targeting to tumor cells has maintained after CLIO NW labeling. The in vivo trafficking of the NW labeled CAR-T cells showed the accumulation of CAR-T labeled with NWs primarily in the bone marrow and spleen. CAR-T cells can be magnetically labeled during their production while maintaining functionality using the positively charged iron oxide NWs, which enable the in vivo biodistribution and tracking of CAR-T cells.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ernest V. Groman
- Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Enkhtsetseg Purev
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Corresponding Authors: (Dmitri Simberg), (Guankui Wang)
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Corresponding Authors: (Dmitri Simberg), (Guankui Wang)
| |
Collapse
|
11
|
Wrenn ED, Moore BM, Greenwood E, McBirney M, Cheung KJ. Optimal, Large-Scale Propagation of Mouse Mammary Tumor Organoids. J Mammary Gland Biol Neoplasia 2020; 25:337-350. [PMID: 33106923 PMCID: PMC7587543 DOI: 10.1007/s10911-020-09464-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor organoids mimic the architecture and heterogeneity of in vivo tumors and enable studies of collective interactions between tumor cells as well as with their surrounding microenvironment. Although tumor organoids hold significant promise as cancer models, they are also more costly and labor-intensive to cultivate than traditional 2D cell culture. We sought to identify critical factors regulating organoid growth ex vivo, and to use these observations to develop a more efficient organoid expansion method. Using time-lapse imaging of mouse mammary tumor organoids in 3D culture, we observed that outgrowth potential varies non-linearly with initial organoid size. Maximal outgrowth occurred in organoids with a starting size between ~10 to 1000 cells. Based on these observations, we developed a suspension culture method that maintains organoids in the ideal size range, enabling expansion from 1 million to over 100 million cells in less than 2 weeks and less than 3 hours of hands-on time. Our method facilitates the rapid, cost-effective expansion of organoids for CRISPR based studies and other assays requiring a large amount of organoid starting material.
Collapse
Affiliation(s)
- Emma D Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, 98195, USA
| | - Breanna M Moore
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Erin Greenwood
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Margaux McBirney
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kevin J Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
12
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
13
|
Est-Witte SE, Farris AL, Tzeng SY, Hutton DL, Gong DH, Calabresi KG, Grayson WL, Green JJ. Non-viral gene delivery of HIF-1α promotes angiogenesis in human adipose-derived stem cells. Acta Biomater 2020; 113:279-288. [PMID: 32623098 PMCID: PMC8035702 DOI: 10.1016/j.actbio.2020.06.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/05/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Stable and mature vascular formation is a current challenge in engineering functional tissues. Transient, non-viral gene delivery presents a unique platform for delivering genetic information to cells for tissue engineering purposes and to restore blood flow to ischemic tissue. The formation of new blood vessels can be induced by upregulation of hypoxia-inducible factor-1α (HIF-1), among other factors. We hypothesized that biodegradable polymers could be used to efficiently deliver the HIF-1α gene to human adipose-derived stromal/stem cells (hASCs) and that this treatment could recruit an existing endogenous endothelial cell population to induce angiogenesis in a 3D cell construct in vitro. In this study, end-modified poly(β-amino ester) (PBAE) nanocomplexes were first optimized for transfection of hASCs and a new biodegradable polymer with increased hydrophobicity and secondary amine structures, N'-(3-aminopropyl)-N,N-dimethylpropane-1,3-diamine end-modified poly(1,4-butanediol diacrylate-co-4-amino-1-butanol), was found to be most effective. Optimal PBAE nanocomplexes had a hydrodynamic diameter of approximately 140 nm and had a zeta potential of 30 mV. The PBAE polymer self-assembled with HIF-1α plasmid DNA and treatment of hASCs with these nanocomplexes induced 3D vascularization. Cells transfected with this polymer-DNA complex were found to have 106-fold upregulation HIF-1α expression, an approximately 2-fold increase in secreted VEGF, and caused the formation of vessel tubules compared to an untransfected control. These gene therapy biomaterials may be useful for regenerative medicine. STATEMENT OF SIGNIFICANCE: Not only is the formation of stable vasculature a challenge for engineering human tissues in vitro, but it is also of valuable interest to clinical applications such as peripheral artery disease. Previous studies using HIF-1α to induce vascular formation have been limited by the necessity of hypoxic chambers. It would be advantageous to simulate endogenous responses to hypoxia without the need for physical hypoxia. In this study, 3D vascular formation was shown to be inducible through non-viral gene delivery of HIF-1α with new polymeric nanocomplexes. A biodegradable polymer N'-(3-aminopropyl)-N,N-dimethylpropane-1,3-diamine end-modified poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) demonstrates improved transfection of human adipose-derived stem cells. This nanobiotechnology could be a promising strategy for the creation of vasculature for tissue engineering and clinical applications.
Collapse
Affiliation(s)
- Savannah E Est-Witte
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Ashley L Farris
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Daphne L Hutton
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Dennis H Gong
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Kaitlyn G Calabresi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Oncology and Bloomberg~Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
14
|
Piras F, Kajaste-Rudnitski A. Antiviral immunity and nucleic acid sensing in haematopoietic stem cell gene engineering. Gene Ther 2020; 28:16-28. [PMID: 32661282 PMCID: PMC7357672 DOI: 10.1038/s41434-020-0175-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
The low gene manipulation efficiency of human hematopoietic stem and progenitor cells (HSPC) remains a major hurdle for sustainable and broad clinical application of innovative therapies for a wide range of disorders. Given that all current and emerging gene transfer and editing technologies are bound to expose HSPC to exogenous nucleic acids and most often also to viral vectors, we reason that host antiviral factors and nucleic acid sensors play a pivotal role in the efficacy of HSPC genetic manipulation. Here, we review recent progress in our understanding of vector–host interactions and innate immunity in HSPC upon gene engineering and discuss how dissecting this crosstalk can guide the development of more stealth and efficient gene therapy approaches in the future.
Collapse
Affiliation(s)
- Francesco Piras
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
15
|
Sharma A, Goring A, Clarkin CE. Commentary: A Cost-Effective Method to Enhance Adenoviral Transduction of Primary Murine Osteoblasts and Bone Marrow Stromal Cells. Front Endocrinol (Lausanne) 2020; 11:419. [PMID: 32670202 PMCID: PMC7330116 DOI: 10.3389/fendo.2020.00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aikta Sharma
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Claire E. Clarkin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
16
|
Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed Pharmacother 2020; 128:110276. [PMID: 32502836 DOI: 10.1016/j.biopha.2020.110276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) have provided an efficient way to integrate our gene of interest into eukaryote cells. Human immunodeficiency virus (HIV)-derived LVs have been vastly studied to become an invaluable asset in gene delivery. This abled LVs to be used in both research laboratories and gene therapy. Pseudotyping HIV-1 based LVs, abled it to transduce different types of cells, especially hematopoietic stem cells. A wide range of tropism, plus to the ability to integrate genes into target cells, made LVs an armamentarium in gene therapy. The third and fourth generations of self-inactivating LVs are being used to achieve safe gene therapy. Not only advanced methods enabled the clinical-grade LV production on a large scale, but also considerably heightened transduction efficiency. One of which is microfluidic systems that revolutionized gene delivery approaches. Since gene therapy using LVs attracted lots of attention to itself, we provided a brief review of LV structure and life-cycle along with methods for improving both LV production and transduction. Also, we mentioned some of their utilization in immunotherapy and gene therapy.
Collapse
|
17
|
Shinohara T, Kanatsu-Shinohara M. Transgenesis and Genome Editing of Mouse Spermatogonial Stem Cells by Lentivirus Pseudotyped with Sendai Virus F Protein. Stem Cell Reports 2020; 14:447-461. [PMID: 32160520 PMCID: PMC7066332 DOI: 10.1016/j.stemcr.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) serve as a resource for producing genetically modified animals. However, genetic manipulation of SSCs has met with limited success. Here, we show efficient gene transfer into SSCs via a lentivirus (FV-LV) using a fusion protein (F), a Sendai virus (SV) envelope protein involved in virion/cell membrane fusion. FV-LVs transduced cultured SSCs more efficiently than conventional LVs. Although SSCs infected with SV failed to produce offspring, those transduced with FV-LVs were fertile. In vivo microinjection showed that FV-LVs could penetrate not only the basement membrane of the seminiferous tubules but also the blood-testis barrier, which resulted in successful transduction of both spermatogenic cells and testicular somatic cells. Cultured SSCs transfected with FV-LVs that express drug-inducible CRISPR/Cas9 against Kit or Sycp3 showed impaired spermatogenesis upon transplantation and drug treatment in vivo. Thus, FV-LVs provide an efficient method for functional analysis of genes involved in SSCs and spermatogenesis. Sendai virus-derived F protein enhances lentiviral infection of male germ cells Transfected spermatogonial stem cells undergo germline transmission Lentivirus pseudotyped with F protein penetrates the blood-testis barrier This method is compatible with in vivo conditional gene editing
Collapse
Affiliation(s)
- Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan.
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Radek C, Bernadin O, Drechsel K, Cordes N, Pfeifer R, Sträßer P, Mormin M, Gutierrez-Guerrero A, Cosset FL, Kaiser AD, Schaser T, Galy A, Verhoeyen E, Johnston IC. Vectofusin-1 Improves Transduction of Primary Human Cells with Diverse Retroviral and Lentiviral Pseudotypes, Enabling Robust, Automated Closed-System Manufacturing. Hum Gene Ther 2019; 30:1477-1493. [PMID: 31578886 PMCID: PMC6919281 DOI: 10.1089/hum.2019.157] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/21/2019] [Indexed: 01/07/2023] Open
Abstract
Cell and gene therapies are finally becoming viable patient treatment options, with both T cell- and hematopoietic stem cell (HSC)-based therapies being approved to market in Europe. However, these therapies, which involve the use of viral vector to modify the target cells, are expensive and there is an urgent need to reduce manufacturing costs. One major cost factor is the viral vector production itself, therefore improving the gene modification efficiency could significantly reduce the amount of vector required per patient. This study describes the use of a transduction enhancing peptide, Vectofusin-1®, to improve the transduction efficiency of primary target cells using lentiviral and gammaretroviral vectors (LV and RV) pseudotyped with a variety of envelope proteins. Using Vectofusin-1 in combination with LV pseudotyped with viral glycoproteins derived from baboon endogenous retrovirus, feline endogenous virus (RD114), and measles virus (MV), a strongly improved transduction of HSCs, B cells and T cells, even when cultivated under low stimulation conditions, could be observed. The formation of Vectofusin-1 complexes with MV-LV retargeted to CD20 did not alter the selectivity in mixed cell culture populations, emphasizing the precision of this targeting technology. Functional, ErbB2-specific chimeric antigen receptor-expressing T cells could be generated using a gibbon ape leukemia virus (GALV)-pseudotyped RV. Using a variety of viral vectors and target cells, Vectofusin-1 performed in a comparable manner to the traditionally used surface-bound recombinant fibronectin. As Vectofusin-1 is a soluble peptide, it was possible to easily transfer the T cell transduction method to an automated closed manufacturing platform, where proof of concept studies demonstrated efficient genetic modification of T cells with GALV-RV and RD114-RV and the subsequent expansion of mainly central memory T cells to a clinically relevant dose.
Collapse
Affiliation(s)
| | - Ornellie Bernadin
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Nicole Cordes
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Pia Sträßer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Mirella Mormin
- Integrare Research Unit UMR_S951, Genethon, INSERM, University Evry, EPHE, Evry, France
| | - Alejandra Gutierrez-Guerrero
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - François-loïc Cosset
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Thomas Schaser
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Galy
- Integrare Research Unit UMR_S951, Genethon, INSERM, University Evry, EPHE, Evry, France
| | - Els Verhoeyen
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | | |
Collapse
|
19
|
Highly efficient ex vivo lentiviral transduction of primary human pancreatic exocrine cells. Sci Rep 2019; 9:15870. [PMID: 31676849 PMCID: PMC6825235 DOI: 10.1038/s41598-019-51763-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023] Open
Abstract
The lack of efficient gene transfer methods into primary human pancreatic exocrine cells hampers studies on the plasticity of these cells and their possible role in beta cell regeneration. Therefore, improved gene transfer protocols are needed. Lentiviral vectors are widely used to drive ectopic gene expression in mammalian cells, including primary human islet cells. Here we aimed to optimize gene transfer into primary human exocrine cells using modified lentiviral vectors or transduction conditions. We evaluated different promoters, viral envelopes, medium composition and transduction adjuvants. Transduction efficiency of a reporter vector was evaluated by fluorescence microscopy and flow cytometry. We show that protamine sulfate-assisted transduction of a VSV-G-pseudotyped vector expressing eGFP under the control of a CMV promoter in a serum-free environment resulted in the best transduction efficiency of exocrine cells, reaching up to 90% of GFP-positive cells 5 days after transduction. Our findings will enable further studies on pancreas (patho)physiology that require gene transfer such as gene overexpression, gene knockdown or lineage tracing studies.
Collapse
|
20
|
Simon B, Harrer DC, Thirion C, Schuler-Thurner B, Schuler G, Uslu U. Enhancing lentiviral transduction to generate melanoma-specific human T cells for cancer immunotherapy. J Immunol Methods 2019; 472:55-64. [DOI: 10.1016/j.jim.2019.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
|
21
|
Schott JW, León-Rico D, Ferreira CB, Buckland KF, Santilli G, Armant MA, Schambach A, Cavazza A, Thrasher AJ. Enhancing Lentiviral and Alpharetroviral Transduction of Human Hematopoietic Stem Cells for Clinical Application. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:134-147. [PMID: 31338385 PMCID: PMC6629974 DOI: 10.1016/j.omtm.2019.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 01/27/2023]
Abstract
Ex vivo retroviral gene transfer into CD34+ hematopoietic stem and progenitor cells (HSPCs) has demonstrated remarkable clinical success in gene therapy for monogenic hematopoietic disorders. However, little attention has been paid to enhancement of culture and transduction conditions to achieve reliable effects across patient and disease contexts and to maximize potential vector usage and reduce treatment cost. We systematically tested three HSPC culture media manufactured to cGMP and eight previously described transduction enhancers (TEs) to develop a state-of-the-art clinically applicable protocol. Six TEs enhanced lentiviral (LV) and five TEs facilitated alpharetroviral (ARV) CD34+ HSPC transduction when used alone. Combinatorial TE application tested with LV vectors yielded more potent effects, with up to a 5.6-fold increase in total expression of a reporter gene and up to a 3.8-fold increase in VCN. Application of one of the most promising combinations, the poloxamer LentiBOOST and protamine sulfate, for GMP-compliant manufacturing of a clinical-grade advanced therapy medicinal product (ATMP) increased total VCN by over 6-fold, with no major changes in global gene expression profiles or inadvertent loss of CD34+CD90+ HSPC populations. Application of these defined culture and transduction conditions is likely to significantly improve ex vivo gene therapy manufacturing protocols for HSPCs and downstream clinical efficacy.
Collapse
Affiliation(s)
- Juliane W Schott
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Diego León-Rico
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Carolina B Ferreira
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Karen F Buckland
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Myriam A Armant
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Axel Schambach
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK.,Great Ormond Street Hospital NHS Foundation Trust, London WC1N 1EH, UK
| |
Collapse
|
22
|
Moussy A, Papili Gao N, Corre G, Poletti V, Majdoul S, Fenard D, Gunawan R, Stockholm D, Páldi A. Constraints on Human CD34+ Cell Fate due to Lentiviral Vectors Can Be Relieved by Valproic Acid. Hum Gene Ther 2019; 30:1023-1034. [PMID: 30977420 DOI: 10.1089/hum.2019.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The initial stages following the in vitro cytokine stimulation of human cord blood CD34+ cells overlap with the period when lentiviral gene transfer is typically performed. Single-cell transcriptional profiling and time-lapse microscopy were used to investigate how the vector-cell crosstalk impacts on the fate decision process. The single-cell transcription profiles were analyzed using a new algorithm, and it is shown that lentiviral transduction during the early stages of stimulation modifies the dynamics of the fate choice process of the CD34+ cells. The cells transduced with a lentiviral vector are biased toward the common myeloid progenitor lineage. Valproic acid, a histone deacetylase inhibitor known to increase the grafting potential of the CD34+ cells, improves the transduction efficiency to almost 100%. The cells transduced in the presence of valproic acid can subsequently undergo normal fate commitment. The higher gene transfer efficiency did not alter the genomic integration profile of the vector. These observations open the way to substantially improving lentiviral gene transfer protocols.
Collapse
Affiliation(s)
- Alice Moussy
- 1Ecole Pratique des Hautes Etudes, PSL Research University, UMRS951, INSERM, Univ-Evry, Paris, France; University at Buffalo, The State University of New York, Buffalo, New York
| | - Nan Papili Gao
- 2Institute for Chemical Bioengineering, ETH Zurich, Zurich, Switzerland; University at Buffalo, The State University of New York, Buffalo, New York.,3Swiss Institute of Bioinformatics, Lausanne, Switzerland; University at Buffalo, The State University of New York, Buffalo, New York
| | - Guillaume Corre
- 4Genethon, Evry, France; and University at Buffalo, The State University of New York, Buffalo, New York
| | - Valentina Poletti
- 4Genethon, Evry, France; and University at Buffalo, The State University of New York, Buffalo, New York
| | - Saliha Majdoul
- 4Genethon, Evry, France; and University at Buffalo, The State University of New York, Buffalo, New York
| | - David Fenard
- 4Genethon, Evry, France; and University at Buffalo, The State University of New York, Buffalo, New York
| | - Rudiyanto Gunawan
- 2Institute for Chemical Bioengineering, ETH Zurich, Zurich, Switzerland; University at Buffalo, The State University of New York, Buffalo, New York.,3Swiss Institute of Bioinformatics, Lausanne, Switzerland; University at Buffalo, The State University of New York, Buffalo, New York.,5Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York
| | - Daniel Stockholm
- 1Ecole Pratique des Hautes Etudes, PSL Research University, UMRS951, INSERM, Univ-Evry, Paris, France; University at Buffalo, The State University of New York, Buffalo, New York
| | - András Páldi
- 1Ecole Pratique des Hautes Etudes, PSL Research University, UMRS951, INSERM, Univ-Evry, Paris, France; University at Buffalo, The State University of New York, Buffalo, New York
| |
Collapse
|
23
|
Gatticchi L, de Las Heras JI, Roberti R, Schirmer EC. Optimization of DamID for use in primary cultures of mouse hepatocytes. Methods 2019; 157:88-99. [PMID: 30445179 PMCID: PMC6426339 DOI: 10.1016/j.ymeth.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023] Open
Abstract
DamID adaptation to primary hepatocytes may preserve tissue 3D genome architecture. Growth factors, vector tropism and enhancers are needed for DamID in primary cells. Mitochondrial contamination can yield high background signal in primary cells. Signal intensity comparisons can increase calling of interesting differential LADs.
DamID, a method to identify DNA associating with a particular protein, was originally developed for use in immortalized tissue culture lines. The power of this technique has led to its adaptation for a number of additional systems. Here we report adaptations for its use in primary cells isolated from rodents with emphasis on the challenges this presents. Specifically, we present several modifications that allow the method to be performed in mouse acutely isolated primary hepatocytes while seemingly maintaining tissue genome architecture. We also describe the downstream bioinformatic analysis necessary to identify LADs and discuss some of the parameters and their effects with regards to the sensitivity of the method.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eric C Schirmer
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
24
|
Hauber I, Beschorner N, Schrödel S, Chemnitz J, Kröger N, Hauber J, Thirion C. Improving Lentiviral Transduction of CD34 + Hematopoietic Stem and Progenitor Cells. Hum Gene Ther Methods 2019; 29:104-113. [PMID: 29631437 DOI: 10.1089/hgtb.2017.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The delivery of therapeutic genes for treatment of inherited or infectious diseases frequently requires lentiviral transduction of CD34+ hematopoietic stem and progenitor cells (HSC). Optimized transduction protocols with a therapeutic goal aim to maximize the number of transduction-positive cells while limiting the vector copy number that reach each individual cell. Importantly, the transduced HSC should maintain their "stem-like" properties. Here, we analyzed LentiBOOST™ reagent, a membrane-sealing poloxamer, with respect to enhancing lentiviral transduction of CD34+ peripheral blood stem cells. We demonstrate that inclusion of LentiBOOST™ in a standard HSC transduction protocol yields high transduction efficiencies while preserving the ability of the transduced HSC to differentiate into various hematopoietic lineages. Thus, LentiBOOST™ reagent can significantly improve lentiviral CD34+ HSC transduction protocols with the potential to improve production of gene-modified cell products.
Collapse
Affiliation(s)
- Ilona Hauber
- 1 Heinrich Pette Institute - Leibniz Institute for Experimental Virology , Hamburg, Germany
| | - Niklas Beschorner
- 1 Heinrich Pette Institute - Leibniz Institute for Experimental Virology , Hamburg, Germany.,2 German Center for Infection Research (DZIF) , Partner Site Hamburg, Germany
| | | | - Jan Chemnitz
- 1 Heinrich Pette Institute - Leibniz Institute for Experimental Virology , Hamburg, Germany
| | - Nicolaus Kröger
- 4 Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Joachim Hauber
- 1 Heinrich Pette Institute - Leibniz Institute for Experimental Virology , Hamburg, Germany.,2 German Center for Infection Research (DZIF) , Partner Site Hamburg, Germany
| | | |
Collapse
|
25
|
High-Efficiency Lentiviral Transduction of Human CD34 + Cells in High-Density Culture with Poloxamer and Prostaglandin E2. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:187-196. [PMID: 30788387 PMCID: PMC6370599 DOI: 10.1016/j.omtm.2019.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cell (HSC) gene therapy is curative for various hereditary diseases; however, high-efficiency transduction in HSCs remains crucial to improve the prospects for hemoglobinopathies. We previously optimized lentiviral transduction in human CD34+ cells with serum-free medium containing minimal cytokines, allowing efficient transduction (∼50%) and robust xenograft engraftment. In this study, we further improved lentiviral transduction in human CD34+ cells. High-density culture conditions (4e6/mL) resulted in ∼5-fold more efficient transduction in CD34+ cells (p < 0.01) compared with standard cell density (1e5/mL). After co-culturing vector-exposed CD34+ cells with non-transduced CD34+ cells, high-density culture conditions enhanced lentiviral gene marking in the non-transduced population (p < 0.01) compared with low-density conditions, suggesting that increasing cell-to-cell contact allows more efficient transduction. Two adjuvants, poloxamer 407 (100 μg/mL) and prostaglandin E2 (10 μM), were added to high-density CD34+ cells, resulting in ∼4-fold more efficient transduction (p < 0.01) without significant toxicity compared with no adjuvant control. In summary, we developed a highly efficient lentiviral transduction method in high-density CD34+ cell culture with poloxamer 407 and prostaglandin E2, allowing overall ∼10-fold improvement in transduction efficiency and consistently achieving more than 90% transduction and an average vector copy number of ∼10. Our optimized transduction method should improve gene therapy approaches using lentiviral vectors targeting HSCs.
Collapse
|
26
|
Bao F, Shi H, Gao M, Yang L, Zhou L, Zhao Q, Wu Y, Chen K, Xiang G, Long Q, Guo J, Zhang J, Liu X. Polybrene induces neural degeneration by bidirectional Ca 2+ influx-dependent mitochondrial and ER-mitochondrial dynamics. Cell Death Dis 2018; 9:966. [PMID: 30237514 PMCID: PMC6148003 DOI: 10.1038/s41419-018-1009-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 01/24/2023]
Abstract
Hexadimethrine bromide (Polybrene) was once used clinically as a heparin neutralizer and has recently found use as a promoter in virus-mediated gene therapy trials and gene transfer in research. However, the potential for tissue-specific toxicity of polybrene at low doses has been ignored so far. Here, we found that after intracerebroventricular (ICV) polybrene injection, mice showed disability of movement accompanied neural death and gliosis in brain, and in human neurons, polybrene induces concentration-dependent neuritic beading and fragmentation. Mechanistically, polybrene induces a rapid voltage-dependent calcium channel (VDCC)-mediated influx of extracellular Ca2+. The elevated cytoplasmic Ca2+ activates DRP1, which leads to mitochondrial fragmentation and metabolic dysfunction. At the same time, Ca2+ influx induces endoplasmic reticulum (ER) fragmentation and tightened associations between ER and mitochondria, which makes mitochondria prone to Ca2+ overloading and ensuing permeability transition. These results reveal an unexpected neuronal toxicity of polybrene, wherein Ca2+ influx serves as a regulator for both mitochondrial dynamics and ER–mitochondrial remodeling.
Collapse
Affiliation(s)
- Feixiang Bao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Hongyan Shi
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Mi Gao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Lingyan Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuge Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.,The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Keshi Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Ge Xiang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Long
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Jingyi Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Jian Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
27
|
Delville M, Soheili T, Bellier F, Durand A, Denis A, Lagresle-Peyrou C, Cavazzana M, Andre-Schmutz I, Six E. A Nontoxic Transduction Enhancer Enables Highly Efficient Lentiviral Transduction of Primary Murine T Cells and Hematopoietic Stem Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:341-347. [PMID: 30191160 PMCID: PMC6125771 DOI: 10.1016/j.omtm.2018.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
Lentiviral vectors have emerged as an efficient, safe therapeutic tool for gene therapy based on hematopoietic stem cells (HSCs) or T cells. However, the monitoring of transduced cells in preclinical models remains challenging because of the inefficient transduction of murine primary T cells with lentiviral vectors, in contrast to gammaretroviral vectors. The use of this later in preclinical proof of concept is not considered as relevant when a lentiviral vector will be used in a clinical trial. Hence, there is an urgent need to develop an efficient transduction protocol for murine cells with lentiviral vectors. Here, we describe an optimized protocol in which a nontoxic transduction enhancer (Lentiboost) enables the efficient transduction of primary murine T cells with lentiviral vectors. The optimized protocol combines low toxicity and high transduction efficiency. We achieved a high-level transduction of murine CD4+ and CD8+ T cells with a VSV-G-pseudotyped lentiviral vector with no changes in the phenotypes of transduced T cells, which were stable and long-lived in culture. This enhancer also increased the transduction of murine HSCs. Hence, use of this new transduction enhancer overcomes the limitations of lentiviral vectors in preclinical experiments and should facilitate the translation of strategies based on lentiviral vectors from the bench to the clinic.
Collapse
Affiliation(s)
- Marianne Delville
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Apheresis and Biotherapy Department, Necker Hospital, APHP, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
| | - Tayebeh Soheili
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Apheresis and Biotherapy Department, Necker Hospital, APHP, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
| | - Florence Bellier
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
| | - Amandine Durand
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
| | - Adeline Denis
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
| | - Chantal Lagresle-Peyrou
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
| | - Marina Cavazzana
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,Apheresis and Biotherapy Department, Necker Hospital, APHP, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
| | - Isabelle Andre-Schmutz
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
| | - Emmanuelle Six
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
| |
Collapse
|
28
|
Kirti S, Patel K, Das S, Shrimali P, Samanta S, Kumar R, Chatterjee D, Ghosh D, Kumar A, Tayalia P, Maji SK. Amyloid Fibrils with Positive Charge Enhance Retroviral Transduction in Mammalian Cells. ACS Biomater Sci Eng 2018; 5:126-138. [DOI: 10.1021/acsbiomaterials.8b00248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Nanbakhsh A, Best B, Riese M, Rao S, Wang L, Medin J, Thakar MS, Malarkannan S. Dextran Enhances the Lentiviral Transduction Efficiency of Murine and Human Primary NK Cells. J Vis Exp 2018. [PMID: 29364266 DOI: 10.3791/55063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The efficient transduction of specific genes into natural killer (NK) cells has been a major challenge. Successful transductions are critical to defining the role of the gene of interest in the development, differentiation, and function of NK cells. Recent advances related to chimeric antigen receptors (CARs) in cancer immunotherapy accentuate the need for an efficient method to deliver exogenous genes to effector lymphocytes. The efficiencies of lentiviral-mediated gene transductions into primary human or mouse NK cells remain significantly low, which is a major limiting factor. Recent advances using cationic polymers, such as polybrene, show an improved gene transduction efficiency in T cells. However, these products failed to improve the transduction efficiencies of NK cells. This work shows that dextran, a branched glucan polysaccharide, significantly improves the transduction efficiency of human and mouse primary NK cells. This highly reproducible transduction methodology provides a competent tool for transducing human primary NK cells, which can vastly improve clinical gene delivery applications and thus NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, The Blood Center of Wisconsin
| | - Brad Best
- Vector Core Lab, Blood Research Institute, The Blood Center of Wisconsin
| | - Matthew Riese
- Laboratory of Lymphocyte Biology, Blood Research Institute, The Blood Center of Wisconsin
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, The Blood Center of Wisconsin
| | - Li Wang
- Department of Microbiology and Immunology, The Medical College of Wisconsin
| | - Jeffrey Medin
- Department of Pediatrics, The Medical College of Wisconsin
| | | | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, The Blood Center of Wisconsin; Department of Microbiology and Immunology, The Medical College of Wisconsin; Department of Pediatrics, The Medical College of Wisconsin; Department of Medicine, The Medical College of Wisconsin;
| |
Collapse
|
30
|
Pay SL, Qi X, Willard JF, Godoy J, Sankhavaram K, Horton R, Mitter SK, Quigley JL, Chang LJ, Grant MB, Boulton ME. Improving the Transduction of Bone Marrow-Derived Cells with an Integrase-Defective Lentiviral Vector. Hum Gene Ther Methods 2017; 29:44-59. [PMID: 29160102 PMCID: PMC5806075 DOI: 10.1089/hgtb.2017.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In lentiviral vector (LV) applications where transient transgene expression is sufficient, integrase-defective lentiviral vectors (IDLVs) are beneficial for reducing the potential for off-target effects associated with insertional mutagenesis. It was previously demonstrated that human RPE65 mRNA expression from an integrating lentiviral vector (ILV) induces endogenous Rpe65 and Cralbp mRNA expression in murine bone marrow–derived cells (BMDCs), initiating programming of the cells to retinal pigment epithelium (RPE)-like cells. These cells regenerate RPE in retinal degeneration models when injected systemically. As transient expression of RPE65 is sufficient to activate endogenous RPE-associated genes for programming BMDCs, use of an ILV is an unnecessary risk. In this study, an IDLV expressing RPE65 (IDLV3-RPE65) was generated. Transduction with IDLV3-RPE65 is less efficient than the integrating vector (ILV3-RPE65). Therefore, IDLV3-RPE65 transduction was enhanced with a combination of preloading 20 × -concentrated viral supernatant on RetroNectin at a multiplicity of infection of 50 and transduction of BMDCs by low-speed centrifugation. RPE65 mRNA levels increased from ∼12-fold to ∼25-fold (p < 0.05) after modification of the IDLV3-RPE65 transduction protocol, achieving expression similar to the ∼27-fold (p < 0.05) increase observed with ILV3-RPE65. Additionally, the study shows that the same preparation of RetroNectin can be used to coat up to three wells with no reduction in transduction. Critically, IDLV3-RPE65 transduction initiates endogenous Rpe65 mRNA expression in murine BMDCs and Cralbp/CRALBP mRNA in both murine and human BMDCs, similar to expression observed in ILV3-RPE65-transduced cells. Systemic administration of ILV3-RPE65 or IDLV3-RPE65 programmed BMDCs in a mouse model of retinal degeneration is sufficient to retain visual function and reduce retinal degeneration compared to mice receiving no treatment or naïve BMDC. It is concluded that IDLV3-RPE65 is appropriate for programming BMDCs to RPE-like cells.
Collapse
Affiliation(s)
- S Louise Pay
- 1 Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana
| | - Xiaoping Qi
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jeffrey F Willard
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana
| | - Juliana Godoy
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kavya Sankhavaram
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana
| | - Ranier Horton
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sayak K Mitter
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Judith L Quigley
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana
| | - Lung-Ji Chang
- 4 Department of Molecular Genetics and Microbiology, University of Florida , Gainesville, Florida
| | - Maria B Grant
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Michael E Boulton
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
31
|
Burns SS, Chang LS. Generation of Noninvasive, Quantifiable, Orthotopic Animal Models for NF2-Associated Schwannoma and Meningioma. Methods Mol Biol 2017; 1427:59-72. [PMID: 27259921 DOI: 10.1007/978-1-4939-3615-1_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Schwannomas and meningiomas are nervous system tumors that can occur sporadically or in patients with neurofibromatosis type 2 (NF2). Mutations of the Neurofibromatosis 2 (NF2) gene are frequently observed in these tumors. Schwannomas and meningiomas cause significant morbidities, and an FDA-approved medical therapy is currently not available. The development of preclinical animal models that accurately capture the clinical characteristics of these tumors will facilitate the evaluation of novel therapeutic agents for the treatment of these tumors, ultimately leading to more productive clinical trials. Here, we describe the generation of luciferase-expressing NF2-deficient schwannoma and meningioma cells and the use of these cells to establish orthotopic tumor models in immunodeficient mice. The growth of these tumors and their response to treatment can be measured effectively by bioluminescence imaging (BLI) and confirmed by small-animal magnetic resonance imaging (MRI). These and other animal models, such as genetically-engineered models, should substantially advance the investigation of promising therapies for schwannomas and meningiomas.
Collapse
Affiliation(s)
- Sarah S Burns
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, WA-5104, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, WA-5104, 700 Children's Drive, Columbus, OH, 43205, USA. .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA. .,Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH, 43210, USA. .,Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH, 43210, USA. .,Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Schandock F, Riber CF, Röcker A, Müller JA, Harms M, Gajda P, Zuwala K, Andersen AHF, Løvschall KB, Tolstrup M, Kreppel F, Münch J, Zelikin AN. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses. Adv Healthc Mater 2017; 6. [PMID: 28945945 PMCID: PMC7161897 DOI: 10.1002/adhm.201700748] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/07/2017] [Indexed: 01/08/2023]
Abstract
Viral pathogens continue to constitute a heavy burden on healthcare and socioeconomic systems. Efforts to create antiviral drugs repeatedly lag behind the advent of pathogens and growing understanding is that broad‐spectrum antiviral agents will make strongest impact in future antiviral efforts. This work performs selection of synthetic polymers as novel broadly active agents and demonstrates activity of these polymers against Zika, Ebola, Lassa, Lyssa, Rabies, Marburg, Ebola, influenza, herpes simplex, and human immunodeficiency viruses. Results presented herein offer structure–activity relationships for these pathogens in terms of their susceptibility to inhibition by polymers, and for polymers in terms of their anionic charge and hydrophobicity that make up broad‐spectrum antiviral agents. The identified leads cannot be predicted based on prior data on polymer‐based antivirals and represent promising candidates for further development as preventive microbicides.
Collapse
Affiliation(s)
- Franziska Schandock
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | | | - Annika Röcker
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Janis A. Müller
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Mirja Harms
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Paulina Gajda
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Kaja Zuwala
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Anna H. F. Andersen
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | | | - Martin Tolstrup
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Florian Kreppel
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Jan Münch
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Alexander N. Zelikin
- Department of Chemistry; Aarhus University; Aarhus 8000 Denmark
- iNano Interdisciplinary Nanoscience Centre; Aarhus University; Aarhus 8000 Denmark
| |
Collapse
|
33
|
Singleton A, Khong D, Chin LY, Mukundan S, Li M, Parekkadan B. An engineered biomarker system to monitor and modulate immune clearance of cell therapies. Cytotherapy 2017; 19:1537-1545. [PMID: 28917628 DOI: 10.1016/j.jcyt.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AIMS Cell transplants offer a new opportunity to deliver therapies with novel and complex mechanisms of action. Understanding the pharmacology of cell transplants is important to deliver this new therapy effectively. Currently, however, there are limited techniques to easily track cells after intravenous administration due to the dispersion of the graft throughout the entire body. METHODS We herein developed an engineered cell system that secretes a luciferase enzyme to sensitively detect cell transplants independent of their locale by a simple blood test. We specifically studied a unique feature of cell transplant pharmacology-namely, immune clearance-using mesenchymal stromal cells (MSCs) as a proof-of-concept cell therapy. MSCs are a clinically relevant cell therapy that has been explored in several disease indications due to their innate properties of altering an immune response. RESULTS Using this engineered reporter, we observed specific sensitivity of cell therapy exposure to the preparation of cells, cytolysis of MSCs in an allogeneic setting and a NK cell-mediated destruction of MSCs in an autologous setting. CONCLUSIONS Our cellular tracking method has broader implications at large for assessing in vivo kinetics of various other cell therapies.
Collapse
Affiliation(s)
- Amy Singleton
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Danika Khong
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Ling-Yee Chin
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Shilpaa Mukundan
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Matthew Li
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Biju Parekkadan
- Center for Engineering in Medicine and Surgical Services, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Shriners Hospitals for Children, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA; Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA.
| |
Collapse
|
34
|
Sweeney S, Adamcakova-Dodd A, Thorne PS, Assouline JG. Biocompatibility of Multi-Imaging Engineered Mesoporous Silica Nanoparticles: In Vitro and Adult and Fetal In Vivo Studies. J Biomed Nanotechnol 2017; 13:544-558. [PMID: 31118876 DOI: 10.1166/jbn.2017.2369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite potentially serious adverse effects of engineered nanoparticles on maternal health and fetal development, little is known about their transport across the placenta. Human and animal studies are primarily limited to ex vivo approaches; the lack of a real-time, minimally invasive tool to study transplacental transport is clear. We have developed functionalized mesoporous silica nanoparticles (MSN) for use in magnetic resonance, ultrasound, and fluorescent imaging. This material is designed as a model for, or a carrier of, environmental toxicants, allowing for in vivo evaluation. To establish a baseline of biocompatibility, we present data describing MSN tolerance using in vitro and in vivo models. In cultured cells, MSN were tolerated to a dose of 125 µg/mL with minimal effect on viability and doubling time. For the 42 day duration of the study, none of the mice exhibited behaviors usually indicative of distress (lethargy, anemia, loss of appetite, etc.). In gravid mice, the body and organ weights of MSN-exposed dams were equivalent to those of control dams. Embryos exposed to MSN during early gestation were underweight by a small degree, while embryos exposed during late gestation were of a slightly larger weight. The rate of spontaneous fetal resorptions were equivalent in exposed and control mice. Maternal livers and sera were screened for a complement of cytokines/chemokines and reactive oxygen/nitrogen species (ROS/RNS). Only granulocyte-colony stimulating factor was elevated in mice exposed to MSN during late gestation, while ROS/RNS levels were elevated in mice exposed during early/mid gestation. These findings may usher future experiments investigating environmental toxicants using real-time assessment of transport across the placenta.
Collapse
Affiliation(s)
- Sean Sweeney
- NanoMedTrix Post-Doctoral Research Associate, Department of Biomedical Engineering, University of Iowa, 229 Engineering Research Facility, Iowa City, IA 52242
| | - Andrea Adamcakova-Dodd
- Environmental Health Sciences Research Center Department of Occupational and Environmental Health, University of Iowa, 170 Institute for Rural and Environmental Health, Coralville, IA 52241
| | - Peter S Thorne
- Occupational and Environmental Health, University of Iowa, S341A College of Public Health Building, 145 N. Riverside Dr., Iowa City, IA 52242
| | - Jose G Assouline
- NanoMedTrix, Department of Biomedical Engineering, University of Iowa, 227 Engineering Research Facility, Iowa City, IA 52242
| |
Collapse
|
35
|
Rode S, Hayn M, Röcker A, Sieste S, Lamla M, Markx D, Meier C, Kirchhoff F, Walther P, Fändrich M, Weil T, Münch J. Generation and Characterization of Virus-Enhancing Peptide Nanofibrils Functionalized with Fluorescent Labels. Bioconjug Chem 2017; 28:1260-1270. [DOI: 10.1021/acs.bioconjchem.7b00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sascha Rode
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | - Manuel Hayn
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | - Annika Röcker
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | - Stefanie Sieste
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Markus Lamla
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Markx
- Institute
of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | | | - Frank Kirchhoff
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | | | - Marcus Fändrich
- Institute
of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jan Münch
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
- Core
Facility Functional Peptidomics, Ulm University Medical Center, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| |
Collapse
|
36
|
Vectofusin-1 Promotes RD114-TR-Pseudotyped Lentiviral Vector Transduction of Human HSPCs and T Lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:22-30. [PMID: 28480301 PMCID: PMC5415310 DOI: 10.1016/j.omtm.2017.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/22/2017] [Indexed: 01/06/2023]
Abstract
Ex vivo transduction of human CD34+ hematopoietic stem/progenitor cells (hCD34+ HSPCs) and T lymphocytes is a key process that requires high efficiency and low toxicity to achieve effective clinical results. So far, several enhancers have been used to improve this process. Among them, Retronectin highly meliorates VSV-G and RD114-TR pseudotyped lentiviral vector delivery in hCD34+ HSPCs and T lymphocytes. However, Retronectin is expensive and requires pre-coating of culture dishes or bags before cell seeding, resulting in a cumbersome procedure. Recently, an alternative transduction adjuvant has been developed, named Vectofusin-1, whose effect has been demonstrated on gene delivery to cell lines and primary hCD34+ HSPCs by lentiviral vectors pseudotyped with different envelope glycoproteins. In this study, we have focused our analysis on the effect of Vectofusin-1 on the transduction of hCD34+ HSPCs and T lymphocytes by using mostly RD114-TR pseudotyped lentivectors and clinical transduction protocols. Here, we have proved that Vectofusin-1 reproducibly enhances gene delivery to hCD34+ HSPCs and activated T cells without cell toxicity and with efficacy comparable to that of Retronectin. The use of Vectofusin-1 will therefore help to shorten and simplify clinical cell manipulation, especially if automated systems are planned for transducing large-scale clinical lots.
Collapse
|
37
|
Affiliation(s)
- Nicole Bäumer
- Deparment of Medicine A, Hematology and
Oncology, University Hospital Muenster, Albert-Schweitzer Campus 1, Muenster, DE 48149, Germany
| | - Wolfgang E. Berdel
- Deparment of Medicine A, Hematology and
Oncology, University Hospital Muenster, Albert-Schweitzer Campus 1, Muenster, DE 48149, Germany
| | - Sebastian Bäumer
- Deparment of Medicine A, Hematology and
Oncology, University Hospital Muenster, Albert-Schweitzer Campus 1, Muenster, DE 48149, Germany
| |
Collapse
|
38
|
The Application of DamID to Identify Peripheral Gene Sequences in Differentiated and Primary Cells. Methods Mol Biol 2016; 1411:359-86. [PMID: 27147054 DOI: 10.1007/978-1-4939-3530-7_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The nuclear envelope interacts extensively with chromatin, though with differences in degree and specificity in different cell types. However, identifying the specific genome sequences associated with individual nuclear envelope associated proteins, particularly nuclear membrane proteins and lamins, has been particularly difficult due to their inherent insolubility and interconnectivity. DamID is a powerful tool developed to bypass many of the inherent difficulties with identifying nuclear envelope protein-chromatin interactions and, as more tissue culture cell types derived from different tissues are examined by DamID, it is increasingly apparent that there are distinct patterns of genome organization in differentiated cell types. However, in applying DamID to both more diverse and/or differentiated cell types a number of technical caveats to the method have been observed which must be circumvented to ensure high quality data is generated. Here we elaborate a detailed methodology to adapt DamID to novel cell types, in particular differentiated cells in culture. Moreover, we highlight heretofore largely ignored variations in the PCR amplified DNA products generated by the DamID procedure and the consequences they have for downstream analysis steps. Thus, the methods described here should serve as a useful resource to researchers new to DamID as well as readily allow its application to an expanded set of cell types and conditions.
Collapse
|
39
|
Zhang H, He X, Shi Y, Yu Y, Guan S, Gong X, Yin H, Kuai Z, Shan Y. Potential of a novel peptide P16-D from the membrane-proximal external region of human immunodeficiency virus type 1 to enhance retrovirus infection. RSC Adv 2016. [DOI: 10.1039/c6ra10424j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A modified peptide nanofibril “networks” could capture and concentrate enveloped virus easily. Stronger immune response could be elicited by the captured virus implying a potential for P16-D to improve gene transfer rates and vaccine applications.
Collapse
Affiliation(s)
- Huayan Zhang
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Xiaoqiu He
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yongjiao Yu
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Shanshan Guan
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Xin Gong
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - He Yin
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Ziyu Kuai
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| |
Collapse
|
40
|
Bartok E, Kampes M, Hornung V. Measuring IL-1β Processing by Bioluminescence Sensors II: The iGLuc System. Methods Mol Biol 2016; 1417:97-113. [PMID: 27221484 DOI: 10.1007/978-1-4939-3566-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inflammasomes are multimeric protein complexes that proteolytically activate caspase-1, which subsequently matures cytokines of the IL-1 family and initiates the induction of pyroptotic cell death. Although this process is central both to pathogen defense and sterile inflammatory processes, there is currently no standard readout available for inflammasome activation which would be suitable for high-throughput applications. We have recently developed a new method for measuring inflammasome activation via the use of a novel proteolytic reporter iGLuc, an IL-1β Gaussia luciferase (iGLuc) fusion protein. Here, we provide detailed protocols for the use of iGLuc in transiently transfected or stably transduced cell lines. Using these protocols, IL-1β maturation as the result of inflammasome activation or other processes can be indirectly measured via the gain of Gaussia luciferase activity of cleaved iGLuc, allowing for rapid inflammasome reconstitution assays and high-throughput screening of inflammasome activity.
Collapse
Affiliation(s)
- Eva Bartok
- Institute of Molecular Medicine, University Hospital, University of Bonn, Sigmund-Freud-Straße 25, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Sigmund-Freud-Straße 25, Bonn, Germany
| | - Maria Kampes
- Institute of Molecular Medicine, University Hospital, University of Bonn, Sigmund-Freud-Straße 25, Bonn, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital, University of Bonn, Sigmund-Freud-Straße 25, Bonn, Germany.
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, Munich, Germany.
| |
Collapse
|
41
|
Majdoul S, Seye AK, Kichler A, Holic N, Galy A, Bechinger B, Fenard D. Molecular Determinants of Vectofusin-1 and Its Derivatives for the Enhancement of Lentivirally Mediated Gene Transfer into Hematopoietic Stem/Progenitor Cells. J Biol Chem 2015; 291:2161-9. [PMID: 26668323 DOI: 10.1074/jbc.m115.675033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
Gene delivery into hCD34+ hematopoietic stem/progenitor cells (HSPCs) using human immunodeficiency virus, type 1-derived lentiviral vectors (LVs) has several promising therapeutic applications. Numerous clinical trials are currently underway. However, the efficiency, safety, and cost of LV gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LV used on the cells. Several transduction enhancers already exist, such as fibronectin fragments or cationic compounds. Recently, we discovered Vectofusin-1, a new transduction enhancer, also called LAH4-A4, a short histidine-rich amphipathic peptide derived from the LAH4 family of DNA transfection agents. Vectofusin-1 enhances the infectivity of lentiviral and γ-retroviral vectors pseudotyped with various envelope glycoproteins. In this study, we compared a family of Vectofusin-1 isomers and showed that Vectofusin-1 remains the lead peptide for HSPC transduction enhancement with LVs pseudotyped with vesicular stomatitis virus glycoproteins and also with modified gibbon ape leukemia virus glycoproteins. By comparing the capacity of numerous Vectofusin-1 variants to promote the modified gibbon ape leukemia virus glycoprotein-pseudotyped lentiviral vector infectivity of HSPCs, the lysine residues on the N-terminal extremity of Vectofusin-1, a hydrophilic angle of 140° formed by the histidine residues in the Schiffer-Edmundson helical wheel representation, hydrophobic residues consisting of leucine were all found to be essential and helped to define a minimal active sequence. The data also show that the critical determinants necessary for lentiviral transduction enhancement are partially different from those necessary for efficient antibiotic or DNA transfection activity of LAH4 derivatives. In conclusion, these results help to decipher the action mechanism of Vectofusin-1 in the context of hCD34+ cell-based gene therapy.
Collapse
Affiliation(s)
- Saliha Majdoul
- From Généthon, 91000 Evry, France, INSERM UMR_S951, 91000 Evry, France, University of Evry, 91000 Evry, France
| | - Ababacar K Seye
- From Généthon, 91000 Evry, France, INSERM UMR_S951, 91000 Evry, France
| | - Antoine Kichler
- CNRS, UMR_7199, 67401 Illkirch, France, the University of Strasbourg, 67000 Strasbourg, France, and
| | - Nathalie Holic
- From Généthon, 91000 Evry, France, INSERM UMR_S951, 91000 Evry, France, University of Evry, 91000 Evry, France
| | - Anne Galy
- From Généthon, 91000 Evry, France, INSERM UMR_S951, 91000 Evry, France, University of Evry, 91000 Evry, France,
| | - Burkhard Bechinger
- the University of Strasbourg, 67000 Strasbourg, France, and the Institut de Chimie, CNRS, UMR_7177, 67401 Strasbourg, France
| | - David Fenard
- From Généthon, 91000 Evry, France, INSERM UMR_S951, 91000 Evry, France, University of Evry, 91000 Evry, France,
| |
Collapse
|
42
|
Van Dis ES, Moore TC, Lavender KJ, Messer RJ, Keppler OT, Verheyen J, Dittmer U, Hasenkrug KJ. No SEVI-mediated enhancement of rectal HIV-1 transmission of HIV-1 in two humanized mouse cohorts. Virology 2015; 488:88-95. [PMID: 26609939 DOI: 10.1016/j.virol.2015.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/14/2015] [Accepted: 11/06/2015] [Indexed: 11/28/2022]
Abstract
Amyloid fibrils from semen-derived peptide (SEVI) enhance HIV-1 infectivity in vitro but the ability of SEVI to mediate enhancement of HIV infection in vivo has not been tested. In this study we used immunodeficient mice reconstituted with human immune systems to test for in vivo enhancement of HIV-1 transmission. This mouse model supports mucosal transmission of HIV-1 via the intrarectal route leading to productive infection. In separate experiments with humanized mouse cohorts reconstituted with two different donor immune systems, high dose HIV-1JR-CSF that had been incubated with SEVI amyloid fibrils at physiologically relevant concentrations did not show an increased incidence of infection compared to controls. In addition, SEVI failed to enhance rectal transmission with a reduced concentration of HIV-1. Although we confirmed potent SEVI-mediated enhancement of HIV infectivity in vitro, this model showed no evidence that it plays a role in the much more complex situation of in vivo transmission.
Collapse
Affiliation(s)
- Erik S Van Dis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Tyler C Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kerry J Lavender
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Oliver T Keppler
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Frankfurt, Germany
| | - Jens Verheyen
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
43
|
Black AB, Dahlenburg H, Pepper K, Nacey C, Pontow S, Kuhn MA, Belafsky PC, Nolta JA. Human Myoblast and Mesenchymal Stem Cell Interactions Visualized by Videomicroscopy. Hum Gene Ther Methods 2015; 26:193-6. [PMID: 26544924 PMCID: PMC4677538 DOI: 10.1089/hgtb.2015.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Muscle-derived progenitor cell (myoblast) therapy has promise for the treatment of denervated, weakened, and fibrotic muscle. The best methods for injecting myoblasts to promote fusion and retention have yet to be determined, however. Mesenchymal stem/stromal cells have also been reported to have beneficial effects in restoring damaged tissue, through increasing vascularization and reducing inflammation. The interactions between human primary skeletal myoblasts and bone marrow-derived mesenchymal stem/stromal cells were examined using time-lapse images put into video format. Of interest, there is a high degree of cell-to-cell interaction with microparticles transferring between both cell types, and formation of nanotubules to bridge cytoplasmic contents between the two types of cell. This model provides an in vitro platform for examining mechanisms for cell-to-cell interaction preceding myoblast fusion.
Collapse
Affiliation(s)
- Amanda B Black
- 1 Stem Cell Program, Department Internal Medicine, University of California-Davis , Sacramento, California
| | - Heather Dahlenburg
- 1 Stem Cell Program, Department Internal Medicine, University of California-Davis , Sacramento, California
| | - Karen Pepper
- 1 Stem Cell Program, Department Internal Medicine, University of California-Davis , Sacramento, California
| | - Catherine Nacey
- 1 Stem Cell Program, Department Internal Medicine, University of California-Davis , Sacramento, California
| | - Suzanne Pontow
- 1 Stem Cell Program, Department Internal Medicine, University of California-Davis , Sacramento, California
| | - Maggie A Kuhn
- 2 Department of Otolaryngology-Head and Neck Surgery, University of California-Davis , Sacramento, California
| | - Peter C Belafsky
- 2 Department of Otolaryngology-Head and Neck Surgery, University of California-Davis , Sacramento, California
| | - Jan A Nolta
- 1 Stem Cell Program, Department Internal Medicine, University of California-Davis , Sacramento, California
| |
Collapse
|
44
|
Wang M, Wu B, Tucker JD, Lu P, Lu Q. Cationic polyelectrolyte-mediated delivery of antisense morpholino oligonucleotides for exon-skipping in vitro and in mdx mice. Int J Nanomedicine 2015; 10:5635-46. [PMID: 26366082 PMCID: PMC4562748 DOI: 10.2147/ijn.s89910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this study, we investigated a series of cationic polyelectrolytes (PEs) with different size and composition for their potential to improve delivery of an antisense phosphorodiamidate morpholino oligomer (PMO) both in vitro and in vivo. The results showed that the poly(diallyldimethylammonium chloride) (PDDAC) polymer series, especially PE-3 and PE-4, improves the delivery efficiency of PMO, comparable with Endoporter-mediated PMO delivery in vitro. The enhanced PMO delivery and targeting to dystrophin exon 23 was further observed in mdx mice, up to fourfold with the PE-4, compared with PMO alone. The cytotoxicity of the PEs was lower than that of Endoporter and polyethylenimine 25,000 Da in vitro, and was not clearly detected in muscle in vivo under the tested concentrations. Together, these results demonstrate that optimization of PE molecular size, composition, and distribution of cationic charge are key factors to achieve enhanced PMO exon-skipping efficiency. The increased efficiency and lower toxicity show this PDDAC series to be capable gene/antisense oligonucleotide delivery-enhancing agents for treating muscular dystrophy and other diseases.
Collapse
Affiliation(s)
- Mingxing Wang
- Department of Neurology, McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, NC, USA
| | - Bo Wu
- Department of Neurology, McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, NC, USA
| | - Jason D Tucker
- Department of Neurology, McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, NC, USA
| | - Peijuan Lu
- Department of Neurology, McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, NC, USA
| | - Qilong Lu
- Department of Neurology, McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, NC, USA
| |
Collapse
|
45
|
Liu M, Feng B, Shi Y, Su C, Song H, Cheng W, Zhao L. Protamine nanoparticles for improving shRNA-mediated anti-cancer effects. NANOSCALE RESEARCH LETTERS 2015; 10:134. [PMID: 25852425 PMCID: PMC4385308 DOI: 10.1186/s11671-015-0845-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/27/2015] [Indexed: 05/03/2023]
Abstract
Protamine nanoparticles were designed by encapsulating small hairpin RNA (shRNA)-expressing plasmid DNA targeting the Bcl-2 gene (shBcl-2) to silence apoptosis-related Bcl-2 protein for improving the transfection efficiency and cytotoxicity in cancer therapy. Our findings demonstrated that the obtained protamine nanoparticles possessed excellent characterizations of small particle size, homogenous distribution, positive charge, and high encapsulation efficiency of gene. shBcl-2 loaded in nanoparticles (NPs) was protected effectively from the degradation of DNase I and serum. More importantly, it significantly improved the efficiency of transfection of shRNA in vitro in A549 cells and increased its cytotoxicity and induced more cell apoptosis by silencing Bcl-2.
Collapse
Affiliation(s)
- Ming Liu
- />School of Pharmacy, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Bo Feng
- />School of Pharmacy, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Yijie Shi
- />School of Pharmacy, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Chang Su
- />School of Veterinary Medicine, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Huijuan Song
- />Central Laboratory of Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Wei Cheng
- />School of Pharmacy, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Liang Zhao
- />School of Pharmacy, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| |
Collapse
|
46
|
Meier C, Weil T, Kirchhoff F, Münch J. Peptide nanofibrils as enhancers of retroviral gene transfer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:438-51. [PMID: 24865496 DOI: 10.1002/wnan.1275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/10/2014] [Accepted: 04/18/2014] [Indexed: 01/13/2023]
Abstract
Amyloid fibrils are polypeptide-based polymers that are typically associated with neurodegenerative disorders such as Alzheimer's disease. More recently, it has become clear that amyloid fibrils also fulfill functional roles in hormone storage and biosynthesis. Furthermore, it has been demonstrated that semen contains abundant levels of polycationic amyloid fibrils. The natural role of these seminal amyloids remains elusive. Strikingly, however, they drastically enhance HIV-1 infection and may be exploited by the virus to increase its sexual transmission rate. Their strong activity in enhancing HIV-1 infection suggests that seminal amyloid might also promote transduction by retroviral vectors. Indeed, SEVI (semen-derived enhancer of virus infection), the best characterized seminal amyloid, boosts retroviral gene transfer more efficiently than conventional additives. However, the use of SEVI as laboratory tool for efficient retroviral gene transfer is limited because the polypeptide monomers are relatively expensive to produce. Furthermore, standardized production of SEVI fibrils with similar high activities is difficult to achieve because of the stochastic nature of the amyloid assembly process. These obstacles can be overcome by recently identified smaller peptides that spontaneously self-assemble into nanofibrils. These nanofibrils increase retroviral gene transfer even more efficiently than SEVI, are easy to produce and to handle, and seem to be safe as assessed in an ex vivo gene transfer study. Furthermore, peptide-based nanofibrils allow to concentrate viral particles by low-speed centrifugation. Specific adaption and customization of self-assembling peptides might lead to novel nanofibrils with versatile biological functions, e.g., targeted retroviral gene transfer or drug delivery.
Collapse
Affiliation(s)
- Christoph Meier
- Department of Organic Chemistry III, Ulm University, Ulm, Germany
| | | | | | | |
Collapse
|
47
|
Systematic improvement of lentivirus transduction protocols by antibody fragments fused to VSV-G as envelope glycoprotein. Biomaterials 2014; 35:4204-12. [DOI: 10.1016/j.biomaterials.2014.01.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 12/22/2022]
|
48
|
Ingrao D, Majdoul S, Seye AK, Galy A, Fenard D. Concurrent measures of fusion and transduction efficiency of primary CD34+ cells with human immunodeficiency virus 1-based lentiviral vectors reveal different effects of transduction enhancers. Hum Gene Ther Methods 2013; 25:48-56. [PMID: 24152219 DOI: 10.1089/hgtb.2013.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lentiviral vectors (LVs) are used for various gene transfer applications, notably for hematopoietic gene therapy, but methods are lacking for precisely evaluating parameters that control the efficiency of transduction in relation to the entry of vectors into target cells. We adapted a fluorescence resonance energy transfer-based human immunodeficiency virus-1 fusion assay to measure the entry of nonreplicative recombinant LVs in various cell types, including primary human hematopoietic stem progenitor cells (HSPCs), and to quantify the level of transduction of the same initially infected cells. The assay utilizes recombinant LVs containing β-lactamase (BLAM)-Vpr chimeric proteins (BLAM-LVs) and encoding a truncated form of the low-affinity nerve growth factor receptor (ΔNGFR). After infection of target cells with BLAM-LVs, the vector entry rapidly leads to BLAM-Vpr release into the cytoplasm, which is measured by cleavage of a fluorescent substrate using flow cytometry. Parallel cultures of the same infected cells show transduction efficiency resulting from ΔNGFR expression. This LV-based fusion/transduction assay is a dynamic and versatile tool, revealing, for instance, the postentry restrictions of LVs known to occur in cells of hematopoietic origin, especially human HSPCs. Furthermore, this BLAM-LV assay allowed us to evaluate the effect of cytokine prestimulation of HSPCs on the entry step of LVs. The assay also shows that transduction enhancers such as Vectofusin-1 or Retronectin can partially relieve the postentry block, but their effects differ in how they promote LV entry. In conclusion, one such assay should be useful to study hematopoietic postentry restrictions directed against LVs and therefore should allow improvements in various LV-based gene therapy protocols.
Collapse
|
49
|
Zhang L, Jiang C, Zhang H, Gong X, Yang L, Miao L, Shi Y, Zhang Y, Kong W, Zhang C, Shan Y. A novel modified peptide derived from membrane-proximal external region of human immunodeficiency virus type 1 envelope significantly enhances retrovirus infection. J Pept Sci 2013; 20:46-54. [PMID: 24254845 DOI: 10.1002/psc.2587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 11/12/2022]
Abstract
Efficient gene transfer is a critical goal in retroviral transduction. Several peptides capable of forming amyloid fibrils, such as the 39-residue semen-derived infection-enhancing peptide (SEVI), have demonstrated the ability to boost retroviral gene delivery. Here, a 13-residue peptide P13 (Ac-(671) NWFDITNWLWYIK(683)) derived from the membrane-proximal external region of the human immunodeficiency virus type 1 (HIV-1) gp41 transmembrane protein, together with its 16-residue peptide derivative (P16) were found to enhance HIV-1 infection significantly. Both peptides, P13 and P16, could form amyloid fibril structures to potently enhance HIV-1 infectivity. Further investigations showed that both aromatic Trp residues and cationic Lys residues contributed to the enhancement of HIV-1 infection by these two active peptides. P16 could more effectively augment HIV-1 YU-2 infection than SEVI, implying its potential applications as a tool in the lab to improve gene transfer rates.
Collapse
Affiliation(s)
- Lishuang Zhang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Denning W, Das S, Guo S, Xu J, Kappes JC, Hel Z. Optimization of the transductional efficiency of lentiviral vectors: effect of sera and polycations. Mol Biotechnol 2013; 53:308-14. [PMID: 22407723 DOI: 10.1007/s12033-012-9528-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lentiviral vectors are widely used as effective gene-delivery vehicles. Optimization of the conditions for efficient lentiviral transduction is of a high importance for a variety of research applications. Presence of positively charged polycations reduces the electrostatic repulsion forces between a negatively charged cell and an approaching enveloped lentiviral particle resulting in an increase in the transduction efficiency. Although a variety of polycations are commonly used to enhance the transduction with retroviruses, the relative effect of various types of polycations on the efficiency of transduction and on the potential bias in the determination of titer of lentiviral vectors is not fully understood. Here, we present data suggesting that DEAE-dextran provides superior results in enhancing lentiviral transduction of most tested cell lines and primary cell cultures. Specific type and source of serum affects the efficiency of transduction of target cell populations. Non-specific binding of enhanced green fluorescent protein (EGFP)-containing membrane aggregates in the presence of DEAE-dextran does not significantly affect the determination of the titer of EGFP-expressing lentiviral vectors. In conclusion, various polycations and types of sera should be tested when optimizing lentiviral transduction of target cell populations.
Collapse
Affiliation(s)
- Warren Denning
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | |
Collapse
|