1
|
Guard S, Watson SP. Tachykinin receptor types: Classification and membrane signalling mechanisms. Neurochem Int 2012; 18:149-65. [PMID: 20504688 DOI: 10.1016/0197-0186(91)90180-l] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of selective agonists in both functional and binding studies has provided unequivocal evidence for the existence of three types of tachykinin receptor (NK(1), NK(2) and NK(3)); there is also preliminary evidence for the existence of further subtypes. These results have been confirmed by the development of selective antagonists and by the identification and cloning of three distinct cDNA sequences. All three receptors belong to the superfamily of G protein coupled receptors and are linked to the phosphoinositide transmembrane-signalling pathway. The purpose of this article is to review recent developments in the pharmacology of each receptor with emphasis on the NK(3) type. In particular, the need to use selective agonists and antagonists to identify each receptor type is stressed.
Collapse
Affiliation(s)
- S Guard
- University Department of Pharmacology, South Parks Road, Oxford OX1 3QT, U.K
| | | |
Collapse
|
2
|
A highly-sulfated chondroitin sulfate, CS-E, adsorbs specifically to neurons with nuclear condensation. Neurosci Res 2012; 74:223-9. [PMID: 22985769 DOI: 10.1016/j.neures.2012.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 11/22/2022]
Abstract
A highly sulfated chondroitin sulfate, CS-E, prevents excitatory amino acid-induced neuronal cell death by an as yet unknown mechanism. To reveal this mechanism, we pretreated neurons in culture with various inhibitors, and examined whether N-methyl-D-aspartic acid (NMDA)-induced neuronal cell death was reduced in the presence of CS-E. The inhibitors of protein kinase C (PKC) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) ameliorated NMDA-induced neuronal cell death, but did not affect the neuroprotective activity of CS-E. Among the growth factors with which CS-E can interact, high concentration of BDNF protected against the NMDA-induced neuronal cell death and strengthened neuroprotection by CS-E. CS-E, but neither CS-A nor CS-C, adsorbed to a subclass of neurons with nuclear condensation, namely pyknosis. Contactin-1 (CNTN-1), a putative receptor for neuritogenic activity of CS-E, was present in cortical neurons, but a neutralizing antibody to CNTN-1 did not block neuroprotective activity of CS-E. The results suggest that CS-E may prevent the progression of cell death at the early stages of excitotoxicity through a signaling pathway different from CNTN-1.
Collapse
|
3
|
Kamboj A, Sandhir R. Perturbed Synaptosomal Calcium Homeostasis and Behavioral Deficits Following Carbofuran Exposure: Neuroprotection by N-Acetylcysteine. Neurochem Res 2007; 32:507-16. [PMID: 17268844 DOI: 10.1007/s11064-006-9264-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
The protective effects of N-acetylcysteine (NAC) on carbofuran-induced alterations in calcium homeostasis and neurobehavioral functions were investigated in rats. Rats were exposed to carbofuran at a dose of 1 mg/kg body weight, orally for a period of 28 days. A significant decrease in Ca2+ATPase activity was observed following carbofuran exposure with a concomitant increase in K+ -induced (45)Ca2+ uptake through voltage operated calcium channels. This was accompanied with a marked accumulation of intracellular free calcium in synaptosomes. The increase in intracellular calcium levels were associated with an increased lipid peroxidation and decreased glutathione content in carbofuran exposed animals. NAC administration (200 mg/kg body weight, orally) to the carbofuran exposed animals had a beneficial effect on carbofuran-induced alterations in calcium homeostasis and resulted in repletion in glutathione levels and resulted in lowering the extent of lipid peroxidation. Marked impairment in the motor functions were seen following carbofuran exposure, which were evident by the significant decrease in the locomotor activity and reduction in the retention time of the rats on rotating rods. Cognitive deficits were also seen as indicated by the significant decrease in active and passive avoidance response. NAC treatment, on the other hand, protected the animals against carbofuran-induced neurobehavioral deficits. The results support the hypothesis that carbofuran exerts its toxic effects by disrupting calcium homeostasis, which may have serious consequences on neuronal functioning, and clearly show the potential beneficial effects of N-acetylcysteine on carbofuran induced alterations in synaptosomal calcium homeostasis.
Collapse
Affiliation(s)
- Amit Kamboj
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
4
|
Wong CKM, Lai T, Holly JMP, Wheeler MH, Stewart CEH, Farndon JR. Insulin-like growth factors (IGF) I and II utilize different calcium signaling pathways in a primary human parathyroid cell culture model. World J Surg 2006; 30:333-45. [PMID: 16485066 DOI: 10.1007/s00268-005-0339-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND In most cell types, influx of calcium (Ca2+) induces a growth or secretory response. The opposite occurs in parathyroid (PTH), cells where there is an inverse relationship between intracellular Ca2+ concentration and PTH secretion. We have examined the effects of calcium channel and metabolism modulators on insulin-like growth factors (IGFs) in a parathyroid cell culture model. METHODS Cell cultures were prepared from 9 patients undergoing operation for hyperparathyroidism. Following adhesion, the cells were transferred to serum-free medium and dosed with IGF I, II +/- ethyleneglycol-bis(beta-aminoethyl)-N,N,N',N'-tetraacetic acid (EGTA), nifedipine, nickel, 2-aminoethoxy-diphenylborate (2-APB), or dantrolene. Proliferation (96 hours) was assessed by measuring tritiated thymidine incorporation and PTH release (1 and 3 hours) assayed by IRMA. RESULTS Both IGF I and II increased DNA synthesis to 162.8% +/- 10.6% (SEM) and 131.1% +/- 7.7%, respectively (P < 0.05). EGTA at 0.2 mmol (ionized Ca2+ 0.2 mmol) did not affect the response to both IGFs. EGTA at 2 mmol (ionized Ca2+ 0 mmol) reduced the DNA synthesis of IGF I and II to 29% and 26%, respectively (P < 0.05). Nifedipine and nickel (nonspecific Ca2+ channel blocker) were equally potent in negating the mitogenic effects of both IGFs. 2-APB (IP3R blocker) reduced the basal DNA synthesis to 51.3% +/- 8.4% but had no effect on either IGF. Dantrolene (ryanodine receptor blocker) negated IGF II induced mitogenisis (74.2% +/- 6.7%) and partially inhibited IGF I mitogenesis (123% +/- 6%) (P < 0.05). The rate of PTH secretion was greater after IGF II stimulation than after IGF I stimulation. CONCLUSIONS IGFs I and II induce mitogenesis by different calcium signaling pathways. These data suggest that parathyroid cells may utilize different calcium signaling pathways to distinguish growth factors and serum calcium changes.
Collapse
Affiliation(s)
- C K M Wong
- Department of Endocrine Surgery, Frenchay Hospital, Frenchay Park, Bristol, BS16 1LE, United Kingdom.
| | | | | | | | | | | |
Collapse
|
5
|
Young KW, Garro MA, Challiss RAJ, Nahorski SR. NMDA‐receptor regulation of muscarinic‐receptor stimulated inositol 1,4,5‐trisphosphate production and protein kinase C activation in single cerebellar granule neurons. J Neurochem 2004; 89:1537-46. [PMID: 15189357 DOI: 10.1111/j.1471-4159.2004.02458.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inositol 1,4,5-trisphosphate (InsP(3)) production in single cerebellar granule neurons (CGNs) grown in culture was measured using the PH domain of phospholipase C delta1 tagged with enhanced green fluorescent protein (eGFP-PH(PLCdelta1)). These measurements were correlated with changes in intracellular free Ca2+ determined by single cell imaging. In control CGNs, intracellular Ca2+ stores appeared replete. However, the refilling state of these stores appeared dependent on the fluorophore used to measure Ca2+-release. Thus, methacholine (MCH), acting via muscarinic acetylcholine-receptors (mAchRs), mobilised intracellular Ca2+ in cells loaded with fluo-3 and fura-4f, but not fura-2. Confocal measurements of single CGNs expressing eGFP-PH(PLCdelta1) demonstrated that MCH stimulated a robust peak increase in InsP(3), which was followed by a sustained plateau phase of InsP(3) production. In contrast, glutamate-induced InsP(3) signals were weak or not detectable. MCH-stimulated InsP(3) production was reduced by chelation of intracellular Ca2+ with BAPTA, and emptying of intracellular stores with thapsigargin, indicated a positive feedback effect of Ca2+ mobilisation onto PLC activity. In CGNs, NMDA- and KCl-mediated Ca2+-entry significantly enhanced MCH-induced InsP(3) production. Furthermore, mAchR-mediated PLC activation appeared sensitive to the full dynamic range of intracellular Ca2+ increases stimulated by 100 microm NMDA. This dynamic regulation was also observed at the level of PKC activation indicated by an enhanced translocation of eGFP-tagged myristoylated alanine-rich C kinase substrate (MARCKS) protein in cells stimulated with MCH. Thus, NMDA-mediated Ca2+ influx and PLC activation may represent a coincident-detection system whereby ionotropic and metabotropic signals combine to stimulate InsP(3) production and PKC-mediated phosphorylation events in CGNs.
Collapse
Affiliation(s)
- Kenneth W Young
- Department of Cell Physiology and Pharmacology, University of Leicester, Medical Sciences Building, University Road, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
6
|
Nahorski SR, Young KW, John Challiss RA, Nash MS. Visualizing phosphoinositide signalling in single neurons gets a green light. Trends Neurosci 2003; 26:444-52. [PMID: 12900176 DOI: 10.1016/s0166-2236(03)00178-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is now substantial evidence, from single-cell imaging, that complex patterns of release from Ca(2+) stores play an important role in regulating synaptic efficacy and plasticity. Moreover, the major mechanism of store release depends on the generation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] through the action of phospholipase(s) C on phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)], and several neurotransmitters can enhance receptor-mediated activation of this enzyme. The recent development of techniques to image real-time changes in PtdIns(4,5)P(2) hydrolysis according to generation of Ins(1,4,5)P(3) and diacylglycerol in single cells has significantly advanced our ability to investigate these signalling pathways, particularly in relation to single-cell Ca(2+) signals. This article reviews these new approaches and how they have provided novel insights into mechanisms underlying spatio-temporal Ca(2+) signals and phospholipase C activation in neurons.
Collapse
Affiliation(s)
- Stefan R Nahorski
- Department of Cell Physiology and Pharmacology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, LE1 9HN, Leicester, UK.
| | | | | | | |
Collapse
|
7
|
Treiman DM. Will brain damage after status epilepticus be history in 2010? PROGRESS IN BRAIN RESEARCH 2002; 135:471-8. [PMID: 12143365 DOI: 10.1016/s0079-6123(02)35044-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- David M Treiman
- Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| |
Collapse
|
8
|
Leonard SE, Kirby R. The role of glutamate, calcium and magnesium in secondary brain injury. J Vet Emerg Crit Care (San Antonio) 2002. [DOI: 10.1046/j.1534-6935.2002.00003.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Different roles of IP4
and IP3
in the signal pathway coupled to the TRH receptor in microinjected Xenopus
oocytes. FEBS Lett 2001. [DOI: 10.1016/0014-5793(89)80026-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Nagy JI, Dermietzel R. Gap junctions and connexins in the mammalian central nervous system. GAP JUNCTIONS 2000. [DOI: 10.1016/s1569-2558(00)30009-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Affiliation(s)
- M J Berridge
- The Babraham Institute, Babraham Laboratory of Molecular Signalling, Cambridge, United Kingdom
| |
Collapse
|
12
|
Mistry R, Golding N, Challiss RA. Regulation of phosphoinositide turnover in neonatal rat cerebral cortex by group I- and II- selective metabotropic glutamate receptor agonists. Br J Pharmacol 1998; 123:581-9. [PMID: 9504400 PMCID: PMC1565187 DOI: 10.1038/sj.bjp.0701626] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The interactive effects of different metabotropic glutamate (mGlu) receptor subtypes to regulate phosphoinositide turnover have been studied in neonatal rat cerebral cortex and hippocampus by use of agonists and antagonists selective between group I and II mGlu receptors. 2, The group II-selective agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC; 100 microM) had no effect on basal total inositol phosphate ([3H]-InsPx) accumulation (in the presence of Li+) in myo-[3H]-inositol pre-labelled slices, but enhanced the maximal [3H]-InsPx response to the group I-selective agonist (S)-3,5-dihydroxyphenylglycine (DHPG) by about 100% in both hippocampus and cerebral cortex. In cerebral cortex the enhancing effect of 2R,4R-APDC occurred with respect to the maximal responsiveness and had no effect on EC50 values for DHPG (-log EC50 (M): control, 5.56+/-0.05; +2R,4R-APDC, 5.51+/-0.08). 2R,4R-APDC also caused a significant enhancement of the DHPG-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) mass response over an initial 0-300 s time-course. 3. The enhancing effects of 2R,4R-APDC on DHPG-stimulated [3H]-InsPx accumulation were observed in both the presence and nominal absence of extracellular Ca2+, and irrespective of whether 2R,4R-APDC was added before, simultaneous with, or subsequent to DHPG. Furthermore, increasing the tissue cyclic AMP concentration up to 100 fold had no effect on DHPG-stimulated Ins(l,4,5)P3 accumulation in the absence or presence of 2R,4R-APDC. 4. 2R,4R-APDC and (2S, 1'R, 2'R, 3'R)-2-(2,3-dicarboxylcyclopropyl)glycine (DCG-IV), the latter agent in the presence of MK-801 to prevent activation of NMDA-receptors, each inhibited forskolin-stimulated cyclic AMP accumulation by about 50%, with respective EC50 values of 1.3 and 0.04 microM (-log EC 50 (M): 2R,4R-APDC, 5.87+/-0.09; DCG-IV, 7.38+/-0.05). In the presence of DHPG (30 microM), 2R,4R-APDC and DCG-IV also concentration-dependently increased [3H]-InsPx accumulation with respective EC50 values of 4.7 and 0.28 microM (-log EC50 (M): 2R,4R-APDC, 5.33+/-0.04; DCG-IV, 6.55+/-0.09) which were 3-7 fold rightward-shifted relative to the adenylyl cyclase inhibitory responses. 5. The group II-selective mGlu receptor antagonist LY307452 (30 microM) caused parallel rightward shifts in the concentration-effect curves for inhibition of forskolin-stimulated adenylyl cyclase, and enhancement of DHPG-stimulated [3H]-InsPx accumulation, by 2R,4R-APDC yielding similar equilibrium dissociation constants (KdS, 3.7+/-1.1 and 4.1+/-0.4 microM respectively) for each response. 6. The ability of 2R,4R-APDC to enhance receptor-mediated [3H]-InsPx accumulation appeared to be agonist-specific; thus although DHPG (100 microM) and the muscarinic cholinoceptor agonist carbachol (10 microM) stimulated similar [3H]-InsPx accumulations, only the response to the former agonist was enhanced by co-activation of group II mGlu receptors. 7. These data demonstrate that second messenger-generating phosphoinositide responses stimulated by group I mGlu receptors are positively modulated by co-activation of group II mGlu receptors in cerebral cortex and hippocampus. The data presented here are discussed with respect to the possible mechanisms which might mediate the modulatory activity, and the physiological and pathophysiological significance of such crosstalk between mGlu receptors.
Collapse
Affiliation(s)
- R Mistry
- Department of Cell Physiology and Pharmacology, University of Leicester
| | | | | |
Collapse
|
13
|
GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J Neurosci 1996. [PMID: 8815913 DOI: 10.1523/jneurosci.16-20-06342.1996] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
gamma-Aminobutyric acid (GABA)A receptor-mediated inhibitory synaptic transmission in visual cortex undergoes long-term potentiation (LTP), which is input-specific and associative. The present study, conducted under a blockade of ionotropic glutamate receptors, demonstrates an induction mechanism of LTP considerably different from those of associative LTP at excitatory synapses. Inhibitory responses of layer V cells evoked by layer IV stimulation were studied in developing rat visual cortex slices by using intracellular and whole-cell recording methods. LTP induction was prevented by the application of an antagonist for GABAB receptors but not for GABAA or metabotropic glutamate receptors. Inhibition of postsynaptic G-proteins, phospholipase C, inositol trisphosphate (IP3) receptors, or Ca2+ increase prevented the generation of LTP, as did the blockade of GABAB receptors. In rat cerebral cortex, GABAB receptor activation is not known to affect the IP3 level by itself. However, it facilitates IP3 formation induced by the activation of alpha 1 adrenoceptors, which are believed to be located postsynaptically. Accordingly, I examined the involvement of these and other amine receptors, including histamine H1, muscarinic acetylcholine, and serotonin 5-HT2 receptors, all of which are coupled to IP3 formation. Only the blockade of alpha 1 adrenoceptors or serotonin 5-HT2 receptors prevented LTP induction in most, but not all, of the cells. These results suggest that LTP induction requires the activation of postsynaptic GABAB receptors and that its effect is mediated at least partly by facilitation of the monoamine-induced IP3 formation, which then causes Ca2+ release from the internal stores in postsynaptic cells.
Collapse
|
14
|
Synthesis of L-chiro-inositol-1,2,3-trisphosphate and -1,2,3,5-tetrakisphosphate by ferrier reaction of methyl α-D-mannopyranoside. Bioorg Med Chem Lett 1996. [DOI: 10.1016/s0960-894x(96)00252-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Pokorski M, Walski M, Matysiak Z. A phospholipase C inhibitor impedes the hypoxic ventilatory response in the cat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 410:397-403. [PMID: 9030332 DOI: 10.1007/978-1-4615-5891-0_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Pokorski
- Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
16
|
Potter BVL, Lampe D. Die Chemie der Inositlipid-vermittelten zellulären Signalübertragung. Angew Chem Int Ed Engl 1995. [DOI: 10.1002/ange.19951071804] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Fontana G, Rogowski RS, Blaustein MP. Kinetic properties of the sodium-calcium exchanger in rat brain synaptosomes. J Physiol 1995; 485 ( Pt 2):349-64. [PMID: 7666363 PMCID: PMC1157997 DOI: 10.1113/jphysiol.1995.sp020734] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The kinetic properties of the internal Na+ (Na+i)- dependent 45Ca2+ influx and external Na+ (Na+o)-dependent 45Ca2+ efflux were determined in isolated rat brain nerve terminals (synaptosomes) under conditions which the concentrations of internal Na+ ([Na+]i), external Na+ ([Na+]o), external Ca2+ (Ca2+]o), and external K+ ([K+]o) were varied. Both fluxes are manifestations of Na(+)-Ca2+ exchange. 2. Ca2+ uptake was augmented by raising [Na+]i and / or lowering [Na+]o. The increase in Ca2+ uptake induced by removing external Na+ was, in most instances, quantitatively equal to the Na+i-dependent Ca2+ uptake. 3. The Na+i-dependent Ca2+ uptake (measured at 1 s) was activated with an apparent half-maximal [Ca2+]o (KCa(o)) of about 0.23 mM. External Na+ inhibited the uptake in a non- competitive manner: increasing [Na+]o from 4.7 to 96 mM reduced the maximal Na+(i)-dependent Ca2+ uptake but did not affect KCa(o). 4. The inhibition of Ca2+ uptake by Na+o was proportional to ([Na+]o)2, and had a Hill coefficient (nH) of approximately 2.0. The mean apparent half-maximal [Na+]o for inhibition (KI(Na)) was about 60mM, and was independent of [Ca2+]o between 0.1 and 1.2mM; this, too, is indicative of non-competitive inhibition. 5. Low concentrations of alkali metal ions (M+) in the medium, including Na+, stimulated the Na+i-dependent uptake. The external Na+ and K+ concentrations required for apparent half-maximal activation (KM(Na) and KM(K), respectively) were 0.12 and 0.10mM. Thus, the relationship between Ca2+ uptake and [Na+]o was biphasic: uptake was stimulated by [Na+]o < or = 10 mM, and inhibited by higher [Na+]o. 6. The calculated maximal Na+i-dependent Ca2+ uptake (Jmax) was about 1530 pmol (mg protein) -1s-1 at 30 degrees C saturating [Ca2+]o and external M+ concentration ([M+]o), and with negligible inhibition by external Na+. 7. Internal Na+ activated the Ca2+ uptake with an apparent half-maximal concentration (KNa(i)) of about 20 mM and a Hill coefficient, nH, of approximately 3.0. 8. The Jmax for the Na+o-dependent efflux of Ca2+ from 45Ca(2+)-loaded synaptosomes treated with carbonyl cyanide p-trifluormethoxy-phenylhydrazone (FCCP) and caffeine (to release stored Ca2+ and raise the internal Ca2+ concentration ([Ca2+]i) was about 1800-2000 pmol (mg protein -1s-1 at 37 degrees C. 9. When the membrane potential (Vm) was reduced (depolarized) by increasing [K+]o, the Na+i-dependent Ca2+ influx increased, and the Na+o-dependent Ca2+ efflux declined. Both fluxes changed about 2-fold per 60 mV change in Vm. This voltage sensitivity corresponds to the movement of one elementary charge through about 60% of the membrane electric field. The symmetry suggests that the voltage-sensitive step is reversible. 10. The Jmax values for both Ca2P influx and efflux correspond to a Na+-Ca2+ exchange-mediated flux of about 425-575 jumol Ca2P (1 cell water)-' s-' or a turnover of about one quarter of the total synaptosome Ca2P in 1 s. We conclude that the Na+-Ca2P exchanger may contribute to Ca2P entry during nerve terminal depolarization; it is likely to be a major mechanism mediating Ca2P extrusion during subsequent repolarization and recovery.
Collapse
Affiliation(s)
- G Fontana
- Department of Physiology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
18
|
Helm PJ, Franksson O, Carlsson K. A confocal scanning laser microscope for quantitative ratiometric 3D measurements of [Ca2+] and Ca2+ diffusions in living cells stained with Fura-2. Pflugers Arch 1995; 429:672-81. [PMID: 7792144 DOI: 10.1007/bf00373988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A confocal scanning laser microscope (CSLM) for observation and quantitative ratiometric measurements of the intracellular dynamics of Ca2+ ions in living neurons has been developed. The instrument consists of a UV-enhanced CSLM, an optical arrangement providing simultaneous excitation at two wavelengths, an electronic arrangement for processing the simultaneous fluorescence response, and software for computing the absolute Ca2+ concentrations, ([Ca2+]). The instrument can be used for any excitation ratiometric measurements, provided that the dye substance used is excitable by wavelengths between 334 nm and 750 nm (such as, e.g. Fura-2). The spatial resolution of the CSLM, as well as a temporal resolution of 20 ms per line (maximum sampling rate) for dynamic measurements are provided by the instrument. Using Fura-2 in calibrated Ca2+ buffer solutions, the instrument measures [Ca2+] between 0 and 1.35 mumol.l-1 with an error of less than 1%. The capability of the instrument to measure absolute [Ca2+] was verified by recording fluorescence images of test solutions with well defined [Ca2+] values (Molecular Probes, Eugene, Ore., USA, C-3009 calibration solutions). In order to verify the dynamic capability of the instrument in real biological specimens, fluorescence changes of Fura-2 that were due to an intracellular flux of Ca2+ ions, and to an increase of [Ca2+]i (the intracellular Ca2+ concentration) have been recorded in Fura-2-loaded cultured cells of the line TE 671.
Collapse
Affiliation(s)
- P J Helm
- Department of Cell Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | |
Collapse
|
19
|
Abstract
The pathophysiology of ischaemia depends on the residual cerebral blood flow. As a result, it is different in global ischaemia, when compared with focal ischaemia, where the centre area is surrounded with an area called an ischaemic penumbra. Ischaemia results from a sudden failure in the oxygen and glucose supply. Oxidative phosphorylation fails, a major event that is responsible for all the other reactions. Anaerobic metabolism produces lactate and H+. Cell membrane ionic pumps are inactivated, which results in a breakdown of ionic homeostasis. Ca++ and Na+ penetrate into the cells, as K+ is released. The energy failure causes an extracellular accumulation of excitatory amino-acids, thus eliciting a hyperstimulation of the NMDA receptors. These receptors are hyperactivated as a result of the deterioration in the control systems with, especially, the blockade of the NMDA receptor by Mg++. As a consequence, there is a massive entry of Ca++ into the cell, including a series of enzymatic reactions involving phospholipases, proteases and endonucleases. Reperfusion will cause toxic lesions by producing free radicals, due to the action of arachidonic acid, xanthine oxidase and nitric oxide. The decrease in cell energetic supplies, as well as the overactivation of enzymes and the production of free radicals, result in cell death.
Collapse
Affiliation(s)
- E Escuret
- Département d'Anesthésie-Réanimation B, Hôpital Saint-Eloi, Montpellier
| |
Collapse
|
20
|
Campbell IC, Abdulla EM. In Vitro Systems for the Investigation of Calcium Homeostasis and Calcium-Induced Cell Damage. Neurotoxicology 1995. [DOI: 10.1016/b978-012168055-8/50044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Chung SK, Moon SH. Synthesis and biological activities of (4,6-di-O-phosphonato-beta-D-mannopyranosyl)-methylphosphonate as an analogue of 1L-myo-inositol 1,4,5-trisphosphate. Carbohydr Res 1994; 260:39-50. [PMID: 8062288 DOI: 10.1016/0008-6215(94)80020-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synthesis of the alpha and beta anomers of the title compound (1) was accomplished from D-mannose. In the key step, the phosphonate analogues of the mannopyranosyl phosphates were prepared by a direct Wadsworth-Emmons condensation of a protected mannose derivative (8) with tetraethyl methylenebisphosphonate under two-phase conditions. In vitro bioassays have shown that the beta anomer (1a) is a potent inhibitor of Ins(1,4,5)P3 3-kinase and inhibits other enzymes.
Collapse
Affiliation(s)
- S K Chung
- Department of Chemistry, Pohang Institute of Science & Technology, Korea
| | | |
Collapse
|
22
|
Bevilacqua JA, Downes CP, Lowenstein PR. Visualization of agonist-stimulated inositol phospholipid turnover in individual neurons of the rat cerebral cortex and hippocampus. Neuroscience 1994; 60:945-58. [PMID: 7936213 DOI: 10.1016/0306-4522(94)90274-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel autoradiographic method to identify individual neurons responding to neurotransmitter stimulation with increased phosphoinositide turnover is described. When phosphoinositide-coupled receptors are activated, phosphatidylinositol 4,5-bisphosphate is hydrolysed by phospholipase C generating the two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol. During prolonged receptor stimulation, both second messengers are actively recycled to maintain the effective intracellular levels of agonist-sensitive phosphoinositides. Lithium ions inhibit this recycling pathway by blocking the recovery of free inositol from inositol 1,4,5-trisphosphate thus leading to the accumulation of phosphatidyl cytidine monophosphate, a membrane bound molecule which is the activated precursor of the synthesis of phosphoinositides. Therefore, addition of excess myo-inositol reverts the effects of lithium inhibition. Thus, taking advantage of this fact and using [3H]cytidine as precursor, phosphatidyl [3H]cytidine monophosphate accumulation was induced in rat neocortical and hippocampal slices after muscarinic or metabotropic glutamate receptor stimulation. The labelled slices were then fixed, dehydrated and embedded in Durcupan resin. Semithin sections (1 micron thick) were cut and exposed to autoradiographic emulsion for several weeks. Biochemical analysis of the incorporation of [3H]cytidine into the chloroform extracted (containing lipids) and the alkali-solubilized (containing nucleic acids and proteins) fractions were carried out in parallel with morphological studies. The stimulation of both receptor types induced labelling of neurons in neocortex and hippocampus. In labelled cells silver grains were characteristically observed over the cytoplasm surrounding the nucleus and main dendritic processes. The anatomical location and distribution of labelled cells as well as the levels of response obtained in both brain regions studied, was found to be receptor specific. Inclusion of 30 mM myo-inositol in the incubation media reversed completely both the accumulation of phosphatidyl [3H]cytidine monophosphate and the labelling of cells, thus demonstrating that the label detected autoradiographically corresponds to phosphatidyl [3H]cytidine monophosphate. It is concluded that the method is sensitive and specific, allowing identification of individual neurons in both neocortical and hippocampal slices and after stimulation of both muscarinic and metabotropic glutamate receptor subtypes. The method may open a new means to study the phosphoinositide second messenger signalling pathway and the cells in which it takes place.
Collapse
Affiliation(s)
- J A Bevilacqua
- Department of Physiology, University of Wales College of Cardiff, U.K
| | | | | |
Collapse
|
23
|
Batty IH, Downes CP. The inhibition of phosphoinositide synthesis and muscarinic-receptor-mediated phospholipase C activity by Li+ as secondary, selective, consequences of inositol depletion in 1321N1 cells. Biochem J 1994; 297 ( Pt 3):529-37. [PMID: 8110190 PMCID: PMC1137866 DOI: 10.1042/bj2970529] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Conditions are described for culture of 1321N1 cells under which cellular inositol is decreased from approximately 20 mM to < 0.5 mM but phosphoinositide concentrations are unaffected. The effects of the muscarinic-receptor agonist carbachol (1 mM) and/or LiCl (10 mM) on phosphoinositide turnover in these or in inositol-replete cells was examined after steady-state [3H]inositol labelling of phospholipid pools. In both inositol-replete and -depleted cells, carbachol stimulated similar initial (0-15 min) rates of phospholipase C (PLC) activity, in the presence of Li+. Subsequently (> 30-60 min) stimulated PLC activity and [3H]PtdIns concentrations declined dramatically only in depleted cells. In inositol-depleted cells, carbachol alone evoked increased concentrations of [3H]inositol, [3H]InsP1, [3H]InsP2, [3H]InsP3 and [3H]InsP4, which were largely sustained over 90 min, and concentrations of [3H]PtdIns, [3H]PtdInsP and [3H]PtdInsP2 were decreased only to approximately 82, 84 and 93% of control respectively. In the presence of Li+ in these cells, the stimulated rise in [3H]inositol was prevented and, although accumulation of [3H]InsP1, [3H]InsP2 and [3H]InsP3 was initially (0-30 min) potentiated, rates of accumulation of [3H]InsP1 and concentrations of [3H]polyphosphates later (> 30-60 min) declined, and concentrations of [3H]PtdIns, [3H]PtdInsP and [3H]PtdInsP2 were decreased respectively to approximately 39, 48 and 81% of control. After 60 min in the presence of both carbachol and Li+, stimulated PLC activity was decreased by approximately 70% compared with the initial rate in depleted cells. This decreased PLC activity was reflected by changes in the stimulated concentrations of [3H]Ins(1,3,4)P3 but not of [3H]Ins(1,4,5)P3, but effects of Li+ on the latter may have been obscured by the demonstrated, concomitant and equal stimulated accumulation of [3H]inositol 1:2cyclic,4,5-trisphosphate. These data suggest that receptor-mediated PLC activity is selectively impaired by Li+ as a secondary consequence of inositol monophosphatase inhibition in cells which are highly dependent on inositol re-cycling, but imply that, although Li+ attenuation of PLC activity correlates closely with parameters indicative of limiting inositol supply, it is not readily attributed to decreased PtdInsP2 availability. The potential for complex regulation of PLC and PtdIns synthase is discussed.
Collapse
Affiliation(s)
- I H Batty
- Department of Biochemistry, University of Dundee, Scotland, U.K
| | | |
Collapse
|
24
|
Rodrigo J, Uttenthal O, Bentura ML, Maeda N, Mikoshiba K, Martinez-Murillo R, Polak JM. Subcellular localization of the inositol 1,4,5-trisphosphate receptor, P400, in the vestibular complex and dorsal cochlear nucleus of the rat. Brain Res 1994; 634:191-202. [PMID: 8131069 DOI: 10.1016/0006-8993(94)91922-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The subcellular localization of the inositol 1,4,5-trisphosphate receptor protein, P400, was studied in the vestibular complex, an area to which Purkinje cells project, as well as in neurons of the dorsal cochlear nucleus and in ectopic Purkinje cells of adult rat brain. The receptor was demonstrated by electron microscopical immunocytochemistry using the avidin-biotin peroxidase complex procedure, with the monoclonal antibody 4C11 raised against mouse cerebellar inositol 1,4,5-trisphosphate receptor protein. Immunoreactivity was found in preterminal fibres and terminal boutons in the nuclei of the vestibular complex, generally associated with the subsurface systems and stacks or fragments of smooth endoplasmic reticulum. Ectopic Purkinje cells and cartwheel cells of the dorsal cochlear nucleus also displayed immunoreactivity, but this was much less intense in the latter. The results of the present study suggest that this receptor protein, involved in the release of Ca2+, is located in sites that enable it to influence the synthesis, transport and release of neurotransmitters.
Collapse
Affiliation(s)
- J Rodrigo
- Unidad de Neuroanatomía Funcional, Instituto Cajal, C.S.I.C., Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Challis RA, Mistry R, Gray DW, Nahorski SR. Modulation of muscarinic cholinoceptor-stimulated inositol 1,4,5-trisphosphate accumulation by N-methyl-D-aspartate in neonatal rat cerebral cortex. Neuropharmacology 1994; 33:15-25. [PMID: 7910385 DOI: 10.1016/0028-3908(94)90092-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mechanisms by which N-methyl-D-aspartate (NMDA) receptor activation can modulate muscarinic receptor-stimulated phosphoinositide turnover have been studied in neonatal rat cerebral cortex slices. A maximally effective concentration of carbachol (1 mM) caused a large stimulation of both total [3H]inositol phosphate ([3H]InsPx) accumulation (30-40-fold over basal levels after 15 min in the presence of 5 mM LiCl) and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] mass accumulation (consisting of a rapid peak increase of about 8-10-fold within 15 sec followed by a sustained plateau rise of 4-5-fold which persisted for > 10 min). Low concentrations of NMDA enhanced carbachol-stimulated [3H]InsPx and Ins(1,4,5)P3 accumulations with a maximal effect being observed at 10 microM NMDA. However, at higher concentrations of NMDA (30-300 microM) a dramatic inhibition of these indices of phosphoinositide turnover was observed. Time-course studies demonstrated that NMDA (100 microM) caused a significant enhancement of the initial increases in [3H]InsPx and Ins(1,4,5)P3 accumulations stimulated by carbachol, with the profound inhibitory effects becoming evident at longer incubation times. The modulatory effects of NMDA were antagonized by D-2-amino-5-phosphonopentanoate and MK-801. Reducing extracellular calcium concentration ([Ca2+]e) to the low micromolar range decreased basal Ins(1,4,5)P3 accumulation and attenuated the response to carbachol. Under these conditions NMDA (10-100 microM) caused only a potentiation of agonist-stimulated Ins(1,4,5)P3 accumulation. Under control conditions ([Ca2+]e = 1.3 mM), addition of MK-801 (1 microM) 10 min after carbachol + 100 microM NMDA challenge failed to reverse the inhibitory effect of NMDA on carbachol-stimulated [3H]InsPx accumulation. Furthermore, pre-incubation of cerebral cortex slices with 100 microM NMDA for 15 min (followed by extensive washing of slices to remove NMDA) dramatically decreased [3H]inositol incorporation into the cellular inositol phospholipid fraction and decreased basal and carbachol-stimulated Ins(1,4,5)P3 mass accumulations. We conclude that the enhancement of agonist-stimulated phosphoinositide turnover seen at concentrations of NMDA up to 10 microM may be due to Ca2+ entry and Ca2+ facilitation of phosphoinositide-specific phospholipase C activity. In contrast, the inhibitory effect of high concentrations of NMDA on agonist-stimulated phosphoinositide turnover may be due to progressive, irreversible and, at least in part, Ca(2+)-dependent damage to the cell populations in the slice preparation responding to muscarinic-receptor stimulation.
Collapse
Affiliation(s)
- R A Challis
- Department of Cell Physiology and Pharmacology, University of Leicester, U.K
| | | | | | | |
Collapse
|
26
|
Wilcox RA, Whitham EM, Liu C, Potter BV, Nahorski SR. Myo-inositol 1,3,4,5-tetrakisphosphate can independently mobilise intracellular calcium, via the inositol 1,4,5-trisphosphate receptor: studies with myo-inositol 1,4,5-trisphosphate-3-phosphorothioate and myo-inositol hexakisphosphate. FEBS Lett 1993; 336:267-71. [PMID: 8262243 DOI: 10.1016/0014-5793(93)80817-e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] acts as a full agonist for Ca2+ release in saponin-permeabilised SH-SY5Y neuroblastoma cells. Studies were conducted in the presence of myo-inositol hexakisphosphate (InsP6, 10 microM), to inhibit the Ins(1,3,4,5)P(4)-3-phosphatase catalysed back conversion of Ins(1,3,4,5)P4 to Ins(1,4,5)P3. HPLC analysis confirmed that Ins(1,3,4,5)P4 releases the entire content of Ins(1,4,5)P3-sensitive intracellular Ca2+ stores, independent of 3-phosphatase activity. Further we utilised racemic myo-inositol 1,4,5-trisphosphate-3-phosphorothioate [DL-Ins(1,3,4,5)P(4)-3S], a novel intrinsically Ins(1,3,4,5)P(4)-3-phosphatase resistant Ins(1,3,4,5)P4 analogue. DL-Ins(1,3,4,5)P(4)-3S specifically displaced [3H]Ins(1,4,5)P3 from bovine adrenal cortex Ins(1,4,5)P3 binding sites (IC50 = 889 nM, compared to Ins(1,4,5)P3, IC50 = 4.4 nM and Ins(1,3,4,5)P4, IC50 = 152 nM). DL-Ins(1,3,4,5)P(4)-3S was a full agonist for Ca2+ release (EC50 = 4.7 microM), being 90- and 2-fold less potent than Ins(1,4,5)P3 and Ins(1,3,4,5)P4 (with InsP6), respectively. DL-Ins(1,3,4,5)P(4)-3S will be an important tool for identification of potentially exclusive Ins(1,3,4,5)P4 second messenger functions, since its resistance to 3-phosphatase action precludes the inconvenient artefact of steady state Ins(1,4,5)P3 generation.
Collapse
Affiliation(s)
- R A Wilcox
- Department of Cell Physiology and Pharmacology, University of Leicester, UK
| | | | | | | | | |
Collapse
|
27
|
Rodrigo J, Suburo AM, Bentura ML, Fernández T, Nakade S, Mikoshiba K, Martínez-Murillo R, Polak JM. Distribution of the inositol 1,4,5-trisphosphate receptor, P400, in adult rat brain. J Comp Neurol 1993; 337:493-517. [PMID: 8282854 DOI: 10.1002/cne.903370311] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distribution of the inositol 1,4,5-trisphosphate receptor protein, P400, was investigated in adult rat brain by immunocytochemistry with the monoclonal antibody 4C11 raised against mouse cerebellar inositol 1,4,5-trisphosphate receptor protein. Immunoreactive neuronal cell bodies were detected in the cerebral cortex, the claustrum, the endopiriform nucleus, the corpus callosum, the anterior olfactory nuclei, the olfactory tubercle, the nucleus accumbens, the lateral septum, the bed nucleus of the stria terminalis, the hippocampal formation, the dentate gyrus, the caudate-putamen, the fundus striatum, the amygdaloid complex, the thalamus, the caudolateral part of the hypothalamus, the supramammillary nuclei, the substantia nigra, the pedunculopontine tegmental nucleus, the ventrotegmental area, the Purkinje cells in the cerebellum, the dorsal cochlear nucleus, the subnucleus oralis and caudalis of trigeminal nerve, and the dorsal horn of the spinal cord. Immunoreactive fibres were found in the medial forebrain bundle, the globus pallidus, the stria terminalis, the pyramidal tract, the spinal tract of trigeminal nerve, and the ventral horn of spinal cord. Nerve fibres forming a dense plexus ending in terminal-like boutons were detected in relation to nonimmunoreactive neurons of the dentate, interpositus, and fastigial nuclei of the cerebellum and around neurons of the vestibular nuclei. This receptor protein binds a specific second messenger, inositol 1,4,5-trisphosphate, which produces a mobilization of intracellular Ca2+ and a modulation of transmitter release.
Collapse
Affiliation(s)
- J Rodrigo
- Unidad de Neuroanatomía Funcional, Instituto Cajal, C.S.I.C., Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jenkinson S, Patel N, Nahorski SR, Challiss RA. Comparative effects of lithium on the phosphoinositide cycle in rat cerebral cortex, hippocampus, and striatum. J Neurochem 1993; 61:1082-90. [PMID: 8395558 DOI: 10.1111/j.1471-4159.1993.tb03623.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of lithium on muscarinic cholinoceptor-stimulated phosphoinositide turnover have been investigated in rat hippocampal, striatal, and cerebral cortical slices using [3H]inositol or [3H]cytidine prelabelling and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] mass determination methods. Carbachol addition resulted in maintained increases in Ins(1,4,5)P3 and Ins(1,3,4,5)P4 mass levels in hippocampus and cerebral cortex, whereas in striatal slices these responses declined significantly over a 30-min incubation period. Carbachol-stimulated Ins(1,4,5)P3 and Ins(1,3,4,5)P4 accumulations were inhibited by lithium in all brain regions studied in a time- and concentration-dependent manner. For example, in hippocampal slices significant inhibitory effects of LiCl were observed at times > 10 min after agonist challenge; IC50 values for inhibition of agonist-stimulated Ins(1,4,5)P3 and Ins(1,3,4,5)P4 accumulations by lithium were 0.22 +/- 0.09 and 0.33 +/- 0.13 mM, respectively. [3H]CMP-phosphatidate accumulation increased in all brain regions when slices were stimulated by agonist and lithium. The ability of myo-inositol to reverse these effects, as well as lithium-suppressed Ins(1,4,5)P3 accumulation, implicates myo-inositol depletion in the action of lithium in the hippocampus and cortex at least. The results of this study suggest that although significant differences in the magnitude and time courses of changes in inositol (poly)phosphate metabolites occur in different brain regions, lithium evokes qualitatively similar enhancements of [3H]inositol monophosphate and [3H]-CMP-phosphatidate levels and inhibitions of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 accumulations. However, the inability of striatal slices to sustain carbachol-stimulated inositol polyphosphate accumulation in the absence of lithium and the inability to reverse effects with myo-inositol may indicate differences in phosphoinositide signalling in this brain region.
Collapse
Affiliation(s)
- S Jenkinson
- Department of Pharmacology and Therapeutics, University of Leicester, England
| | | | | | | |
Collapse
|
29
|
Wilcox RA, Challiss RA, Baudin G, Vasella A, Potter BV, Nahorski SR. Stereoselectivity of Ins(1,3,4,5)P4 recognition sites: implications for the mechanism of the Ins(1,3,4,5)P4-induced Ca2+ mobilization. Biochem J 1993; 294 ( Pt 1):191-4. [PMID: 8363572 PMCID: PMC1134583 DOI: 10.1042/bj2940191] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ins(1,3,4,5)P4 was able to mobilize the entire Ins(1,4,5)P3-sensitive intracellular Ca2+ store in saponin-permeabilized SH-SY5Y human neuroblastoma cells in a concentration-dependent manner, yielding an EC50 value of 2.05 +/- 0.45 microM, compared with 0.14 +/- 0.03 microM for Ins(1,4,5)P3. However, L-Ins(1,3,4,5)P4 [= D-Ins(1,3,5,6)P4] failed to cause mobilization of intracellular Ca2+ at concentrations up to 100 microM. Binding studies using pig cerebellar membranes as a source of both Ins(1,4,5)P3/Ins(1,3,4,5)P4-specific binding sites have revealed a marked contrast in their stereospecificity requirements. Ins(1,4,5)P3-receptors from pig cerebella exhibited stringent stereospecificity, L-Ins(1,4,5)P3 and L-Ins(1,3,4,5)P4 were > 1000-fold weaker, whereas Ins(1,3,4,5)P4 (IC50 762 +/- 15 nM) was only about 40-fold weaker than D-Ins(1,4,5)P3 (IC50 20.7 +/- 9.7 nM) at displacing specific [3H]Ins(1,4,5)P3 binding from an apparently homogeneous Ins(1,4,5)P3 receptor population. In contrast, the Ins(1,3,4,5)P4-binding site exhibited poor stereoselectivity. Ins(1,3,4,5)P4 produced a biphasic displacement of specific [32P]Ins(1,3,4,5)P4 binding, with two-site analysis revealing KD values for high- and low-affinity sites of 2.1 +/- 0.5 nM and 918 +/- 161 nM respectively. L-Ins(1,3,4,5)P4 also produced a biphasic displacement of specific [32P]Ins(1,3,4,5)P4 binding which was less than 10-fold weaker than with D-Ins(1,3,4,5)P4 (IC50 values for the high- and low-affinity sites of 17.2 +/- 3.7 nM and 3010 +/- 542 nM respectively). Therefore, although L-Ins(1,3,4,5)P4 appears to be a high-affinity Ins(1,3,4,5)P4-binding-site ligand in pig cerebellum, it is a very weak agonist at the Ca(2+)-mobilizing receptors of permeabilized SH-SY5Y cells. We suggest that the ability of D-Ins(1,3,4,5)P4 to access intracellular Ca2+ stores may derive from specific interaction with the Ins(1,4,5)P3- and not the Ins(1,3,4,5)P4-receptor population.
Collapse
Affiliation(s)
- R A Wilcox
- Department of Pharmacology and Therapeutics, University of Leicester, U.K
| | | | | | | | | | | |
Collapse
|
30
|
Bagetta G, Massoud R, Rodinò P, Federici G, Nisticò G. Systemic administration of lithium chloride and tacrine increases nitric oxide synthase activity in the hippocampus of rats. Eur J Pharmacol 1993; 237:61-4. [PMID: 7689471 DOI: 10.1016/0014-2999(93)90093-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We planned to ascertain whether the administration of the anticholinesterase, tacrine (5 mg/kg i.p.), to rats pretreated 24 h before with lithium chloride (LiCl; 12 mEq/kg i.p.) produced any change in nitric oxide (NO) synthase activity in the hippocampus. A significant increase in hippocampal Ca(2+)-calmodulin-dependent NO synthase activity occurred 15 min after tacrine injection and was blocked by atropine (5 mg/kg i.p. given 15 min before tacrine) and by N omega-nitro-L-arginine methyl ester (300 micrograms given into one lateral cerebral ventricle 10 min before tacrine), a NO synthase inhibitor. A consistent cyclic guanosine 3',5'-monophosphate (cGMP) accumulation was also seen. In conclusion, the present results show that tacrine given to LiCl-pretreated rats produces a significant increase in NO synthase activity in the hippocampus and this may be responsible, at least in part, for seizures and related brain damage elicited by these drugs.
Collapse
Affiliation(s)
- G Bagetta
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | | | | | | |
Collapse
|
31
|
Sun GY, Lin TA, Wixom P, Zoeller RT, Lin TN, He YY, Hsu CY. Effects of focal cerebral ischemia on expression and activity of inositol 1,4,5-trisphosphate 3-kinase in rat cortex. Ann N Y Acad Sci 1993; 679:382-7. [PMID: 8390148 DOI: 10.1111/j.1749-6632.1993.tb18326.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Results from this study clearly indicate that Ins(1,4,5)P3 3-kinase is a target enzyme of cerebral ischemia insult. This enzyme is responsible for removal of Ins(1,4,5)P3 which, in turn, plays an important role in the maintenance of intracellular Ca2+ homeostasis. Not only did a time-dependent decrease in enzyme activity occur due to the focal cerebral ischemic insult, but there was also a second phase for the decline in enzyme activity around 6 h after the insult. Examination of the mRNA for the 3-kinase in frozen brain sections suggested an increase in message at a time (around 8 h) prior to development of tissue infarct. Since the initial decline in enzyme activity during ligation correlated well with the time for development of an infarct, assay of this enzyme could be used as a biochemical marker of cerebral ischemic insult.
Collapse
Affiliation(s)
- G Y Sun
- Department of Biochemistry, University of Missouri, Columbia 65212
| | | | | | | | | | | | | |
Collapse
|
32
|
Yamada M, Kakita A, Mizuguchi M, Rhee SG, Kim SU, Ikuta F. Specific expression of inositol 1,4,5-trisphosphate 3-kinase in dendritic spines. Brain Res 1993; 606:335-40. [PMID: 8387863 DOI: 10.1016/0006-8993(93)91004-c] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ultrastructural localization of inositol 1,4,5-trisphosphate 3-kinase (IP3K) in the rat cerebral cortex and hippocampus was studied immunohistochemically. In both regions, the major structure expressing a high level of IP3K was the dendritic spines of pyramidal neurons, where immunoreactivity was associated with the spine apparatuses and plasmalemma. The postsynaptic densities showed the most intense labelling. Taking into account the results of our previous observations, which demonstrated the restricted localization of the enzyme in the dendritic spines of Purkinje and basket cells in cerebellum, IP3K may be localized specifically in dendritic spines in various regions of the central nervous system, and involved in synaptic signal transduction at the spines.
Collapse
Affiliation(s)
- M Yamada
- Department of Pathology, Niigata University, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The effects of K+ depolarization and of stimulation by veratridine on apparent cytosolic free Ca2+ ([Ca2+]cyt) and net Ca2+ accumulation were measured in isolated rat brain presynaptic nerve terminals (synaptosomes). [Ca2+]cyt was determined with fura-2, and Ca2+ accumulation was measured with tracer 45Ca. [Ca2+]cyt was approximately 325 nM in synaptosomes incubated in the normal physiological salt solution under resting conditions. When [K+]o was increased from the normal 5 mM to 30 or 50 mM, 45Ca uptake and [Ca2+]cyt both increased within 1 s. Both increases were directly related to [Ca2+]o for [Ca2+]o = 0.02-1.2 mM; however, the increase in 45Ca uptake greatly exceeded the increase in [Ca2+]cyt. With small Ca2+ loads (< or = 100 mumol/L of cell water, equivalent to the Ca2+ entry during a train of < or = 60 impulses), the 45Ca uptake exceeded the increase in [Ca2+]cyt by a factor of nearly 1,000. This indicates that approximately 99.9% of the entering Ca2+ was buffered and/or sequestered within approximately 1 s. With larger Ca2+ loads, a larger fraction of the entering Ca2+ was buffered; approximately 99.97% of the load was buffered with loads of 250-425 mumol/L of cell water. The ratio between the total Ca2+ entry and the increase in [Ca2+]cyt, the "calcium buffer ratio," beta, was therefore approximately 3,500:1. This ratio was somewhat lower than the ratio of total intraterminal calcium: [Ca2+]cyt, which ranged between approximately 7,300:1 and 12,800:1. When the synaptosomes were activated with 10 microM veratridine ([Ca2+]o = 0.2-0.6 mM), 45Ca influx and [Ca2+]cyt increased progressively for approximately 10 s (beta = 2,700:1-3,050:1) and then leveled off.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Fontana
- Department of Physiology, University of Maryland School of Medicine, Baltimore 21201
| | | |
Collapse
|
34
|
Rahman S, Neuman RS. Activation of 5-HT2 receptors facilitates depolarization of neocortical neurons by N-methyl-D-aspartate. Eur J Pharmacol 1993; 231:347-54. [PMID: 8449227 DOI: 10.1016/0014-2999(93)90109-u] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The interaction between serotonin and excitatory amino acid agonists at rat neocortical neurons was investigated using the grease-gap recording method. Depolarization evoked by 50 microM N-methyl-D-aspartate was dose dependently facilitated by serotonin (5-HT) (1 to 100 microM) giving a bell-shaped dose-response curve with maximum enhancement at 30 microM. In contrast, quisqualate and kainate depolarizations were not enhanced. Subnanomolar concentrations of methysergide, ritanserin and spiperone, but not ICS 205-930, attenuated the 5-HT enhancement, compatible with 5-HT2, but not 5-HT1 or 5-HT3 receptor subtype involvement. Enhancement was observed with 5-HT2 receptor agonists, whereas 5-HT1 receptor subtype agonists had either no effect (1B and 1C) or reduced (1A) the N-methyl-D-aspartate depolarization. Scopolamine and prazosin reduced the N-methyl-D-aspartate depolarization and blocked facilitation induced by carbachol and phenylephrine, but not that due to 5-HT. Tetrodotoxin reduced the N-methyl-D-aspartate depolarization, but the facilitation by 5-HT persisted. Activators of protein kinase C (phorbol diacetate and 1-oleoyl-2-acetyl-sn-glycerol) did not mimic the serotonin facilitation. We conclude that serotonin enhances N-methyl-D-aspartate depolarization of rat cortical neurons through activation of 5-HT2 receptors, however the cellular mechanism underlying the facilitation remains to be established.
Collapse
Affiliation(s)
- S Rahman
- Faculty of Medicine, Memorial University, St. John's Newfoundland, Canada
| | | |
Collapse
|
35
|
Iredale PA, Martin KF, Hill SJ, Kendall DA. The control of intracellular calcium and neurotransmitter release in guinea pig-derived cerebral cortical synaptoneurosomes. Biochem Pharmacol 1993; 45:407-14. [PMID: 8094616 DOI: 10.1016/0006-2952(93)90077-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synaptoneurosomes are a simply derived brain vesicular preparation which are believed to contain elements of both presynaptic and postsynaptic material. Inositol phosphates production and neurotransmitter release in the synaptoneurosome have previously been shown to be under the control of a number of receptor agonists. However, there have been few investigations of the role of intracellular calcium ([Ca2+]i) in these events. In this study we report that potassium (K+; 50 mM) was able to increase [Ca2+]i and subsequently release [3H]noradrenaline in guinea pig cerebral cortical synaptoneurosomes via activation of dihydropyridine-insensitive, voltage-sensitive calcium channels. Veratridine (30 microM) produced similar effects but these involved activation of sodium channels which could be blocked by pre-incubation with tetrodotoxin (0.15 microM). A number of agonists were used to investigate possible modulation of these events and to look for agonist-stimulated mobilization of [Ca2+]i. No evidence was found for either receptor-mediated release of calcium from intracellular stores or for modulation of K(+)-induced neurotransmitter release. This might be related to the observed passive entry of calcium through the synaptoneurosomal membrane and the subsequently high levels of [Ca2+]i.
Collapse
Affiliation(s)
- P A Iredale
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham, U.K
| | | | | | | |
Collapse
|
36
|
Yamada M, Kakita A, Mizuguchi M, Rhee SG, Kim SU, Ikuta F. Developmental profile of inositol 1,4,5-trisphosphate 3-kinase in rat cerebellar cortex: light and electron microscopic immunohistochemical studies. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 71:137-45. [PMID: 8381729 DOI: 10.1016/0165-3806(93)90114-p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Developmental expression and intracellular distribution of inositol 1,4,5-trisphosphate 3-kinase in the rat cerebellar cortex were studied immunohistochemically. Immunoreactivity appeared first at postnatal day 1 in the rostral region of the cerebellum and by day 15 had extended throughout the whole cerebellum, being localized in the Purkinje cell layer. Shortly after the expression of the enzyme in each Purkinje cell, the labelling showed a tendency to accumulate in the dendrites in a fine granular pattern. Electron microscopy revealed that immunoreactivity was present in the Purkinje dendritic trunks with accentuation in the distal segments during the early postnatal period, thereafter becoming concentrated in the dendritic spines at later developmental stages. Labelling was associated mainly with the plasmalemma, including the postsynaptic densities and open coated vesicles, and the subplasmalemmal vesicles of the smooth endoplasmic reticulum. Immunoreactivity was also evident in the perisomatic processes of immature Purkinje cells, which are transient projections synapsing with climbing fibers. In developing Purkinje axons, immunoreactivity was accentuated in the distal segments, associated with the plasmalemma and synaptic vesicles. These results suggest that inositol 1,4,5-trisphosphate 3-kinase is involved in the dendritic arborization and subsequent spine synaptogenesis of Purkinje cells, and that the developing presynaptic nerve endings of these cells are another functional site for the enzyme.
Collapse
Affiliation(s)
- M Yamada
- Department of Pathology, Brain Research Institute, Niigata University, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Wasterlain CG, Fujikawa DG, Penix L, Sankar R. Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 1993; 34 Suppl 1:S37-53. [PMID: 8385002 DOI: 10.1111/j.1528-1157.1993.tb05905.x] [Citation(s) in RCA: 317] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human status epilepticus (SE) is consistently associated with cognitive problems, and with widespread neuronal necrosis in hippocampus and other brain regions. In animal models, convulsive SE causes extensive neuronal necrosis. Nonconvulsive SE in adult animals also leads to widespread neuronal necrosis in vulnerable regions, although lesions develop more slowly than they would in the presence of convulsions or anoxia. In very young rats, nonconvulsive normoxic SE spares hippocampal pyramidal cells, but other types of neurons may not show the same resistance, and inhibition of brain growth, DNA and protein synthesis, and of myelin formation and of synaptogenesis may lead to altered brain development. Lesions induced by SE may be epileptogenic by leading to misdirected regeneration. In SE, glutamate, aspartate, and acetylcholine play major roles as excitatory neurotransmitters, and GABA is the dominant inhibitory neurotransmitter. GABA metabolism in substantia nigra (SN) plays a key role in seizure arrest. When seizures stop, a major increase in GABA synthesis is seen in SN postictally. GABA synthesis in SN may fail in SE. Extrasynaptic factors may also play an important role in seizure spread and in maintaining SE. Glial immaturity, increased electronic coupling, and SN immaturity facilitate SE development in the immature brain. Major increases in cerebral blood flow (CBF) protect the brain in early SE, but CBF falls in late SE as blood pressure falters. At the same time, large increases in cerebral metabolic rate for glucose and oxygen continue throughout SE. Adenosine triphosphate (ATP) depletion and lactate accumulation are associated with hypermetabolic neuronal necrosis. Excitotoxic mechanisms mediated by both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors open ionic channels permeable to calcium and play a major role in neuronal injury from SE. Hypoxia, systemic lactic acidosis, CO2 narcosis, hyperkalemia, hypoglycemia, shock, cardiac arrhythmias, pulmonary edema, acute renal tubular necrosis, high output failure, aspiration pneumonia, hyperpyrexia, blood leukocytosis and CSF pleocytosis are common and potentially serious complications of SE. Our improved understanding of the pathophysiology of brain damage in SE should lead to further improvement in treatment and outcome.
Collapse
Affiliation(s)
- C G Wasterlain
- Epilepsy Research Laboratory Veterans Affairs Medical Center, Sepulveda, CA 91343
| | | | | | | |
Collapse
|
38
|
Fukui Y. Toward a new concept of cell motility: cytoskeletal dynamics in amoeboid movement and cell division. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 144:85-127. [PMID: 8320063 DOI: 10.1016/s0074-7696(08)61514-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Y Fukui
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
39
|
Them A. Intracellular ion concentrations in the brain: approaches towards in situ confocal imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 333:145-75. [PMID: 8103278 DOI: 10.1007/978-1-4899-2468-1_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Them
- Department of Neurology, University of Munich, Germany
| |
Collapse
|
40
|
Dirnagl U. Cerebral ischemia: the microcirculation as trigger and target. PROGRESS IN BRAIN RESEARCH 1993; 96:49-65. [PMID: 8332748 DOI: 10.1016/s0079-6123(08)63258-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- U Dirnagl
- Department of Neurology, University of Munich, Germany
| |
Collapse
|
41
|
Stark WS, Lin TN, Brackhahn D, Christianson JS, Sun GY. Phospholipids in Drosophila heads: effects of visual mutants and phototransduction manipulations. Lipids 1993; 28:23-8. [PMID: 8446007 DOI: 10.1007/bf02536355] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A procedure was developed to label phospholipids in Drosophila heads by feeding radioactive phosphate (32Pi). High-performance thin-layer chromatography showed label incorporation into various phospholipids. After 24 h of feeding, major phospholipids labeled were phosphatidylethanolamine (PE), 47%; phosphatidylcholine (PC), 24%; and phosphatidylinositol (PI), 12%. Drosophila heads have virtually no sphingomyelin as compared with mammalian tissues. Notable label was in ethanolamine plasmalogen, lysophosphatidylethanolamine, lysophosphatidylcholine and lysophosphatidylinositol. Less than 1% of the total label was in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Other lipids labeled included phosphatidylserine, phosphatidic acid and some unidentified lipids. A time course (3-36 h) study revealed a gradual decrease in proportion of labeled PI, an increase in proportion of labeled PC and no obvious change in labeled PE. There were no significant differences in phospholipid labeling comparing the no receptor potential (norpA) visual mutant and wild type under light vs. dark conditions. However, overall 32P labeling was higher in the wild type fed in the light as compared to the dark and to norpA either in light or dark. This suggests that functional vision facilitates incorporation of label. Differences in phospholipid labeling were observed between young and aged flies, particularly in lysophospholipids and poly-PI, implicating phospholipase A2 function in recycling. v Manipulations such as the outer rhabdomeres absent and eyes absent mutants and carotenoid deprivation failed to yield notable differences in phospholipid labeling pattern, suggesting that phospholipids important to vision may constitute only a minor portion of the total labeled pool in the head.
Collapse
Affiliation(s)
- W S Stark
- Division of Biological Sciences, University of Missouri, Columbia 65211
| | | | | | | | | |
Collapse
|
42
|
Jenkinson S, Challiss RA, Nahorski SR. Evidence for lithium-sensitive inositol 4,5-bisphosphate accumulation in muscarinic cholinoceptor-stimulated cerebral-cortex slices. Biochem J 1992; 287 ( Pt 2):437-42. [PMID: 1445202 PMCID: PMC1133184 DOI: 10.1042/bj2870437] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stimulation of [3H]inositol-prelabelled rat cerebral-cortex slices with carbachol results in the accumulation of four [3H]inositol bisphosphate isomeric species, Ins(1,3)P2, Ins(1,4)P2, Ins(3,4)P2 and Ins(4,5)P2. Although the last isomer ran as a minor peak on h.p.l.c., its accumulation was dramatically enhanced in the presence of Li+ (1 mM), such that at 30 min it represented almost 35% of the total bisphosphate fraction. The accumulation of Ins(4,5)P2 appeared to be very sensitive to Li+ (EC50 = 94 +/- 3 microM), strongly implicating a Li(+)-sensitive metabolism. Evidence for this is provided from the rapid but Li(+)-sensitive decay of Ins(4,5)P2 when muscarinic-receptor stimulation is antagonized by atropine at a time when accumulations have reached a new steady state. Manipulation of phospholipase D by activators and inhibitors of protein kinase C did not suggest a role for phospholipase D hydrolysis of PtdInsP2 in the formation of Ins(4,5)P2. Attempts to reveal Ins(4,5)P2 metabolism, or indeed its synthesis from Ins(1,4,5)P3, were not successful with broken cell preparations and strongly suggest discrete compartmentation of inositol phosphate metabolism in the intact cell.
Collapse
Affiliation(s)
- S Jenkinson
- Department of Pharmacology and Therapeutics, University of Leicester, U.K
| | | | | |
Collapse
|
43
|
Wilcox RA, Nahorski SR, Sawyer DA, Liu C, Potter BV. The role of the 2- and 3-hydroxyl groups of 1D-myo-inositol 1,4,5-trisphosphate in the mobilisation of calcium from permeabilised human 1321N1 astrocytoma cells. Carbohydr Res 1992; 234:237-46. [PMID: 1334801 DOI: 10.1016/0008-6215(92)85051-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The functional significance of the 2- and 3-hydroxyl groups of 1 D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was probed by using Ins(1,4,5)P3 analogues variously modified at positions 2 and 3 or elsewhere. The intrinsic activities of these compounds were compared to that of Ins(1,4,5)P3, using the calcium-mobilising receptor of the 1321N1 human astrocytoma cell line. The ligand-binding affinities were also determined using membrane preparations from rat cerebellum and bovine adrenal cortex. The results show that HO-2 and HO-3 of Ins(1,4,5)P3 have a relatively insignificant role in receptor binding and calcium release. However, the possibility of a regulatory role for the 3-position of Ins(1,4,5)P3 in these processes is proposed.
Collapse
Affiliation(s)
- R A Wilcox
- Department of Pharmacology and Therapeutics, University of Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Nahorski SR, Jenkinson S, Challiss RA. Lithium-induced disruption of cell signalling in brain: evidence implicating the phosphoinositide cycle. PHARMACOLOGY & TOXICOLOGY 1992; 71 Suppl 1:42-8. [PMID: 1336197 DOI: 10.1111/j.1600-0773.1992.tb01628.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S R Nahorski
- Department of Pharmacology and Therapeutics, University of Leicester, Leicester, U.K
| | | | | |
Collapse
|
45
|
Elliott EM, Sapolsky RM. Corticosterone enhances kainic acid-induced calcium elevation in cultured hippocampal neurons. J Neurochem 1992; 59:1033-40. [PMID: 1645163 DOI: 10.1111/j.1471-4159.1992.tb08345.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Corticosterone, a steroid secreted during stress, increases hippocampal neuronal vulnerability to excitotoxins, hypoxia-ischemia, and antimetabolites. Energy supplementation and N-methyl-D-aspartate receptor antagonists prevent this corticosterone-enhanced neurotoxicity. Because neuronal calcium regulation is energy dependent and a large calcium influx accompanies N-methyl-D-aspartate receptor activation, we investigated whether corticosterone exacerbates the elevation of hippocampal neuronal calcium induced by the glutamatergic excitotoxin kainic acid. Corticosterone caused a 23-fold increase in the magnitude of the calcium response to kainic acid, a sevenfold increase in the peak magnitude of the calcium response, and a twofold increase in calcium recovery time. This corticosterone effect may be energetic in nature as corticosterone decreases hippocampal neuronal glucose transport. Glucose supplementation reduced the corticosterone effect on the magnitude and peak magnitude of the calcium response to kainic acid. Glucose reduction, by the approximate magnitude by which corticosterone inhibits glucose transport, mimicked the corticosterone effect on the peak magnitude of the calcium response to kainic acid. Thus, corticosterone increases calcium after kainic acid exposure in hippocampal neurons in an energy-dependent manner. Elevated calcium is strongly implicated in stimulating neurotoxic cascades during other energetic insults and may be the mechanism for the corticosterone-induced hippocampal neuronal vulnerability and toxicity.
Collapse
Affiliation(s)
- E M Elliott
- Department of Biological Sciences, Stanford University, California
| | | |
Collapse
|
46
|
Umemura A, Mabe H, Nagai H. A phospholipase C inhibitor ameliorates postischemic neuronal damage in rats. Stroke 1992; 23:1163-6. [PMID: 1636192 DOI: 10.1161/01.str.23.8.1163] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE The hypothesis of calcium-induced neuronal damage has been proposed regarding brain ischemia. Phospholipase C is an enzyme that catalyzes the phosphodiesteratic cleavage of phosphatidylinositol. The cleavage of phosphatidylinositol 4,5-bisphosphate by phospholipase C yields 1,4,5-inositol triphosphate, which mediates intracellular release of calcium, and 1,2-diacylglycerol, which is an activator of protein kinase C. We examined the effect of phenylmethylsulfonyl fluoride, a phospholipase C inhibitor, on delayed neuronal damage after transient forebrain ischemia in the hippocampal CA1 subfield in rats to assess the role of phospholipase C in postischemic neuronal damage. METHODS Twenty-minute forebrain ischemia was induced using the method of Pulsinelli and Brierley. We measured the neuronal density of the hippocampal CA1 subfield 7 days after reperfusion. The effect of phenylmethylsulfonyl fluoride was tested in both pretreatment and posttreatment groups. RESULTS In the vehicle treatment group (n = 13), neuronal density was 51 +/- 42/mm (mean +/- SD). The neuronal densities in the 50-mg/kg (n = 12) and 100-mg/kg (n = 14) phenylmethylsulfonyl fluoride pretreatment groups and the 100-mg/kg (n = 10) phenylmethylsulfonyl fluoride posttreatment group were 99 +/- 50, 150 +/- 55, and 143 +/- 63/mm, respectively. These values were significantly higher than that of the vehicle treatment group (p less than 0.05, p less than 0.01, and p less than 0.01, respectively). CONCLUSIONS It is suggested that the activation of phospholipase C has an important role in postischemic delayed neuronal damage.
Collapse
Affiliation(s)
- A Umemura
- Department of Neurosurgery, Nagoya City University Medical School, Japan
| | | | | |
Collapse
|
47
|
Abstract
This article examines the pathophysiology of lesions caused by focal cerebral ischemia. Ischemia due to middle cerebral artery occlusion encompasses a densely ischemic focus and a less densely ischemic penumbral zone. Cells in the focus are usually doomed unless reperfusion is quickly instituted. In contrast, although the penumbra contains cells "at risk," these may remain viable for at least 4 to 8 hours. Cells in the penumbra may be salvaged by reperfusion or by drugs that prevent an extension of the infarction into the penumbral zone. Factors responsible for such an extension probably include acidosis, edema, K+/Ca++ transients, and inhibition of protein synthesis. Central to any discussion of the pathophysiology of ischemic lesions is energy depletion. This is because failure to maintain cellular adenosine triphosphate (ATP) levels leads to degradation of macromolecules of key importance to membrane and cytoskeletal integrity, to loss of ion homeostasis, involving cellular accumulation of Ca++, Na+, and Cl-, with osmotically obligated water, and to production of metabolic acids with a resulting decrease in intra- and extracellular pH. In all probability, loss of cellular calcium homeostasis plays an important role in the pathogenesis of ischemic cell damage. The resulting rise in the free cytosolic intracellular calcium concentration (Ca++) depends on both the loss of calcium pump function (due to ATP depletion), and the rise in membrane permeability to calcium. In ischemia, calcium influx occurs via multiple pathways. Some of the most important routes depend on activation of receptors by glutamate and associated excitatory amino acids released from depolarized presynaptic endings. However, ischemia also interfers with the intracellular sequestration and binding of calcium, thereby contributing to the rise in intracellular Ca++. A second key event in the ischemic tissue is activation of anaerobic glucolysis. The main reason for this activation is inhibition of mitochondrial metabolism by lack of oxygen; however, other factors probably contribute. For example, there is a complex interplay between loss of cellular calcium homeostasis and acidosis. On the one hand, a rise in intracellular Ca++ is apt to cause mitochondrial accumulation of calcium. This must interfere with ATP production and enhance anaerobic glucolysis. On the other hand, acidosis must interfere with calcium binding, thereby contributing to the rise in intracellular Ca++.
Collapse
Affiliation(s)
- B K Siesjö
- Laboratory for Experimental Brain Research, Lund University Hospital, Sweden
| |
Collapse
|
48
|
Lin TA, Lin TN, He YY, Hsu CY, Sun GY. Effects of focal cerebral ischemia on inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities in rat cortex. Biochem Biophys Res Commun 1992; 184:871-7. [PMID: 1315536 DOI: 10.1016/0006-291x(92)90671-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ins(1,4,5)P3 3-kinase and 5-phosphatase are important enzymes responsible for the metabolism of Ins(1,4,5)P3, a second messenger for mobilization of intracellular Ca2+ stores. Focal cerebral ischemia induced in Long Evans rats through occlusion of the right middle cerebral artery (MCA) and both common carotid arteries resulted in a time-dependent decrease in the 3-kinase activity but not the 5-phosphatase activity. Approximately 50% of the 3-kinase activity in the cerebral cortex of the right MCA territory disappeared after 60 min of ischemia, and the enzyme activity was not restored during reperfusion. Reperfusion for 24 hr after a 60 min ischemic insult almost abolished the 3-kinase activity but the 5-phosphatase activity remained unaltered. These results suggest that the Ins(1,4,5)P3 3-kinase is one of the target enzymes of cerebral ischemia. The changes in Ins(1,4,5)P3 metabolism may be associated with the changes in intracellular Ca2+ homeostasis that underlies the pathophysiology of neuronal cell death.
Collapse
Affiliation(s)
- T A Lin
- Biochemistry Department, University of Missouri-School of Medicine, Columbia 65212
| | | | | | | | | |
Collapse
|
49
|
Yamada M, Kakita A, Mizuguchi M, Rhee SG, Kim SU, Ikuta F. Ultrastructural localization of inositol 1,4,5-trisphosphate 3-kinase in rat cerebellar cortex. Brain Res 1992; 578:41-8. [PMID: 1324766 DOI: 10.1016/0006-8993(92)90227-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Subcellular localization of inositol 1,4,5-trisphosphate 3-kinase in the rat cerebellar cortex was studied immunohistochemically using a monoclonal antibody. Electron microscopy revealed intense immunoreactivity in the dendritic spines of Purkinje cells forming synapses with the parallel fibers, climbing fibers and recurrent collaterals of Purkinje cell axons. The labelling was associated with the hypolemmal cisternae, surrounding matrix and plasmalemma including the postsynaptic densities. Weaker immunoreactivity was present in the dendritic spines of basket cells and in certain segments of Purkinje cell recurrent collaterals. The postsynaptic regions of the dendritic trunks of Purkinje and basket cells were negative. These results indicate that inositol 1,4,5-trisphosphate 3-kinase is distributed amongst the spines of various synaptic relations with different electrophysiological properties, and that axon terminals of certain cell types are another functional site for the enzyme.
Collapse
Affiliation(s)
- M Yamada
- Department of Pathology, Niigata University, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Samoilov MO, Semenov DG, Tulkova EI, Lazarewicz JW. Early postanoxic changes of polyphosphoinositides and bound Ca2+ content in relation to neuronal activity in brain cortex. Resuscitation 1992; 23:33-43. [PMID: 1315068 DOI: 10.1016/0300-9572(92)90160-e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We studied the changes in the content of membrane-bound calcium (Cab) and the polyphosphoinositides (poly-PI): bis- and trisphosphoinositide (PIP and PIP2) in the cat brain cortex during the early period (up to 30 min) of reoxygenation after 2.5 min and 5 min of anoxia. In vivo experiments were performed on a living cat cortical preparation. Studies included Cab estimation with clortetracycline, a calcium fluorescent chelate probe, and simultaneous registration of neuronal activity. Anoxia resulted in a significant drop of Cab and PIP2 in the cortex along with an absence of neuronal activity. During reoxygenation after 2.5 min of anoxia we observed an increase of Cab, however the Cab did not recover to the preanoxic level. An elevation of PIP and PIP2 content to 20% above the preanoxic level and recovery of neuronal activity with symptoms of hyperactivation were also observed. After 5 min of anoxia two qualitatively different types of changes were disclosed for the 30 min period of reoxygenation. In one half of the animals only slight symptoms of recovery in some of the indices were found. In the other group Cab and PIP2 content increased to a level significantly exceedingly the preanoxic one and abnormal spike activity appeared. Based on these results we suggest that disturbances in Ca- and poly-PI-related second messenger systems may significantly affect the recovery of neuronal function after anoxia.
Collapse
Affiliation(s)
- M O Samoilov
- Pavlov Institute of Physiology, Russian/St. Petersburg Academy of Sciences
| | | | | | | |
Collapse
|