1
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
2
|
Takagaki K, Krug K. The effects of reward and social context on visual processing for perceptual decision-making. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Bova A, Kernodle K, Mulligan K, Leventhal D. Automated Rat Single-Pellet Reaching with 3-Dimensional Reconstruction of Paw and Digit Trajectories. J Vis Exp 2019. [PMID: 31355787 DOI: 10.3791/59979] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Rodent skilled reaching is commonly used to study dexterous skills, but requires significant time and effort to implement the task and analyze the behavior. Several automated versions of skilled reaching have been developed recently. Here, we describe a version that automatically presents pellets to rats while recording high-definition video from multiple angles at high frame rates (300 fps). The paw and individual digits are tracked with DeepLabCut, a machine learning algorithm for markerless pose estimation. This system can also be synchronized with physiological recordings, or be used to trigger physiologic interventions (e.g., electrical or optical stimulation).
Collapse
Affiliation(s)
| | | | | | - Daniel Leventhal
- Department of Neurology, University of Michigan; Department of Biomedical Engineering, University of Michigan; Department of Neurology, VA Ann Arbor Health System;
| |
Collapse
|
4
|
Tucker LB, Velosky AG, McCabe JT. Applications of the Morris water maze in translational traumatic brain injury research. Neurosci Biobehav Rev 2018; 88:187-200. [PMID: 29545166 DOI: 10.1016/j.neubiorev.2018.03.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
Abstract
Acquired traumatic brain injury (TBI) is frequently accompanied by persistent cognitive symptoms, including executive function disruptions and memory deficits. The Morris Water Maze (MWM) is the most widely-employed laboratory behavioral test for assessing cognitive deficits in rodents after experimental TBI. Numerous protocols exist for performing the test, which has shown great robustness in detecting learning and memory deficits in rodents after infliction of TBI. We review applications of the MWM for the study of cognitive deficits following TBI in pre-clinical studies, describing multiple ways in which the test can be employed to examine specific aspects of learning and memory. Emphasis is placed on dependent measures that are available and important controls that must be considered in the context of TBI. Finally, caution is given regarding interpretation of deficits as being indicative of dysfunction of a single brain region (hippocampus), as experimental models of TBI most often result in more diffuse damage that disrupts multiple neural pathways and larger functional networks that participate in complex behaviors required in MWM performance.
Collapse
Affiliation(s)
- Laura B Tucker
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Alexander G Velosky
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Joseph T McCabe
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
5
|
Okon V, Obembe A, Ofutet E, Osim E. Long-term Administration of Cannabis sativa Impairs Learning and Memory in CD1 Mice. JOURNAL OF MEDICAL SCIENCES 2015. [DOI: 10.3923/jms.2015.155.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Rosa Salva O, Mayer U, Vallortigara G. Roots of a social brain: Developmental models of emerging animacy-detection mechanisms. Neurosci Biobehav Rev 2015; 50:150-68. [DOI: 10.1016/j.neubiorev.2014.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
|
7
|
Abstract
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.
Collapse
|
8
|
Carballosa Gonzalez MM, Blaya MO, Alonso OF, Bramlett HM, Hentall ID. Midbrain raphe stimulation improves behavioral and anatomical recovery from fluid-percussion brain injury. J Neurotrauma 2012; 30:119-30. [PMID: 22963112 DOI: 10.1089/neu.2012.2499] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The midbrain median raphe (MR) and dorsal raphe (DR) nuclei were tested for their capacity to regulate recovery from traumatic brain injury (TBI). An implanted, wireless self-powered stimulator delivered intermittent 8-Hz pulse trains for 7 days to the rat's MR or DR, beginning 4-6 h after a moderate parasagittal (right) fluid-percussion injury. MR stimulation was also examined with a higher frequency (24 Hz) or a delayed start (7 days after injury). Controls had sham injuries, inactive stimulators, or both. The stimulation caused no apparent acute responses or adverse long-term changes. In water-maze trials conducted 5 weeks post-injury, early 8-Hz MR and DR stimulation restored the rate of acquisition of reference memory for a hidden platform of fixed location. Short-term spatial working memory, for a variably located hidden platform, was restored only by early 8-Hz MR stimulation. All stimulation protocols reversed injury-induced asymmetry of spontaneous forelimb reaching movements tested 6 weeks post-injury. Post-mortem histological measurement at 8 weeks post-injury revealed volume losses in parietal-occipital cortex and decussating white matter (corpus callosum plus external capsule), but not hippocampus. The cortical losses were significantly reversed by early 8-Hz MR and DR stimulation, the white matter losses by all forms of MR stimulation. The generally most effective protocol, 8-Hz MR stimulation, was tested 3 days post-injury for its acute effect on forebrain cyclic adenosine monophosphate (cAMP), a key trophic signaling molecule. This procedure reversed injury-induced declines of cAMP levels in both cortex and hippocampus. In conclusion, midbrain raphe nuclei can enduringly enhance recovery from early disseminated TBI, possibly in part through increased signaling by cAMP in efferent targets. A neurosurgical treatment for TBI using interim electrical stimulation in raphe repair centers is suggested.
Collapse
Affiliation(s)
- Melissa M Carballosa Gonzalez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | | | |
Collapse
|
9
|
Havekes R, Abel T, Van der Zee EA. The cholinergic system and neostriatal memory functions. Behav Brain Res 2010; 221:412-23. [PMID: 21129408 DOI: 10.1016/j.bbr.2010.11.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/25/2022]
Abstract
The striatum is one of the major forebrain regions that strongly expresses muscarinic and nicotinic cholinergic receptors. This article reviews the current knowledge and our new findings about the striatal cholinoceptive organization and its role in a variety of cognitive functions. Pharmacological and genetic manipulations have indicated that the cholinergic and dopaminergic system in the striatum modulate each other's function. In addition to modulating the dopaminergic system, nicotinic cholinergic receptors facilitate GABA release, whereas muscarinic receptors attenuate GABA release. The striatal cholinergic system has also been implicated in various cognitive functions including procedural learning and intradimensional set shifting. Together, these data indicate that the cholinergic system in the striatum is involved in a diverse set of cognitive functions through interactions with other neurotransmitter systems including the dopaminergic and GABAergic systems.
Collapse
Affiliation(s)
- Robbert Havekes
- Department of Biology, University of Pennsylvania, 433 S University Avenue, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
10
|
Spatial learning and memory in HIV-1 transgenic rats. J Neuroimmune Pharmacol 2007; 2:319-28. [PMID: 18040850 DOI: 10.1007/s11481-007-9078-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
HIV-1 infection of the central nervous system impairs neural, cognitive, and behavioral functioning in patients despite antiretroviral therapy. However, studying mechanisms underlying HIV-1-related neurological and cognitive dysfunction has been limited without an adequate animal model. A novel, noninfectious HIV-1 transgenic (HIV-1Tg) rat model was recently created that expresses an HIV-1 provirus with a deletion of functional gag and pol genes. This HIV-1Tg rat reportedly develops clinical manifestations of human HIV disease and thus appears to mimic the persistent infection that results from the presence of HIV viral proteins in the host. We evaluated the HIV-1Tg rat model using the Morris water maze, a popular paradigm for testing learning and memory deficits in rodents. Because of congenital cataracts in HIV-1Tg rats, however, the traditional use of visual navigational cues in this paradigm were precluded. We first designed a modified Morris water maze and demonstrated that neurologically intact rats can effectively learn the water maze in the absence of visual cues and in the presence of non-visual navigation cues. We then tested HIV-1Tg rats in this modified Morris water maze. These HIV-1Tg rats showed a deficit in learning how to swim to the location of the hidden platform but did not show a deficit in their memory of the general location of the hidden platform. These results suggest that the noninfectious HIV-1Tg rat can be a valid model for the behavioral studies of HIV-related neurological dysfunction.
Collapse
|
11
|
Leggio MG, Federico F, Neri P, Graziano A, Mandolesi L, Petrosini L. NMDA receptor activity in learning spatial procedural strategies. Brain Res Bull 2006; 70:347-55. [PMID: 17027770 DOI: 10.1016/j.brainresbull.2006.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 06/12/2006] [Accepted: 06/15/2006] [Indexed: 10/24/2022]
Abstract
To acquire knowledge about the environment two types of learning are necessary: declarative localizatory learning about where environmental cues and the subject are, and procedural learning about how to explore and move around the environment. Experimental data indicate that hippocampal regions are involved in spatial learning, playing a key role in building spatial cognitive maps. The contribution of hippocampal NMDA receptors to spatial functions is indicated by the disruption of place learning when NMDA long-term potentiation is blocked. Conversely, the hippocampal contribution to the acquisition of procedural strategies is still controversial. Inactivation of the hippocampus by antagonizing the activity of AMPA/kainate receptors results in impaired spatial procedural learning. However, in the presence of a blockade of NMDA long-term potentiation in hippocampal areas it is still possible to learn explorative strategies. To investigate the involvement of the hippocampal NMDA receptors in spatial procedural learning, an NMDA receptor antagonist (CGS 19755) was administered i.p. to unlesioned animals or to animals with total ablation of hippocampal structures that had been tested in the Morris water maze. The CGS administration induced peripheral circling in both unlesioned control animals and in rats with bilateral hippocampal ablation. Conversely, circling was not observed if the drug-treated animals (either unlesioned or lesioned) had been spatially trained before drug administration. These findings indicate that even in the absence of the hippocampal formation the NMDA receptor antagonist found a site of action to influence the acquisition of spatial procedures to search for the platform.
Collapse
|
12
|
McAuliffe JJ, Miles L, Vorhees CV. Adult neurological function following neonatal hypoxia-ischemia in a mouse model of the term neonate: water maze performance is dependent on separable cognitive and motor components. Brain Res 2006; 1118:208-21. [PMID: 16997287 DOI: 10.1016/j.brainres.2006.08.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/04/2006] [Accepted: 08/08/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Hypoxic-ischemic injury in term neonates remains a significant cause of long-term neurological morbidity. The post-natal day 10 (P10) mouse is accepted as a model for the term human. This study was designed to assess the relationships between the duration of hypoxia-ischemia (HI) on P10 and the structural and functional neurological deficits that appear in the adult mouse as a consequence. METHODS Post-natal day 10 129T2xC57Bl/6 F1 hybrid mice were subjected to 0, 45, 60 or 75 min of hypoxia-ischemia using the Rice-Vannucci model. Beginning on P50 these mice were tested over the next 8 weeks using zero maze, locomotor activity, novel object recognition, cued, hidden and reduced Morris water mazes, delayed probe trials and response to apomorphine injection. Brain weights and histology were obtained at the end of testing. RESULTS The degree of structural and behavioral abnormalities in adult mice correlated with the duration of hypoxia-ischemia on P10. Useful behavioral tests for separating adult mice according to duration of hypoxia-ischemia on P10 include locomotor activity, the Morris water mazes and response to apomorphine. We found cued "learning" persisted, although latencies increased, with increasing HI time while spatial learning decayed as a function of HI time. Severe HI injury involving the ventral hippocampus resulted in excessive locomotor activity. CONCLUSIONS After correcting for motor deficits, there is evidence for persistence of "cued" learning but not spatial learning with increasing hypoxia-ischemia time on P10 in this model system.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Animals, Newborn
- Asphyxia Neonatorum/diagnosis
- Asphyxia Neonatorum/physiopathology
- Behavior, Animal/physiology
- Brain/pathology
- Brain/physiopathology
- Brain Damage, Chronic/diagnosis
- Brain Damage, Chronic/etiology
- Brain Damage, Chronic/physiopathology
- Chimera
- Cognition Disorders/diagnosis
- Cognition Disorders/etiology
- Cognition Disorders/physiopathology
- Disability Evaluation
- Disease Models, Animal
- Hippocampus/pathology
- Hippocampus/physiopathology
- Humans
- Hypoxia-Ischemia, Brain/diagnosis
- Hypoxia-Ischemia, Brain/physiopathology
- Infant, Newborn
- Learning Disabilities/diagnosis
- Learning Disabilities/etiology
- Learning Disabilities/physiopathology
- Maze Learning/physiology
- Memory Disorders/diagnosis
- Memory Disorders/etiology
- Memory Disorders/physiopathology
- Mice
- Mice, Inbred C57BL
- Motor Activity/physiology
- Movement Disorders/diagnosis
- Movement Disorders/etiology
- Movement Disorders/physiopathology
- Time
- Time Factors
Collapse
Affiliation(s)
- John J McAuliffe
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
13
|
Whishaw IQ. Posterior neocortical (visual cortex) lesions in the rat impair matching-to-place navigation in a swimming pool: a reevaluation of cortical contributions to spatial behavior using a new assessment of spatial versus non-spatial behavior. Behav Brain Res 2005; 155:177-84. [PMID: 15364476 DOI: 10.1016/j.bbr.2004.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/06/2004] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
In the face of contradictory findings on the role of visual cortex contributions to spatial behavior, the present study evaluated the ability of rats with primary visual cortex (Area 17) lesions to learn spatial problems in a swimming pool. Because the solution to any spatial learning problem consists of acquiring at least two primary elements of a task, task procedures and spatial learning, the study, in addition to assessing spatial ability on a place task, used two training/testing methods to identify the nature of the spatial impairment associated with visual cortex lesions. Non-spatial training consisted of learning to find a platform in the dark and spatial training consisted of a series of matching-to-place problems. The results confirmed that although rats with visual cortex lesions were impaired on place learning, the deficit was partially ameliorated by non-spatial training given following the lesion, and completely ameliorated by non-spatial training given before the lesion. Nevertheless, all visual cortex groups failed to show a quadrant preference on a probe trial and displayed a profound impairment in matching-to-place learning. This definitive demonstration that appropriate testing methods can reveal a failure in spatial behavior following visual cortex lesions is consistent with the idea that primary visual cortex is required in spatial navigation.
Collapse
Affiliation(s)
- Ian Q Whishaw
- Canadian Center for Behavioral Neuroscience, Lethbridge, Alta., Canada.
| |
Collapse
|
14
|
Whishaw IQ. Posterior neocortical (visual cortex) lesions in the rat impair matching-to-place navigation in a swimming pool: a reevaluation of cortical contributions to spatial behavior using a new assessment of spatial versus nonspatial behavior. Behav Brain Res 2004; 155:109-116. [PMID: 15325784 DOI: 10.1016/j.bbr.2004.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/06/2004] [Accepted: 04/06/2004] [Indexed: 11/25/2022]
Abstract
In the face of contradictory findings on the role of visual cortex contributions to spatial behavior, the present study evaluated the ability of rats with primary visual cortex (area 17) lesions to learn spatial problems in a swimming pool. Because the solution to any spatial learning problem consists of acquiring at least two primary elements of a task, task procedures and spatial learning, the study, in addition to assessing spatial ability on a place task, used two training/testing methods to identify the nature of the spatial impairment associated with visual cortex lesions. Non-spatial training consisted of learning to find a platform in the dark and spatial training consisted of a series of matching-to-place problems. The results confirmed that although rats with visual cortex lesions were impaired on place learning, the deficit was partially ameliorated by non-spatial training given following the lesion, and completely ameliorated by non-spatial training given before the lesion. Nevertheless, all visual cortex groups failed to show a quadrant preference on a probe trial and displayed a profound impairment in matching-to-place learning. This definitive demonstration that appropriate testing methods can reveal a failure in spatial behavior following visual cortex lesions is consistent with the idea that primary visual cortex is required in spatial navigation.
Collapse
Affiliation(s)
- Ian Q Whishaw
- Canadian Center for Behavioral Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alta., Canada T1K 3M4.
| |
Collapse
|
15
|
Hamilton DA, Rosenfelt CS, Whishaw IQ. Sequential control of navigation by locale and taxon cues in the Morris water task. Behav Brain Res 2004; 154:385-97. [PMID: 15313026 DOI: 10.1016/j.bbr.2004.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/05/2004] [Accepted: 03/05/2004] [Indexed: 11/25/2022]
Abstract
The neurobehavioral dissociation between place navigation and cued navigation has been central to contemporary thinking regarding the psychological processes involved in spatial behavior. In cases where locale (place) cues and taxon cues (e.g., beacons) are present it has been suggested that navigation may be controlled by either stimulus type in isolation, or, alternatively, by both simultaneously. In this report we provide evidence that place cues and beacons sequentially control navigation during a single trip to a visible goal. Rats were trained to navigate to a visible escape platform in a circular swimming pool surrounded by numerous visual cues and the kinematics and accuracy of the trajectories to the platform were analyzed. Shortly after initiating a trajectory to the visible platform, animals routinely engaged in stimulus sampling behaviors (e.g., horizontal head scans) which were consistently associated with changes in accuracy (heading error) and swim velocity. Subsequently, animals swam quickly and accurately to the visible platform suggesting that the sampling behaviors correspond to a shift in exteroceptive stimulus control. Consistent with this idea, removal or relocation of the platform disrupted navigation following the stimulus sampling behaviors, whereas the initial trajectory was unaffected. In contrast, changes in the distal cue constellation selectively disrupted the initial trajectory. The results showing that navigation to a visible goal is controlled sequentially by locale and taxon cues are discussed in relation to contemporary theories of navigation.
Collapse
Affiliation(s)
- Derek A Hamilton
- Department of Psychology and Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alta., T1K 3M4, Canada.
| | | | | |
Collapse
|
16
|
Girard TA, Wainwright PE. Testing the spatial- versus object-learning distinction: water-maze performance of male rats exposed to ethanol during the brain growth spurt. Behav Brain Res 2002; 134:493-503. [PMID: 12191836 DOI: 10.1016/s0166-4328(02)00091-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of exposure to ethanol during the brain growth spurt on a visual-discrimination (VD) and a place-learning task (PL) using intra-maze cues in the water maze. Artificially reared male Long-Evans rats were exposed to ethanol (ET) in a binge pattern from postnatal days 6-9 (6.5 g kg(-1) x day(-1); BAC approximately 330 mg/dl) or an isocaloric maltose-dextrin solution (gastrostomy control). A third suckled control group was reared by lactating dams. In experiment 1, rats were trained to discriminate horizontal- (H) versus vertical-striped (V) cues, with the positive cue providing escape from water. Groups did not differ with V+, but ET rats made more errors with H+. In experiment 2, the ET group was impaired in learning the spatial location of a submerged platform relative to intra-maze cues. In both tasks, acquisition deficits among ET rats were characterized by impairment emerging at trial 2, with intact reference memory on trial 1, and the ET group reached a comparable level of performance to controls by the end of training. In summary, because impairment was related to task characteristics, a clear distinction between impaired spatial- versus cue-based learning was not supported. However, these findings do support an effect of exposure to ethanol during the brain growth spurt on recent event, but not reference, memory.
Collapse
Affiliation(s)
- Todd A Girard
- Department of Psychology, University of Waterloo, Waterloo, Ont, Canada N2L 3G1.
| | | |
Collapse
|
17
|
Sewards TV, Sewards MA. Innate visual object recognition in vertebrates: some proposed pathways and mechanisms. Comp Biochem Physiol A Mol Integr Physiol 2002; 132:861-91. [PMID: 12095868 DOI: 10.1016/s1095-6433(02)00119-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Almost all vertebrates are capable of recognizing biologically relevant stimuli at or shortly after birth, and in some phylogenetically ancient species visual object recognition is exclusively innate. Extensive and detailed studies of the anuran visual system have resulted in the determination of the neural structures and pathways involved in innate prey and predator recognition in these species [Behav. Brain Sci. 10 (1987) 337; Comp. Biochem. Physiol. A 128 (2001) 417]. The structures involved include the optic tectum, pretectal nuclei and an area within the mesencephalic tegmentum. Here we investigate the structures and pathways involved in innate stimulus recognition in avian, rodent and primate species. We discuss innate stimulus preferences in maternal imprinting in chicks and argue that these preferences are due to innate visual recognition of conspecifics, entirely mediated by subtelencephalic structures. In rodent species, brainstem structures largely homologous to the components of the anuran subcortical visual system mediate innate visual object recognition. The primary components of the mammalian subcortical visual system are the superior colliculus, nucleus of the optic tract, anterior and posterior pretectal nuclei, nucleus of the posterior commissure, and an area within the mesopontine reticular formation that includes parts of the cuneiform, subcuneiform and pedunculopontine nuclei. We argue that in rodent species the innate sensory recognition systems function throughout ontogeny, acting in parallel with cortical sensory and recognition systems. In primates the structures involved in innate stimulus recognition are essentially the same as those in rodents, but overt innate recognition is only present in very early ontogeny, and after a transition period gives way to learned object recognition mediated by cortical structures. After the transition period, primate subcortical sensory systems still function to provide implicit innate stimulus recognition, and this recognition can still generate orienting, neuroendocrine and emotional responses to biologically relevant stimuli.
Collapse
Affiliation(s)
- Terence V Sewards
- Sandia Research Center, 21 Perdiz Canyon Road, Placitas, NM 87043, USA.
| | | |
Collapse
|
18
|
Boire D, Théoret H, Ptito M. Visual pathways following cerebral hemispherectomy. PROGRESS IN BRAIN RESEARCH 2002; 134:379-97. [PMID: 11702556 DOI: 10.1016/s0079-6123(01)34025-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The anatomical consequences of unilateral cerebral hemispherectomy in some animal models are reviewed. We have shown that the retinogenigulate pathway undergoes severe degenerative changes in hemispherectomized monkeys, greater than those shown in cats and we proposed that remaining retinal terminals to the dorsal lateral geniculate nucleus have little potential for conveying visual information any further. All subdivisions of the pulvinar undergo severe degeneration following hemispherectomy showing that the ascending tectofugal pathway is also shut off. On the other hand, the retina subserving the blind field is not depleted of ganglion cells which still send normal appearing terminals to the midbrain pretectum and superior colliculus. Visual information from the blind hemifield can thus gain access to the brain and could potentially reach the contralateral cerebral cortex through the midbrain commissure and possibly through thalamic commissural cells.
Collapse
Affiliation(s)
- D Boire
- Ecole d'Optométrie, Université de Montréal, CP, 6128, succursale Centre-ville, Montréal, PQ, H3C 3J7 Canada
| | | | | |
Collapse
|
19
|
Sung KW, Choi S, Lovinger DM. Activation of group I mGluRs is necessary for induction of long-term depression at striatal synapses. J Neurophysiol 2001; 86:2405-12. [PMID: 11698530 DOI: 10.1152/jn.2001.86.5.2405] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of metabotropic glutamate receptors (mGluRs), which are coupled to G proteins, has important roles in certain forms of synaptic plasticity including corticostriatal long-term depression (LTD). In the present study, extracellular field potential and whole cell voltage-clamp recording techniques were used to investigate the effect of mGluR antagonists with different subtype specificity on high-frequency stimulation (HFS)-induced LTD of synaptic transmission in the striatum of brain slices obtained from 15-to 25-day-old rats. Induction of LTD was prevented during exposure to the nonselective mGluR antagonist (RS)-alpha-methyl-4-carboxyphenylglycine (500 microM). The group I mGluR-selective antagonists (S)-4-carboxy-phenylglycine (50 microM) and (RS)-1-aminoindan-1,5-dicarboxylic acid (100 microM) prevented induction of LTD when applied before and during HFS. The mGluR1-selective antagonist 7-(Hydroxyimino) cyclopropa[b]chromen-1a-carboxylate ethyl ester (80 microM) also blocked LTD induction. Unexpectedly, the mGluR5-selective antagonist 2-methyl-6-(phenylethyl)-pyridine (10 microM) also prevented LTD induction. The group II mGluR antagonist LY307452 (10 microM) did not block LTD induction at corticostriatal synapses, but LY307452 was able to block transient synaptic depression induced by the group II agonist LY314593. None of the antagonists had any effect on basal synaptic transmission at the concentrations used, and mGluR antagonists did not reverse LTD when applied beginning 20 min after HFS. These results suggest that both group I mGluR subtypes contribute to the induction of LTD at corticostriatal synapses.
Collapse
Affiliation(s)
- K W Sung
- Department of Pharmacology, College of Medicine, Catholic University, Seoul 137-701, Korea
| | | | | |
Collapse
|
20
|
Passineau MJ, Green EJ, Dietrich WD. Therapeutic effects of environmental enrichment on cognitive function and tissue integrity following severe traumatic brain injury in rats. Exp Neurol 2001; 168:373-84. [PMID: 11259125 DOI: 10.1006/exnr.2000.7623] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postinjury environmental enrichment (EE) has been shown to alter functional and anatomical outcomes in a number of injury paradigms, including traumatic brain injury (TBI). The question of whether EE alters functional outcome following TBI in a model which produces overt histopathological consequences has not been addressed. We investigated this question using the severe, parasagittal fluid percussion injury (FPI) model. Rats (n = 7 per group, enriched and standard for behavior; n = 15 per group for histology) underwent severe (2.2-2.6 atm) FPI, with sham-operated rats (n = 7 per group, enriched and standard for behavior; n = 6 enriched, n = 3 standard for histology) serving as controls. Animals were allowed to recover for 11 days either in standard single housing or together (injured and sham) in an enriched environment consisting of a 92 x 61 x 77-cm ferret cage filled with various stimulatory objects. Consistent with earlier reports, injured animals recovering in the enriched environment showed significantly (P < 0.05) shorter latencies to find the platform in a Morris Water Maze task versus injured/standard animals on day 12 post-TBI. However, both injured groups showed significant deficits versus sham groups (P < 0.05). There were no differences between the sham/enriched and sham/standard groups. No significant group differences in swim speed were observed. At 14 days post-TBI, enriched animals had approximately twofold smaller lesion areas in regions of the cerebral cortex posterior to the injury epicenter (-4.5, -5.8, -6.8 mm relative to bregma; P < 0.05) compared to injured/standard animals. In addition, overall lesion volume for the entire injured cortical hemisphere was significantly smaller in animals recovering in the enriched environment. These results indicate that noninvasive environmental stimulation is beneficial in attenuating cognitive deficits and preserving tissue integrity in a TBI model which causes cerebral contusion and cell death.
Collapse
Affiliation(s)
- M J Passineau
- Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | |
Collapse
|
21
|
Prins ML, Hovda DA. Mapping cerebral glucose metabolism during spatial learning: interactions of development and traumatic brain injury. J Neurotrauma 2001; 18:31-46. [PMID: 11200248 DOI: 10.1089/089771501750055758] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous studies have demonstrated that, compared to adults, postnatal day 17 (P17) and P28 rats show remarkable cognitive recovery in the Morris water maze (MWM) following fluid percussion injury (FPI). This observed age-at-trauma effect could result from either younger animals solving the MWM task using noninjured neural circuitry or an inability of adult and P28 brains to activate appropriate neural networks due to trauma-induced neurological dysfunction. To address these possibilities, we compared "activated" brain regions during normal MWM acquisition and following FP injury. To generate "activated" images of the brain while animals were performing the MWM task, qualitative [14C]2-deoxy-D-glucose was conducted on days 2, 5, and 14 during training in sham and injured adult, P28, and P17 rats. When maturational changes in cerebral glucose metabolism are taken into account, the results suggests similar activity changes in the cerebral cortex and lacunosum moleculare of CA1 during acquisition in all age groups, suggesting that the developmental rates of MWM learning do not correspond to different patterns of activated cerebral metabolism. Injured P17s, showing no latency deficits, revealed activated cerebral metabolic patterns similar to noninjured P17 animals. In P28 and adult cases, animals exhibited cognitive deficits and their metabolic studies indicated that the cortical-hippocampal pattern of activation was disrupted by marked injury-induced metabolic depression, which primarily affected the ipsilateral hemisphere and lasted for as long as 14 days in adult animals.
Collapse
Affiliation(s)
- M L Prins
- Department of Neurobiology, Los Angeles, California, USA.
| | | |
Collapse
|
22
|
Lyden P, Shin C, Jackson-Friedman C, Hassid S, Chong A, Macdonald RL. Effect of ganaxolone in a rodent model of cerebral hematoma. Stroke 2000; 31:169-75. [PMID: 10625734 DOI: 10.1161/01.str.31.1.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Therapy with gamma-aminobutyric acid (GABA) agonists appears to improve outcome after experimental hematoma but with unacceptable side effects. We looked to synthetic GABA agonists, or positive GABA modulators, widely developed as anticonvulsants and anxiolytics, to find compounds that may be effective. Ganaxolone is a synthetic neuroactive steroid that positively modulates GABA. We sought to determine whether ganaxolone was beneficial using a model of intracerebral hematoma. METHODS We stereotaxically injected varying doses of bacterial collagenase into the caudate nucleus of rats to induce blood-brain barrier failure and hematoma formation. Four hours later, we administered intravenously 15 or 30 mg/kg ganaxolone (n=23 each group), 20 mg/kg pregnanolone (n=21), or vehicle (n=30). Forty-eight hours after collagenase injection, we rated each animal using a standard rodent neurological examination. The ratings were compared with the amounts of injected collagenase using the quantal bioassay procedure. Other sets of animals were tested later for visuospatial learning. Brains were then prepared for histomorphometry, and brain volumes were estimated. RESULTS We found that ganaxolone 30 mg/kg significantly increased the ED(50) in the bioassay, for a potency ratio of 1.8+/-0.41 compared with vehicle (P<0.05). Ganaxolone 15 mg/kg and pregnanolone did not affect neurological outcome. Ganaxolone 30 mg/kg did not clearly improve visuospatial learning several weeks after hemorrhage. Ganaxolone exhibited a weak effect on cerebral volumes 48 hours after stroke, but 3 months after hemorrhage no such effect could be detected. CONCLUSIONS Ganaxolone improves neurological outcome 48 hours after intracerebral hematoma but not visuospatial learning several weeks after intracerebral hematoma. Histological evidence of damage was reduced at 48 hours but not at 3 months.
Collapse
Affiliation(s)
- P Lyden
- Department of Neurosciences, University of California at San Diego School of Medicine, San Diego, California, USA
| | | | | | | | | | | |
Collapse
|
23
|
Eijkenboom M, Gerlach I, van der Staay FJ. The effects of subdural haematoma on spatial learning in the rat. Neuroscience 1999; 94:373-88. [PMID: 10579201 DOI: 10.1016/s0306-4522(99)00332-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although memory deficits are one of the most persistent consequences of human subdural haematoma, cognitive functioning has hardly been investigated in the rat subdural haematoma model. In the present study, the effects on spatial learning of right- and left-sided unilateral subdural haematoma and of bilateral subdural haematoma induced above the sensorimotor cortical areas were evaluated. Spatial learning was assessed by standard acquisition in the Morris water escape task (five sessions). Additional issues addressed were sensorimotor functioning (footprint analysis), recovery of cognitive functioning (tested by an overtraining and a reversal training) and replicability of induced cognitive deficits. Following unilateral subdural haematoma surgery, hardly any impairments in the Morris water escape task were observed: rats with a unilateral right-sided subdural haematoma showed very mild, transient deficits, whereas rats with left-sided subdural haematoma were indistinguishable from controls. Bilateral subdural haematoma surgery led to a clear, although transient, performance deficit. We conclude that animals with bilateral subdural haematoma may provide a promising cognitive deficit model for investigating recovery of function.
Collapse
|
24
|
El-Ghundi M, Fletcher PJ, Drago J, Sibley DR, O'Dowd BF, George SR. Spatial learning deficit in dopamine D(1) receptor knockout mice. Eur J Pharmacol 1999; 383:95-106. [PMID: 10585522 DOI: 10.1016/s0014-2999(99)00573-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dopamine D(1) receptors are expressed in the hippocampus and prefrontal cortex, suggesting a role in cognition. Dopamine D(1) receptor-deficient mice (D(1)-/-) were used to investigate the role of this receptor in spatial learning and memory. Using the Morris water maze, mice were trained to locate a hidden platform. Subsequently, the platform was removed from the maze and mice were scored for the percentage of time spent in the target quadrant and the number of crossings through the target position. D(1)-/- mice had significantly longer escape latencies compared to wild-type (D(1)+/+) and heterozygous (D(1)+/-) littermates and showed absence of spatial bias during the probe trials. In a visually cued task, D(1)-/- mice performed better than on the hidden platform trials, but maintained slightly higher escape latencies than D(1)+/+ and D(1)+/- mice. Naive D(1)-/- mice exposed only to the cued task eventually acquired identical escape latencies as the D(1)+/+ and D(1)+/- mice. Sensorimotor reflexes, locomotor activity, spontaneous alternation and contextual learning were not different among the groups. These results indicate that D(1)-/- mice have a deficit in spatial learning without visual or motor impairment, suggesting that dopamine D(1) receptors are involved in at least one form of the cognitive processes.
Collapse
Affiliation(s)
- M El-Ghundi
- Department of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Neurotrophic factors are now recognized to play important roles in the normal function of the mature central nervous system. This knowledge has motivated experiments to evaluate the potential benefits of administering neurotrophic factors to the aged brain. This article provides a review of studies to date that have determined the behavioral effects of such treatments. Nerve growth factor (NGF) administration appears to reliably enhance learning and memory in aged rats, while glial-derived neurotrophic factor (GDNF) causes some improvement in motor function. Problems associated with neurotrophic factor administration to humans are discussed.
Collapse
Affiliation(s)
- Gregory M. Rose
- Neuroscience Drug Discovery, Bristol-Myers Squibb Co., 5 Research Parkway, Wallingford, CT 06492
| |
Collapse
|
26
|
Prins ML, Hovda DA. Traumatic brain injury in the developing rat: effects of maturation on Morris water maze acquisition. J Neurotrauma 1998; 15:799-811. [PMID: 9814636 DOI: 10.1089/neu.1998.15.799] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous work has demonstrated that postnatal and adult rats show different physiological responses to lateral fluid percussion (FP) brain injury. Compared to adult animals, the younger rats showed longer apnea and shorter unconsciousness, and sustained hypotension at all injury severities, with higher mortality following severe traumatic brain injury (TBI). To determine if these younger rats exhibit differential cognitive impairments, the Morris water maze (MWM) was used to compare the degree of spatial learning deficits between moderately injured postnatal day 17 (P17), P28, and adult rats, as well as their age-matched controls. Comparisons between shams of different ages showed a maturational time course for MWM acquisition, where adult rats learned the task 34-58% faster than younger age groups. Injured adults showed escape latency deficits throughout the entire training period, took 39% fewer direct paths to the platform during training, took 24% longer to reach criterion performance, and showed poor probe trial performance than adult shams. Injured P28s exhibited escape latency deficits during the first week, with 23% more trials to criterion and 24% fewer direct paths compared to P28 shams. In contrast, injured P17 rats showed no significant difference from age-matched controls in terms of escape latency, number of direct paths taken, or time to criterion performance. This work suggests that, upon surviving the insult, P17 injured rats show remarkable sparing compared to P28 and adult injured animals.
Collapse
Affiliation(s)
- M L Prins
- Division of Neurosurgery, UCLA School of Medicine, Molecular and Medical Pharmacology, Los Angeles, California, USA
| | | |
Collapse
|
27
|
Sago H, Carlson EJ, Smith DJ, Kilbridge J, Rubin EM, Mobley WC, Epstein CJ, Huang TT. Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc Natl Acad Sci U S A 1998; 95:6256-61. [PMID: 9600952 PMCID: PMC27649 DOI: 10.1073/pnas.95.11.6256] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A mouse model for Down syndrome, Ts1Cje, has been developed. This model has made possible a step in the genetic dissection of the learning, behavioral, and neurological abnormalities associated with segmental trisomy for the region of mouse chromosome 16 homologous with the so-called "Down syndrome region" of human chromosome segment 21q22. Tests of learning in the Morris water maze and assessment of spontaneous locomotor activity reveal distinct learning and behavioral abnormalities, some of which are indicative of hippocampal dysfunction. The triplicated region in Ts1Cje, from Sod1 to Mx1, is smaller than that in Ts65Dn, another segmental trisomy 16 mouse, and the learning deficits in Ts1Cje are less severe than those in Ts65Dn. In addition, degeneration of basal forebrain cholinergic neurons, which was observed in Ts65Dn, was absent in Ts1Cje.
Collapse
Affiliation(s)
- H Sago
- Department of Pediatrics, University of California, Box 0546, San Francisco, CA 94143-0546, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Beiko J, Candusso L, Cain DP. The effect of nonspatial water maze pretraining in rats subjected to serotonin depletion and muscarinic receptor antagonism: a detailed behavioural assessment of spatial performance. Behav Brain Res 1997; 88:201-11. [PMID: 9404629 DOI: 10.1016/s0166-4328(97)02298-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A detailed behavioural analysis of water maze spatial performance in the rat was utilized to determine the effect of single and combined administration of p-chlorophenylalanine (PCPA; 1000 mg/kg, i.p.), an inhibitor of serotonin biosynthesis, and scopolamine hydrobromide (SCO; 1.0 mg/kg, i.p.), a muscarinic receptor antagonist. In some groups a water maze pretraining regimen known as non-spatial pretraining (NSP) was used to familiarize the animals with the general requirements of the task before spatial training was begun. The results showed that: (a) depletion of serotonin with PCPA had no effect on water maze performance and produced no sensorimotor disturbances; (b) antagonism of muscarinic receptors produced impairments in spatial and sensorimotor function in naive rats but neither effect was observed in rats first given NSP; (c) combined disruption of muscarinic and serotonergic function produced a severe deficit in spatial performance that was only partially alleviated by NSP; and (d) there was an association between poor maze acquisition scores and a high incidence of sensorimotor dysfunction. In addition to the water maze task the rats were also assessed for motoric performance on a beam walking test. The role of cholinergic and serotonergic systems in learning and memory is discussed.
Collapse
Affiliation(s)
- J Beiko
- Department of Psychology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
29
|
Abstract
The importance of the hippocampus and its anatomical connections, including the medial septum, thalamic nuclei, and neocortical regions in many spatial tasks including the Morris water maze, has been emphasized. Studies in mutant mice with cerebellar atrophy and in rats with electrolytic lesions of the cerebellum have indicated that the cerebellum has a role in visuospatial and visuomotor processes in the Morris maze. Directional deficits in the water have also been noted in rats whose cerebellum was exposed to X-rays during different developmental stages. Cerebellar interactions with the superior colliculus, the hippocampus, and the neocortex via thalamic nuclei are suggested to be the basis of the cerebellar modulation of directional sense in maze tests.
Collapse
Affiliation(s)
- R Lalonde
- Neurology Service, Hôtel-Dieu Hospital Research Center, Montréal, Quebec, Canada
| |
Collapse
|
30
|
Compton DM, Griffith HR, McDaniel WF, Foster RA, Davis BK. The flexible use of multiple cue relationships in spatial navigation: a comparison of water maze performance following hippocampal, medial septal, prefrontal cortex, or posterior parietal cortex lesions. Neurobiol Learn Mem 1997; 68:117-32. [PMID: 9322255 DOI: 10.1006/nlme.1997.3793] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rats prepared with lesions of the prefrontal cortex, posterior parietal cortex, hippocampus, or medial septal area were tested for acquisition of a number of variations of the open-field water maze using a version of place learning assessment described by Eichenbaum, Stewart, and Morris (1991). Specifically, the individual role of the aforementioned cortical and subcortical structures in tasks with differing representational demands on navigation were assessed. The results suggest that the sham-operated control, posterior parietal cortex-lesioned rats, and medial septal area-lesioned rats were able to navigate effectively under changing task conditions. Conversely, the navigational performances of the prefrontal cortex- and hippocampal formation-lesioned rats were impaired when task demands changed. The results are discussed in terms of the flexible use of multiple distal cues to guide navigation and the resulting loss of this flexibility after lesions to either the prefrontal cortex or the hippocampus.
Collapse
Affiliation(s)
- D M Compton
- Department of Psychology, Georgia College and State University, Milledgeville 31061, USA.
| | | | | | | | | |
Collapse
|
31
|
Bramlett HM, Green EJ, Dietrich WD. Hippocampally dependent and independent chronic spatial navigational deficits following parasagittal fluid percussion brain injury in the rat. Brain Res 1997; 762:195-202. [PMID: 9262173 DOI: 10.1016/s0006-8993(97)00387-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous reports have documented spatial navigational deficits following experimental traumatic brain injury (TBI), although the majority of the work to date has involved assessment at acute intervals following TBI, and has focused on tasks sensitive to hippocampal dysfunction. The present experiments were designed to investigate the chronic consequences of TBI, and the possible contribution of extrahippocampal dysfunction to TBI-induced spatial navigational deficits, in a moderate parasagittal fluid percussion TBI model. In Experiment 1, animals were pre-trained in a water maze, subjected to TBI or sham procedures, and re-evaluated in the water maze 48 h following the insult. Six to 8 weeks following TBI, the same animals were required to navigate to a different platform location. TBI animals exhibited significant deficits in retention of previously learned spatial information at the 48 h interval, and marginally impaired acquisition of a novel platform location during the chronic test sessions. In Experiment 2, animals were required to navigate to novel spatial locations using cued (to evaluate extrahippocampal function) as well as non-cued variants of the water maze task during the 8 week period following the insult. Injured animals exhibited deficits in both tasks which gradually diminished over the course of testing. The results of these experiments indicate that moderate TBI is accompanied by both retention and acquisition deficits, and that some of the navigational deficits observed in the water maze can be attributed to extrahippocampal damage. The possible recovery of spatial navigational ability following parasagittal TBI at moderate intensities is also discussed.
Collapse
Affiliation(s)
- H M Bramlett
- Neurotrauma Research Center, University of Miami, FL 33136, USA
| | | | | |
Collapse
|
32
|
Abstract
The development of the water maze as a laboratory approach to the study of spatial navigation has led to a large amount of research on the brain mechanisms of this ecologically important behavior. The procedural simplicity of this task belies its underlying complexity, which can complicate the interpretation of data obtained with the standard water maze procedure. In this review, recent experiments that used novel training procedures and detailed analyses of behavior are evaluated, together with related experiments, to clarify the brain mechanisms involved in this behavior. Pharmacological, lesion, and unit recording experiments demonstrate the existence of forebrain circuits for spatial navigation that are considerably more varied and extensive than was previously proposed, and involve various extrahippocampal structures. The use of novel and specialized procedures, together with a continued detailed focus on the behavior of animals in the maze, appears to be the most promising approach to understanding the mechanisms of spatial navigation.
Collapse
Affiliation(s)
- D P Cain
- Department of Psychology, University of Western Ontario, London, Canada
| | | |
Collapse
|
33
|
Abstract
Although there is a good deal of evidence that animals require the hippocampus for learning place responses, animals with damage to the afferent and efferent fibers coursing through the fimbria-fornix have been shown to acquire a place response. This finding suggests either that the cells of the hippocampus proper (CA1-4 and dentate gyrus), via their connections to the temporal lobe, can mediate place learning or that some extrahippocampal structure is sufficient. We examined this question using rats with ibotenic acid lesions of the cells of the hippocampus. Rats were pretrained to swim to a visible platform and then given probe trials on which the visible platform was removed. Video and kinematic analyses showed that the hippocampal rats expected to find the platform at its previous location because they swam directly to that location and paused and turned at that location after the platform was removed. Additional tests confirmed that they had learned a place response. There were, however, abnormalities in their swimming patterns, and despite having acquired one place response, they did not then acquire new place responses when only the hidden platform training procedure was used. These results demonstrate that place learning can be acquired by rats in which the hippocampus proper is removed. Contrasts between conditions in which hippocampal rats acquire a place response and conditions in which they fail suggests that the hippocampus may serve as an on line system for monitoring movement and integrating movement paths.
Collapse
Affiliation(s)
- I Q Whishaw
- Department of Psychology, University of Lethbridge, Alberta, Canada.
| | | |
Collapse
|
34
|
Pappius HM. Cortical hypometabolism in injured brain: new correlations with the noradrenergic and serotonergic systems and with behavioral deficits. Neurochem Res 1995; 20:1311-21. [PMID: 8786817 DOI: 10.1007/bf00992506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Changes with time after injury in behavioral deficits, as determined by the Morris swim test, and the in vivo specific binding of HEAT, a selective alpha 1-adrenoreceptor ligand, were compared with the time-course of development of cortical hypometabolism in rats with focal freezing lesions. In our trauma model, cortical hypometabolism was detectable in the lesioned hemisphere at 4 hr, became maximal (50% of normal) at 3 days and diminished towards normal on days 5 and 10 post-injury. Progressive impairment of acquisition of the Morris water maze task was demonstrated up to day 3 post-lesion with improvement thereafter. On day 3 the latency to reach criterion was 60% longer in lesioned animals than in corresponding sham-operated ones. An increase in the volume of distribution of HEAT, limited to cortical areas of the lesioned hemisphere, was demonstrable at 4 hr post-lesion and reached its maximum on day 3 (200% of normal) with subsequent return toward normal on days 5 and 10. Several types of drugs were shown previously to modify the cortical hypometabolism associated with cerebral injury. The present data indicate that the same drugs also modify the in vivo binding of HEAT and the behavioral deficits induced by brain lesions. Ibuprofen, a non-steroidal anti-inflammatory drug, p-chlorophenylalanine, an inhibitor of serotonin synthesis, ketanserin, a specific 5HT2-receptor antagonist, and prazosin, an alpha 1-adrenergic receptor blocker all normalized the in vivo binding of HEAT in the cortical areas of the lesioned hemisphere. All groups of animals treated with these drugs also showed subtle, but statistically highly significant improvements in latency to locate the platform in the Morris water maze. Taken together these results show good correlation between behavioral deficits, changes in alpha 1-noradrenergic receptor binding and cortical hypometabolism in injured brain. This supports the hypothesis that post-injury cortical hypometabolism is a reflection of cortical functional depression in which both the serotonergic and noradrenergic neurotransmitter systems play a role, compatible with their inhibitory effects in the cortex and their postulated involvement in cortical information processing.
Collapse
Affiliation(s)
- H M Pappius
- Neurobiology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Anderson B. Individual variation in cerebral cortex size and neuron number does not predict behavioral ability in the rat. PERSONALITY AND INDIVIDUAL DIFFERENCES 1995. [DOI: 10.1016/0191-8869(94)00138-i] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Whishaw IQ, Jarrard LE. Similarities vs. differences in place learning and circadian activity in rats after fimbria-fornix section or ibotenate removal of hippocampal cells. Hippocampus 1995; 5:595-604. [PMID: 8646285 DOI: 10.1002/hipo.450050610] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Damage to either the fimbria-fornix or to the hippocampus can produce a deficit in spatial behavior and change in locomotor activity but the extent to which the two kinds of damage are comparable is not known. Here we contrasted the effects of cathodal sections of the fimbria-fornix with ibotenic acid lesions of the cells of the hippocampus (Ammon's horn and the dentate gyrus) on place learning in a swimming pool and on circadian activity. Rats in both ablation groups were impaired relative to control rats in learning a single place response but they did acquire the response as measured by swim latencies, errors, and by enhanced searching on probe trials. They were also more active than the control group on the test of activity. Nevertheless, the fimbria-fornix group was initially more impaired on learning and was more active than the hippocampal group. Analysis of the strategies used in learning indicated that the lesion groups were very similar to each other but different from the control group especially in that at asymptotic performance, rats in both lesion groups made rather tight loops as they swam toward the platform. This strategy likely contributed to the greater proportion of time they spent swimming in the correct quadrant on the subsequent probe trial. These findings confirm that rats with fimbria-fornix or hippocampal damage display impairments in place learning and are hyperactive but also show that there are lesion differences. The results are discussed with respect to the relative effectiveness of the lesions and the possibility that fibers in the fimbria-fornix may mediate some functions that are not attributable to the hippocampus.
Collapse
Affiliation(s)
- I Q Whishaw
- Department of Psychology, University of Lethbridge, Alberta, Canada
| | | |
Collapse
|
37
|
Panksepp J, Normansell L, Cox JF, Siviy SM. Effects of neonatal decortication on the social play of juvenile rats. Physiol Behav 1994; 56:429-43. [PMID: 7972392 DOI: 10.1016/0031-9384(94)90285-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of radical neonatal decortication on the social play of juvenile rats, as well as the effects of neonatal ablation of frontal or parietal cortex, were examined in this series of experiments. When total decorticates were tested in like-lesioned pairs, the frequency of pinning was reduced by about 50% and their average pin durations were shorter. Nevertheless, the play of decorticates appeared essentially normal in general appearance, and did not differ from controls in a measure of overall play vigor using an electronic activity platform. Further, there were no differences in pin frequencies when controls and decorticates were paired together in cross-lesion testing. Separate tests of play solicitation behaviors did not detect any differences between controls and decorticates suggesting that play motivation was essentially intact after decortication. No deficits in pinning resulted from frontal ablations; however, pin durations were shorter in like-lesion testing. In cross-lesion testing, there was an increase in dorsal contacts and a trend toward shortening of pin durations. Parietal aspirations resulted in a 65% reduction in pin frequency, without substantially altering dorsal contacts. Anesthetization of the anterior surface of the animal's back with xylocaine reduced pinning in controls but eliminated pinning in parietals. Although the results generally indicate little participation of the neocortex in the instigation of rough-and-tumble play, the reliable numerical changes that were observed may be explained by apparent motor changes as well as reduced somatosensory sensitivity.
Collapse
Affiliation(s)
- J Panksepp
- Department of Psychology, Bowling Green State University, OH 43403
| | | | | | | |
Collapse
|
38
|
Hannigan JH, Cortese BM, DiCerbo JA, Radford LD. Scopolamine does not differentially affect Morris maze performance in adult rats exposed prenatally to alcohol. Alcohol 1993; 10:529-35. [PMID: 8123212 DOI: 10.1016/0741-8329(93)90077-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rats exposed prenatally to alcohol have shown deficits in spatial learning in radial-arm and Morris mazes. Prenatal exposure to alcohol in rats has also been shown to alter central nervous system (CNS) cholinergic function. Since cholinergic dysfunction disrupts spatial learning in normal rats, the present experiment assessed the role of putative prenatal alcohol-induced cholinergic dysfunction in spatial learning in rats. Pregnant rats were fed alcohol via liquid diet from gestation day 6 to 20. Control dams were pair-fed liquid diet without alcohol or fed ad lib lab chow and water. Group housed adult male and female offspring (postnatal days 110 to 135) were given scopolamine-HCl (0, 0.5, or 1.0 mg/kg/day) and tested in a Morris maze, with four trials per day for four days. A 15-s probe trial preceded testing on days 2-4. On day 5, the rats were given four trials to learn a new platform location. Scopolamine produced dose-dependent increases in latency to find the platform for all groups. There were no significant differences among prenatal treatment groups in scopolamine-induced shifts in performance. The results did not support the hypothesis that prenatal alcohol-induced CNS cholinergic dysfunction is related to spatial learning performance in these rats.
Collapse
Affiliation(s)
- J H Hannigan
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | | | |
Collapse
|
39
|
Abstract
This study describes hippocampal participation in maze navigation in terms of a real-time, biologically plausible neural network. The system is composed of (1) a goal-seeking mechanism, (2) a cognitive map system, and (3) a route system. The goal-seeking mechanism displays exploratory behavior until either the goal is found or a sufficiently strong prediction of the goal is generated. The cognitive map is a topological map that stores associations between places and views of accessible places, and between places and reward. The route system establishes associations between cues and reward. Both systems compete with each other to establish associations with the reward, with the cognitive system generally overshadowing the route system. In agreement with previous models, it is assumed that the hippocampus modulates the storage of cognitive maps in cortical areas and mediates the competition between cognitive maps and route systems. After hippocampal lesions, animals navigate through mazes making use of the route system. Computer simulations show that the network effectively describes latent learning, detour behavior, and place learning in normal and hippocampal- and cortical-lesioned animals.
Collapse
Affiliation(s)
- N A Schmajuk
- Department of Psychology, Northwestern University, Evanston, Illinois 60201
| | | | | |
Collapse
|
40
|
Sakić B, Szechtman H, Denburg S, Carbotte R, Denburg JA. Spatial learning during the course of autoimmune disease in MRL mice. Behav Brain Res 1993; 54:57-66. [PMID: 8504012 DOI: 10.1016/0166-4328(93)90048-u] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present study examines whether autoimmune MRL-lpr mice develop impairments in learning and memory that correlate with changing severity of lupus-like disease. MRL-lpr mice (n = 20) were tested in the Morris water-maze at 12, 14, 16 and 18 weeks of age. Age-matched controls were congenic MRL +/+ mice (n = 20) that develop the disease much later. Immune status was assessed by the presence of anti-nuclear antibodies (ANA), brain-reactive antibodies, proteinuria, and haematocrit. Learning rates and memory retention did not differ between the substrains, and did not correlate or deteriorate with advancing age and autoimmunity. However, the baseline performance level in autoimmune MRL-lpr mice was shifted, as evidenced by a consistently longer task-solving latencies. Thigmotaxic swimming (along the pool wall) was pronounced in the MRL-lpr group, and was associated with the observed difference in performance. The present study does not support the notion that learning/memory abilities of autoimmune MRL-lpr mice are impaired per se, but may support the hypothesis that the rapid progress of humoral autoimmunity affects the emotionality of lupus-prone mice.
Collapse
Affiliation(s)
- B Sakić
- Department of Biomedical Sciences, McMaster University, Hamilton, Ont., Canada
| | | | | | | | | |
Collapse
|
41
|
Paylor R, Morrison SK, Rudy JW, Waltrip LT, Wehner JM. Brief exposure to an enriched environment improves performance on the Morris water task and increases hippocampal cytosolic protein kinase C activity in young rats. Behav Brain Res 1992; 52:49-59. [PMID: 1472287 DOI: 10.1016/s0166-4328(05)80324-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study was designed to determine whether brief exposure to an enriched environment around the time of weaning would affect learning and memory processes in young rats. In addition, this study sought to determine if experience in an enriched environment would alter hippocampal protein kinase C (PKC) which is thought to be a possible neural substrate that underlies learning and memory processes. Animals were either reared in an enriched environment or standard laboratory cages starting at 15 days old. After 6 (21 days old) or 12 (27 days old) days subjects were either tested in the Morris water task, or had the hippocampus removed for biochemical analysis of PKC activity. Morris water task results showed that compared to laboratory reared controls, the performance of subjects reared in the enriched environment for 12 days, but not 6 days, was improved. In addition, 12 days of exposure to the enriched environment, but not 6 days, produced more cytosolic hippocampal PKC activity. The particulate fraction appeared not to be affected by rearing in the enriched environment. Brief exposure to an enriched environment around weaning, therefore, both improved Morris water task performance and increased hippocampal PKC activity. These outcomes suggest that performance in the Morris water task and hippocampal PKC may be functionally related.
Collapse
Affiliation(s)
- R Paylor
- Institute for Behavioral Genetics, University of Colorado, Boulder 80309-0447
| | | | | | | | | |
Collapse
|
42
|
Lee MH, Rabe A. Premature decline in Morris water maze performance of aging micrencephalic rats. Neurotoxicol Teratol 1992; 14:383-92. [PMID: 1488032 DOI: 10.1016/0892-0362(92)90048-f] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The rat with methylazoxymethanol-induced micrencephaly is a useful animal model of congenital brain defects and associated cognitive impairment. Born with profound morphological and neurochemical alterations in the forebrain, it shows impaired ability to learn mazes. In order to determine how an animal with such a developmentally damaged brain would function in old age, Long-Evans rats 6, 15, and 24 months of age were tested for their ability to learn to locate a hidden platform in the Morris water maze. The performance of micrencephalic rats of all ages was impaired on acquisition, retention, and transfer trials. Moreover, the magnitude of their acquisition deficit increased with age. It remains to be determined whether the premature decline of the micrencephalic rat in learning the task simply reflects a greater impact on an already compromised brain by neuron loss characteristic of aging brains or whether the prenatal insult alters some basic processes resulting in premature aging.
Collapse
Affiliation(s)
- M H Lee
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314
| | | |
Collapse
|
43
|
Silva AJ, Paylor R, Wehner JM, Tonegawa S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 1992; 257:206-11. [PMID: 1321493 DOI: 10.1126/science.1321493] [Citation(s) in RCA: 1000] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although long-term potentiation (LTP) has been studied as the mechanism for hippocampus-dependent learning and memory, evidence for this hypothesis is still incomplete. The mice with a mutation in the alpha-calcium-calmodulin-dependent kinase II (alpha-CaMKII), a synaptic protein enriched in the hippocampus, are appropriate for addressing this issue because the hippocampus of these mice is deficient in LTP but maintains intact postsynaptic mechanisms. These mutant mice exhibit specific learning impairments, an indication that alpha-CaMKII has a prominent role in spatial learning, but that it is not essential for some types of non-spatial learning. The data considerably strengthen the contention that the synaptic changes exhibited in LTP are the basis for spatial memory.
Collapse
Affiliation(s)
- A J Silva
- Howard Hughes Medical Institute, Center for Cancer Research, Cambridge, MA
| | | | | | | |
Collapse
|
44
|
Goodlett CR, Hamre KM, West JR. Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice. Behav Brain Res 1992; 47:129-41. [PMID: 1590945 DOI: 10.1016/s0166-4328(05)80119-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spatial learning in rodents requires normal functioning of hippocampal and cortical structures. Recent data suggest that the cerebellum may also be essential. Neurological mutant mice with dysgenesis of the cerebellum provide useful models to examine the effects of abnormal cerebellar function. Mice with one such mutation, Purkinje cell degeneration (pcd), in which Purkinje cells degenerate between the third and fourth postnatal weeks, were evaluated for performance of spatial navigation learning and visual guidance learning in the Morris maze swim-escape task. Unaffected littermates and C57BL/6J mice served as controls. Separate groups of pcd and control mice were tested at 30, 50 and 110 days of age. At all ages, pcd mice had severe deficits in distal-cue (spatial) navigation, failing to decrease path lengths over training and failing to express appropriate spatial biases on probe trials. On the proximal-cue (visual guidance) task, whenever performance differences between groups did occur, they were limited to the initial trials. The ability of the pcd mice to perform the proximal-cue but not the distal-cue task indicates that the massive spatial navigation deficit was not due simply to motor dysfunction. Histological evaluations confirmed that the pcd mutation resulted in Purkinje cell loss without significant depletion of cells in the hippocampal formation. These data provide further evidence that the cerebellum is vital for the expression of behavior directed by spatial cognitive processes.
Collapse
Affiliation(s)
- C R Goodlett
- Department of Anatomy, College of Medicine, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
45
|
Vanderwolf CH. Effects of water temperature and core temperature on rat's performance in a swim-to-platform test. Behav Brain Res 1991; 44:105-6. [PMID: 1910565 DOI: 10.1016/s0166-4328(05)80244-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypothermic rats are grossly deficient in acquisition in a simple swim-to-platform task if the core temperature is 28-30 degrees C or lower. However, the ability to swim is relatively well preserved. Normothermic rats perform slightly better in cold water than in warm water.
Collapse
Affiliation(s)
- C H Vanderwolf
- Department of Psychology, University of Western Ontario, London, Canada
| |
Collapse
|
46
|
Dickson CT, Vanderwolf CH. Animal models of human amnesia and dementia: hippocampal and amygdala ablation compared with serotonergic and cholinergic blockade in the rat. Behav Brain Res 1990; 41:215-27. [PMID: 2288673 DOI: 10.1016/0166-4328(90)90109-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The behavioral effects of combined bilateral hippocampal and amygdala ablation (previously proposed as a model of human global amnesia) were compared to those seen with central blockade of the ascending cholinergic and serotonergic projections (a possible model of human global dementia) in male hooded rats. Rats were prepared with: (a) bilateral surgical lesions of the hippocampus and amygdala; (b) pharmacological blockade of central cholinergic and serotonergic function by systemic injections of scopolamine and p-chlorophenylalanine; and (c) neurotoxic lesions of the rostrally projecting serotonergic nuclei in the brainstem using intracerebral injections of 5,7-dihydroxytryptamine, later combined with scopolamine. The behavioral tests used were: an open field test, a swim-to-platform test, and a Lashley III maze. In all 3 tests, rats with either the neurotoxin lesions plus scopolamine or p-chlorophenylalanine plus scopolamine treatment showed greater impairments in comparison with controls than did the combined lesion group. These results indicate that simultaneous blockade of central serotonergic and cholinergic transmission has a greater effect on some aspects of the organization of behavior than large surgical lesions of the hippocampus and amygdala.
Collapse
Affiliation(s)
- C T Dickson
- Department of Psychology, University of Western Ontario, London, Canada
| | | |
Collapse
|
47
|
Tomie JA, Whishaw IQ. New paradigms for tactile discrimination studies with the rat: methods for simple, conditional, and configural discriminations. Physiol Behav 1990; 48:225-31. [PMID: 2255724 DOI: 10.1016/0031-9384(90)90305-n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper describes a number of new tactile discrimination tasks for rats. Rats that were placed on a small platform were trained to pull up strings to obtain attached food pellets. When presented with two different sized strings, the rats acquired size discriminations and reversals within 5 to 10 days. When differences between string sizes were varied, the rats could discriminate differences less than one millimeter. A conditional task, in which the location of the correct string was made contingent on string size, was acquired within about forty days. A configural task, in which a compound of string size and odor predicted reinforcement, was acquired within about fifty days. The task is easy to use, provides good contiguity between specified cues and reinforcement, and can be easily modified to study a variety of within modality and cross modality sensory problems. Since the task can be adapted for simple associative, conditional, and configural problems it could prove useful for studying neurobiological substrates underlying learning and memory, cross modal matching, and recovery of function.
Collapse
Affiliation(s)
- J A Tomie
- Department of Psychology, University of Lethbridge, Alberta, Canada
| | | |
Collapse
|
48
|
Deyo RA, Panksepp J, Abbott B. Perinatal decortication impairs performance on an 8-arm radial maze task. Physiol Behav 1990; 48:55-60. [PMID: 2236279 DOI: 10.1016/0031-9384(90)90260-b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two experiments evaluate the role of the neocortex in rodent spatial learning. In Experiment 1, perinatally decorticated rats and sham-operated controls began ten training sessions at day 200 on an 8-arm radial maze. Decorticated rats made more errors than controls, but showed improvement by the tenth session. In the second experiment, training was extended to determine whether decorticates could eventually match control performance levels if given sufficient training. Spontaneous activity levels were also recorded and compared to maze performance to investigate the relationship between poor performance on the radial maze and activity. More than half of the decorticates reached criterion performance. Decorticates had significantly elevated spontaneous activity levels when compared to controls, and the magnitude of this hyperactivity was related to performance deficits on the radial maze. These results suggest that with extended training decorticates can learn a spatial task. Performance deficits may reflect the hyperactive tendency of decorticates rather than a specific impairment of spatial learning abilities.
Collapse
Affiliation(s)
- R A Deyo
- Department of Psychology, Bowling Green State University, OH 43403
| | | | | |
Collapse
|
49
|
Abstract
Prenatal exposure to ethanol causes learning disabilities and low I.Q. scores. The objective of the present studies was to investigate whether exposure of rats to ethanol in utero, would induce a deficit in spatial memory in adult life. Pregnant rats were fed with an ethanol diet from day 1 of pregnancy till parturition. Control rats were either pair-fed with an isocaloric sucrose diet or were fed with lab-chow ad libitum. On the first day of birth, offspring exposed to ethanol in utero were placed with a control mother fed with lab-chow, while offspring of the lab-chow fed dams were placed with ethanol-treated dams. At 40, 60 and 90 days postnatally, behavioral testing was performed using the Morris swim maze, a test of spatial memory. Results indicated that the offspring exposed to ethanol in utero presented deficits in spatial memory processes. Ethanol did not completely block the learning of the swim maze task but the alcohol-exposed offspring exhibited longer latencies to perform the task, swam longer distances prior to locating and climbing onto the platform, and when the platform was removed, searched for it in all 4 quadrants of the pool. Restricted caloric intake during gestation and maternal behavior in early postnatal life also induced deficits in the performance on the swim maze task. However, these deficits were mild and short-lasting being absent at 60 and 90 days of age. In contrast, the deficits induced by ethanol were more severe and longer-lasting, being present in adult life.
Collapse
Affiliation(s)
- C Gianoulakis
- Douglas Hospital Research Centre, McGill University, Verdun, Que., Canada
| |
Collapse
|
50
|
Packard MG, White NM. Lesions of the caudate nucleus selectively impair "reference memory" acquisition in the radial maze. BEHAVIORAL AND NEURAL BIOLOGY 1990; 53:39-50. [PMID: 2302140 DOI: 10.1016/0163-1047(90)90780-a] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Groups of Long-Evans rats with bilateral lesions of the caudate nucleus, sham lesions, or no lesions were given one trial per day in an eight-arm radial maze. The same four maze arms were baited on each trial. The remaining four arms never contained food. Optimal performance required animals to enter each of the baited arms only once on each trial and to avoid entering the arms in the unbaited set. Rats with caudate lesions learned to enter each of the baited arms only once on each trial. However, these rats were severely impaired in learning to avoid entering the arms in the unbaited set. Implications for dual-memory theories are discussed.
Collapse
Affiliation(s)
- M G Packard
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|