1
|
Curti L, Rizzi B, Mottarlini F, Bigagli E, Ilari A, Costa A, Sordi V, Ranieri G, Luceri C, Cannella N, Ubaldi M, Masi A, Fumagalli F, Caffino L, Mannaioni G, Gerace E. Prenatal ethanol exposure impairs hippocampal plasticity and cognition in adolescent mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111174. [PMID: 39447689 DOI: 10.1016/j.pnpbp.2024.111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) induces a wide range of neurodevelopmental disabilities that are grouped under the term 'fetal alcohol spectrum disorders' (FASD). The effects of PAE on brain development are dependent on complex neurochemical events, including modification of AMPA receptors (AMPARs). We have recently found that chronic ethanol (EtOH) exposure decreases AMPA-mediated neurotransmission and expression through the overexpression of the specific microRNA (miR)137 and 501-3p, which target GluA1 AMPA subunit, in the developing hippocampus in vitro. Here, we explored how PAE mice may alter AMPAergic synapses in the hippocampus, and its effects on behavior. METHODS To model PAE, we exposed C57Bl/6 pregnant mice to 10 % EtOH during during the first 10 days of gestation (GD 0-10; equivalent to the first trimester of pregnancy in humans). AMPA subunits postsynaptic expression in the hippocampus, electrical properties of CA1 neurons, memory recognition, and locomotor functions were then analyzed in adolescent PAE-exposed offspring. RESULTS PAE adolescent mice showed dysregulation of AMPAergic neurotransmission, and increased miR 501-3p expression, associated with a significant reduction of spontaneous AMPA currents and intrinsic somatic excitability. In addition, PAE reduced the phosphorylation of AMPAR-containing GluA1 subunit, despite an increase in its total levels. Of note, the total levels of GluA2 and GluA3 AMPA receptors were enhanced as well. Consistently, at behavioral level, PAE reduced object recognition without altering locomotor activity. CONCLUSIONS Our study shows that PAE leads to dysfunctional formation of AMPAergic synapses that could be responsible for neurobehavioral impairments, contributing to the understanding of the pathogenesis of FASD.
Collapse
Affiliation(s)
- Lorenzo Curti
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy, University of Florence, Florence, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy, University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Alice Ilari
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Alessia Costa
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Virginia Sordi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; School of Pharmacy, Pharmacology Unit, Centre for Neuroscience, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Giuseppe Ranieri
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, Centre for Neuroscience, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, Centre for Neuroscience, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy, University of Florence, Florence, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Elisabetta Gerace
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Department of Health Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
2
|
Shaabani Ghahremanlo M, Hojati V, Vaezi G, Sharafi S. Transgenerational of Oxidative Damage Induced by Prenatal Ethanol Exposure on Spatial Learning/Memory and BDNF in the of Male Rats. IBRO Neurosci Rep 2024; 17:398-406. [PMID: 39583589 PMCID: PMC11583777 DOI: 10.1016/j.ibneur.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024] Open
Abstract
Alcohol consumption during pregnancy harms fetal development, leading to various physical and behavioral issues. This study investigates how prenatal ethanol exposure triggers oxidative stress (OS) and affects neurotrophic factors (NTFs), particularly brain-derived growth factor (BDNF) gene expression in the hippocampus, influencing learning and memory decline across two generations of male offspring from ethanol-exposed female rats. A rat model of fetal alcohol spectrum disorder (FASD) was initially generated to reflect on the deficits in the first generation, and then those transmitted via the male germline to the unexposed male ones. The pregnant rats were thus divided into four groups, namely, the control group (CTRL) receiving only distilled water (DW), and three groups being exposed to ethanol (20 %, 4.5 g/kg) by oral gavage, during the first 10-day gestation (FG), the second 10-day gestation (SG), and the entire gestation (EG) periods. Subsequent Morris water maze (MWM) tests on male offspring revealed spatial learning deficits during the second and entire gestational periods in both generations. Analysis of antioxidant enzyme activity including glutathione peroxidase (GPx), superoxide dismutase (SOD), and malondialdehyde (MDA), and BDNF gene expression in the hippocampus further highlighted the impacts of prenatal ethanol exposure. The study results demonstrated that prenatal ethanol exposure caused spatial learning/memory deficits during the SG and EG, altered antioxidant enzyme activity, and reduced BDNF gene expression in both generations. The findings underscore the role of OS in developmental and behavioral issues in FASD rat models and suggest that lasting transgenerational effects in the second generation may stem from alcohol-induced changes.
Collapse
Affiliation(s)
| | | | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Shahram Sharafi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
3
|
Mooney SM, Pjetri E, Friday WB, Smith SM. Growth and behavioral differences in a C57BL/6J mouse model of prenatal alcohol exposure. Alcohol 2021; 97:51-57. [PMID: 34592334 DOI: 10.1016/j.alcohol.2021.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can produce behavioral deficits in the presence or absence of growth and morphological deficits. Here, we describe a murine PAE model having parallels to the clinical diagnosis of alcohol-related neurodevelopmental deficit (ARND). METHODS Pregnant C57BL/6J mice were gavaged with alcohol (ALC, 3 g/kg) or maltodextrin daily on embryonic days (E) E8.5 through E17.5. Blood alcohol levels were 211 ± 14 mg/dL at 30 min post-gavage. Offspring behavior was tested at adolescence. RESULTS ALC dams gained less weight during the alcohol exposure period (p = 0.035). ALC male and female pups weighed more than controls at P15 (p ≤ 0.001) and P22 (p ≤ 0.001), but not at P37, perhaps because their dams were pair-housed. During the training session for accelerating rotarod, control offspring trended to stay longer on the rotarod than did ALC offspring [F(1,54) = 2.892, p = 0.095]. In the Y-maze, ALC offspring had a higher percent alternation than did controls [F(1,54) = 16.577, p < 0.001], but activity level did not appear to differ. In the fear-conditioning test, there was no ALC effect in the training trial. In the contextual test, there was a group × minute effect for males [F(4,120) = 2.94, p = 0.023], and ALC trended to freeze less than controls in minute 1 (p = 0.076) and froze less in minute 2 (p = 0.02). In the cue test, there was a trend for a group-sex interaction [F(1,53) = 3.008, p = 0.089] on overall freezing, such that ALC males (p < 0.05) again froze less than control males, whereas ALC females (p < 0.05) froze more than control females. CONCLUSIONS This mouse model of PAE, using a repeated intermediate exposure, produces modest behavioral impairments that are consistent along the continuum of PAE models, including deficits in associative memory and hyper-responsivity. The lack of growth or morphological deficits suggests these mice may model aspects of ARND.
Collapse
|
4
|
Kenton JA, Castillo VK, Kehrer PE, Brigman JL. Moderate Prenatal Alcohol Exposure Impairs Visual-Spatial Discrimination in a Sex-Specific Manner: Effects of Testing Order and Difficulty on Learning Performance. Alcohol Clin Exp Res 2020; 44:2008-2018. [PMID: 32772384 DOI: 10.1111/acer.14426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to high levels of alcohol during development leads to alterations in neurogenesis and deficits in hippocampal-dependent learning. Evidence suggests that even more moderate alcohol consumption during pregnancy can have negative impacts on the cognitive function of offspring. Methods for assessing impairments differ greatly across species, complicating translation of preclinical findings into potential therapeutics. We have demonstrated the utility of a touchscreen operant measure for assessing hippocampal function in mice. METHODS Here, we integrated a well-established "drinking-in-the-dark" exposure model that produces reliable, but more moderate, levels of maternal intoxication with a trial-unique, delayed nonmatching-to-location (TUNL) task to examine the effects of prenatal alcohol exposure (PAE) on hippocampal-sensitive behavior directly analogous to those used in clinical assessment. PAE and SAC offspring mice were trained to touch a single visual stimulus ("sample phase") in one of 10 possible spatial locations (2 × 5 grid) in a touchscreen operant system. After a delay, animals were simultaneously presented with the original stimulus and a rewarded stimulus in a novel location ("choice phase"). PAE and saccharin (SAC) control mice were trained on a series of problems that systematically increased the difficulty by decreasing the separation between the sample and choice stimuli. Next, a separate cohort of PAE and SAC animals were given a brief training and then tested on a challenging variant where both the separation and delay varied with each trial. RESULTS We found that PAE mice were generally able to perform at levels similar to SAC control mice at progressively more difficult separations. When tested on the most difficult unpredictable variant immediately, PAE showed a sex-specific deficit with PAE females performing worse during long delays. CONCLUSIONS Taken together, these data demonstrate the utility of the TUNL task for examining PAE related alterations in hippocampal function and underline the need to examine sex-by-treatment interactions in these models.
Collapse
Affiliation(s)
- Johnny A Kenton
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Victoria K Castillo
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Penelope E Kehrer
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jonathan L Brigman
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
5
|
Mira RG, Lira M, Tapia-Rojas C, Rebolledo DL, Quintanilla RA, Cerpa W. Effect of Alcohol on Hippocampal-Dependent Plasticity and Behavior: Role of Glutamatergic Synaptic Transmission. Front Behav Neurosci 2020; 13:288. [PMID: 32038190 PMCID: PMC6993074 DOI: 10.3389/fnbeh.2019.00288] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Problematic alcohol drinking and alcohol dependence are an increasing health problem worldwide. Alcohol abuse is responsible for approximately 5% of the total deaths in the world, but addictive consumption of it has a substantial impact on neurological and memory disabilities throughout the population. One of the better-studied brain areas involved in cognitive functions is the hippocampus, which is also an essential brain region targeted by ethanol. Accumulated evidence in several rodent models has shown that ethanol treatment produces cognitive impairment in hippocampal-dependent tasks. These adverse effects may be related to the fact that ethanol impairs the cellular and synaptic plasticity mechanisms, including adverse changes in neuronal morphology, spine architecture, neuronal communication, and finally an increase in neuronal death. There is evidence that the damage that occurs in the different brain structures is varied according to the stage of development during which the subjects are exposed to ethanol, and even much earlier exposure to it would cause damage in the adult stage. Studies on the cellular and cognitive deficiencies produced by alcohol in the brain are needed in order to search for new strategies to reduce alcohol neuronal toxicity and to understand its consequences on memory and cognitive performance with emphasis on the crucial stages of development, including prenatal events to adulthood.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile
| | - Matias Lira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Providencia, Chile
| | - Daniela L Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Escuela de Obstetricia y Puericultura and Centro Integrativo de Biología y Química Aplicada (CIBQA), Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Providencia, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
6
|
Harvey RE, Berkowitz LE, Hamilton DA, Clark BJ. The effects of developmental alcohol exposure on the neurobiology of spatial processing. Neurosci Biobehav Rev 2019; 107:775-794. [PMID: 31526818 PMCID: PMC6876993 DOI: 10.1016/j.neubiorev.2019.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system. One functional outcome of this exposure is impaired spatial processing, defined as sensing and integrating information pertaining to spatial navigation and spatial memory. The hippocampus, entorhinal cortex, and anterior thalamus are brain regions implicated in spatial processing and are highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on spatial processing may be attributed to changes at the synaptic to circuit level. In this review, we first describe the impact of developmental alcohol exposure on spatial behavior followed by a summary of the development of brain areas involved in spatial processing. We then provide an examination of the consequences of prenatal and early postnatal alcohol exposure in rodents on hippocampal, anterior thalamus, and entorhinal cortex-dependent spatial processing from the cellular to behavioral level. We conclude by highlighting several unanswered questions which may provide a framework for future investigation.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Laura E Berkowitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
7
|
Razumkina EV, Anokhin PK, Proskuryakova TV, Shamakina IY. [Experimental approaches to the investigation of behavioral disorders associated with prenatal alcohol exposure]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:79-88. [PMID: 29658509 DOI: 10.17116/jnevro20181181279-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) is an umbrella term which covers a wide range of deficits in prenatal and postnatal growth, anatomy and CNS functions produced by prenatal alcohol exposure. The most severe form of FASD is fetal alcohol syndrome (FAS) characterized by additional specific craniofacial and brain malformations. Despite a high prevalence and extensive clinical studies, the fundamental mechanisms of FASD are still poorly understood. Thereby, experimental models, which allow better control for both socio-environmental and genetic factors, are critical to our understanding of FASD. The review is focused on the effects of exposure to alcohol during the prenatal period in animal models. The authors outline that prenatally alcohol-induced changes in motor and executive functions, learning and memory, stress reactivity and affective state are remarkably parallel between animals and humans. Finally, the authors consider a potential impact of postnatal social and environmental factors on the outcome in experimental models of FASD.
Collapse
Affiliation(s)
- E V Razumkina
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - P K Anokhin
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - T V Proskuryakova
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - I Yu Shamakina
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
8
|
Alcohol exposure during embryonic development: An opportunity to conduct systematic developmental time course analyses in zebrafish. Neurosci Biobehav Rev 2019; 98:185-193. [PMID: 30641117 DOI: 10.1016/j.neubiorev.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
Abstract
Ethanol affects numerous neurobiological processes depending upon the developmental stage at which it reaches the vertebrate embryo. Exposure time dependency may explain the variable severity and manifestation of life-long symptoms observed in fetal alcohol spectrum disorder (FASD) patients. Characterization of behavioural deficits will help us understand developmental stage-dependency and its underlying biological mechanisms. Here we highlight pioneering studies that model FASD using zebrafish, including those that demonstrated developmental stage-dependency of alcohol effects on some behaviours. We also succinctly review the more expansive mammalian literature, briefly discuss potential developmental stage dependent biological mechanisms alcohol alters, and review some of the disadvantages of mammalian systems versus the zebrafish. We stress that the temporal control of alcohol administration in the externally developing zebrafish gives unprecedented precision and is a major advantage of this species over other model organisms employed so far. We also emphasize that the zebrafish is well suited for high throughput screening and will allow systematic exploration of embryonic-stage dependent alcohol effects via mutagenesis and drug screens.
Collapse
|
9
|
Woods KJ, Thomas KGF, Molteno CD, Jacobson JL, Jacobson SW, Meintjes EM. Prenatal alcohol exposure affects brain function during place learning in a virtual environment differently in boys and girls. Brain Behav 2018; 8:e01103. [PMID: 30350411 PMCID: PMC6236232 DOI: 10.1002/brb3.1103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Although performance deficits in place learning have been reported in fetal alcohol spectrum disorders (FASD), neural correlates of these deficits have not been investigated. This functional magnetic resonance imaging (fMRI) study of 57 children (41 alcohol-exposed; 16 controls; mean age = 9.4 years; 29 boys) examined effects of prenatal alcohol exposure (PAE) on place learning in a virtual environment, the computer-generated (CG) arena. METHODS Functional magnetic resonance imaging data were acquired while children passively viewed a recording of an experimenter completing the task. Visible-target blocks involved navigation to a visible platform. During invisible-target blocks, the platform appeared only when the experimenter moved over it. After the scan, all children performed a post-test during which they had to navigate to the location of the invisible platform. RESULTS Although there were no group differences in post-test performance for sex or FASD diagnosis, PAE in boys was associated with poorer performance and reduced activation in the parahippocampal gyrus (PHG), precuneus, posterior cingulate, frontal and temporal lobes, caudate, insula, claustrum, lentiform nucleus, and thalamus. By contrast, PAE was not associated with performance or activation in any regions in girls. DISCUSSION AND CONCLUSION Girls and boys are known to use different navigation strategies. Boys rely more on an allocentric navigational strategy and girls more on landmarks. Poorer recruitment of the PHG, a region known to mediate allocentric navigation, in more heavily exposed boys may explain the observed dose-dependent place learning deficit. The absence of PAE effects in girls suggests that landmark-based navigational strategies may be less affected by alcohol exposure.
Collapse
Affiliation(s)
- Keri J. Woods
- Division of Biomedical Engineering, Department of Human BiologyFaculty of Health Sciences, University of Cape TownSouth Africa
- UCT Neuroscience Institute, Faculty of Health Sciences, University of Cape TownSouth Africa
| | - Kevin G. F. Thomas
- UCT Neuroscience Institute, Faculty of Health Sciences, University of Cape TownSouth Africa
- Department of PsychologyUniversity of Cape TownSouth Africa
| | - Christopher D. Molteno
- Department of Psychiatry and Mental HealthFaculty of Health Sciences, University of Cape TownSouth Africa
| | - Joseph L. Jacobson
- Division of Biomedical Engineering, Department of Human BiologyFaculty of Health Sciences, University of Cape TownSouth Africa
- Department of Psychiatry and Mental HealthFaculty of Health Sciences, University of Cape TownSouth Africa
- Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitMichigan
| | - Sandra W. Jacobson
- Division of Biomedical Engineering, Department of Human BiologyFaculty of Health Sciences, University of Cape TownSouth Africa
- Department of Psychiatry and Mental HealthFaculty of Health Sciences, University of Cape TownSouth Africa
- Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitMichigan
| | - Ernesta M. Meintjes
- Division of Biomedical Engineering, Department of Human BiologyFaculty of Health Sciences, University of Cape TownSouth Africa
- UCT Neuroscience Institute, Faculty of Health Sciences, University of Cape TownSouth Africa
- Cape Universities Body Imaging CentreUniversity of Cape TownSouth Africa
| |
Collapse
|
10
|
Goeke CM, Roberts ML, Hashimoto JG, Finn DA, Guizzetti M. Neonatal Ethanol and Choline Treatments Alter the Morphology of Developing Rat Hippocampal Pyramidal Neurons in Opposite Directions. Neuroscience 2018; 374:13-24. [PMID: 29391132 DOI: 10.1016/j.neuroscience.2018.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Some of the neurobehavioral deficits identified in children with Fetal Alcohol Spectrum Disorders (FASDs) have been recapitulated in a binge model of gestational third trimester-equivalent ethanol (EtOH) exposure, in which Sprague-Dawley rats are intragastrically intubated between post-natal day (PD) 4 and PD9 with high doses of EtOH. In this model, the ameliorating effects of choline (Chol) administration on hippocampus-dependent behaviors altered by EtOH have also been extensively documented. In the present study, we investigated the effects of EtOH (5 g/kg/day) and/or Chol (100 mg/kg/day) on morphometric parameters of CA1 pyramidal neurons by Golgi-Cox staining followed by Neurolucida tracing and analysis. We found that EtOH increased apical dendrite complexity in male and female pups neonatally exposed to EtOH. EtOH did not significantly affect basal dendrite parameters in female and male rats. Interestingly, Chol treatments decreased basal dendrites' length, number, and maximal terminal distance in male pups. When pups were co-treated with EtOH and Chol, Chol did not rescue the effect of EtOH. In conclusion, EtOH increases while Chol decreases dendritic length and arborization of hippocampal CA1 neurons in PD9 rats. We hypothesize that developmental EtOH exposure induces a premature maturation of neurons, leading to early restriction of neuronal plasticity while Chol treatments delay the normal program of neuronal maturation and therefore prolong the window of maximal plasticity. Chol does not prevent the effects of developmental alcohol exposure on hippocampal pyramidal neurons' morphology characterized in the present study, although whether prolonged Chol administration after developmental EtOH exposure rectifies EtOH damage remains to be assessed.
Collapse
Affiliation(s)
- C M Goeke
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - M L Roberts
- VA Portland Health Care System, Portland, OR 97239, USA
| | - J G Hashimoto
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - D A Finn
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - M Guizzetti
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
11
|
Palermo E, Laut J, Nov O, Cappa P, Porfiri M. Spatial memory training in a citizen science context. COMPUTERS IN HUMAN BEHAVIOR 2017. [DOI: 10.1016/j.chb.2017.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Rodriguez CI, Magcalas CM, Barto D, Fink BC, Rice JP, Bird CW, Davies S, Pentkowski NS, Savage DD, Hamilton DA. Effects of sex and housing on social, spatial, and motor behavior in adult rats exposed to moderate levels of alcohol during prenatal development. Behav Brain Res 2016; 313:233-243. [PMID: 27424779 PMCID: PMC4987176 DOI: 10.1016/j.bbr.2016.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 11/25/2022]
Abstract
Persistent deficits in social behavior, motor behavior, and behavioral flexibility are among the major negative consequences associated with exposure to ethanol during prenatal development. Prior work from our laboratory has linked moderate prenatal alcohol exposure (PAE) in the rat to deficits in these behavioral domains, which depend upon the ventrolateral frontal cortex (Hamilton et al., 2014) [20]. Manipulations of the social environment cause modifications of dendritic morphology and experience-dependent immediate early gene expression in ventrolateral frontal cortex (Hamilton et al., 2010) [19], and may yield positive behavioral outcomes following PAE. In the present study we evaluated the effects of housing PAE rats with non-exposed control rats on adult behavior. Rats of both sexes were either paired with a partner from the same prenatal treatment condition (ethanol or saccharin) or from the opposite condition (mixed housing condition). At four months of age (∼3 months after the housing manipulation commenced), social behavior, tongue protrusion, and behavioral flexibility in the Morris water task were measured as in (Hamilton et al., 2014) [20]. The behavioral effects of moderate PAE were primarily limited to males and were not ameliorated by housing with a non-ethanol exposed partner. Unexpectedly, social behavior, motor behavior, and spatial flexibility were adversely affected in control rats housed with a PAE rat (i.e., in mixed housing), indicating that housing with a PAE rat has broad behavioral consequences beyond the social domain. These observations provide further evidence that moderate PAE negatively affects social behavior, and underscore the importance of considering potential negative effects of housing with PAE animals on the behavior of critical comparison groups.
Collapse
Affiliation(s)
- Carlos I Rodriguez
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Christy M Magcalas
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Daniel Barto
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Brandi C Fink
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - James P Rice
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Clark W Bird
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
13
|
du Plooy CP, Malcolm-Smith S, Adnams CM, Stein DJ, Donald KA. The Effects of Prenatal Alcohol Exposure on Episodic Memory Functioning: A Systematic Review: Table 1. Arch Clin Neuropsychol 2016; 31:710-726. [DOI: 10.1093/arclin/acw067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 01/04/2023] Open
|
14
|
Marquardt K, Brigman JL. The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: Insights from rodent models. Alcohol 2016; 51:1-15. [PMID: 26992695 DOI: 10.1016/j.alcohol.2015.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) are characterized by deficits in working memory, response inhibition, and behavioral flexibility. However, the combination and severity of impairments are highly dependent upon maternal ethanol consumption patterns, which creates a complex variety of manifestations. Rodent models have been essential in identifying behavioral endpoints of prenatal alcohol exposure (PAE). However, experimental model outcomes are extremely diverse based on level, pattern, timing, and method of ethanol exposure, as well as the behavioral domain assayed and paradigm used. Therefore, comparisons across studies are difficult and there is currently no clear comprehensive behavioral phenotype of PAE. This lack of defined cognitive and behavioral phenotype is a contributing factor to the difficulty in identifying FASD individuals. The current review aims to critically examine preclinical behavioral outcomes in the social, cognitive, and affective domains in terms of the PAE paradigm, with a special emphasis on dose, timing, and delivery, to establish a working model of behavioral impairment. In addition, this review identifies gaps in our current knowledge and proposes future areas of research that will advance knowledge in the field of PAE outcomes. Understanding the complex behavioral phenotype, which results from diverse ethanol consumption will allow for development of better diagnostic tools and more critical evaluation of potential treatments for FASD.
Collapse
|
15
|
Patten AR, Yau SY, Fontaine CJ, Meconi A, Wortman RC, Christie BR. The Benefits of Exercise on Structural and Functional Plasticity in the Rodent Hippocampus of Different Disease Models. Brain Plast 2015; 1:97-127. [PMID: 29765836 PMCID: PMC5928528 DOI: 10.3233/bpl-150016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this review, the benefits of physical exercise on structural and functional plasticity in the hippocampus are discussed. The evidence is clear that voluntary exercise in rats and mice can lead to increases in hippocampal neurogenesis and enhanced synaptic plasticity which ultimately result in improved performance in hippocampal-dependent tasks. Furthermore, in models of neurological disorders, including fetal alcohol spectrum disorders, traumatic brain injury, stroke, and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease exercise can also elicit beneficial effects on hippocampal function. Ultimately this review highlights the multiple benefits of exercise on hippocampal function in both the healthy and the diseased brain.
Collapse
Affiliation(s)
- Anna R. Patten
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Suk Yu Yau
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J. Fontaine
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Alicia Meconi
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Ryan C. Wortman
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R. Christie
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Brain Research Centre and Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Bhattacharya D, Dunaway EP, Bhattacharya S, Bloemer J, Buabeid M, Escobar M, Suppiramaniam V, Dhanasekaran M. Impaired ILK Function Is Associated with Deficits in Hippocampal Based Memory and Synaptic Plasticity in a FASD Rat Model. PLoS One 2015; 10:e0135700. [PMID: 26305322 PMCID: PMC4549293 DOI: 10.1371/journal.pone.0135700] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/24/2015] [Indexed: 11/28/2022] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is an umbrella term that encompasses a wide range of anatomical and behavioral problems in children who are exposed to alcohol during the prenatal period. There is no effective treatment for FASD, because of lack of complete characterization of the cellular and molecular mechanisms underlying this condition. Alcohol has been previously characterized to affect integrins and growth factor signaling receptors. Integrin Linked Kinase (ILK) is an effector of integrin and growth-factor signaling which regulates various signaling processes. In FASD, a downstream effector of ILK, Glycogen Synthase Kinase 3β (GSK3β) remains highly active (reduced Ser9 phosphorylation). GSK3β has been known to modulate glutamate receptor trafficking and channel properties. Therefore, we hypothesize that the cognitive deficits accompanying FASD are associated with impairments in the ILK signaling pathway. Pregnant Sprague Dawley rats consumed a "moderate" amount of alcohol throughout gestation, or a calorie-equivalent sucrose solution. Contextual fear conditioning was used to evaluate memory performance in 32-33-day-old pups. Synaptic plasticity was assessed in the Schaffer Collateral pathway, and hippocampal protein lysates were used to evaluate ILK signaling. Alcohol exposed pups showed impaired contextual fear conditioning, as compared to control pups. This reduced memory performance was consistent with decrease in LTP as compared to controls. Hippocampal ILK activity and GSK3β Ser21/9 phosphorylation were significantly lower in alcohol-exposed pups than controls. Increased synaptic expression of GluR2 AMPA receptors was observed with immunoprecipitation of post-synaptic density protein 95 (PSD95). Furthermore, immunoprecipitation of ILK revealed a decreased interaction with GluR2. The ILK pathway appears to play a significant role in memory and synaptic plasticity impairments in FASD rats. These impairments appear to be mediated by reduced GSK3β regulation and increased synaptic stabilization of the calcium-impermeable GluR2 AMPA receptors.
Collapse
Affiliation(s)
- D. Bhattacharya
- Department of Drug, Discovery and Development, Auburn University, Auburn, Alabama, United States of America
| | - E. P. Dunaway
- Department of Psychology, Auburn University, Auburn, Alabama, United States of America
| | - S. Bhattacharya
- Department of Drug, Discovery and Development, Auburn University, Auburn, Alabama, United States of America
| | - J. Bloemer
- Department of Drug, Discovery and Development, Auburn University, Auburn, Alabama, United States of America
| | - M. Buabeid
- Department of Drug, Discovery and Development, Auburn University, Auburn, Alabama, United States of America
| | - M. Escobar
- Department of Psychology, Auburn University, Auburn, Alabama, United States of America
| | - V. Suppiramaniam
- Department of Drug, Discovery and Development, Auburn University, Auburn, Alabama, United States of America
| | - M. Dhanasekaran
- Department of Drug, Discovery and Development, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
17
|
Marjonen H, Sierra A, Nyman A, Rogojin V, Gröhn O, Linden AM, Hautaniemi S, Kaminen-Ahola N. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model. PLoS One 2015; 10:e0124931. [PMID: 25970770 PMCID: PMC4430308 DOI: 10.1371/journal.pone.0124931] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/08/2015] [Indexed: 11/19/2022] Open
Abstract
The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first 8 days of gestation (GD 0.5-8.5). Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P) 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60): we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in different tissue types later in life.
Collapse
Affiliation(s)
- Heidi Marjonen
- Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alejandra Sierra
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna Nyman
- Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladimir Rogojin
- Institute of Biomedicine & Genome-Scale Biology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Gröhn
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anni-Maija Linden
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Institute of Biomedicine & Genome-Scale Biology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
18
|
Oshiro WM, Beasley TE, McDaniel KL, Taylor MM, Evansky P, Moser VC, Gilbert ME, Bushnell PJ. Selective cognitive deficits in adult rats after prenatal exposure to inhaled ethanol. Neurotoxicol Teratol 2014; 45:44-58. [PMID: 25020118 DOI: 10.1016/j.ntt.2014.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/05/2014] [Accepted: 07/02/2014] [Indexed: 01/19/2023]
Abstract
Increased use of ethanol blends in gasoline suggests a need to assess the potential public health risks of exposure to these fuels. Ethanol consumed during pregnancy is a teratogen. However, little is known about the potential developmental neurotoxicity of ethanol delivered by inhalation, the most likely route of exposure from gasoline-ethanol fuel blends. We evaluated the potential cognitive consequences of ethanol inhalation by exposing pregnant Long Evans rats to clean air or ethanol vapor from gestational days 9-20, a critical period of neuronal development. Concentrations of inhaled ethanol (5000, 10,000, or 21,000 ppm for 6.5h/day) produced modeled peak blood ethanol concentrations (BECs) in exposed dams of 2.3, 6.8, and 192 mg/dL, respectively. In offspring, no dose-related impairments were observed on spatial learning or working memory in the Morris water maze or in operant delayed match-to-position tests. Two measures showed significant effects in female offspring at all ethanol doses: 1) impaired cue learning after trace fear conditioning, and 2) an absence of bias for the correct quadrant after place training during a reference memory probe in the Morris water maze. In choice reaction time tests, male offspring (females were not tested) from the 5000 and 10,000 ppm groups showed a transient increase in decision times. Also, male offspring from the 21,000 ppm group made more anticipatory responses during a preparatory hold period, suggesting a deficit in response inhibition. The increase in anticipatory responding during the choice reaction time test shows that inhaled ethanol yielding a peak BEC of ~200mg/dL can produce lasting effects in the offspring. The lack of a dose-related decrement in the effects observed in females on cue learning and a reference memory probe may reflect confounding influences in the exposed offspring possibly related to maternal care or altered anxiety levels in females. The surprising lack of more pervasive cognitive deficits, as reported by others at BECs in the 200mg/dL range, may reflect route-dependent differences in the kinetics of ethanol. These data show that response inhibition was impaired in the offspring of pregnant rats that inhaled ethanol at concentrations at least 5 orders of magnitude higher than concentrations observed during normal automotive transport and fueling operations, which rarely exceed 100 ppb.
Collapse
Affiliation(s)
- W M Oshiro
- Toxicity Assessment Division, MD B105-04, MD B105-02, National Health Effects and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - T E Beasley
- Toxicity Assessment Division, MD B105-04, MD B105-02, National Health Effects and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - K L McDaniel
- Toxicity Assessment Division, MD B105-04, MD B105-02, National Health Effects and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - M M Taylor
- Toxicity Assessment Division, MD B105-04, MD B105-02, National Health Effects and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - P Evansky
- Environmental Public Health Division, MD B105-02, National Health Effects and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - V C Moser
- Toxicity Assessment Division, MD B105-04, MD B105-02, National Health Effects and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - M E Gilbert
- Toxicity Assessment Division, MD B105-04, MD B105-02, National Health Effects and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - P J Bushnell
- Toxicity Assessment Division, MD B105-04, MD B105-02, National Health Effects and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
19
|
Cullen CL, Burne THJ, Lavidis NA, Moritz KM. Low dose prenatal alcohol exposure does not impair spatial learning and memory in two tests in adult and aged rats. PLoS One 2014; 9:e101482. [PMID: 24978807 PMCID: PMC4076304 DOI: 10.1371/journal.pone.0101482] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 06/06/2014] [Indexed: 11/18/2022] Open
Abstract
Consumption of alcohol during pregnancy can have detrimental impacts on the developing hippocampus, which can lead to deficits in learning and memory function. Although high levels of alcohol exposure can lead to severe deficits, there is a lack of research examining the effects of low levels of exposure. This study used a rat model to determine if prenatal exposure to chronic low dose ethanol would result in deficits in learning and memory performance and if this was associated with morphological changes within the hippocampus. Sprague Dawley rats were fed a liquid diet containing 6% (vol/vol) ethanol (EtOH) or an isocaloric control diet throughout gestation. Male and Female offspring underwent behavioural testing at 8 (Adult) or 15 months (Aged) of age. Brains from these animals were collected for stereological analysis of pyramidal neuron number and dendritic morphology within the CA1 and CA3 regions of the dorsal hippocampus. Prenatal ethanol exposed animals did not differ in spatial learning or memory performance in the Morris water maze or Y maze tasks compared to Control offspring. There was no effect of prenatal ethanol exposure on pyramidal cell number or density within the dorsal hippocampus. Overall, this study indicates that chronic low dose prenatal ethanol exposure in this model does not have long term detrimental effects on pyramidal cells within the dorsal hippocampus or impair spatial learning and memory performance.
Collapse
Affiliation(s)
- Carlie L. Cullen
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
| | - Nickolas A. Lavidis
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Karen M. Moritz
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
20
|
Patten AR, Fontaine CJ, Christie BR. A comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors. Front Pediatr 2014; 2:93. [PMID: 25232537 PMCID: PMC4153370 DOI: 10.3389/fped.2014.00093] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Prenatal ethanol exposure (PNEE) has been linked to widespread impairments in brain structure and function. There are a number of animal models that are used to study the structural and functional deficits caused by PNEE, including, but not limited to invertebrates, fish, rodents, and non-human primates. Animal models enable a researcher to control important variables such as the route of ethanol administration, as well as the timing, frequency and amount of ethanol exposure. Each animal model and system of exposure has its place, depending on the research question being undertaken. In this review, we will examine the different routes of ethanol administration and the various animal models of fetal alcohol spectrum disorders (FASD) that are commonly used in research, emphasizing their strengths and limitations. We will also present an up-to-date summary on the effects of prenatal/neonatal ethanol exposure on behavior across the lifespan, focusing on learning and memory, olfaction, social, executive, and motor functions. Special emphasis will be placed where the various animal models best represent deficits observed in the human condition and offer a viable test bed to examine potential therapeutics for human beings with FASD.
Collapse
Affiliation(s)
- Anna R Patten
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada
| | | | - Brian R Christie
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada ; Department of Biology, University of Victoria , Victoria, BC , Canada ; Program in Neuroscience, The Brain Research Centre, University of British Columbia , Vancouver, BC , Canada ; Department of Cellular and Physiological Sciences, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
21
|
Elibol-Can B, Dursun I, Telkes I, Kilic E, Canan S, Jakubowska-Dogru E. Examination of age-dependent effects of fetal ethanol exposure on behavior, hippocampal cell counts, and doublecortin immunoreactivity in rats. Dev Neurobiol 2013; 74:498-513. [PMID: 24302592 DOI: 10.1002/dneu.22143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/11/2013] [Accepted: 10/24/2013] [Indexed: 11/10/2022]
Abstract
Ethanol is known as a potent teratogen having adverse effects on brain and behavior. However, some of the behavioral deficits caused by fetal alcohol exposure and well expressed in juveniles ameliorate with maturation may suggest some kind of functional recovery occurring during postnatal development. The aim of this study was to reexamine age-dependent behavioral impairments in fetal-alcohol rats and to investigate the changes in neurogenesis and gross morphology of the hippocampus during a protracted postnatal period searching for developmental deficits and/or delays that would correlate with behavioral impairments in juveniles and for potential compensatory processes responsible for their amelioration in adults. Ethanol was delivered to the pregnant dams by intragastric intubation throughout 7-21 gestation days at daily dose of 6 g/kg. Isocaloric intubation and intact control groups were included. Locomotor activity, anxiety, and spatial learning tasks were applied to juvenile and young-adult rats from all groups. Unbiased stereological estimates of hippocampal volumes, the total number of pyramidal and granular cells, and double cortin expressing neurons were carried out for postnatal days (PDs) PD1, PD10, PD30, and PD60. Alcohol insult during second trimester equivalent caused significant deficits in the spatial learning in juvenile rats; however, its effect on hippocampal morphology was limited to a marginally lower number of granular cells in dentate gyrus (DG) on PD30. Thus, initial behavioral deficits and the following functional recovery in fetal-alcohol subjects may be due to more subtle plastic changes within the hippocampal formation but also in other structures of the extended hippocampal circuit. Further investigation is required.
Collapse
Affiliation(s)
- Birsen Elibol-Can
- Department of Biological Sciences, Middle East Technical University, Ankara, 06531, Turkey
| | | | | | | | | | | |
Collapse
|
22
|
Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice. Behav Brain Res 2013; 252:326-33. [DOI: 10.1016/j.bbr.2013.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 11/18/2022]
|
23
|
Miller L, Shapiro AM, Wells PG. Embryonic Catalase Protects Against Ethanol-Initiated DNA Oxidation and Teratogenesis in Acatalasemic and Transgenic Human Catalase–Expressing Mice. Toxicol Sci 2013; 134:400-11. [DOI: 10.1093/toxsci/kft122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Altered spatial learning and delay discounting in a rat model of human third trimester binge ethanol exposure. Behav Pharmacol 2012; 23:54-65. [PMID: 22129556 DOI: 10.1097/fbp.0b013e32834eb07d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ethanol exposure during perinatal development can cause cognitive abnormalities including difficulties in learning, attention, and memory, as well as heightened impulsivity. The purpose of this study was to assess performance in spatial learning and impulsive choice tasks in rats subjected to an intragastric intubation model of binge ethanol exposure during human third trimester-equivalent brain development. Male and female Sprague-Dawley rat pups were intubated with ethanol (5.25 g/kg/day) on postnatal days 4-9. At adolescence (between postnatal days 35-38), these rats and sham intubated within-litter controls were trained in both spatial and cued versions of the Morris water maze. A subset of the male rats was subsequently tested on a delay-discounting task to assess impulsive choice. Ethanol-exposed rats were spatially impaired relative to controls, but performed comparably to controls on the cued version of the water maze. Ethanol-exposed rats also showed greater preference for large delayed rewards on the delay discounting task, but no evidence for altered reward sensitivity or perseverative behavior. These data demonstrate that early postnatal intermittent binge-like ethanol exposure has prolonged, detrimental, but selective effects on cognition, suggesting that even relatively brief ethanol exposure late in human pregnancy can be deleterious for cognitive function.
Collapse
|
25
|
Manji S, Pei J, Loomes C, Rasmussen C. A review of the verbal and visual memory impairments in children with foetal alcohol spectrum disorders. Dev Neurorehabil 2009; 12:239-47. [PMID: 19842823 DOI: 10.1080/17518420902980118] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Children with Foetal Alcohol Spectrum Disorders (FASD) have significant impairments in memory, negatively affecting academics and daily functioning. PRIMARY OBJECTIVE To review published research on: (1) verbal and visual-spatial memory in children with FASD or prenatal alcohol exposure (PAE); (2) animal research on the impact of PAE on memory; and (3) brain areas involved in memory that are affected by PAE. MAIN OUTCOMES Verbal memory is one of the main areas of memory affected by gestational alcohol exposure, specifically in encoding and retrieving information. Spatial memory has emerged as a dominant deficit in individuals with FASD, consistent in children, adolescents and adults. There are regions of the brain more typically affected by PAE, which have ties to memory functioning. Animal research has confirmed the presence of impacts to key brain regions involved in memory functioning for those affected by PAE. CONCLUSION Memory deficits are a prevalent finding in individuals with PAE. Research in this area is complicated by small sample sizes, difficulty linking animal research to human application and lack of effective connection between existing memory theory and functional memory testing in FASD. New research has shown that there are implications for memory and learning amelioration in children with FASD.
Collapse
|
26
|
Effect of gestational ethanol exposure on parvalbumin and calretinin expressing hippocampal neurons in a chick model of fetal alcohol syndrome. Alcohol 2009; 43:147-61. [PMID: 19251116 DOI: 10.1016/j.alcohol.2008.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 10/29/2008] [Accepted: 12/09/2008] [Indexed: 01/12/2023]
Abstract
Fetal alcohol syndrome (FAS), a condition occurring in some children of mothers who have consumed alcohol during pregnancy, is characterized by physical deformities and learning and memory deficits. The chick hippocampus, whose functions are controlled by interneurons expressing calcium-binding proteins parvalbumin (PV) and calretinin (CR), is involved in learning and memory mechanisms. Effects on growth and development and hippocampal morphology were studied in chick embryos exposed to 5% and 10% ethanol volume/volume (vol/vol) for 2 or 8 days of gestation. There was a significant dose-dependent reduction (P<.05) in body weight and mean number per section of PV and CR expressing hippocampal neurons in ethanol-exposed chicks, without alterations in neuronal nuclear size or hippocampal volume, compared appropriate controls. Moreover, when chicks exposed to 5% ethanol for 2 and 8 days of gestation were compared, no significant differences were found in body parameters or neuronal counts. Similarly, exposure to 10% ethanol did not induce any significant changes in chicks exposed for 2 or 8 gestational days. Thus, these results suggest that gestational ethanol exposure induces a reduction in the mean number per section of PV and CR expressing hippocampal neurons, and could be a possible mechanism responsible for learning and memory disorders in FAS.
Collapse
|
27
|
Norman AL, Crocker N, Mattson SN, Riley EP. Neuroimaging and fetal alcohol spectrum disorders. DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2009; 15:209-17. [PMID: 19731391 PMCID: PMC3442778 DOI: 10.1002/ddrr.72] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The detrimental effects of prenatal alcohol exposure on the developing brain include structural brain anomalies as well as cognitive and behavioral deficits. Initial neuroimaging studies of fetal alcohol spectrum disorders (FASD) using magnetic resonance imaging (MRI) confirmed previous autopsy reports of overall reduction in brain volume and central nervous system (CNS) disorganization, with specific structural abnormalities of the corpus callosum, cerebellum, caudate, and hippocampus. Advances in neuroimaging techniques have allowed detection of regional increases in cortical thickness and gray matter volume along with decreased volume and disorganization of white matter in individuals with FASD. In addition, functional imaging studies have found functional and neurochemical differences in those prenatally exposed to alcohol. Behavioral alterations noted in individuals with FASD are consistent with the findings noted in the brain imaging studies. Continued neuroimaging studies are needed to further advance understanding of the neuroteratogenic effects of alcohol.
Collapse
Affiliation(s)
- Andria L. Norman
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, California
| | - Nicole Crocker
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, California
| | - Sarah N. Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, California
| | - Edward P. Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, California
| |
Collapse
|
28
|
Effects of prenatal alcohol exposure on hippocampal volume, verbal learning, and verbal and spatial recall in late childhood. J Int Neuropsychol Soc 2008; 14:1022-33. [PMID: 18954482 DOI: 10.1017/s1355617708081368] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Children with prenatal alcohol exposure (PAE) show deficits in verbal learning and spatial memory, as well as abnormal hippocampal development. The relationship between their memory and neuroanatomic impairments, however, has not been directly explored. Given that the hippocampus is integral for the synthesis and retrieval of learned information and is particularly vulnerable to the teratogenic effects of alcohol, we assessed whether reduced learning and recall abilities in children with fetal alcohol spectrum disorders (FASDs) are associated with abnormal hippocampal volumes. Nineteen children with FASDs and 18 typically developing controls aged 9 to 15 years were assessed for verbal learning and verbal and spatial recall and underwent structural magnetic resonance imaging. Images were analyzed for total intracranial volume and for right and left hippocampal volumes. Results revealed smaller left hippocampi and poorer verbal learning and verbal and spatial recall performance in children with FASDs than controls, as well as positive correlations between selective memory indices and hippocampal volumes only in the FASD group. Additionally, hippocampal volumes increased significantly with age in controls only, suggesting that PAE may be associated with long-term abnormalities in hippocampal development that may contribute to impaired verbal learning and verbal and spatial recall.
Collapse
|
29
|
Nourizad S, Anvari M, Hasani H, Salami M. A Critical Period for Deleterious Effect of Prenatal Alcohol Exposure on Working Memory. INT J PHARMACOL 2008. [DOI: 10.3923/ijp.2008.382.387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Mattson SN, Gramling L, Riley EP, Delis DC, Jones KL. Global — local processing in children prenatally exposed to alcohol. Child Neuropsychol 2007. [DOI: 10.1080/09297049608402249] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Rao V, Chaudhuri JD. Effect of gestational ethanol exposure on long-term memory formation in newborn chicks. Alcohol 2007; 41:433-9. [PMID: 17624712 DOI: 10.1016/j.alcohol.2007.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 02/03/2023]
Abstract
Fetal alcohol syndrome (FAS), a condition occurring in some children of mothers who have consumed alcohol during pregnancy, is characterized by craniofacial malformations, and physical and mental retardation. It is significant that even children with history of gestational ethanol exposure but relatively unaffected overall IQ performance, often exhibit learning difficulties and behavioral problems, suggestive of impaired memory formation. Hence, the specific aim of this study was to examine memory formation in chicks exposed to ethanol during early gestation toward the understanding of neurobehavioral disturbances in FAS. Chicks were exposed to alcohol on gestational days 1-3 by injection of ethanol into the airspace of freshly fertilized eggs. The effects of prenatal ethanol on physical growth and development, and memory formation were studied. The one-trial passive avoidance learning paradigm in 1-day-old chicks was used to study memory formation in these chicks. It was observed that chick embryos exposed to 10% ethanol on gestational days 1-3 had significant reduction in all body parameters when compared with appropriate controls. Further, ethanol-exposed chick embryos had significantly impaired (P<.05) long-term memory (LTM) formation after training, though short-term or intermediate-term memory formation was unimpaired. Thus, the findings of the current study demonstrate the detrimental effects of ethanol exposure during early pregnancy on developing chick embryos in general and on memory formation in particular. Hence, it is suggested that impairment in LTM could be a fundamental mechanism for learning disorders and neurobehavioral abnormalities observed in FAS.
Collapse
Affiliation(s)
- Venugopal Rao
- Department of Anatomy, University Malaysia Sarawak, Sarawak, Malaysia
| | | |
Collapse
|
32
|
Redila VA, Olson AK, Swann SE, Mohades G, Webber AJ, Weinberg J, Christie BR. Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise. Hippocampus 2006; 16:305-11. [PMID: 16425237 DOI: 10.1002/hipo.20164] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The ingestion of ethanol during pregnancy has a number of deleterious consequences for the unborn offspring, producing structural and functional deficits that affect the brain and many other organs into adulthood. The hippocampus is a brain area that is particularly sensitive to ethanol's adverse effects. In a previous study we showed that voluntary exercise can ameliorate deficits in long-term potentiation and behavior that occur following prenatal ethanol exposure (Eur J Neurosci, 2005, 21, 1719-1726). In the present study, we investigated the effects of prenatal ethanol exposure on neurogenesis in adulthood, and tested the hypothesis that voluntary exercise would ameliorate any deficits observed. Sprague-Dawley females were administered one of three diets throughout gestation: (i) ethanol (E), a liquid diet containing 36.5% ethanol-derived calories; (ii) pair-fed (PF), a liquid control diet, with maltose-dextrin isocalorically substituted for ethanol, in the amount consumed by an E partner (g/kg body wt/day of gestation); and (iii) ad-libitum-fed control (C), normal laboratory chow and water, ad libitum. The offspring were housed individually at postnatal day (PND) 35, and at PND 50 were randomly assigned to cages either with or without an exercise wheel. BrdU (200 mg/kg, I.P.) was injected on PND 57, and animals terminated either 24 h (proliferation) or 4 weeks (neurogenesis) later. Our results demonstrate that prenatal ethanol exposure significantly decreases both cell proliferation and neurogenesis in the adult dentate gyrus. Animals in the PF condition also showed reduced neurogenesis. In contrast, all animals that engaged in voluntary exercise showed a significant increase in cell proliferation and neurogenesis. These results indicate that prenatal ethanol exposure can suppress both cell proliferation and neurogenesis, and that these effects may be, at least in part, nutritionally mediated. Importantly, voluntary exercise appears to have beneficial effects for these long-lasting deficits in hippocampal volume and cell number that have been observed in animals exposed to ethanol in utero.
Collapse
Affiliation(s)
- Van A Redila
- Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | | | | | | | | | | | | |
Collapse
|
33
|
Wilcoxon JS, Kuo AG, Disterhoft JF, Redei EE. Behavioral deficits associated with fetal alcohol exposure are reversed by prenatal thyroid hormone treatment: a role for maternal thyroid hormone deficiency in FAE. Mol Psychiatry 2005; 10:961-71. [PMID: 15940294 DOI: 10.1038/sj.mp.4001694] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Children prenatally exposed to alcohol typically exhibit behavioral abnormalities, including hyperactivity, learning deficits, and an increased prevalence of depression. Similar impairments are found in children of hypothyroid mothers, and we have shown that alcohol-consuming rat dams have suppressed hypothalamic-pituitary-thyroid (HPT) function. Therefore, we hypothesized that suppressed maternal thyroid hormonal milieu may contribute to the deleterious consequences of prenatal alcohol exposure. We aimed first to confirm and then to reverse the behavioral deficits in the fetal alcohol exposed (FAE) rat offspring by administration of thyroxine (T4) to the alcohol-consuming dams. Adult offspring prenatally exposed to ethanol (FAE; 35% ethanol-derived calories), pair-fed (PF) or control (C) diets were tested in the Morris water maze (MWM), the forced swim test (FST), and the open field test (OFT) to assess spatial learning, depressive behavior, and exploratory behavior/anxiety, respectively. Adult FAE offspring took longer to locate a hidden platform in the MWM and showed increased depressive behavior in the FST both of which were reversed by administration of T4 to the alcohol-consuming mother. We found sex and brain region-specific alterations in expression of genes involved in these behaviors in FAE adult offspring. Specifically, decreased hippocampal GAP-43 mRNA levels in adult FAE females and decreased glucocorticoid receptor (GR) expression in the amygdala of male and female FAE offspring were observed. The decreased mRNA levels of GAP-43 and GR were normalized by T4 treatment to the alcohol-consuming mother. Our results suggest that the suppressed HPT function of the alcohol-consuming mother contributes to the behavioral and cognitive dysfunctions observed in the offspring.
Collapse
Affiliation(s)
- J S Wilcoxon
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, The Asher Center, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
34
|
Marino MD, Aksenov MY, Kelly SJ. Vitamin E protects against alcohol‐induced cell loss and oxidative stress in the neonatal rat hippocampus. Int J Dev Neurosci 2004; 22:363-77. [PMID: 15380836 DOI: 10.1016/j.ijdevneu.2004.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 04/15/2004] [Accepted: 04/15/2004] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress has been proposed as a possible mechanism underlying nervous system deficits associated with Fetal Alcohol Syndrome (FAS). Current research suggests that antioxidant therapy may afford some level of protection against the teratogenic effects of alcohol. This study examined the effectiveness of antioxidant treatment in alleviating biochemical, neuroanatomical, and behavioral effects of neonatal alcohol exposure. Neonatal rats were administered alcohol (5.25 g/kg) by intragastric intubation on postnatal days 7, 8, and 9. A subset of alcohol-exposed pups were co-administered a high dose of Vitamin E (2 g/kg, or 71.9 IU/g). Controls consisted of a non-treated group, a group given the administration procedure only, and a group given the administration procedure plus the Vitamin E dose. Ethanol-exposed animals showed impaired spatial navigation in the Morris water maze, a decreased number of hippocampal CA1 pyramidal cells, and higher protein carbonyl formation in the hippocampus than controls. Vitamin E treatment alleviated the increase in protein carbonyls and the reduction in CA1 pyramidal cells seen in the ethanol-exposed group. However, the treatment did not improve spatial learning in the ethanol-exposed animals. These results suggest that while oxidative stress-related neurodegeneration may be a contributing factor in FAS, the antioxidant protection against alcohol-induced oxidative stress and neuronal cell loss in the rat hippocampus does not appear to be sufficient to prevent the behavioral impairments associated with FAS. Our findings underscore the complexity of the pathogenesis of behavioral deficits in FAS and suggest that additional mechanisms beyond oxidative damage of hippocampal neurons also contribute to the disorder.
Collapse
Affiliation(s)
- Melissa D Marino
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
35
|
Tanner DC, Githinji AW, Young EA, Meiri K, Savage DD, Perrone-Bizzozero NI. Fetal Alcohol Exposure Alters GAP-43 Phosphorylation and Protein Kinase C Responses to Contextual Fear Conditioning in the Hippocampus of Adult Rat Offspring. Alcohol Clin Exp Res 2004; 28:113-22. [PMID: 14745309 DOI: 10.1097/01.alc.0000106308.50817.b3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The growth- and plasticity-associated protein GAP-43 plays a significant role in the establishment and remodeling of neuronal connections. We have previously shown that GAP-43 levels, protein kinase C (PKC) activity, and GAP-43 phosphorylation increase during contextual fear conditioning and that fetal alcohol exposure (FAE) decreases PKC activity and GAP-43 phosphorylation in the hippocampus of adult offspring. Drawing on these observations, we hypothesized that FAE manifests its cognitive impairment by disrupting PKC activation and membrane translocation, thereby decreasing GAP-43 phosphorylation and function. METHODS Three groups of pregnant rat dams (FAE and two control diet groups) were placed on different diet regimens. Offspring from each of these groups were placed into each of four test groups, a contextual fear conditioned (CFC) group, a naïve unhandled group, and two nonlearning stress control groups. Hippocampi were dissected, homogenized, and used to prepare a cytosolic and a membrane fraction. These fractions were probed for total GAP-43, PKC-phosphorylated GAP-43, and several PKC subtypes. PKC activity also was measured in total homogenates. RESULTS Compared with both control diet groups, FAE animals showed a deficit in the activation of PKC in the hippocampus at 24 hr but not at 1.5 hr after CFC. Likewise, we found that the amount of GAP-43 and its phosphorylation were decreased 24 hr after CFC in FAE rats but not at early times after training. Analysis of the translocation of various PKC isoforms revealed that FAE animals had decreased levels of membrane-bound PKC beta2 and PKC epsilon 24 hr after CFC. CONCLUSIONS Considering the role of PKC activation and GAP-43 phosphorylation in synaptic plasticity, our results suggest that deficient translocation of PKC beta2 and PKC epsilon in the hippocampus may mediate the electrophysiological and behavioral deficits observed in fetal alcohol exposed animals.
Collapse
Affiliation(s)
- Daniel C Tanner
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hamilton DA, Kodituwakku P, Sutherland RJ, Savage DD. Children with Fetal Alcohol Syndrome are impaired at place learning but not cued-navigation in a virtual Morris water task. Behav Brain Res 2003; 143:85-94. [PMID: 12842299 DOI: 10.1016/s0166-4328(03)00028-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed a computerized (virtual) Morris water task (VMWT) to measure place learning and cued-navigation in eight adolescent males (9.5-16.5 years old) diagnosed with Fetal Alcohol Syndrome (FAS). Eight adolescent males matched for age and ethnicity with no history of prenatal alcohol exposure served as controls. Participants were trained to navigate to a hidden platform in a fixed location relative to a set of four conspicuous extramaze cues. After 20 hidden platform trials, a single no-platform probe trial was conducted, followed by 8 trials during which the platform was visible (cued-navigation). The FAS group traveled further than controls to navigate to the hidden platform during training. During the probe trial, controls navigated more directly to the platform region and persisted in searching where the platform had been more than the FAS group. Cued-navigation was comparable in both groups, suggesting that group differences in place learning were not attributable to visual-motor or motivational deficits in the FAS subjects. This pattern of impaired place learning and spared cued-navigation is similar to that reported in rats exposed to ethanol during periods of prenatal or early postnatal brain growth, as well as in animals with hippocampal damage.
Collapse
Affiliation(s)
- Derek A Hamilton
- Department of Psychology, The University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
37
|
Nixon K, Hughes PD, Amsel A, Leslie SW. NMDA receptor subunit expression following early postnatal exposure to ethanol. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:295-9. [PMID: 12480144 DOI: 10.1016/s0165-3806(02)00515-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Changes in NMDA receptor function following early postnatal exposure to ethanol may be related to the expression of NMDA receptor subunits. Following early postnatal exposure to ethanol, the expression of NMDA receptor subunits was examined. In cortex from ethanol-exposed rat pups at postnatal day 21, NR2A was significantly increased. There was no change in NR2B, thus suggesting that ethanol exposure during the third-trimester equivalent produces distinct effects on the NMDA receptor.
Collapse
Affiliation(s)
- Kimberly Nixon
- Department of Psychology, Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
38
|
Savage DD, Becher M, Torre AJ, Sutherland RJ. Dose-Dependent Effects of Prenatal Ethanol Exposure on Synaptic Plasticity and Learning in Mature Offspring. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02480.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Dose-Dependent Effects of Prenatal Ethanol Exposure on Synaptic Plasticity and Learning in Mature Offspring. Alcohol Clin Exp Res 2002. [DOI: 10.1097/00000374-200211000-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Yang J, Zoeller RT. Differential display identifies neuroendocrine-specific protein-A (NSP-A) and interferon-inducible protein 10 (IP-10) as ethanol-responsive genes in the fetal rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 138:117-33. [PMID: 12354640 DOI: 10.1016/s0165-3806(02)00461-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fetal alcohol exposure is the most common nonhereditary cause of mental retardation in the western world. Rats prenatally treated with ethanol liquid diet exhibit extensive defects in the brain that accurately model those observed in humans. To analyze the ethanol effects on gene expression during brain development, we performed mRNA differential display and two-dimensional electrophoresis on gestational day (G) 13 and G 16 brain from rats treated with ethanol liquid diet. Using mRNA differential display followed by a variety of quantitative analyses, three genes were confirmed to be ethanol-responsive. Among them was Neuroendocrine-Specific Protein-A (NSP-A), which is known to be affected by thyroid hormone in the cortex at this developmental time. However, two additional genes known to be thyroid hormone-responsive were unaffected by ethanol, indicating that interference with thyroid hormone action may not be a predominant pathway by which alcohol induces damage in the fetal brain. The observation that interferon-inducible protein-10 (IP-10) is up-regulated in ethanol-treated fetal brain may indicate the presence of a disease process recruiting CD8+ T-cells capable of interfering with myelination. The result of two-dimensional (2D) electrophoresis and Western analyses demonstrated that few changes in the abundance of individual proteins or the phosphorylation of proteins at threonine and tyrosine were induced by prenatal ethanol exposure. A critical analysis of the approaches used in the present study may be important for future studies in this field.
Collapse
Affiliation(s)
- Jun Yang
- Biology Department and Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
41
|
Boulouard M, Lelong V, Daoust M, Naassila M. Chronic ethanol consumption induces tolerance to the spatial memory impairing effects of acute ethanol administration in rats. Behav Brain Res 2002; 136:239-46. [PMID: 12385810 DOI: 10.1016/s0166-4328(02)00134-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A large number of studies in rats have investigated the effects of acute and chronic ethanol administration on performance on many spatial learning and memory tasks. However, no study has addressed the problem of whether chronic ethanol consumption induces tolerance to acute ethanol-induced spatial memory deficits. In this study, we analyzed the behavioral effects of acute ethanol administration on spatial memory and locomotor activity in rats chronically intoxicated by ethanol. Male Sprague-Dawley rats were given as their only available liquid source a 10% (v/v) aqueous ethanol solution for 2 weeks before behavioral testing and during the 1-week behavioral testing period. They were treated intraperitoneally with 1.5 g/kg of ethanol 30 min before daily training in the Morris water maze, a spatial memory task sensitive to hippocampal damage. Our results demonstrate that learning and spatial memory of ethanol-consuming animals were not altered compared with control rats. Chronic ethanol consumption had no effect on spatial reference memory in terms of either the distance traveled to find the hidden platform during the acquisition phase of the experiment, or the time spent in the training quadrant during the retention trial. Acute ethanol administration impaired spatial memory in control rats and this impairment was reversed in chronic ethanol-consuming animals, revealing that chronic ethanol consumption did induce tolerance to the spatial memory deficits induced by acute ethanol injection, although plasma ethanol levels did not differ between the two groups. In contrast, chronic ethanol consumption did not induce tolerance to the acute ethanol-induced stimulatory locomotor activity measured in the same animals. Our results, therefore, indicate that chronic ethanol consumption induces tolerance to the cognitive impairing effects, but not to the locomotor stimulatory effects of acute ethanol administration in rats, suggesting that these two behavioral effects of ethanol do not share a common mechanism in the CNS.
Collapse
Affiliation(s)
- Michel Boulouard
- Laboratoire de Pharmacologie, CERMN, UPRESS EA 2126, Université de Caen, UFR des Sciences Pharmaceutiques, 1, rue Vaubénard, France.
| | | | | | | |
Collapse
|
42
|
Richardson DP, Byrnes ML, Brien JF, Reynolds JN, Dringenberg HC. Impaired acquisition in the water maze and hippocampal long-term potentiation after chronic prenatal ethanol exposure in the guinea-pig. Eur J Neurosci 2002; 16:1593-8. [PMID: 12405973 DOI: 10.1046/j.1460-9568.2002.02214.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the hippocampus, the CA1 region is selectively vulnerable to the effects of chronic prenatal ethanol exposure. In the guinea-pig, the number of CA1 pyramidal cells is decreased after chronic prenatal ethanol exposure. We tested the hypotheses that chronic prenatal ethanol exposure (through maternal ethanol ingestion) results in impairments in spatial learning and short- and long-term plasticity in the CA1 region of the postnatal guinea-pig hippocampus. Timed, pregnant guinea-pigs were treated with ethanol (4 g/kg maternal body weight/day), isocaloric sucrose/pair-feeding, or water throughout gestation. Offspring were studied between postnatal days 40 and 80. In the Morris water maze, animals exposed to ethanol prenatally showed slower acquisition of an escape response to a hidden platform over 5 days of training. The amplitude of the field excitatory postsynaptic potential in the CA1 region in response to contralateral CA3 stimulation was decreased in offspring exposed to ethanol prenatally. Two forms of short-term plasticity (paired-pulse and frequency facilitation) were unaffected by chronic prenatal ethanol exposure. Long-term potentiation (LTP) in response to high-frequency CA3 stimulation was induced reliably and maintained over 60 min in isocaloric-sucrose and water control animals. However, LTP failed to be induced in the CA1 area of the hippocampus in prenatal ethanol-exposed offspring. These data show that chronic prenatal ethanol exposure, through maternal ethanol administration, impairs spatial performance and LTP in CA1 neurons. Hippocampal dysfunction could contribute importantly to the cognitive and behavioural deficits resulting from chronic prenatal ethanol exposure.
Collapse
Affiliation(s)
- D P Richardson
- Department of Pharmacology & Toxicology, Queen's University, Kingston, ON, Canada, K7L 3 N6
| | | | | | | | | |
Collapse
|
43
|
Girard TA, Wainwright PE. Testing the spatial- versus object-learning distinction: water-maze performance of male rats exposed to ethanol during the brain growth spurt. Behav Brain Res 2002; 134:493-503. [PMID: 12191836 DOI: 10.1016/s0166-4328(02)00091-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of exposure to ethanol during the brain growth spurt on a visual-discrimination (VD) and a place-learning task (PL) using intra-maze cues in the water maze. Artificially reared male Long-Evans rats were exposed to ethanol (ET) in a binge pattern from postnatal days 6-9 (6.5 g kg(-1) x day(-1); BAC approximately 330 mg/dl) or an isocaloric maltose-dextrin solution (gastrostomy control). A third suckled control group was reared by lactating dams. In experiment 1, rats were trained to discriminate horizontal- (H) versus vertical-striped (V) cues, with the positive cue providing escape from water. Groups did not differ with V+, but ET rats made more errors with H+. In experiment 2, the ET group was impaired in learning the spatial location of a submerged platform relative to intra-maze cues. In both tasks, acquisition deficits among ET rats were characterized by impairment emerging at trial 2, with intact reference memory on trial 1, and the ET group reached a comparable level of performance to controls by the end of training. In summary, because impairment was related to task characteristics, a clear distinction between impaired spatial- versus cue-based learning was not supported. However, these findings do support an effect of exposure to ethanol during the brain growth spurt on recent event, but not reference, memory.
Collapse
Affiliation(s)
- Todd A Girard
- Department of Psychology, University of Waterloo, Waterloo, Ont, Canada N2L 3G1.
| | | |
Collapse
|
44
|
Gabriel KI, Johnston S, Weinberg J. Prenatal ethanol exposure and spatial navigation: effects of postnatal handling and aging. Dev Psychobiol 2002; 40:345-57. [PMID: 12115293 DOI: 10.1002/dev.10023] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prenatal ethanol exposure results in spatial navigation deficits in young and mid-aged animals. In contrast, postnatal handling attenuates spatial deficits that emerge with age in animals that are not handled. Therefore, we investigated the ability of handling to attenuate spatial deficits in animals prenatally exposed to ethanol (E). Sprague-Dawley male offspring from E, pair-fed (PF), and control (C) groups were handled (H) or nonhandled (NH) from 1 to 15 days of age and tested on the Morris water maze at 2 or 13 to 14 months of age. In young animals, H-E males had longer latencies to locate the submerged platform, and E animals, across handling conditions, showed altered search patterns compared to their PF and C counterparts. Mid-aged animals had longer latencies than young animals, with no differences among E, PF, and C animals. However, corticosterone levels were higher in mid-aged E than in C males. Handling did not attenuate impairments associated with either prenatal ethanol exposure or aging.
Collapse
Affiliation(s)
- Kara I Gabriel
- Department of Anatomy, University of British Columbia, 2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
45
|
Hamilton DA, Driscoll I, Sutherland RJ. Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behav Brain Res 2002; 129:159-70. [PMID: 11809507 DOI: 10.1016/s0166-4328(01)00343-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated human place learning in a computerized version of the Morris water task (VMWT) under comparable conditions to those employed by Sutherland et al. (Sutherland et al. Psychobiology, 1987;15:48-57) with rats. Participants viewed a computer-generated environment and were trained to locate a hidden goal in one half of a circular pool (region 1). The opportunity to navigate in and view cues from region 2 was systematically varied during training. Participants were then started from region 2 to assess transfer. Accurate transfer performance was dependent upon prior experience viewing distal cues from region 2 while on a trajectory to the goal, a finding we interpret as inconsistent with the automatic formation and modification of a cognitive map (O'Keefe J, Nadel L. The Hippocampus as a cognitive map. Oxford, UK: Clarendon Press, 1978). Additionally, the transfer data reported here closely match the data obtained by Sutherland et al. with rats suggesting some generality in the principles involved in place learning.
Collapse
Affiliation(s)
- Derek A Hamilton
- Department of Psychology, Logan Hall, The University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
46
|
Schneider ML, Moore CF, Kraemer GW, Roberts AD, DeJesus OT. The impact of prenatal stress, fetal alcohol exposure, or both on development: perspectives from a primate model. Psychoneuroendocrinology 2002; 27:285-98. [PMID: 11750784 DOI: 10.1016/s0306-4530(01)00050-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The question of whether psychosocial stress during pregnancy (alone or in combination with fetal alcohol exposure) has negative consequences for offspring has not been clearly established in human studies. In this article, we present an overview of three prospective longitudinal studies. Using rhesus monkeys as subjects, a noise or hormone stressor, alone or in combination with moderate level alcohol solution, was presented daily during different stages of pregnancy. Prenatal stress resulted in lighter birth weights in two of three studies, and males from the alcohol plus noise stress condition had reduced birth weights. There were no significant effects of any of the prenatal treatments on gestation duration. Both prenatal stress and moderate fetal alcohol exposure reduced attention span and neuromotor capabilities of offspring during the first month of life, while early gestation prenatal stress, during the period of neuronal migration, emerged as a period of enhanced vulnerability for these effects. Under conditions of challenge, prenatally stressed monkeys showed more disturbance behaviors and reduced locomotion and exploration as well as altered hypothalamic-pituitary-adrenal (HPA) axis reactivity to stress. Fetal alcohol exposed monkeys also showed increased HPA axis activity in response to stressful conditions. Finally, altered patterns of alcohol consumption during adolescence were associated with prenatal stress.
Collapse
Affiliation(s)
- Mary L Schneider
- Department of Kinesiology, 2175 Medical Science Center, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
47
|
Weeber EJ, Savage DD, Sutherland RJ, Caldwell KK. Fear conditioning-induced alterations of phospholipase C-beta1a protein level and enzyme activity in rat hippocampal formation and medial frontal cortex. Neurobiol Learn Mem 2001; 76:151-82. [PMID: 11502147 DOI: 10.1006/nlme.2000.3994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of one-trial fear conditioning on phospholipase C-beta1a catalytic activity and protein level in hippocampal formation and medial frontal cortex of untreated control rats and rats prenatally exposed to ethanol. One hour following fear conditioning of untreated control rats, phospholipase C-beta1a protein level was increased in the hippocampal cytosolic fraction and decreased in the hippocampal membrane and cortical cytosolic and cortical membrane fractions. Twenty-four hours after fear conditioning, phospholipase C-beta1a protein level was reduced in the hippocampal cytosolic fraction and elevated in the cortical nuclear fraction; in addition, 24 h after conditioning, phospholipase C-beta1a activity in the cortical cytosolic fraction was increased. Rats that were exposed prenatally to ethanol displayed attenuated contextual fear conditioning, whereas conditioning to the acoustic-conditioned stimulus was not different from controls. In behavioral control (unconditioned) rats, fetal ethanol exposure was associated with reduced phospholipase C-beta1a enzyme activity in the hippocampal nuclear, cortical cytosolic, and cortical membrane fractions and increased phospholipase C-beta1a protein level in the hippocampal membrane and cortical cytosolic fractions. In certain cases, prenatal ethanol exposure modified the relationship between fear conditioning and changes in phospholipase C-beta1a protein level and/or activity. The majority of these effects occurred 1 h, rather than 24 h, after fear conditioning. Multivariate analysis of variance revealed interactions between fear conditioning, subcellular fraction, and prenatal ethanol exposure for measures of phospholipase C-beta1a protein level in hippocampal formation and phospholipase C-beta1a enzyme activity in medial frontal cortex. In the majority of cases, fear conditioning-induced changes in hippocampal phospholipase C-beta1a protein level were augmented in rats prenatally exposed to ethanol. In contrast, fear conditioning-induced changes in cortical phospholipase C-beta1a activity were, often, in opposite directions in prenatal ethanol-exposed compared to diet control rats. We speculate that alterations in subcellular phospholipase C-beta1a catalytic activity and protein level contribute to contextual fear conditioning and that learning deficits observed in rats exposed prenatally to ethanol result, in part, from dysfunctions in phospholipase C-beta1a signal transduction.
Collapse
Affiliation(s)
- E J Weeber
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico 87131-5223, USA
| | | | | | | |
Collapse
|
48
|
Cronise K, Marino MD, Tran TD, Kelly SJ. Critical periods for the effects of alcohol exposure on learning in rats. Behav Neurosci 2001; 115:138-45. [PMID: 11256437 DOI: 10.1037/0735-7044.115.1.138] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Critical periods for alcohol-induced deficits in spatial navigation and passive avoidance learning were investigated with a rat model of fetal alcohol syndrome. Rats were exposed to alcohol prenatally (Gestational Days 1-10 or 11-22) or postnatally (Postnatal Days 2-10) or throughout all 3 periods. Offspring were tested in either a spatial navigation or an avoidance task as juveniles or adults. As juveniles, the combined exposure group took longer to learn the spatial navigation task compared with all other groups. This effect was not seen in adults. Passive avoidance performance was not affected. These results suggest that long-term exposure to alcohol during development has adverse effects on spatial learning. The lack of differences in the short-term exposure groups implies that there may not be 1 critical period of alcohol exposure, but that the adverse effects of alcohol during development may be cumulative on some behaviors.
Collapse
Affiliation(s)
- K Cronise
- Department of Psychology, University of South Carolina, Columbia 29208, USA
| | | | | | | |
Collapse
|
49
|
Lam MK, Homewood J, Taylor AJ, Mazurski EJ. Second generation effects of maternal alcohol consumption during pregnancy in rats. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24:619-31. [PMID: 10958155 DOI: 10.1016/s0278-5846(00)00097-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
1. Previous studies have shown that when female rats are administered alcohol during pregnancy there are adverse effects on their progeny, including decreased birth weight and delayed neuromotor development. Evidence from several sources suggests alcohol exposure may contribute to cytogenetic abnormalities, suggesting the possibility of cross generational effects from prenatal exposure. 2. On day 1 of gestation female rats were randomly allocated to the Alcohol group, which received a liquid diet containing 5% (v/v) ethanol solution until parturition, the Sucrose control group, which received an identical diet, except that sucrose had been isocalorically substituted for ethanol, or the Chow control, which received standard laboratory chow. 3. When the offspring of these rats reached adulthood they were mated with drug-free rats and the development of their offspring was monitored. 4. In comparison with female pups whose sires had been exposed to alcohol in utero, the weight of pups descended from fetally-exposed dams increased more slowly from day 1 to day 7. 5. At five days of age, significant differences favouring the two control groups were found in latency to right for pups descended from fetally-exposed dams. 6. These data suggest that the effects of prenatal exposure to alcohol are more pervasive than previously thought and affect female pups to a greater extent than males.
Collapse
Affiliation(s)
- M K Lam
- Department of Biology, Macquarie University, Sydney, Australia
| | | | | | | |
Collapse
|
50
|
Abstract
Prenatal exposure to alcohol can result in fetal alcohol syndrome (FAS), characterized by growth retardation, facial dysmorphologies, and a host of neurobehavioral impairments. Neurobehavioral effects in FAS, and in alcohol-related neurodevelopmental disorder, include poor learning and memory, attentional deficits, and motor dysfunction. Many of these behavioral deficits can be modeled in rodents. This paper reviews the literature suggesting that many fetal alcohol effects result, at least in part, from teratogenic effects of alcohol on the hippocampus. Neurobehavioral studies show that animals exposed prenatally to alcohol are impaired in many of the same spatial learning and memory tasks sensitive to hippocampal damage, including T-mazes, the Morris water maze, and the radial arm maze. Direct evidence for hippocampal involvement is provided by neuroanatomical studies of the hippocampus documenting reduced numbers of neurons, lower dendritic spine density on pyramidal neurons, and decreased morphological plasticity after environmental enrichment in rats exposed prenatally to alcohol. Electrophysiological studies also demonstrate changes in synaptic activity in in vitro hippocampal brain slices isolated from prenatal alcohol-exposed animals. Considered together, these observations demonstrate that prenatal exposure to alcohol can result in abnormal hippocampal development and function. Such studies provide a better understanding of neurological deficits associated with FAS in humans, and may also contribute to the development of strategies to ameliorate the effects of prenatal alcohol exposure on behavior.
Collapse
Affiliation(s)
- R F Berman
- Department of Neurological Surgery, Center for Neuroscience, University of California at Davis, 95616, USA.
| | | |
Collapse
|