1
|
Hippocampal Disinhibition Reduces Contextual and Elemental Fear Conditioning While Sparing the Acquisition of Latent Inhibition. eNeuro 2022; 9:ENEURO.0270-21.2021. [PMID: 34980662 PMCID: PMC8805190 DOI: 10.1523/eneuro.0270-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampal neural disinhibition, i.e., reduced GABAergic inhibition, is a key feature of schizophrenia pathophysiology. The hippocampus is an important part of the neural circuitry that controls fear conditioning and can also modulate prefrontal and striatal mechanisms, including dopamine signaling, which play a role in salience modulation. Consequently, hippocampal neural disinhibition may contribute to impairments in fear conditioning and salience modulation reported in schizophrenia. Therefore, we examined the effect of ventral hippocampus (VH) disinhibition in male rats on fear conditioning and salience modulation, as reflected by latent inhibition (LI), in a conditioned emotional response (CER) procedure. A flashing light was used as the conditioned stimulus (CS), and conditioned suppression was used to index conditioned fear. In experiment 1, VH disinhibition via infusion of the GABA-A receptor antagonist picrotoxin before CS pre-exposure and conditioning markedly reduced fear conditioning to both the CS and context; LI was evident in saline-infused controls but could not be detected in picrotoxin-infused rats because of the low level of fear conditioning to the CS. In experiment 2, VH picrotoxin infusions only before CS pre-exposure did not affect the acquisition of fear conditioning or LI. Together, these findings indicate that VH neural disinhibition disrupts contextual and elemental fear conditioning, without affecting the acquisition of LI. The disruption of fear conditioning resembles aversive conditioning deficits reported in schizophrenia and may reflect a disruption of neural processing both within the hippocampus and in projection sites of the hippocampus.
Collapse
|
2
|
Madadi Asl M, Vahabie AH, Valizadeh A, Tass PA. Spike-Timing-Dependent Plasticity Mediated by Dopamine and its Role in Parkinson's Disease Pathophysiology. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:817524. [PMID: 36926058 PMCID: PMC10013044 DOI: 10.3389/fnetp.2022.817524] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is a multi-systemic neurodegenerative brain disorder. Motor symptoms of PD are linked to the significant dopamine (DA) loss in substantia nigra pars compacta (SNc) followed by basal ganglia (BG) circuit dysfunction. Increasing experimental and computational evidence indicates that (synaptic) plasticity plays a key role in the emergence of PD-related pathological changes following DA loss. Spike-timing-dependent plasticity (STDP) mediated by DA provides a mechanistic model for synaptic plasticity to modify synaptic connections within the BG according to the neuronal activity. To shed light on how DA-mediated STDP can shape neuronal activity and synaptic connectivity in the PD condition, we reviewed experimental and computational findings addressing the modulatory effect of DA on STDP as well as other plasticity mechanisms and discussed their potential role in PD pathophysiology and related network dynamics and connectivity. In particular, reshaping of STDP profiles together with other plasticity-mediated processes following DA loss may abnormally modify synaptic connections in competing pathways of the BG. The cascade of plasticity-induced maladaptive or compensatory changes can impair the excitation-inhibition balance towards the BG output nuclei, leading to the emergence of pathological activity-connectivity patterns in PD. Pre-clinical, clinical as well as computational studies reviewed here provide an understanding of the impact of synaptic plasticity and other plasticity mechanisms on PD pathophysiology, especially PD-related network activity and connectivity, after DA loss. This review may provide further insights into the abnormal structure-function relationship within the BG contributing to the emergence of pathological states in PD. Specifically, this review is intended to provide detailed information for the development of computational network models for PD, serving as testbeds for the development and optimization of invasive and non-invasive brain stimulation techniques. Computationally derived hypotheses may accelerate the development of therapeutic stimulation techniques and potentially reduce the number of related animal experiments.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Abdol-Hossein Vahabie
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Elibol R, Şengör NS. Modeling nucleus accumbens : A Computational Model from Single Cell to Circuit Level. J Comput Neurosci 2020; 49:21-35. [PMID: 33165797 DOI: 10.1007/s10827-020-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022]
Abstract
Nucleus accumbens is part of the neural structures required for reward based learning and cognitive processing of motivation. Understanding its cellular dynamics and its role in basal ganglia circuits is important not only in diagnosing behavioral disorders and psychiatric problems as addiction and depression but also for developing therapeutic treatments for them. Building a computational model would expand our comprehension of nucleus accumbens. In this work, we are focusing on establishing a model of nucleus accumbens which has not been considered as much as dorsal striatum in computational neuroscience. We will begin by modeling the behavior of single cells and then build a holistic model of nucleus accumbens considering the effect of synaptic currents. We will verify the validity of the model by showing the consistency of simulation results with the empirical data. Furthermore, the simulation results reveal the joint effect of cortical stimulation and dopaminergic modulation on the activity of medium spiny neurons. This effect differentiates with the type of dopamine receptors.
Collapse
Affiliation(s)
- Rahmi Elibol
- Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey. .,Engineering Faculty, Erzincan University, Erzincan, Turkey.
| | - Neslihan Serap Şengör
- Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Al-Ali AM, Young AMJ. Disruption of latent inhibition by subchronic phencyclidine pretreatment in rats. Behav Brain Res 2019; 368:111901. [PMID: 30981736 DOI: 10.1016/j.bbr.2019.111901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022]
Abstract
Repeated subchronic treatment with the NMDA-receptor antagonist, phencyclidine, causes behavioural changes in rats, which resemble cognitive and negative symptoms of schizophrenia. However, its effects on behaviours modelling positive symptoms are less clear. This study investigated whether subchronic phencyclidine pretreatment affected latent inhibition: impaired conditioning following repeated preexposure of the to-be-conditioned stimulus. Female Lister-hooded rats were pretreated with phencyclidine or saline twice/day for 5 days, then remained drug-free for 10 days before latent inhibition testing. Saline pretreated animals showed latent inhibition, as expected. However, phencyclidine pretreated animals showed no latent inhibition: the effect of preexposure was attenuated, with no change in basic learning. Thus subchronic phencyclidine pretreatment does disrupt latent inhibition, and, importantly, this occurs after withdrawal from the drug, implicating changes in brain function enduring well beyond the time that the drug is present in the brain. In a separate task, discrimination of a novel object was significantly impaired by phencyclidine pretreatment confirming that five days of subchronic pretreatment was sufficient to invoke behavioural impairment previously reported after seven days pretreatment.
Collapse
Affiliation(s)
- Asmaa M Al-Ali
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
5
|
Perez SM, Donegan JJ, Boley AM, Aguilar DD, Giuffrida A, Lodge DJ. Ventral hippocampal overexpression of Cannabinoid Receptor Interacting Protein 1 (CNRIP1) produces a schizophrenia-like phenotype in the rat. Schizophr Res 2019; 206:263-270. [PMID: 30522798 PMCID: PMC6525642 DOI: 10.1016/j.schres.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Adolescent cannabis use has been implicated as a risk factor for schizophrenia; however, it is neither necessary nor sufficient. Previous studies examining this association have focused primarily on the role of the cannabinoid receptor 1 (CB1R) with relatively little known about a key regulatory protein, the cannabinoid receptor interacting protein 1 (CNRIP1). CNRIP1 is an intracellular protein that interacts with the C-terminal tail of CB1R and regulates its intrinsic activity. Previous studies have demonstrated aberrant CNRIP1 DNA promoter methylation in post-mortem in human patients with schizophrenia, and we have recently reported decreased methylation of the CNRIP1 DNA promoter in the ventral hippocampus (vHipp) of a rodent model of schizophrenia susceptibility. To examine whether augmented CNRIP1 expression could contribute to the pathology of schizophrenia, we performed viral-mediated overexpression of CNRIP1 in the vHipp of Sprague Dawley rats. We then tested these rats for behavioral correlates of schizophrenia symptoms, followed by electrophysiology to determine the effects on the dopamine system, known to underlie psychosis. Here, we report that overexpression of vHipp CNRIP1 induces impairments in latent inhibition and social interaction, similar to those observed in individuals with schizophrenia and in rodent models of the disease. Furthermore, rats overexpressing vHipp CNRIP1 displayed a significant increase in ventral tegmental area (VTA) dopamine neuron population activity, a putative correlate of psychosis. These data provide evidence that alterations in CNRIP1 may contribute to the pathophysiology of schizophrenia, as overexpression is sufficient to produce neurophysiological and behavioral correlates consistently observed in rodent models of the disease.
Collapse
Affiliation(s)
- Stephanie M Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA.
| | - Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| | - Angela M Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| | - David D Aguilar
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA; VA Boston Healthcare System and Harvard Medical School Department of Psychiatry, 1400 VFW Parkway, West Roxbury, MA 02132, USA
| | - Andrea Giuffrida
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Dopamine receptors mediate strategy abandoning via modulation of a specific prelimbic cortex-nucleus accumbens pathway in mice. Proc Natl Acad Sci U S A 2018; 115:E4890-E4899. [PMID: 29735678 DOI: 10.1073/pnas.1717106115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability to abandon old strategies and adopt new ones is essential for survival in a constantly changing environment. While previous studies suggest the importance of the prefrontal cortex and some subcortical areas in the generation of strategy-switching flexibility, the fine neural circuitry and receptor mechanisms involved are not fully understood. In this study, we showed that optogenetic excitation and inhibition of the prelimbic cortex-nucleus accumbens (NAc) pathway in the mouse respectively enhances and suppresses strategy-switching ability in a cross-modal spatial-egocentric task. This ability is dependent on an intact dopaminergic tone in the NAc, as local dopamine denervation impaired the performance of the animal in the switching of tasks. In addition, based on a brain-slice preparation obtained from Drd2-EGFP BAC transgenic mice, we demonstrated direct innervation of D2 receptor-expressing medium spiny neurons (D2-MSNs) in the NAc by prelimbic cortical neurons, which is under the regulation by presynaptic dopamine receptors. While presynaptic D1-type receptor activation enhances the glutamatergic transmission from the prelimbic cortex to D2-MSNs, D2-type receptor activation suppresses this synaptic connection. Furthermore, manipulation of this pathway by optogenetic activation or administration of a D1-type agonist or a D2-type antagonist could restore impaired task-switching flexibility in mice with local NAc dopamine depletion; this restoration is consistent with the effects of knocking down the expression of specific dopamine receptors in the pathway. Our results point to a critical role of a specific prelimbic cortex-NAc subpathway in mediating strategy abandoning, allowing the switching from one strategy to another in problem solving.
Collapse
|
7
|
Gill KM, Miller SA, Grace AA. Impaired contextual fear-conditioning in MAM rodent model of schizophrenia. Schizophr Res 2018; 195:343-352. [PMID: 28927551 PMCID: PMC5854517 DOI: 10.1016/j.schres.2017.08.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022]
Abstract
The methylazoxymethanol acetate (MAM) rodent neurodevelopmental model of schizophrenia exhibits aberrant dopamine system activation attributed to hippocampal dysfunction. Context discrimination is a component of numerous behavioral and cognitive functions and relies on intact hippocampal processing. The present study explored context processing behaviors, along with dopamine system activation, during fear learning in the MAM model. Male offspring of dams treated with MAM (20mg/kg, i.p.) or saline on gestational day 17 were used for electrophysiological and behavioral experiments. Animals were tested on the immediate shock fear conditioning paradigm, with either different pre-conditioning contexts or varying amounts of context pre-exposure (0-10 sessions). Amphetamine-induced locomotor activity and dopamine neural activity was measured 1-week after fear conditioning. Saline, but not MAM animals, demonstrated enhanced fear responses following a single context pre-exposure in the conditioning context. One week following fear learning, saline rats with 2 or 7min of context pre-exposure prior to fear conditioning also demonstrated enhanced amphetamine-induced locomotor response relative to MAM animals. Dopamine neuron recordings showed fear learning-induced reductions in spontaneous dopamine neural activity in MAM rats that was further reduced by amphetamine. Apomorphine administration confirmed that reductions in dopamine neuron activity in MAM animals resulted from over excitation, or depolarization block. These data show a behavioral insensitivity to contextual stimuli in MAM rats that coincide with a less dynamic dopamine response after fear learning.
Collapse
Affiliation(s)
- Kathryn M Gill
- University of Pittsburgh, Pittsburgh, PA 15260, Departments of Neuroscience, Psychiatry and Psychology, USA.
| | - Sarah A Miller
- University of Pittsburgh, Pittsburgh, PA 15260, Departments of Neuroscience, Psychiatry and Psychology, USA
| | - Anthony A Grace
- University of Pittsburgh, Pittsburgh, PA 15260, Departments of Neuroscience, Psychiatry and Psychology, USA
| |
Collapse
|
8
|
An examination of the roles of glutamate and sex in latent inhibition: Relevance to the glutamate hypothesis of schizophrenia? Psychiatry Res 2017. [PMID: 28623767 DOI: 10.1016/j.psychres.2017.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study examined the effects of the glutamate receptor antagonist MK-801, the glutamate receptor agonist N-methyl-D-aspartate (NMDA), and sexual dimorphism on latent inhibition to elucidate the glutamate hypothesis of schizophrenia. During the pre-exposure phase, 56 male and 65 female Wistar rats were intracerebroventricularly administered normal saline, MK-801 or NMDA, in the left ventricle and then exposed to a passive avoidance box (or a different context) in three trials over 3 days. Then, all of the rats were placed in the light compartment of the passive avoidance box and were allowed to enter the dark compartment, where they each received a footshock (1mA, 2s) in five trials over 5 days. Injections of the glutamate drugs NMDA and MK-801 did not affect latent inhibition. Sexual dimorphism did not occur in latent inhibition. The present data on the male rats indicated that the glutamate system did not affect latent inhibition, indicating that the glutamate system was not like the dopamine system in terms of mediating the positive symptoms of schizophrenia. The glutamate system might be involved in the negative and cognitive symptoms of schizophrenia. The results may provide information for novel treatments of the negative and cognitive symptoms of schizophrenia.
Collapse
|
9
|
Karcher NR, Martin EA, Kerns JG. Examining associations between psychosis risk, social anhedonia, and performance of striatum-related behavioral tasks. JOURNAL OF ABNORMAL PSYCHOLOGY 2016; 124:507-18. [PMID: 26075968 DOI: 10.1037/abn0000067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both psychosis and anhedonia have been associated to some extent with striatal functioning. The current study examined whether either psychosis risk or social anhedonia was associated with performance on 3 tasks related to striatal functioning. Psychosis risk participants had extremely elevated Perceptual Aberration/Magical Ideation (PerMag) scores (n = 69), with 43% of psychosis risk participants also having semistructured interview-assessed psychotic-like experiences which further heightens their risk of psychotic disorder (Chapman, Chapman, Kwapil, Eckblad, & Zinser, 1994). Compared with both extremely elevated social anhedonia (n = 60) and control (n = 68) groups, the PerMag group exhibited poorer performance on 2 of the striatum-related tasks, the Weather Prediction Task (WPT) and the Learned Irrelevance Paradigm, but not on Finger Tapping. In addition, PerMag participants with psychotic-like experiences were especially impaired on the WPT. Overall, this study arguably provides the first evidence that psychosis risk but not social anhedonia is associated with performance on the WPT, a task thought to be strongly associated with activation in the associative striatum, and also suggests that the WPT might be especially useful as a behavioral measure of psychosis risk.
Collapse
|
10
|
Reciprocal Control of Thyroid Binding and the Pipecolate Pathway in the Brain. Neurochem Res 2016; 42:217-243. [DOI: 10.1007/s11064-016-2015-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
|
11
|
Crabtree J, Green MJ. Creative Cognition and Psychosis Vulnerability: What’s the Difference? CREATIVITY RESEARCH JOURNAL 2016. [DOI: 10.1080/10400419.2015.1030305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Vaessen T, Hernaus D, Myin-Germeys I, van Amelsvoort T. The dopaminergic response to acute stress in health and psychopathology: A systematic review. Neurosci Biobehav Rev 2015. [PMID: 26196459 DOI: 10.1016/j.neubiorev.2015.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Previous work in animals has shown that dopamine (DA) in cortex and striatum plays an essential role in stress processing. For the first time, we systematically reviewed the in vivo evidence for DAergic stress processing in health and psychopathology in humans. All studies included (n studies=25, n observations=324) utilized DA D2/3 positron emission tomography and measured DAergic activity during an acute stress challenge. The evidence in healthy volunteers (HV) suggests that physiological, but not psychological, stress consistently increases striatal DA release. Instead, increased medial prefrontal cortex (mPFC) DAergic activity in HV was observed during psychological stress. Across brain regions, stress-related DAergic activity was correlated with the physiological and psychological intensity of the stressor. The magnitude of stress-induced DA release was dependent on rearing conditions, personality traits and genetic variations in several SNPs. In psychopathology, preliminary evidence was found for stress-related dorsal striatal DAergic hyperactivity in psychosis spectrum and a blunted response in chronic cannabis use and pain-related disorders, but results were inconsistent. Physiological stress-induced DAergic activity in striatum in HV may reflect somatosensory properties of the stressor and readiness for active fight-or-flight behavior. DAergic activity in HV in the ventral striatum and mPFC may be more related to expectations about the stressor and threat evaluation, respectively. Future studies with increased sample size in HV and psychopathology assessing the functional relevance of stress-induced DAergic activity, the association between cortical and subcortical DAergic activity and the direct comparison of different stressors are necessary to conclusively elucidate the role of the DA system in the stress response.
Collapse
Affiliation(s)
- Thomas Vaessen
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands.
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| | - Inez Myin-Germeys
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| |
Collapse
|
13
|
O'Daly OG, Joyce D, Tracy DK, Stephan KE, Murray RM, Shergill S. Amphetamine sensitisation and memory in healthy human volunteers: a functional magnetic resonance imaging study. J Psychopharmacol 2014; 28:857-65. [PMID: 24671338 DOI: 10.1177/0269881114527360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amphetamine sensitisation (AS) is an established animal model of the hypersensitivity to psychostimulants seen in patients with schizophrenia. AS also models the dysregulation of mesolimbic dopamine signalling which has been implicated in the development of psychotic symptoms. Recent data suggest that the enhanced excitability of mesolimbic dopamine neurons in AS is driven by a hyperactivity of hippocampal (subiculum) neurons, consistent with a strong association between hippocampal dysfunction and schizophrenia. While AS can be modelled in human volunteers, its functional consequences on dopaminoceptive brain regions (i.e. striatum and hippocampus) remains unclear. Here we describe the effects of a sensitising dosage pattern of dextroamphetamine on the neural correlates of motor sequence learning in healthy volunteers, within a randomised, double-blind, parallel-groups design. Behaviourally, sensitisation was characterised by enhanced subjective responses to amphetamine but did not change performance (i.e. learning rate) during an explicit sequence learning task. In contrast, functional magnetic resonance imaging (fMRI) measurements showed that repeated intermittent amphetamine exposure was associated with increased blood-oxygen-level dependent (BOLD) signal within the medial temporal lobe (MTL) (subiculum/entorhinal cortex) and midbrain, in the vicinity of the substantia nigra/ventral tegmental area (SN/VTA) during sequence encoding. Importantly, MTL hyperactivity correlated with the sensitisation of amphetamine-induced attentiveness. The MTL-midbrain hyperactivity reported here mirrors observations in sensitised rodents and is consistent with contemporary models of schizophrenia and behavioural sensitisation. These findings of meso-hippocampal hyperactivity during AS thus link pathophysiological concepts of dopamine dysregulation to cognitive models of psychosis.
Collapse
Affiliation(s)
- Owen G O'Daly
- Cognition, Schizophrenia and Imaging Laboratory, King's College London, London, UK Centre for Neuroimaging Sciences, King's College London, London, UK o.o'
| | - Daniel Joyce
- Cognition, Schizophrenia and Imaging Laboratory, King's College London, London, UK
| | - Derek K Tracy
- Cognition, Schizophrenia and Imaging Laboratory, King's College London, London, UK Oxleas NHS Foundation Trust, London, UK
| | - Klaas E Stephan
- Department of Economics, University of Zürich, Zürich, Switzerland Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, King's College London, London, UK
| | - Sukhwinder Shergill
- Cognition, Schizophrenia and Imaging Laboratory, King's College London, London, UK The National Psychosis Unit, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Abstract
Biochemical, electrophysiological, and imaging studies suggest that the anterior part of the insular cortex (IC) serves as primary taste cortex, whereas fMRI studies in human propose that the anterior IC is also involved in processing of general novelty or saliency information. Here, we compared activity regulated cytoskeleton associated protein (Arc)/Arg3.1 protein levels in the rat IC following administration of familiar versus novel tastes. Surprisingly, there was no correlation between novel taste and Arc/Arg3.1 levels when measured as the sum of both left and right insular cortices. However, when left and right IC were examined separately, Arc/Arg3.1 level was lateralized following novel taste learning. Moreover, Arc/Arg3.1 lateralization was inversely correlated with taste familiarity, whereas the high lateralization of Arc/Arg3.1 expression observed following novel taste learning is reduced proportionally to the increment in taste familiarity. In addition, unilateral inhibition of protein synthesis in the IC had asymmetrical effect on memory, inducing strong memory impairment similarly to bilateral inhibition or memory preservation, indicating that hemispheric lateralization is central for processing taste saliency information. These results provide indications, at the gene level of expression, for the role of IC lateralization in processing novel taste information and for the asymmetrical contribution of protein synthesis in each hemisphere during memory consolidation.
Collapse
|
15
|
Hallen A, Jamie JF, Cooper AJL. Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 2013; 45:1249-72. [PMID: 24043460 DOI: 10.1007/s00726-013-1590-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/23/2022]
Abstract
The lysine catabolism pathway differs in adult mammalian brain from that in extracerebral tissues. The saccharopine pathway is the predominant lysine degradative pathway in extracerebral tissues, whereas the pipecolate pathway predominates in adult brain. The two pathways converge at the level of ∆(1)-piperideine-6-carboxylate (P6C), which is in equilibrium with its open-chain aldehyde form, namely, α-aminoadipate δ-semialdehyde (AAS). A unique feature of the pipecolate pathway is the formation of the cyclic ketimine intermediate ∆(1)-piperideine-2-carboxylate (P2C) and its reduced metabolite L-pipecolate. A cerebral ketimine reductase (KR) has recently been identified that catalyzes the reduction of P2C to L-pipecolate. The discovery that this KR, which is capable of reducing not only P2C but also other cyclic imines, is identical to a previously well-described thyroid hormone-binding protein [μ-crystallin (CRYM)], may hold the key to understanding the biological relevance of the pipecolate pathway and its importance in the brain. The finding that the KR activity of CRYM is strongly inhibited by the thyroid hormone 3,5,3'-triiodothyronine (T3) has far-reaching biomedical and clinical implications. The inter-relationship between tryptophan and lysine catabolic pathways is discussed in the context of shared degradative enzymes and also potential regulation by thyroid hormones. This review traces the discoveries of enzymes involved in lysine metabolism in mammalian brain. However, there still remain unanswered questions as regards the importance of the pipecolate pathway in normal or diseased brain, including the nature of the first step in the pathway and the relationship of the pipecolate pathway to the tryptophan degradation pathway.
Collapse
Affiliation(s)
- André Hallen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia,
| | | | | |
Collapse
|
16
|
Razafsha M, Behforuzi H, Harati H, Wafai RA, Khaku A, Mondello S, Gold MS, Kobeissy FH. An updated overview of animal models in neuropsychiatry. Neuroscience 2013; 240:204-18. [PMID: 23473749 DOI: 10.1016/j.neuroscience.2013.02.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/28/2013] [Accepted: 02/20/2013] [Indexed: 12/20/2022]
Abstract
Animal models are vital tools to study the genetic, molecular, cellular, and environmental parameters involved in several neuropsychiatric disorders. Over the years, these models have expanded our understanding of the pathogenesis of many neuropsychiatric disorders and neurodegenerative diseases. Although animal models have been widely used in psychiatry, and despite several years of extensive research with these models, their validity is still being investigated and presents a challenge to both investigators and clinicians as well. In this concise review, we will describe the most common animal models utilized in neuropsychiatry, including animal models of depression, anxiety, and psychosis. In addition, we will also discuss the validity and reliability of these models and current challenges in this domain. Furthermore, this work will discuss the role of gene-environment interaction as an additional contributing factor that modulates neuropsychological outcome and its implication on animal models. This overview will give a succinct summary of animal models in psychiatry which will be useful both to the seasoned researcher, as well as novices in the field.
Collapse
Affiliation(s)
- M Razafsha
- Residency Program, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gottschalk MG, Sarnyai Z, Guest PC, Harris LW, Bahn S. Estudos traducionais de neuropsiquiatria e esquizofrenia: modelos animais genéticos e de neurodesenvolvimento. ACTA ACUST UNITED AC 2012. [DOI: 10.1590/s0101-60832012005000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sintomas psiquiátricos são subjetivos por natureza e tendem a se sobrepor entre diferentes desordens. Sendo assim, a criação de modelos de uma desordem neuropsiquiátrica encontra desafios pela falta de conhecimento dos fundamentos da fisiopatologia e diagnósticos precisos. Modelos animais são usados para testar hipóteses de etiologia e para representar a condição humana tão próximo quanto possível para aumentar nosso entendimento da doença e avaliar novos alvos para a descoberta de drogas. Nesta revisão, modelos animais genéticos e de neurodesenvolvimento de esquizofrenia são discutidos com respeito a achados comportamentais e neurofisiológicos e sua associação com a condição clínica. Somente modelos animais específicos de esquizofrenia podem, em último caso, levar a novas abordagens diagnósticas e descoberta de drogas. Argumentamos que biomarcadores moleculares são importantes para aumentar a tradução de animais a humanos, já que faltam a especificidade e a fidelidade necessárias às leituras comportamentais para avaliar sintomas psiquiátricos humanos.
Collapse
Affiliation(s)
| | | | | | | | - Sabine Bahn
- Universidade de Cambridge; Centro Médico Erasmus
| |
Collapse
|
18
|
Abstract
Evolving theories of schizophrenia emphasize a "disconnection" in distributed fronto-striatal-limbic neural systems, which may give rise to breakdowns in cognition and emotional function. We discuss these diverse domains of function from the perspective of disrupted neural circuits involved in "cold" cognitive vs. "hot" affective operations and the interplay between these processes. We focus on three research areas that highlight cognition-emotion dysinteractions in schizophrenia: First, we discuss the role of cognitive deficits in the "maintenance" of emotional information. We review recent evidence suggesting that motivational abnormalities in schizophrenia may in part arise due to a disrupted ability to "maintain" affective information over time. Here, dysfunction in a prototypical "cold" cognitive operation may result in "affective" deficits in schizophrenia. Second, we discuss abnormalities in the detection and ascription of salience, manifest as excessive processing of non-emotional stimuli and inappropriate distractibility. We review emerging evidence suggesting deficits in some, but not other, specific emotional processes in schizophrenia - namely an intact ability to perceive emotion "in-the-moment" but poor prospective valuation of stimuli and heightened reactivity to stimuli that ought to be filtered. Third, we discuss abnormalities in learning mechanisms that may give rise to delusions, the fixed, false, and often emotionally charged beliefs that accompany psychosis. We highlight the role of affect in aberrant belief formation, mostly ignored by current theoretical models. Together, we attempt to provide a consilient overview for how breakdowns in neural systems underlying affect and cognition in psychosis interact across symptom domains. We conclude with a brief treatment of the neurobiology of schizophrenia and the need to close our explanatory gap between cellular-level hypotheses and complex behavioral symptoms observed in this illness.
Collapse
Affiliation(s)
- Alan Anticevic
- Clinical Neuroscience Research Unit, Ribicoff Research Facilities, Connecticut Mental Health Center, Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | | |
Collapse
|
19
|
Anticevic A, Corlett PR. Cognition-emotion dysinteraction in schizophrenia. Front Psychol 2012; 3:392. [PMID: 23091464 PMCID: PMC3470461 DOI: 10.3389/fpsyg.2012.00392] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 09/20/2012] [Indexed: 01/22/2023] Open
Abstract
Evolving theories of schizophrenia emphasize a "disconnection" in distributed fronto-striatal-limbic neural systems, which may give rise to breakdowns in cognition and emotional function. We discuss these diverse domains of function from the perspective of disrupted neural circuits involved in "cold" cognitive vs. "hot" affective operations and the interplay between these processes. We focus on three research areas that highlight cognition-emotion dysinteractions in schizophrenia: First, we discuss the role of cognitive deficits in the "maintenance" of emotional information. We review recent evidence suggesting that motivational abnormalities in schizophrenia may in part arise due to a disrupted ability to "maintain" affective information over time. Here, dysfunction in a prototypical "cold" cognitive operation may result in "affective" deficits in schizophrenia. Second, we discuss abnormalities in the detection and ascription of salience, manifest as excessive processing of non-emotional stimuli and inappropriate distractibility. We review emerging evidence suggesting deficits in some, but not other, specific emotional processes in schizophrenia - namely an intact ability to perceive emotion "in-the-moment" but poor prospective valuation of stimuli and heightened reactivity to stimuli that ought to be filtered. Third, we discuss abnormalities in learning mechanisms that may give rise to delusions, the fixed, false, and often emotionally charged beliefs that accompany psychosis. We highlight the role of affect in aberrant belief formation, mostly ignored by current theoretical models. Together, we attempt to provide a consilient overview for how breakdowns in neural systems underlying affect and cognition in psychosis interact across symptom domains. We conclude with a brief treatment of the neurobiology of schizophrenia and the need to close our explanatory gap between cellular-level hypotheses and complex behavioral symptoms observed in this illness.
Collapse
Affiliation(s)
- Alan Anticevic
- Clinical Neuroscience Research Unit, Ribicoff Research Facilities, Connecticut Mental Health Center, Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| | - Philip R. Corlett
- Clinical Neuroscience Research Unit, Ribicoff Research Facilities, Connecticut Mental Health Center, Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
20
|
Early social isolation disrupts latent inhibition and increases dopamine D2 receptor expression in the medial prefrontal cortex and nucleus accumbens of adult rats. Brain Res 2012; 1447:38-43. [DOI: 10.1016/j.brainres.2012.01.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/15/2011] [Accepted: 01/24/2012] [Indexed: 11/20/2022]
|
21
|
Wang YC, He BH, Chen CC, Huang ACW, Yeh YC. Gender differences in the effects of presynaptic and postsynaptic dopamine agonists on latent inhibition in rats. Neurosci Lett 2012; 513:114-8. [PMID: 22348862 DOI: 10.1016/j.neulet.2012.01.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/04/2012] [Accepted: 01/19/2012] [Indexed: 11/18/2022]
Abstract
The present study investigated gender differences in the effects of presynaptic and postsynaptic DA agonists on latent inhibition in the passive avoidance paradigm. During the preexposure phase, 32 male and 32 female Wistar rats were exposed to a passive avoidance box (or a different context) and received drug injections in three trials: the control group received an injection of 10% ascorbic acid in a different context. The experimental groups received injections of 10% ascorbic acid (latent inhibition [LI] group), 1mg/kg of the postsynaptic DA D(1)/D(2) agonist apomorphine (APO group), and 1.5mg/kg of the presynaptic DA agonist methamphetamine (METH group) in a passive avoidance box. All experimental groups were placed in the light compartment of the passive avoidance box and were allowed to enter into the dark compartment to receive a footshock (1mA, 2s) in five trials over 5 days. The latency to enter into the dark compartment was recorded in these five trials. The latent inhibition occurred in the female LI group but not in the male LI group. Regardless of gender, the APO group exhibited an increase in latent inhibition. Male rats in the METH group exhibited a decrease in latent inhibition, but female rats in the METH group exhibited an increase in latent inhibition, indicating that the METH group exhibited sexual dimorphism. The gender factor interacted only with the METH group and not the LI or APO group. The present paper discusses whether gender, the postsynaptic DA D(1)/D(2) agonist APO, and presynaptic DA agonist METH may be related to schizophrenia.
Collapse
Affiliation(s)
- Ying-Chou Wang
- Department of Clinical Psychology, Fu-Jen Catholic University, New Taipei City, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Hradetzky E, Sanderson TM, Tsang TM, Sherwood JL, Fitzjohn SM, Lakics V, Malik N, Schoeffmann S, O'Neill MJ, Cheng TMK, Harris LW, Rahmoune H, Guest PC, Sher E, Collingridge GL, Holmes E, Tricklebank MD, Bahn S. The methylazoxymethanol acetate (MAM-E17) rat model: molecular and functional effects in the hippocampus. Neuropsychopharmacology 2012; 37:364-77. [PMID: 21956444 PMCID: PMC3242314 DOI: 10.1038/npp.2011.219] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Administration of the DNA-alkylating agent methylazoxymethanol acetate (MAM) on embryonic day 17 (E17) produces behavioral and anatomical brain abnormalities, which model some aspects of schizophrenia. This has lead to the premise that MAM rats are a neurodevelopmental model for schizophrenia. However, the underlying molecular pathways affected in this model have not been elucidated. In this study, we investigated the molecular phenotype of adult MAM rats by focusing on the frontal cortex and hippocampal areas, as these are known to be affected in schizophrenia. Proteomic and metabonomic analyses showed that the MAM treatment on E17 resulted primarily in deficits in hippocampal glutamatergic neurotransmission, as seen in some schizophrenia patients. Most importantly, these results were consistent with our finding of functional deficits in glutamatergic neurotransmission, as identified using electrophysiological recordings. Thus, this study provides the first molecular evidence, combined with functional validation, that the MAM-E17 rat model reproduces hippocampal deficits relevant to the pathology of schizophrenia.
Collapse
Affiliation(s)
- Eva Hradetzky
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK,Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Thomas M Sanderson
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Tsz M Tsang
- Faculty of Medicine, Division of Surgery, Oncology, Reproductive Biology and Anesthetics, Department of Biomolecular Medicine, Imperial College, London, UK
| | - John L Sherwood
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Stephen M Fitzjohn
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Viktor Lakics
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Nadia Malik
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Stephanie Schoeffmann
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Michael J O'Neill
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Tammy MK Cheng
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Laura W Harris
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Paul C Guest
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Emanuele Sher
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Graham L Collingridge
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Elaine Holmes
- Faculty of Medicine, Division of Surgery, Oncology, Reproductive Biology and Anesthetics, Department of Biomolecular Medicine, Imperial College, London, UK
| | - Mark D Tricklebank
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK,Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, UK, Tel: +44 (0) 1276-483000, Fax: +44 (0) 1276-484921, E-mail:
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK,Department of Neuroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands,Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, Cambridgeshire CB2 1QT, UK, Tel: +44 (0)1223 334151, Fax: +44 (0)1223 334162, E-mail:
| |
Collapse
|
23
|
Hickey C, Chelazzi L, Theeuwes J. Reward guides vision when it's your thing: trait reward-seeking in reward-mediated visual priming. PLoS One 2010; 5:e14087. [PMID: 21124893 PMCID: PMC2990710 DOI: 10.1371/journal.pone.0014087] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/28/2010] [Indexed: 11/25/2022] Open
Abstract
Reward-related mesolimbic dopamine is thought to play an important role in guiding animal behaviour, biasing approach towards potentially beneficial environmental stimuli and away from objects unlikely to garner positive outcome. This is considered to result in part from an impact on perceptual and attentional processes: dopamine initiates a series of cognitive events that result in the priming of reward-associated perceptual features. We have provided behavioural and electrophysiological evidence that this mechanism guides human vision in search, an effect we refer to as reward priming. We have also demonstrated that there is substantial individual variability in this effect. Here we show that behavioural differences in reward priming are predicted remarkably well by a personality index that captures the degree to which a person's behaviour is driven by reward outcome. Participants with reward-seeking personalities are found to be those who allocate visual resources to objects characterized by reward-associated visual features. These results add to a rapidly developing literature demonstrating the crucial role reward plays in attentional control. They additionally illustrate the striking impact personality traits can have on low-level cognitive processes like perception and selective attention.
Collapse
Affiliation(s)
- Clayton Hickey
- Department of Cognitive Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
24
|
Sex-dependent antipsychotic capacity of 17β-estradiol in the latent inhibition model: a typical antipsychotic drug in both sexes, atypical antipsychotic drug in males. Neuropsychopharmacology 2010; 35:2179-92. [PMID: 20613719 PMCID: PMC3055319 DOI: 10.1038/npp.2010.89] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The estrogen hypothesis of schizophrenia suggests that estrogen is a natural neuroprotector in women and that exogenous estrogen may have antipsychotic potential, but results of clinical studies have been inconsistent. We have recently shown using the latent inhibition (LI) model of schizophrenia that 17β-estradiol exerts antipsychotic activity in ovariectomized (OVX) rats. The present study sought to extend the characterization of the antipsychotic action of 17β-estradiol (10, 50 and 150 μg/kg) by testing its capacity to reverse amphetamine- and MK-801-induced LI aberrations in gonadally intact female and male rats. No-drug controls of both sexes showed LI, ie, reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, if conditioned with two but not five tone-shock pairings. In both sexes, amphetamine (1 mg/kg) and MK-801 (50 μg/kg) produced disruption (under weak conditioning) and persistence (under strong conditioning) of LI, modeling positive and negative/cognitive symptoms, respectively. 17β-estradiol at 50 and 150 μg/kg potentiated LI under strong conditioning and reversed amphetamine-induced LI disruption in both males and females, mimicking the action of typical and atypical antipsychotic drugs (APDs) in the LI model. 17β-estradiol also reversed MK-induced persistent LI, an effect mimicking atypical APDs and NMDA receptor enhancers, but this effect was observed in males and OVX females but not in intact females. These findings indicate that in the LI model, 17β-estradiol exerts a clear-cut antipsychotic activity in both sexes and, remarkably, is more efficacious in males and OVX females where it also exerts activity considered predictive of anti-negative/cognitive symptoms.
Collapse
|
25
|
Contrasting effects of increased and decreased dopamine transmission on latent inhibition in ovariectomized rats and their modulation by 17beta-estradiol: an animal model of menopausal psychosis? Neuropsychopharmacology 2010; 35:1570-82. [PMID: 20237462 PMCID: PMC3055453 DOI: 10.1038/npp.2010.28] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Women with schizophrenia have later onset and better response to antipsychotic drugs (APDs) than men during reproductive years, but the menopausal period is associated with increased symptom severity and reduced treatment response. Estrogen replacement therapy has been suggested as beneficial but clinical data are inconsistent. Latent inhibition (LI), the capacity to ignore irrelevant stimuli, is a measure of selective attention that is disrupted in acute schizophrenia patients and in rats and humans treated with the psychosis-inducing drug amphetamine and can be reversed by typical and atypical APDs. Here we used amphetamine (1 mg/kg)-induced disrupted LI in ovariectomized rats to model low levels of estrogen along with hyperfunction of the dopaminergic system that may be occurring in menopausal psychosis, and tested the efficacy of APDs and estrogen in reversing disrupted LI. 17beta-Estradiol (50, 150 microg/kg), clozapine (atypical APD; 5, 10 mg/kg), and haloperidol (typical APD; 0.1, 0.3 mg/kg) effectively reversed amphetamine-induced LI disruption in sham rats, but were much less effective in ovariectomized rats; 17beta-estradiol and clozapine were effective only at high doses (150 microg/kg and 10 mg/kg, respectively), whereas haloperidol failed at both doses. Haloperidol and clozapine regained efficacy if coadministered with 17beta-estradiol (50 microg/kg, an ineffective dose). Reduced sensitivity to dopamine (DA) blockade coupled with spared/potentiated sensitivity to DA stimulation after ovariectomy may provide a novel model recapitulating the combination of increased vulnerability to psychosis with reduced response to APD treatment in female patients during menopause. In addition, our data show that 17beta-estradiol exerts antipsychotic activity.
Collapse
|
26
|
Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull 2010; 83:147-61. [PMID: 20433908 DOI: 10.1016/j.brainresbull.2010.04.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 12/25/2009] [Accepted: 04/19/2010] [Indexed: 01/20/2023]
Abstract
An endophenotype is a heritable trait that is generally considered to be more highly, associated with a gene-based neurological deficit than a disease phenotype itself. Such, endophenotypic deficits may therefore be observed in the non-affected relatives of disease patients. Once endophenotypes have been established for a given illness, such as schizophrenia, mechanisms of, action may then be established and treatment options developed in order to target such measures. The, current paper describes and assesses the merits and limitations of utilizing behavioral and, electrophysiological endophenotypes of schizophrenia in mice. Such endophenotypic deficits include: decreased auditory event related potential (ERP) amplitude and gating (specifically, that of the P20, N40, P80 and P120); impaired mismatch negativity (MMN); changes in theta and gamma frequency, analyses; decreased pre-pulse inhibition (PPI); impaired working and episodic memories (for instance, novel object recognition [NOR], contextual and cued fear conditioning, latent inhibition, Morris and, radial arm maze identification and nose poke); sociability; and locomotor activity. A variety of, pharmacological treatments, including ketamine, MK-801 and phencyclidine (PCP) can be used to, induce some of the deficits described above, and numerous transgenic mouse strains have been, developed to address the mechanisms responsible for such endophenotypic differences. We also, address the viability and validity of using such measures regarding their potential clinical implications, and suggest several practices that could increase the translatability of preclinical data.
Collapse
|
27
|
Learned Irrelevance Revisited: Pathology-Based Individual Differences, Normal Variation and Neural Correlates. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-1-4419-1210-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Shin R, Cao J, Webb SM, Ikemoto S. Amphetamine administration into the ventral striatum facilitates behavioral interaction with unconditioned visual signals in rats. PLoS One 2010; 5:e8741. [PMID: 20090902 PMCID: PMC2806927 DOI: 10.1371/journal.pone.0008741] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/24/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Administration of psychomotor stimulants like amphetamine facilitates behavior in the presence of incentive distal stimuli, which have acquired the motivational properties of primary rewards through associative learning. This facilitation appears to be mediated by the mesolimbic dopamine system, which may also be involved in facilitating behavior in the presence of distal stimuli that have not been previously paired with primary rewards. However, it is unclear whether psychomotor stimulants facilitate behavioral interaction with unconditioned distal stimuli. PRINCIPAL FINDINGS We found that noncontingent administration of amphetamine into subregions of the rat ventral striatum, particularly in the vicinity of the medial olfactory tubercle, facilitates lever pressing followed by visual signals that had not been paired with primary rewards. Noncontingent administration of amphetamine failed to facilitate lever pressing when it was followed by either tones or delayed presentation or absence of visual signals, suggesting that visual signals are key for enhanced behavioral interaction. Systemic administration of amphetamine markedly increased locomotor activity, but did not necessarily increase lever pressing rewarded by visual signals, suggesting that lever pressing is not a byproduct of heightened locomotor activity. Lever pressing facilitated by amphetamine was reduced by co-administration of the dopamine receptor antagonists SCH 23390 (D1 selective) or sulpiride (D2 selective). CONCLUSIONS Our results suggest that amphetamine administration into the ventral striatum, particularly in the vicinity of the medial olfactory tubercle, activates dopaminergic mechanisms that strongly enhance behavioral interaction with unconditioned visual stimuli.
Collapse
Affiliation(s)
- Rick Shin
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, United States Department of Health and Human Services, Baltimore, Maryland, United States of America
| | - Junran Cao
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, United States Department of Health and Human Services, Baltimore, Maryland, United States of America
| | - Sierra M. Webb
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, United States Department of Health and Human Services, Baltimore, Maryland, United States of America
| | - Satoshi Ikemoto
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, United States Department of Health and Human Services, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Shao F, Jin J, Meng Q, Liu M, Xie X, Lin W, Wang W. Pubertal isolation alters latent inhibition and DA in nucleus accumbens of adult rats. Physiol Behav 2009; 98:251-7. [DOI: 10.1016/j.physbeh.2009.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 11/28/2022]
|
30
|
Bay-Richter C, O'Tuathaigh CMP, O'Sullivan G, Heery DM, Waddington JL, Moran PM. Enhanced latent inhibition in dopamine receptor-deficient mice is sex-specific for the D1 but not D2 receptor subtype: implications for antipsychotic drug action. Int J Neuropsychopharmacol 2009; 12:403-14. [PMID: 19012810 PMCID: PMC2760776 DOI: 10.1017/s1461145708009656] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Latent inhibition (LI) is reduced learning to a stimulus that has previously been experienced without consequence. It is an important model of abnormal allocation of salience to irrelevant information in patients with schizophrenia. In rodents LI is abolished by psychotomimetic drugs and in experimental conditions where LI is low in controls, its expression is enhanced by antipsychotic drugs with activity at dopamine (DA) receptors. It is however unclear what the independent contributions of DA receptor subtypes are to these effects. This study therefore examined LI in congenic DA D1 and D2 receptor knockout (D1 KO and D2 KO) mice. Conditioned suppression of drinking was used as the measure of learning in the LI procedure. Both male and female DA D2 KO mice showed clear enhancement of LI reproducing antipsychotic drug effects in the model. Unexpectedly, enhancement was also seen in D1 KO female mice but not in D1 KO male mice. This sex-specific pattern was not replicated in locomotor or motor coordination tasks nor in the effect of DA KOs on baseline learning in control groups indicating some specificity of the effect to LI. These data suggest that the dopaminergic mechanism underlying LI potentiation and possibly antipsychotic action may differ between the sexes, being mediated by D2 receptors in males but by both D1 and D2 receptors in females. These data suggest that the DA D1 receptor may prove an important target for understanding sex differences in the mechanisms of action of antipsychotic drugs and in the aetiology of aberrant salience allocation in schizophrenia.
Collapse
|
31
|
6-Hydroxydopamine lesion in thalamic reticular nucleus reduces anxiety behaviour in the rat. Behav Brain Res 2009; 197:317-22. [DOI: 10.1016/j.bbr.2008.08.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 08/21/2008] [Accepted: 08/25/2008] [Indexed: 01/14/2023]
|
32
|
Cave JW, Baker H. Dopamine Systems in the Forebrain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:15-35. [DOI: 10.1007/978-1-4419-0322-8_2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Black MD, Varty GB, Arad M, Barak S, De Levie A, Boulay D, Pichat P, Griebel G, Weiner I. Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology (Berl) 2009; 202:385-96. [PMID: 18709358 DOI: 10.1007/s00213-008-1289-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 07/29/2008] [Indexed: 02/03/2023]
Abstract
RATIONALE SSR103800 and SSR504734 are novel glycine transport 1 (GlyT1) inhibitors with therapeutic potential for the treatment of schizophrenia. OBJECTIVE The present studies investigated the effects of GlyT1 inhibitors in acute pharmacological and neurodevelopmental models of schizophrenia using latent inhibition in the rat; these latent inhibition (LI) models are believed to be predictive for treatments of positive, negative, and cognitive aspects of schizophrenia. MATERIALS AND METHODS LI, the poorer conditioning to a previously irrelevant stimulus, was measured in a conditioned emotional response procedure in male rats. The effects of SSR103800 or SSR504734 (both at 1, 3, and 10 mg/kg, i.p.) were determined on amphetamine-induced disrupted LI, MK-801-induced abnormally persistent LI, and neurodevelopmentally induced abnormally persistent LI in adult animals that had been neonatally treated with a nitric oxide synthase inhibitor. RESULTS SSR103800 (1 and 3 mg/kg) and SSR504734 (1 and 10 mg/kg) potentiated LI under conditions where LI was not present in nontreated controls and SSR103800 (1 mg/kg) reversed amphetamine-induced disrupted LI while not affecting LI on its own. Additionally, SSR103800 (1 and 3 mg/kg) and SSR504734 (3 and 10 mg/kg) reversed abnormally persistent LI induced by MK-801. In the neurodevelopmental model, SSR504734 (3 and 10 mg/kg) reverted the LI back to control (normal) levels. CONCLUSIONS These preclinical data, from acute and neurodevelopmental models, suggest that GlyT1 inhibition may exhibit activity in the positive, negative, and cognitive symptom domains of schizophrenia.
Collapse
Affiliation(s)
- Mark D Black
- CNS Department, Sanofi-Aventis, 1041 Route 202/206, Bridgewater, NJ 08807, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
McOmish CE, Burrows EL, Howard M, Hannan AJ. PLC-beta1 knockout mice as a model of disrupted cortical development and plasticity: behavioral endophenotypes and dysregulation of RGS4 gene expression. Hippocampus 2008; 18:824-34. [PMID: 18493969 DOI: 10.1002/hipo.20443] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The complexity of the genetics underlying schizophrenia is highlighted by the multitude of molecular pathways that have been reported to be disrupted in the disorder including muscarinic, serotonergic, and glutamatergic signaling systems. It is of interest, therefore, that phospholipase C-beta1 (PLC-beta1) acts as a point of convergence for these pathways during cortical development and plasticity. These signaling pathways, furthermore, are susceptible to modulation by RGS4, one of the more promising candidate genes for schizophrenia. PLC-beta1 knockout mice were behaviorally assessed on tests including fear conditioning, elevated plus maze, and the Y maze. In situ hybridization was used to assess RGS4 expression. We found that PLC-beta1 knockout mice display abnormal anxiety profiles on some, but not all measures assessed, including decreased anxiety on the elevated plus maze. We also show memory impairment and a complete absence of acquisition of hippocampal-dependent fear conditioning. Furthermore, at a molecular level, we demonstrate dramatic changes in expression of RGS4 mRNA in selective regions of the PLC-beta1 knockout mouse brain, particularly the CA1 region of the hippocampus. These results validate the utility of the PLC-beta1 knockout mouse as a model of schizophrenia, including molecular and cellular evidence for disrupted cortical maturation and associated behavioral endophenotypes.
Collapse
Affiliation(s)
- Caitlin E McOmish
- Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
35
|
Möhler H, Rudolph U, Boison D, Singer P, Feldon J, Yee BK. Regulation of cognition and symptoms of psychosis: Focus on GABAA receptors and glycine transporter 1`. Pharmacol Biochem Behav 2008; 90:58-64. [DOI: 10.1016/j.pbb.2008.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/28/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
|
36
|
Orosz AT, Feldon J, Gal G, Simon AE, Cattapan-Ludewig K. Deficient associative learning in drug-naive first-episode schizophrenia: results obtained using a new visual within-subjects learned irrelevance paradigm. Behav Brain Res 2008; 193:101-7. [PMID: 18555542 DOI: 10.1016/j.bbr.2008.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
One of the key features of schizophrenia is the inability to filter out irrelevant stimuli which consequently leads to stimulus overload. There are different methods which aim at investigating these deficient filter mechanisms; one of these is the learned irrelevance (LIrr) paradigm. LIrr refers to the retardation of associative learning that occurs if the conditioned stimulus (CS) and the unconditioned stimulus (US) are preexposed in an explicitly unpaired manner prior to the establishment of the association between the stimuli. In the present study we used a recently developed computerized within-subject visual LIrr test. We measured 11 drug-naive first-episode schizophrenia patients and compared their performance to that of 17 healthy control subjects. LIrr was observed to be intact in normal individuals but disrupted in drug-naive first-episode schizophrenia patients. After one month elapsed, 5 of the 11 patients and 16 of the 17 control subjects were retested in a follow-up study. By this time, patients had been medicated with antipsychotic drugs for at least 3 weeks. While healthy controls exhibited a robust LIrr effect, patients still failed to show LIrr. Correlations were found between the performance of unmedicated patients and the depression component of the PANSS psychopathology scale.
Collapse
Affiliation(s)
- Ariane T Orosz
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Boughner RL, Papini MR. Assessing the relationship between latent inhibition and the partial reinforcement extinction effect in autoshaping with rats. Pharmacol Biochem Behav 2008; 89:432-43. [PMID: 18321565 DOI: 10.1016/j.pbb.2008.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 01/16/2008] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
|
38
|
Wolf DH, Turetsky BI, Loughead J, Elliott MA, Pratiwadi R, Gur RE, Gur RC. Auditory Oddball fMRI in Schizophrenia: Association of Negative Symptoms with Regional Hypoactivation to Novel Distractors. Brain Imaging Behav 2008; 2:132-145. [PMID: 19756228 DOI: 10.1007/s11682-008-9022-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Schizophrenia is associated with abnormal processing of salient stimuli, which may contribute to clinical symptoms. We used fMRI and a standard auditory 3-stimulus task to examine attention processing. Target stimuli and novel distractors were presented to 17 patients and 21 healthy controls and activation was correlated with negative and positive symptoms. To targets, patients overactivated multiple regions including premotor cortex, anterior cingulate, temporal cortex, insula, and hippocampus, and also showed attenuated deactivation within occipital cortex. To distractors, patients overactivated left ventrolateral prefrontal cortex. This overactivation may reflect hypersensitivity to salient stimuli in schizophrenia. Patients also exhibited an inverse correlation between negative symptom severity and activation to novel distractors in the dorsolateral prefrontal cortex, premotor area, and ventral striatum. Novelty-induced activity within prefrontal cortex and ventral striatum may represent a useful intermediate phenotype for studies of negative symptoms.
Collapse
Affiliation(s)
- Daniel H Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | | | | | | | | | | | | |
Collapse
|
39
|
Gaisler-Salomon I, Diamant L, Rubin C, Weiner I. Abnormally persistent latent inhibition induced by MK801 is reversed by risperidone and by positive modulators of NMDA receptor function: differential efficacy depending on the stage of the task at which they are administered. Psychopharmacology (Berl) 2008; 196:255-67. [PMID: 17928997 DOI: 10.1007/s00213-007-0960-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 09/18/2007] [Indexed: 11/30/2022]
Abstract
RATIONALE Latent inhibition (LI) is the poorer conditioning to a stimulus resulting from its nonreinforced preexposure. LI indexes the ability to ignore irrelevant stimuli and is used extensively to model attentional impairments in schizophrenia (SZ). We showed that rats and mice treated with the N-methyl-D-aspartic acid (NMDA) receptor antagonist MK801 expressed LI under conditions preventing LI expression in controls. This abnormally persistent LI was reversed by the atypical antipsychotic drug (APD) clozapine and by compounds enhancing NMDA transmission via the glycineB site, but not by the typical APD haloperidol, lending the MK801 LI model predictive validity for negative/cognitive symptoms. OBJECTIVE To test additional representatives from the two classes of drugs and show that the model can dissociate between atypical APDs and glycinergic drugs are the objectives of the study. MATERIALS AND METHODS LI was measured in a conditional emotional response procedure. Atypical APD risperidone, selective 5HT2A antagonist M100907, and three glycinergic drugs were administered in preexposure or conditioning. RESULTS Rats treated with MK801 (0.05 mg/kg) exhibited LI under conditions that disrupted LI in controls. This abnormality was reversed by risperidone (0.25 and 0.067 mg/kg) and M100907 (1 mg/kg) given in preexposure. Glycine (0.8 g/kg), D-cycloserine (DCS;15 and 30 mg/kg), and glycyldodecylamide (GDA; 0.05 and 0.1 g/kg.) counteracted MK801-induced LI persistence when given in conditioning. CONCLUSIONS These results support the validity of MK801-induced persistent LI as a model of negative/cognitive symptoms in SZ and indicate that this model may have a unique capacity to discriminate between typical APDs, atypical APDs, and glycinergic compounds, and thus, foster the identification of novel treatments for SZ.
Collapse
|
40
|
Mizuno M, Sotoyama H, Narita E, Kawamura H, Namba H, Zheng Y, Eda T, Nawa H. A cyclooxygenase-2 inhibitor ameliorates behavioral impairments induced by striatal administration of epidermal growth factor. J Neurosci 2007; 27:10116-27. [PMID: 17881518 PMCID: PMC6672673 DOI: 10.1523/jneurosci.2368-07.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Consistent with the hypothesis that neuroinflammatory processes contribute to the neuropathology of schizophrenia, the protein levels of epidermal growth factor (EGF) and its receptor ErbB1 are abnormal in patients with schizophrenia. To evaluate neuropathological significance of this abnormality, we established an animal model for behavioral deficits by administering EGF into the striatum and evaluated the effects of cyclooxygenase-2 (Cox-2) inhibitor celecoxib. Intracranial infusion of EGF into the striatum of adult male rats activated ErbB1 and induced neurobehavioral impairments observed in several schizophrenia models. Unilateral EGF infusion to the striatum lowered prepulse inhibition (PPI) in a dose-dependent manner and impaired latent learning of active shock avoidance without affecting basal learning ability. Bilateral EGF infusion similarly affected PPI. In contrast, EGF infusion to the nucleus accumbens did not induce a behavioral deficit. Intrastriatal EGF infusion also increased Cox-2 expression, elevated tyrosine hydroxylase activity, and upregulated the levels of dopamine and its metabolites. Subchronic administration of celecoxib (10 mg/kg, p.o.) ameliorated the abnormalities in PPI and latent learning as well as normalized dopamine metabolism. We conclude that this EGF-triggered neuroinflammatory process is mediated in part by Cox-2 activity and perturbs dopamine metabolism to generate neurobehavioral abnormalities.
Collapse
Affiliation(s)
- Makoto Mizuno
- Center for Transdisciplinary Research and
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Eri Narita
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hiroki Kawamura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Yingjun Zheng
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takeyoshi Eda
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hiroyuki Nawa
- Center for Transdisciplinary Research and
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
41
|
Seifert J, Ossege S, Emrich HM, Schneider U, Stuhrmann M. No association of CNR1 gene variations with susceptibility to schizophrenia. Neurosci Lett 2007; 426:29-33. [PMID: 17881126 DOI: 10.1016/j.neulet.2007.08.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 11/22/2022]
Abstract
Schizophrenia is one of the most common psychiatric disorders. There is a growing body of evidence associating dysregulation of the endogenous cannabinoid system with the pathogenesis of schizophrenia. In order to test the hypothesis that mutations in the central cannabinoid receptor-1 (CNR1) gene confer susceptibility to the development of schizophrenia, we performed an association study in a group of 104 German patients with schizophrenia and 140 healthy controls, using three polymorphisms within and flanking the coding exon of CNR1 (rs6454674, rs1049353, AL136096). In addition, we analyzed the whole coding region of the CNR1 gene of 50 of the patients by capillary sequencing to detect rare mutations. Our adequately powered study failed to reveal a statistically significant segregation of CNR1 polymorphisms to the diseased or control group. Furthermore, capillary sequencing of CNR1 in a subgroup of study subjects did not show any non-synonymous mutations predicting malfunction of CNR1 in patients with schizophrenia. In conclusion, we could not detect a statistically significant association between mutations in the CNR1 gene and the predisposition to develop schizophrenia. However, further studies are necessary to unravel the relationship between mutations in the CNR1 gene and the genetic susceptibility for the manifestation of certain subtypes or schizophrenia i.e. the predominance of negative or positive symptoms or as predictors of the clinical course.
Collapse
Affiliation(s)
- Jürgen Seifert
- Department of Clinical Psychiatry and Psychotherapy, Medical School Hannover, Hannover, Germany.
| | | | | | | | | |
Collapse
|
42
|
Corlett PR, Honey GD, Fletcher PC. From prediction error to psychosis: ketamine as a pharmacological model of delusions. J Psychopharmacol 2007; 21:238-52. [PMID: 17591652 DOI: 10.1177/0269881107077716] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent cognitive neuropsychiatric models of psychosis emphasize the role of attentional disturbances and inappropriate incentive learning in the development of delusions. These models highlight a pre-psychotic period in which the patient experiences perceptual and attentional disruptions. Irrelevant details and numerous associations between stimuli, thoughts and percepts are imbued with inappropriate significance and the attempt to rationalize and account for these bizarre experiences results in the formation of delusions. The present paper discusses delusion formation in terms of basic associative learning processes. Such processes are driven by prediction error signals. Prediction error refers to mismatches between an organism's expectation in a given environment and what actually happens and it is signalled by both dopaminergic and glutamatergic mechanisms. Disruption of these neurobiological systems may underlie delusion formation. We review similarities between acute psychosis and the psychotic state induced by the NMDA receptor antagonist drug ketamine, which impacts upon both dopaminergic and glutamatergic function. We conclude by suggesting that ketamine may provide an appropriate model to investigate the formative stages of symptom evolution in schizophrenia, and thereby provide a window into the earliest and otherwise inaccessible aspects of the disease process.
Collapse
Affiliation(s)
- P R Corlett
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | | | | |
Collapse
|
43
|
Barak S, Weiner I. Scopolamine induces disruption of latent inhibition which is prevented by antipsychotic drugs and an acetylcholinesterase inhibitor. Neuropsychopharmacology 2007; 32:989-99. [PMID: 16971898 DOI: 10.1038/sj.npp.1301208] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The fact that muscarinic antagonists may evoke a psychotic state ('antimuscarinic psychosis'), along with findings of cholinergic alterations in schizophrenia, have kindled an interest in the involvement of the cholinergic system in this disorder. Latent inhibition (LI) is a cross-species phenomenon manifested as a poorer conditioning of a stimulus seen when the stage of conditioning is preceded by a stage of repeated nonreinforced pre-exposure to that stimulus, and is considered to index the capacity to ignore irrelevant stimuli. Amphetamine-induced LI disruption and its reversal by antipsychotic drugs (APDs) is a well-established model of positive symptoms of schizophrenia. Here, we tested whether the muscarinic antagonist scopolamine would disrupt LI and whether such disruption would be reversed by APDs and by the acetylcholinesterase inhibitor physostigmine. The results showed that scopolamine at doses of 0.15 and 0.5 mg/kg disrupted LI, and that this effect was due to the action of the drug in the pre-exposure stage, suggesting a role of muscarinic transmission in attentional processes underlying LI. Both the typical and the atypical APDs, haloperidol and clozapine, reversed scopolamine-induced LI disruption when given in conditioning or in both stages, but not in pre-exposure, indicating that the mechanism of antipsychotic action in this model is independent of the mechanism of action of the propsychotic drug. Scopolamine-induced LI disruption was reversed by physostigmine (0.05 and 0.15 mg/kg), which was ineffective in reversing amphetamine-induced LI disruption, pointing to distinct mechanisms underlying LI disruption by these two propsychotic drugs. The latter was further supported by the finding that unlike amphetamine, the LI-disrupting doses of scopolamine did not affect activity levels. We propose scopolamine-induced LI disruption as a model of cholinergic-related positive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Segev Barak
- Department of Psychology, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
44
|
Chagas-Martinich L, Carey RJ, Carrera MP. 7-OH-DPAT effects on latent inhibition: low dose facilitation but high dose blockade: Implications for dopamine receptor involvement in attentional processes. Pharmacol Biochem Behav 2007; 86:441-8. [PMID: 17291574 DOI: 10.1016/j.pbb.2007.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/23/2006] [Accepted: 01/03/2007] [Indexed: 11/30/2022]
Abstract
7-OH-DPAT is a dopamine D2/D3 agonist, which at low doses acts preferentially on D3 receptors but at high doses it acts on D2 and D3 receptors. The present study investigated the contribution of D3 and D2 receptors on latent inhibition (LI) by using two dose levels of 7-OH-DPAT: a low dose, 0.1 mg/kg (D3 receptor activation) and a high dose, 1.0 mg/kg, (D2/D3 receptor activation) in a conditioned emotional response (CER) paradigm. The LI Protocols included CS pre-exposure (10 or 40 CS alone trials), CER induction and a non-drug CER test phase. Additionally, the drug effects upon CER acquisition without LI were assessed using the same treatments and test environment pre-exposure protocols but without the tone CS. The effects of 7-OH-DPAT on crossing, rearing and grooming were also measured in an open field 1 day after the CER test phase. The results showed that the low dose 7-OH-DPAT treatment potentiated LI at 10 but not at 40 CS pre-exposures. The high dose 7-OH-DPAT treatment blocked LI at both the 10 and 40 stimulus pre-exposures; and it also induced hyperactivity. Thus, D3 stimulation induced by a low dose of 7-OH-DPAT can facilitate LI but these effects are contingent upon and are specific to the number of stimulus presentations. Altogether, these findings indicate that D3 stimulation can enhance attentional processes, but D2 stimulation can impair attentional processes.
Collapse
MESH Headings
- Animals
- Attention/drug effects
- Attention/physiology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Dopamine Agonists/administration & dosage
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Inhibition, Psychological
- Male
- Rats
- Rats, Wistar
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/physiology
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/drug effects
- Receptors, Dopamine D3/physiology
- Tetrahydronaphthalenes/administration & dosage
- Tetrahydronaphthalenes/pharmacology
Collapse
Affiliation(s)
- Ligia Chagas-Martinich
- Behavioral Pharmacology Group, Laboratory of Animal Health, State University of North Fluminense, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil
| | | | | |
Collapse
|
45
|
Smith A, Li M, Becker S, Kapur S. Dopamine, prediction error and associative learning: a model-based account. NETWORK (BRISTOL, ENGLAND) 2006; 17:61-84. [PMID: 16613795 DOI: 10.1080/09548980500361624] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The notion of prediction error has established itself at the heart of formal models of animal learning and current hypotheses of dopamine function. Several interpretations of prediction error have been offered, including the model-free reinforcement learning method known as temporal difference learning (TD), and the important Rescorla-Wagner (RW) learning rule. Here, we present a model-based adaptation of these ideas that provides a good account of empirical data pertaining to dopamine neuron firing patterns and associative learning paradigms such as latent inhibition, Kamin blocking and overshadowing. Our departure from model-free reinforcement learning also offers: 1) a parsimonious distinction between tonic and phasic dopamine functions; 2) a potential generalization of the role of phasic dopamine from valence-dependent "reward" processing to valence-independent "salience" processing; 3) an explanation for the selectivity of certain dopamine manipulations on motivation for distal rewards; and 4) a plausible link between formal notions of prediction error and accounts of disturbances of thought in schizophrenia (in which dopamine dysfunction is strongly implicated). The model distinguishes itself from existing accounts by offering novel predictions pertaining to the firing of dopamine neurons in various untested behavioral scenarios.
Collapse
Affiliation(s)
- Andrew Smith
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
46
|
Pothuizen HHJ, Jongen-Rêlo AL, Feldon J, Yee BK. Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. Eur J Neurosci 2006; 22:2605-16. [PMID: 16307603 DOI: 10.1111/j.1460-9568.2005.04388.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The nucleus accumbens can be subdivided into at least two anatomically distinct subregions: a dorsolateral 'core' and a ventromedial 'shell', and this distinction may extend to a functional dissociation. Here, we contrasted the effects of selective excitotoxic core and medial shell lesions on impulsive-choice behaviour using a delayed reward choice paradigm and a differential reward for low rates of responding (DRL) test, against a form of salience learning known as latent inhibition (LI). Core lesions led to enhanced impulsive choices as evidenced by a more pronounced shift from choosing a continuously reinforced lever to a partially reinforced lever, when a delay between lever press and reward delivery was imposed selectively on the former. The core lesions also impaired performance on a DRL task that required withholding the response for a fixed period of time in order to earn a reward. Medial shell lesions had no effect on these two tasks, but abolished the LI effect, as revealed by the failure of stimulus pre-exposure to retard subsequent conditioning to that stimulus in an active avoidance procedure in the lesioned animals. As expected, selective core lesions spared LI. The double dissociations demonstrated here support a functional segregation between nucleus accumbens core and shell, and add weight to the hypothesis that the core, but not the shell, subregion of the nucleus accumbens is preferentially involved in the control of choice behaviour under delayed reinforcement conditions and in the inhibitory control of goal-directed behaviour.
Collapse
Affiliation(s)
- Helen H J Pothuizen
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
47
|
Bethus I, Muscat R, Goodall G. Dopamine manipulations limited to preexposure are sufficient to modulate latent inhibition. Behav Neurosci 2006; 120:554-62. [PMID: 16768607 DOI: 10.1037/0735-7044.120.3.554] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Four experiments are reported that demonstrated that dopamine (DA) transmission is involved in the acquisition of latent inhibition (LI) of a conditioned taste aversion. LI refers to weaker conditioning as a consequence of nonreinforced preexposure (PE) of the future conditioned stimulus. Although it is known to depend on DA transmission during the conditioning phase, it is usually thought that the cognitive processes involved in the establishment of LI (during the PE phase) are DA independent. Either amphetamine (AMPH; 0.5 or 1.0 mg/kg) or haloperidol (HAL; 0.1 mg/kg) were injected before 1 or all of the 3 PE sessions. AMPH blocked the acquisition of LI if it was injected before each or before only the last PE session and HAL potentiated LI.
Collapse
Affiliation(s)
- I Bethus
- Laboratoire de Neurophysiopathologie, Université Bordeaux 2, Bordeaux, France.
| | | | | |
Collapse
|
48
|
Pothuizen HHJ, Jongen-Rêlo AL, Feldon J, Yee BK. Latent inhibition of conditioned taste aversion is not disrupted, but can be enhanced, by selective nucleus accumbens shell lesions in rats. Neuroscience 2005; 137:1119-30. [PMID: 16343780 DOI: 10.1016/j.neuroscience.2005.10.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/07/2005] [Accepted: 10/14/2005] [Indexed: 11/29/2022]
Abstract
Latent inhibition is a form of negative priming in which repeated non-reinforced pre-exposures to a stimulus retard subsequent learning about the predictive significance of that stimulus. The nucleus accumbens shell and the anatomical projection it receives from the hippocampal formation have been attributed a pivotal role in the control or regulation of latent inhibition expression. A number of studies in rats have demonstrated the efficacy of selective shell lesions to disrupt latent inhibition in different associative learning paradigms, including conditioned active avoidance and conditioned emotional response. Here, we extended the test to the conditioned taste aversion paradigm, in which the effect of direct hippocampal damage on latent inhibition remains controversial. We demonstrated the expected effect of selective shell lesions on latent inhibition of conditioned emotional response and of conditioned active avoidance, before evaluating in a separate cohort of rats the effect of comparable selective lesions on latent inhibition of conditioned taste aversion: a null effect of the lesions was first obtained using parameters known to be sensitive to amphetamine treatment, then an enhancement of latent inhibition was revealed with a modified conditioned taste aversion procedure. Our results show that depending on the associative learning paradigm chosen, shell lesions can disrupt or enhance the expression of latent inhibition; and the pattern is reminiscent of that seen following hippocampal damage.
Collapse
Affiliation(s)
- H H J Pothuizen
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
49
|
Broome MR, Woolley JB, Tabraham P, Johns LC, Bramon E, Murray GK, Pariante C, McGuire PK, Murray RM. What causes the onset of psychosis? Schizophr Res 2005; 79:23-34. [PMID: 16198238 DOI: 10.1016/j.schres.2005.02.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/10/2005] [Accepted: 02/12/2005] [Indexed: 11/24/2022]
Abstract
It has become increasingly clear that the simple neurodevelopmental model fails to explain many aspects of schizophrenia including the timing of the onset, and the nature of the abnormal perceptions. Furthermore, we do not know why some members of the general population have anomalous experiences but remain well, while others enter the prodrome of psychosis, and a minority progress to frank schizophrenia. We suggest that genes or developmental damage result in individuals vulnerable to dopamine deregulation. In contemporary society, this is often compounded by abuse of drugs such as amphetamines and cannabis, which then propel the individual into a state of dopamine-induced misinterpretation of the environment. Certain types of social adversity such as migration and social isolation, as well as affective change can also contribute to this. Thereafter, biased cognitive appraisal processes result in delusional interpretation of the abnormal perceptual experiences. Thus, a plausible model of the onset of psychosis needs to draw not only on neuroscience, but also on the insights of social psychiatry and cognitive psychology.
Collapse
Affiliation(s)
- Matthew R Broome
- Division of Psychological Medicine, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Young AMJ, Moran PM, Joseph MH. The role of dopamine in conditioning and latent inhibition: what, when, where and how? Neurosci Biobehav Rev 2005; 29:963-76. [PMID: 16045987 DOI: 10.1016/j.neubiorev.2005.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 02/16/2005] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
It is well established that dopamine is released in the nucleus accumbens (NAC) in animals in rewarding or reinforcing situations, and widely believed that this release is the substrate of, or at least closely related to, the experience of reward. The demonstration of conditioned release of dopamine by stimuli conditioned to primary rewards has reinforced this view. However, a number of observations do not sit comfortably with this interpretation, most notably that dopamine is released equally effectively in NAC by aversive stimuli, and stimuli conditioned to them. Furthermore, additional release of dopamine is seen during conditioning, even if motivational stimuli of either type are not involved. It is suggested here that one important action of NAC dopamine release is to restore the salience of potential conditioned stimuli, when this has been reduced by prior un-reinforced experience. The paradigm of latent inhibition (LI) demonstrates a behavioural effect of this type, and extensive studies on the role of dopamine in LI have been undertaken by us and others. Those studies are reviewed here, together with some previously unpublished data, to demonstrate that (1) amphetamine disruption of LI is indeed a function of calcium-dependant dopamine release in the NAC at the time of conditioning; (2) other drugs acting on LI via changes in dopamine transmission act at the same locus; (3) the disruptive effect of indirect dopamine agonists on LI can be prevented by either D-1 selective receptor antagonists, or D-2 selective receptor antagonists. It is concluded that dopamine release in these very varied behavioural contexts (reward, punishment, conditioning, modulation of salience) must be differentiated in some way, and that this should be investigated. An alternative explanation, if they are not differentiated, would be that the release in fact does have the same functional significance in each case. We suggest that this common significance might be the broadening of attention to take in potentially conditionable stimuli, which have previously been devalued.
Collapse
Affiliation(s)
- Andrew M J Young
- Behavioural Neuroscience Group, School of Psychology, University of Leicester, University Road, Leicester LE1 9HN, UK
| | | | | |
Collapse
|