1
|
Chong ACN, Vandana JJ, Jeng G, Li G, Meng Z, Duan X, Zhang T, Qiu Y, Duran-Struuck R, Coker K, Wang W, Li Y, Min Z, Zuo X, de Silva N, Chen Z, Naji A, Hao M, Liu C, Chen S. Checkpoint kinase 2 controls insulin secretion and glucose homeostasis. Nat Chem Biol 2024; 20:566-576. [PMID: 37945898 PMCID: PMC11062908 DOI: 10.1038/s41589-023-01466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/03/2023] [Indexed: 11/12/2023]
Abstract
After the discovery of insulin, a century ago, extensive work has been done to unravel the molecular network regulating insulin secretion. Here we performed a chemical screen and identified AZD7762, a compound that potentiates glucose-stimulated insulin secretion (GSIS) of a human β cell line, healthy and type 2 diabetic (T2D) human islets and primary cynomolgus macaque islets. In vivo studies in diabetic mouse models and cynomolgus macaques demonstrated that AZD7762 enhances GSIS and improves glucose tolerance. Furthermore, genetic manipulation confirmed that ablation of CHEK2 in human β cells results in increased insulin secretion. Consistently, high-fat-diet-fed Chk2-/- mice show elevated insulin secretion and improved glucose clearance. Finally, untargeted metabolic profiling demonstrated the key role of the CHEK2-PP2A-PLK1-G6PD-PPP pathway in insulin secretion. This study successfully identifies a previously unknown insulin secretion regulating pathway that is conserved across rodents, cynomolgus macaques and human β cells in both healthy and T2D conditions.
Collapse
Affiliation(s)
- Angie Chi Nok Chong
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York City, NY, USA
| | - Ginnie Jeng
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ge Li
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Department of Biological Sciences, Bronx Community College, City University of New York, Bronx, NY, USA
| | - Zihe Meng
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
| | - Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York City, NY, USA
| | - Yunping Qiu
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Kimberly Coker
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yanjing Li
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Zaw Min
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xi Zuo
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Zhengming Chen
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Ali Naji
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Mingming Hao
- Department of Biochemistry, Weill Cornell Medicine, New York City, NY, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA.
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA.
| |
Collapse
|
2
|
Yammine L, Picatoste B, Abdullah N, Leahey RA, Johnson EF, Gómez-Banoy N, Rosselot C, Wen J, Hossain T, Goncalves MD, Lo JC, Garcia-Ocaña A, McGraw TE. Spatiotemporal regulation of GIPR signaling impacts glucose homeostasis as revealed in studies of a common GIPR variant. Mol Metab 2023; 78:101831. [PMID: 37925022 PMCID: PMC10665708 DOI: 10.1016/j.molmet.2023.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVE Glucose-dependent insulinotropic polypeptide (GIP) has a role in controlling postprandial metabolic tone. In humans, a GIP receptor (GIPR) variant (Q354, rs1800437) is associated with a lower body mass index (BMI) and increased risk for Type 2 Diabetes. To better understand the impacts of GIPR-Q354 on metabolism, it is necessary to study it in an isogeneic background to the predominant GIPR isoform, E354. To accomplish this objective, we used CRISPR-CAS9 editing to generate mouse models of GIPR-Q354 and GIPR-E354. Here we characterize the metabolic effects of GIPR-Q354 variant in a mouse model (GIPR-Q350). METHODS We generated the GIPR-Q350 mice for in vivo studies of metabolic impact of the variant. We isolated pancreatic islets from GIPR-Q350 mice to study insulin secretion ex vivo. We used a β-cell cell line to understand the impact of the GIPR-Q354 variant on the receptor traffic. RESULTS We found that female GIPR-Q350 mice are leaner than littermate controls, and male GIPR-Q350 mice are resistant to diet-induced obesity, in line with the association of the variant with reduced BMI in humans. GIPR-Q350 mice of both sexes are more glucose tolerant and exhibit an increased sensitivity to GIP. Postprandial GIP levels are reduced in GIPR-Q350 mice, revealing feedback regulation that balances the increased sensitivity of GIP target tissues to secretion of GIP from intestinal endocrine cells. The increased GIP sensitivity is recapitulated ex vivo during glucose stimulated insulin secretion assays in islets. Generation of cAMP in islets downstream of GIPR activation is not affected by the Q354 substitution. However, post-activation traffic of GIPR-Q354 variant in β-cells is altered, characterized by enhanced intracellular dwell time and increased localization to the Trans-Golgi Network (TGN). CONCLUSIONS Our data link altered intracellular traffic of the GIPR-Q354 variant with GIP control of metabolism. We propose that this change in spatiotemporal signaling underlies the physiologic effects of GIPR-Q350/4 and GIPR-E350/4 in mice and humans. These findings contribute to a more complete understanding of the impact of GIPR-Q354 variant on glucose homeostasis that could perhaps be leveraged to enhance pharmacologic targeting of GIPR for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Lucie Yammine
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Belén Picatoste
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Nazish Abdullah
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Rosemary A Leahey
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Emma F Johnson
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Nicolás Gómez-Banoy
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Carolina Rosselot
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tahmina Hossain
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | | | - James C Lo
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Adolfo Garcia-Ocaña
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA; Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
4
|
Irwin N, Francis JME, Flatt PR. Insulin modulates glucose-dependent insulinotropic polypeptide (GIP) secretion from enteroendocrine K cells in rats. Biol Chem 2011; 392:909-18. [PMID: 21851286 DOI: 10.1515/bc.2011.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Effects of insulin excess and deficiency on glucose-dependent insulinotropic polypeptide (GIP) was examined in rats following insulinoma transplantation or streptozotocin (STZ) administration. Over 14 days, food intake was increased (p < 0.001) in both groups of rats, with decreased body weight (p < 0.01) in STZ rats. Non-fasting plasma glucose levels were decreased (p < 0.01) and plasma insulin levels increased (p < 0.001) in insulinoma-bearing rats, whereas STZ treatment elevated glucose (p < 0.001) and decreased insulin (p < 0.01). Circulating GIP concentrations were elevated (p < 0.01) in both animal models. At 14 days, oral glucose resulted in a decreased glycaemic excursion (p < 0.05) with concomitant elevations in insulin release (p < 0.001) in insulinoma-bearing rats, whereas STZ-treated rats displayed similar glucose-lowering effects but reduced insulin levels (p < 0.01). GIP concentrations were augmented in STZ rats (p < 0.05) following oral glucose. Plasma glucose and insulin concentrations were not affected by oral fat, but fat-induced GIP secretion was particularly (p < 0.05) increased in insulinoma-bearing rats. Exogenous GIP enhanced (p < 0.05) glucose-lowering in all groups of rats accompanied by insulin releasing (p < 0.001) effects in insulinoma-bearing and control rats. Both rat models exhibited increased (p < 0.001) intestinal weight but decreased intestinal GIP concentrations. These data suggest that circulating insulin has direct and indirect effects on the synthesis and secretion of GIP.
Collapse
Affiliation(s)
- Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, UK.
| | | | | |
Collapse
|
5
|
K-cells and glucose-dependent insulinotropic polypeptide in health and disease. VITAMINS AND HORMONES 2011; 84:111-50. [PMID: 21094898 DOI: 10.1016/b978-0-12-381517-0.00004-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the 1970s, glucose-dependent insulinotropic polypeptide (GIP, formerly gastric inhibitory polypeptide), a 42-amino acid peptide hormone, was discovered through a search for enterogastrones and subsequently identified as an incretin, or an insulinotropic hormone secreted in response to intraluminal nutrients. Independent of the discovery of GIP, the K-cell was identified in small intestine by characteristic ultrastructural features. Subsequently, it was realized that K-cells are the predominant source of circulating GIP. The density of K-cells may increase under conditions including high-fat diet and obesity, and generally correlates with plasma GIP levels. In addition to GIP, K-cells secrete xenin, a peptide with as of yet poorly understood physiological functions, and GIP is often colocalized with the other incretin hormone glucagon-like peptide-1 (GLP-1). Differential posttranslational processing of proGIP produces 30 and 42 amino acid versions of GIP. Its secretion is elicited by intraluminal nutrients, especially carbohydrate and fat, through the action of SGLT1, GPR40, GPR120, and GPR119. There is also evidence of regulation of GIP secretion via neural pathways and somatostatin. Intracellular signaling mechanisms of GIP secretion are still elusive but include activation of adenylyl cyclase, protein kinase A (PKA), and protein kinase C (PKC). GIP has extrapancreatic actions on adipogenesis, neural progenitor cell proliferation, and bone metabolism. However, the clinical or physiological relevance of these extrapancreatic actions remain to be defined in humans. The application of GIP as a glucose-lowering drug is limited due to reduced efficacy in humans with type 2 diabetes and its potential obesogenic effects demonstrated by rodent studies. There is some evidence to suggest that a reduction in GIP production or action may be a strategy to reduce obesity. The meal-dependent nature of GIP release makes K-cells a potential target for genetically engineered production of satiety factors or glucose-lowering agents, for example, insulin. Transgenic mice engineered to produce insulin from intestinal K-cells are resistant to diabetes induced by a beta-cell toxin. Collectively, K-cells and GIP play important roles in health and disease, and both may be targets for novel therapies.
Collapse
|
6
|
Yavropoulou MP, Kotsa K, Kesisoglou I, Gotzamani-Psarakou A, Yovos JG. Effect of intracerebroventricular infusion of neurotensin in glucose-dependent insulinotropic peptide secretion in dogs. Peptides 2010; 31:150-4. [PMID: 19799951 DOI: 10.1016/j.peptides.2009.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 11/28/2022]
Abstract
UNLABELLED GIP is a major physiological component of the enteroinsular axis. Several researchers have pointed to a neural regulation of GIP secretion. We have previously studied the effect of intracerebroventricular (icv) infusion of insulin, NPY and bombesin in the regulation of GIP secretion. The aim of the present study is to evaluate a possible role of neurotensin in neural regulation of GIP secretion. Thirty-two adult dogs were used in this study. In a dose-response study (experiment 1) we used 3 different doses of neurotensin (25, 50 and 100microg) in a bolus icv infusion. In experiment 2 the animals received a bolus icv infusion of 50microg neurotensin and an equivalent amount of artificial cerebrospinal fluid (aCSF) at 1-week interval. In experiment 3 the animals received a continuous icv infusion of neurotensin at a constant rate of 1microg/kg/h and aCSF over a 3-h period, at 1-week interval. In experiment 4 the experiment of group 3 was repeated with a simultaneous intraduodenal infusion of a glucose load through the Mann-Bollman fistula. Plasma levels of glucose, insulin and GIP were assayed. RESULTS Bolus and continuous icv infusion of neurotensin produced a significant increase in glucose, GIP and insulin levels. In the 4th experiment icv infusion of neurotensin produced a more prominent increase of glucose and insulin levels compare to infusion of aCSF. GIP levels were lower after infusion of neurotensin compared to aCSF. CONCLUSIONS Our data suggest a differential effect of neurotensin on GIP secretion, dependent on the energy load.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- Division of Endocrinology and Metabolism, Aristotle University of Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
7
|
Yavropoulou MP, Yovos JG. Central Regulation of Glucose-Dependent Insulinotropic Polypeptide Secretion. VITAMINS AND HORMONES 2010; 84:185-201. [DOI: 10.1016/b978-0-12-381517-0.00006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
8
|
Yavropoulou MP, Kotsa K, Anastasiou O, O’Dorisio TM, Pappas TN, Yovos JG. Effect of intracerebroventricular infusion of insulin on glucose-dependent insulinotropic peptide in dogs. Neurosci Lett 2009; 460:148-51. [DOI: 10.1016/j.neulet.2009.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/23/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
9
|
Lim GE, Huang GJ, Flora N, LeRoith D, Rhodes CJ, Brubaker PL. Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology 2009; 150:580-91. [PMID: 18818290 PMCID: PMC5393261 DOI: 10.1210/en.2008-0726] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insulin resistance and type 2 diabetes mellitus are associated with impaired postprandial secretion of glucagon-like peptide-1 (GLP-1), a potent insulinotropic hormone. The direct effects of insulin and insulin resistance on the L cell are unknown. We therefore hypothesized that the L cell is responsive to insulin and that insulin resistance impairs GLP-1 secretion. The effects of insulin and insulin resistance were examined in well-characterized L cell models: murine GLUTag, human NCI-H716, and fetal rat intestinal cells. MKR mice, a model of chronic hyperinsulinemia, were used to assess the function of the L cell in vivo. In all cells, insulin activated the phosphatidylinositol 3 kinase-Akt and MAPK kinase (MEK)-ERK1/2 pathways and stimulated GLP-1 secretion by up to 275 +/- 58%. Insulin resistance was induced by 24 h pretreatment with 10(-7) m insulin, causing a marked reduction in activation of Akt and ERK1/2. Furthermore, both insulin-induced GLP-1 release and secretion in response to glucose-dependent insulinotropic peptide and phorbol-12-myristate-13-acetate were significantly attenuated. Whereas inhibition of phosphatidylinositol 3 kinase with LY294002 potentiated insulin-induced GLP-1 release, secretion was abrogated by inhibiting the MEK-ERK1/2 pathway with PD98059 or by overexpression of a kinase-dead MEK1-ERK2 fusion protein. Compared with controls, MKR mice were insulin resistant and displayed significantly higher fasting plasma insulin levels. Furthermore, they had significantly higher basal GLP-1 levels but displayed impaired GLP-1 secretion after an oral glucose challenge. These findings indicate that the intestinal L cell is responsive to insulin and that insulin resistance in vitro and in vivo is associated with impaired GLP-1 secretion.
Collapse
Affiliation(s)
- Gareth E Lim
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Chapter 15 Glucose‐Dependent Insulinotropic Polypeptide (Gastric Inhibitory Polypeptide; GIP). VITAMINS AND HORMONES 2009; 80:409-71. [DOI: 10.1016/s0083-6729(08)00615-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Velásquez-Mieyer PA, Cowan PA, Pérez-Faustinelli S, Nieto-Martínez R, Villegas-Barreto C, Tolley EA, Lustig RH, Alpert BS. Racial disparity in glucagon-like peptide 1 and inflammation markers among severely obese adolescents. Diabetes Care 2008; 31:770-5. [PMID: 18184905 DOI: 10.2337/dc07-1525] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Compared with Caucasians, obese African-American adolescents have a higher risk for type 2 diabetes. Subclinical inflammation and reduced glucagon-like peptide 1 (GLP-1) concentration are linked to the pathogenesis of the disease. We determined the relationship between insulin resistance, beta-cell activity, and subclinical inflammation with GLP-1 concentrations and whether racial disparities in GLP-1 response were present in 49 obese adolescents (14 +/- 3 years; 76% African American; 71% female). RESEARCH DESIGN AND METHODS Subjects underwent physical examination and an oral glucose tolerance test. We measured levels of high-sensitivity CRP (CRP(hs)), fibrinogen, glucose, GLP-1(total), GLP-1(active), and insulin. Insulin and glucose area under the curve (AUC), insulinogenic index (DeltaI30/DeltaG30), and composite insulin sensitivity index (CISI) were computed. Subjects were categorized by race and as inflammation positive (INF+) if CRP(hs) or fibrinogen were elevated. RESULTS No racial differences were seen in mean or relative BMI. Thirty-five percent of subjects had altered fasting or 2-h glucose levels (African American vs. Caucasian, NS), and 75% were INF+ (African American vs. Caucasian, P = 0.046). Glucose and insulin, CISI, and DeltaI30/DeltaG30 values were similar; African Americans had lower GLP-1(total) AUC (P = 0.01), GLP-1(active) at 15 min (P = 0.03), and GLP-1(active) AUC (P = 0.06) and higher fibrinogen (P = 0.01) and CRP(hs) (NS) compared with Caucasians. CONCLUSIONS African Americans exhibited lower GLP-1 concentrations and increased inflammatory response. Both mechanisms may act synergistically to enhance the predisposition of obese African Americans to type 2 diabetes. Our findings might be relevant to effective deployment of emerging GLP-1-based treatments across ethnicities.
Collapse
Affiliation(s)
- Pedro A Velásquez-Mieyer
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Furman B, Pyne N, Flatt P, O'Harte F. Targeting beta-cell cyclic 3'5' adenosine monophosphate for the development of novel drugs for treating type 2 diabetes mellitus. A review. J Pharm Pharmacol 2005; 56:1477-92. [PMID: 15563754 DOI: 10.1211/0022357044805] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cyclic 3'5'AMP is an important physiological amplifier of glucose-induced insulin secretion by the pancreatic islet beta-cell, where it is formed by the activity of adenylyl cyclase, especially in response to the incretin hormones GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic peptide). These hormones are secreted from the small intestine during and following a meal, and are important in producing a full insulin secretory response to nutrient stimuli. Cyclic AMP influences many steps involved in glucose-induced insulin secretion and may be important in regulating pancreatic islet beta-cell differentiation, growth and survival. Cyclic AMP (cAMP) itself is rapidly degraded in the pancreatic islet beta-cell by cyclic nucleotide phosphodiesterase (PDE) enzymes. This review discusses the possibility of targeting cAMP mechanisms in the treatment of type 2 diabetes mellitus, in which insulin release in response to glucose is impaired. This could be achieved by the use of GLP-1 or GIP to elevate cAMP in the pancreatic islet beta-cell. However, these peptides are normally rapidly degraded by dipeptidyl peptidase IV (DPP IV). Thus longer-acting analogues of GLP-1 and GIP, resistant to enzymic degradation, and orally active inhibitors of DPP IV have also been developed, and these agents were found to improve metabolic control in experimentally diabetic animals and in patients with type 2 diabetes. The use of selective inhibitors of type 3 phosphodiesterase (PDE3B), which is probably the important pancreatic islet beta-cell PDE isoform, would require their targeting to the islet beta-cell, because inhibition of PDE3B in adipocytes and hepatocytes would induce insulin resistance.
Collapse
Affiliation(s)
- Brian Furman
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, Taylor Street, Glasgow G4 ONR, UK.
| | | | | | | |
Collapse
|
13
|
Forbes S, Moonan M, Robinson S, Anyaoku V, Patterson M, Murphy KG, Ghatei MA, Bloom SR, Johnston DG. Impaired circulating glucagon-like peptide-1 response to oral glucose in women with previous gestational diabetes. Clin Endocrinol (Oxf) 2005; 62:51-5. [PMID: 15638870 DOI: 10.1111/j.1365-2265.2004.02172.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Women with previous gestational diabetes (pGDM) are at risk of developing Type 2 diabetes. Glucagon-like peptide-1 (GLP-1) potentiates the insulin response to oral glucose, and its secretion is diminished in Type 2 diabetes. The aim of the study was to see if decreased GLP-1 secretion might be an early abnormality in the progression to Type 2 diabetes and would therefore be diminished in women with pGDM. PATIENTS AND METHODS Eleven women with pGDM and previously documented normal glucose tolerance and 11 control women underwent a 75 g oral glucose tolerance test (OGTT). Circulating plasma glucose, insulin, nonesterified fatty acids (NEFA) and GLP-1 concentrations were sampled. RESULTS One of the women with pGDM had impaired glucose tolerance and was excluded from the study. All other women had normal glucose tolerance. The women with pGDM had higher fasting glucose concentrations than controls (5.1; 4.9-5.3 vs. 4.8; 4.4-5.1 mmol/l, median; interquartile range, P = 0.04) and greater circulating glucose area under the curve (AUC) following the oral glucose load (930; 818-1015 vs. 668; 584-737 min x mmol/l, P = 0.0007). Fasting insulin concentrations and total insulin AUC were similar. The initial (0-30 min) insulin response was decreased in the pGDM women (AUC 3981; 2783-4795 vs. 6167; 5009-8145 min x pmol/l, P = 0.05). The initial (0-30 min) GLP-1 response was reduced in the pGDM women (AUC 816; 663-984 vs. 1163; 872-2024 min x pmol/l, P = 0.02). CONCLUSION A reduced initial GLP-1 response to oral glucose may therefore be an early abnormality in the progression to Type 2 diabetes.
Collapse
Affiliation(s)
- Shareen Forbes
- Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
McCarty MF. The A54T polymorphism of fatty acid-binding protein 2 may entail a reduction in fat-stimulated secretion of GIP that potentiates the adverse impact of fatty diets on insulin sensitivity. Med Hypotheses 2003; 61:458-62. [PMID: 13679012 DOI: 10.1016/s0306-9877(03)00226-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A common polymorphism of the 54th codon of fatty acid-binding protein 2 (FABP2), in which threonine substitutes for alanine (T54), has been linked to insulin resistance and/or increased postprandial triglycerides in various studies. I propose that, in subjects expressing T54, the secretion of gastric inhibitory polypeptide (GIP) evoked by fatty meals is subnormal, such that adipocytes are less efficient in converting chylomicrons to stored triglyceride. The increased postprandial free fatty acid flux which this may imply could be expected to exacerbate insulin resistance syndrome--thus accounting for the association of T54 with insulin resistance in epidemiological studies. If this thesis proves to be correct, it will help to clarify the importance of appropriate GIP secretion to maintenance of insulin sensitivity in the context of fatty diets.
Collapse
Affiliation(s)
- M F McCarty
- Pantox Laboratories, San Diego, CA 92109, USA.
| |
Collapse
|
15
|
Rask E, Olsson T, Söderberg S, Johnson O, Seckl J, Holst JJ, Ahrén B. Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men. Diabetes Care 2001; 24:1640-5. [PMID: 11522713 DOI: 10.2337/diacare.24.9.1640] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate whether features of the insulin resistance syndrome are associated with altered incretin responses to food intake. RESEARCH DESIGN AND METHODS From a population-based study, 35 men were recruited, representing a wide spectrum of insulin sensitivity and body weight. Each subject underwent a hyperinsulinemic-euglycemic clamp to determine insulin sensitivity. A mixed meal was given, and plasma levels of gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), as well as insulin, glucagon, and glucose were measured. RESULTS Insulin resistance was associated with impaired GIP and GLP-1 responses to a mixed meal. The total area under the curve (AUC) of the GIP response after the mixed meal was associated with insulin sensitivity (r = 0.54, P < 0.01). There was a significant difference between the highest and the lowest tertile of insulin sensitivity (P < 0.05). GLP-1 levels 15 min after food intake were significantly lower in the most insulin-resistant tertile compared with the most insulin-sensitive tertile. During the first hour, the AUC of GLP-1 correlated significantly with insulin sensitivity (r = 0.47, P < 0.01). Multiple linear regression analysis showed that insulin resistance, but not obesity, was an independent predictor of these decreased incretin responses. CONCLUSIONS In insulin resistance, the GIP and GLP-1 responses to a mixed meal are impaired and are related to the degree of insulin resistance. Decreased incretin responsiveness may be of importance for the development of impaired glucose tolerance.
Collapse
Affiliation(s)
- E Rask
- Department of Public Health and Clinical Medicine, Umeå University Hospital, 901 85 Umeå, Sweden.
| | | | | | | | | | | | | |
Collapse
|
16
|
Tseng CC, Zhang XY. Role of G protein-coupled receptor kinases in glucose-dependent insulinotropic polypeptide receptor signaling. Endocrinology 2000; 141:947-52. [PMID: 10698169 DOI: 10.1210/endo.141.3.7365] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucose-dependent insulinotropic polypeptide receptor (GIPR) is a member of class II G protein-coupled receptors. Recent studies have suggested that desensitization of the GIPR might contribute to impaired insulin secretion in type II diabetic patients, but the molecular mechanisms of GIPR signal termination are unknown. Using HEK L293 cells stably transfected with GIPR complementary DNA (L293-GIPR), the mechanisms of GIPR desensitization were investigated. GIP dose dependently increased intracellular cAMP levels in L293-GIPR cells, but this response was abolished (65%) by cotransfection with G protein-coupled receptor kinase 2 (GRK2), but not with GRK5 or GRK6. Beta-arrestin-1 transfection also induced a significantly decrease in GIP-stimulated cAMP production, and this effect was greater with cotransfection of both GRK2 and beta-arrestin-1 than with either alone. In betaTC3 cells, expression of GRK2 or beta-arrestin-1 attenuated GIP-induced insulin release and cAMP production, whereas glucose-stimulated insulin secretion was not affected. GRK2 and beta-arrestin-1 messenger RNAs were identified by Northern blot analysis to be expressed endogenously in betaTC3 and L293 cells. Overexpression of GRK2 enhanced agonist-induced GIPR phosphorylation, but receptor endocytosis was not affected by cotransfection with GRKs or beta-arrestin-1. These results suggest a potential role for GRK2/beta-arrestin-1 system in modulating GIP-mediated insulin secretion in pancreatic islet cells. Furthermore, GRK-mediated receptor phosphorylation is not required for endocytosis of the GIPR.
Collapse
Affiliation(s)
- C C Tseng
- Section of Gastroenterology, Boston Veterans Administration Medical Center, and Boston University School of Medicine, Massachusetts 02118, USA
| | | |
Collapse
|
17
|
Tseng CC, Zhang XY. Role of regulator of G protein signaling in desensitization of the glucose-dependent insulinotropic peptide receptor. Endocrinology 1998; 139:4470-5. [PMID: 9794454 DOI: 10.1210/endo.139.11.6282] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The glucose-dependent insulinotropic peptide receptor (GIP-R) is a member of the G protein-coupled receptors. Recent studies have indicated that elevated serum GIP concentrations in type II diabetic patients might induce desensitization of the GIP-R, and this mechanism could contribute to impaired insulin secretion. The cellular and molecular mechanisms governing GIP desensitization are unknown. Here, we report the results of studies on a new family of proteins known as regulators of G protein signaling (RGS) that have been shown to mediate the desensitization process of other receptors. GIP-R and RGS1, -2, -3, and -4 complementary DNAs were cotransfected into human embryonic kidney cells (L293). GIP-stimulated cAMP generation in control cells and in those coexpressing RGS1, -3, and -4 displayed a dose-dependent increase 10 min after GIP treatment. In contrast, RGS2 expression inhibited the GIP-induced cAMP response by 50%, a response similar to that of cells desensitized by preincubation with 10(-7) M GIP. In betaTC3 cells, preincubation of GIP attenuated GIP-induced insulin release by 45% at 15 min and by 55% at 30 min. Expression of RGS2 in the betaTC3 cells significantly decreased GIP-stimulated insulin secretion, whereas glucose-induced insulin release was not affected. RGS2 messenger RNA was identified by Northern blot analysis to be expressed endogenously in betaTC3 and L293 cells, and its level was significantly induced by GIP treatment in betaTC3 cells. Moreover, RGS2 bound Gs alpha protein in an in vitro system, suggesting that RGS2 attenuated the Gs-adenylate cyclase signaling pathway. These results suggest a potential role for RGS2 in modulating GIP-mediated insulin secretion in pancreatic islet cells.
Collapse
Affiliation(s)
- C C Tseng
- Section of Gastroenterology, Boston Veterans Administration Medical Center, and Boston University School of Medicine, Massachusetts 02118, USA
| | | |
Collapse
|
18
|
Kok NN, Morgan LM, Williams CM, Roberfroid MB, Thissen JP, Delzenne NM. Insulin, glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide and insulin-like growth factor I as putative mediators of the hypolipidemic effect of oligofructose in rats. J Nutr 1998; 128:1099-103. [PMID: 9649591 DOI: 10.1093/jn/128.7.1099] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The addition of oligofructose as a dietary fiber decreases the serum concentration and the hepatic release of VLDL-triglycerides in rats. Because glucose, insulin, insulin-like growth factor I (IGF-I) and gut peptides [i.e., glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)]) are factors involved in the metabolic response to nutrients, this paper analyzes their putative role in the hypolipidemic effect of oligofructose. Male Wistar rats were fed a nonpurified diet with or without 10% oligofructose for 30 d. Glucose, insulin, IGF-I and GIP concentrations were measured in the serum of rats after eating. GIP and GLP-1 contents were also assayed in small intestine and cecal extracts, respectively. A glucose tolerance test was performed in food-deprived rats. Serum insulin level was significantly lower in oligofructose-fed rats both after eating and in the glucose tolerance test, whereas glycemia was lower only in the postprandial state. IGF-I serum level did not differ between groups. GIP concentration was significantly higher in the serum of oligofructose-fed rats. The GLP-1 cecal pool was also significantly higher. In this study, we have shown that cecal proliferation induced by oligofructose leads to an increase in GLP-1 concentration. This latter incretin could be involved in the maintenance of glycemia despite a lower insulinemia in the glucose tolerance test in oligofructose-fed rats. We discuss also the role of hormonal changes in the antilipogenic effect of oligofructose.
Collapse
Affiliation(s)
- N N Kok
- Unité de Biochimie Toxicologique et Cancérologique, Département des Sciences Pharmaceutiques, Université Catholique de Louvain, B-1200 Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
Tseng CC, Zhang XY. The cysteine of the cytoplasmic tail of glucose-dependent insulinotropic peptide receptor mediates its chronic desensitization and down-regulation. Mol Cell Endocrinol 1998; 139:179-86. [PMID: 9705086 DOI: 10.1016/s0303-7207(98)00061-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The glucose-dependent insulinotropic peptide receptor (GIP-R) is a member of G-protein-coupled, seven transmembrane-spanning receptors. Recent studies have shown that elevated serum GIP level in diabetic patients may induce chronic desensitization of the GIP-R, and that this mechanism could contribute to impaired insulin secretion. The cellular basis of down-regulation and chronic desensitization of GIP-R is unclear. To explore the role of the carboxyl terminus of the GIP-R in mediating these processes, five truncated GIP-Rs (T395, T399, T420, T431, T455) were created to delete consecutive serines from the carboxyl end. All mutants except T395 exhibit an identical ligand-binding affinity to the WT receptor. The T395 mutant, which had the entire carboxyl tail removed, does not bind to ligand. Down-regulation and desensitization was assessed by measuring the receptor number and the ability of agonist-induced cAMP or [Ca2+] generation after pre-exposure to 10(-7) M GIP for 24 h. The wild-type (WT) and T421, T431, T455 mutant GIP-Rs are maximally down-regulated by GIP preincubation, whereas T399 mutant does not, indicating that the sequence between amino acids 399 and 420 is critical for this process. Mutation analysis of this area by alanine scanning mutagenesis reveals two critical residues: serine 406 and cysteine 411. Replacement of serine 406 with arginine (S406R) or alanine (S406A) partly attenuates agonist-induced down-regulation and desensitization. In contrast, mutation of the cysteine 411 to glycine (C411G) or alanine (C411A) markedly attenuates both processes. Mutant SCRG, in which both serine 406 and cysteine 411 are mutated, behaves similar to C411G or C4111A. The data suggest that chronic desensitization and down-regulation of the GIP-R may be mediated by similar mechanisms, and that the cysteine in the carboxyl terminus plays an essential role in regulating both processes.
Collapse
Affiliation(s)
- C C Tseng
- Section of Gastroenterology, Boston VA Medical Center and Boston University School of Medicine, MA 02118, USA
| | | |
Collapse
|
20
|
Pederson RA, Kieffer TJ, Pauly R, Kofod H, Kwong J, McIntosh CH. The enteroinsular axis in dipeptidyl peptidase IV-negative rats. Metabolism 1996; 45:1335-41. [PMID: 8931636 DOI: 10.1016/s0026-0495(96)90112-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Evidence has accumulated that the incretins glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1(7-36) amide) are degraded and rendered biologically inactive in plasma by the enzyme dipeptidyl peptidase IV (DPIV). A strain of Fischer rats lacking the DPIV enzyme were used in the current investigation as a model for examining the enteroinsular axis under conditions in which normal inactivation of GIP and GLP-1(7-36) does not occur. This was assessed by comparing GIP and GLP-1(7-36) responses following oral glucose in normal versus DPIV-deficient Fischer rats, and by comparing the insulinotropic potency of both peptides in the perfused pancreas of both groups. The insulin response to an oral glucose challenge was decreased slightly in DPIV-negative rats compared with control animals. Of the two incretins, the GIP response to oral glucose was reduced by 50% compared with controls, whereas GLP-1(7-36) release in response to glucose was unchanged. A decrease of 30% in the sensitivity of the perfused pancreas of DPIV-negative rats to GIP was observed, whereas the insulin response to GLP(7-36) was identical in both groups. Incubation of both peptides in plasma from DPIV-positive and -negative rats was performed to determine the effect of the presence or absence of DPIV on the insulinotropic activity of GLP-1(7-36) and GIP in the isolated perfused rat pancreas. Incubation in plasma from DPIV-positive rats resulted in a 65% decrease in insulinotropic activity of both incretins compared with incubation in plasma from DPIV-deficient rats. It was hypothesized that the reduced GIP response and decreased sensitivity of the pancreas to GIP are compensatory mechanisms that maintain insulin and glucose levels within a normal range despite abnormal degradation of GIP. An explanation of the lack of effect of the absence of DPIV on the GLP-1(7-36) response to oral glucose and insulinotropic action of this peptide must await further study.
Collapse
Affiliation(s)
- R A Pederson
- Department of Physiology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Tseng CC, Boylan MO, Jarboe LA, Usdin TB, Wolfe MM. Chronic desensitization of the glucose-dependent insulinotropic polypeptide receptor in diabetic rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:E661-6. [PMID: 8928774 DOI: 10.1152/ajpendo.1996.270.4.e661] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rats were rendered diabetic by streptozotocin, after which serum glucose-dependent insulinotropic polypeptide (GIP) levels, duodenal mucosal GIP content, and GIP mRNA levels were nine times, 50% and 80%, respectively, greater than in control rats. To determine whether an increase in GIP gene expression might induce chronic desensitization of its receptor, normal rats were subjected to continuous intravenous GIP infusion. Serum GIP levels increased gradually in GIP-infused rats, and by 4 h a threefold increase was detected. In response to GIP infusion, the serum insulin concentration increased at 30 min, followed by a gradual decrease, and at 4 h, no increase in insulin levels was detected despite a sustained elevated serum GIP level. The response to glucagon-like peptide-1 (GLP-1) was preserved, a reporter cell line (LGIPR2) stably transfected with rat GIP receptor cDNA was studied. GIP stimulated adenosine 3', 5'-cyclic monophosphate (cAMP) production in LGIPR2 cells, which was first detected after 1 h of stimulation, reached maximum level at 4 h, and returned to basal concentrations by 16 h. Additional stimulation with GIP at 16 h did not affect cAMP generation, indicating desensitization of the GIP receptor by the ligand. In contrast, a response to prostaglandin E1 or forskolin in GIP-desensitization was a receptor-specific process. The results of these studies indicate that GIP gene expression is enhanced in diabetic animals and that elevated serum GIP level induces chronic desensitization of the GIP receptor in vivo and in a stably transfected cell line.
Collapse
Affiliation(s)
- C C Tseng
- Harvard Digestive Disease Center, Division of Gastroenterology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
22
|
Cheung A, Bryer-Ash M. Modified method for the performance of glucose insulin clamp studies in conscious rats. J Pharmacol Toxicol Methods 1994; 31:215-20. [PMID: 7949378 DOI: 10.1016/1056-8719(94)90006-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A modified method for performance of insulin-glucose clamp studies in rats was developed via catheterization of the tail vessels, after preconditioning of animals to limited restraint. The procedure is performed in conscious animals under local anesthesia and employs a specially designed foam rubber jacket which allows the animal mobility of the limbs and forward vision. In addition, a table utilizing a belt system allows easy positioning of the animal in the left and right lateral and supine positions during surgery. After initial development of the procedure, its use in 123 animals is reported. Line placement was successfully achieved in all cases with insignificant blood loss or morbidity and zero mortality. We note that 11% of animals did not complete the subsequent insulin-glucose clamp study due to either one of the vascular cannulae leaving the vessel (one animal), venous rupture (12 animals), or cannula blockage unrelated to surgical technique (one animal). Studies on Wistar Kyoto, Spontaneously Hypertensive, and Sprague-Dawley rats showed a fall in catecholamines after animals were replaced in cages, with stabilization within 30 min. In comparison to traditional techniques, this method is, therefore, proposed as a less traumatic and rapid way of performing infusion studies in conscious rats with a high success rate and minimization of loss of animal life due to procedural problems.
Collapse
Affiliation(s)
- A Cheung
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|