1
|
Steinmetz EL, Noh S, Klöppel C, Fuhr MF, Bach N, Raffael ME, Hildebrandt K, Wittling F, Jann D, Walldorf U. Generation of Mutants from the 57B Region of Drosophila melanogaster. Genes (Basel) 2023; 14:2047. [PMID: 38002990 PMCID: PMC10671637 DOI: 10.3390/genes14112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The 57B region of Drosophila melanogaster includes a cluster of the three homeobox genes orthopedia (otp), Drosophila Retinal homeobox (DRx), and homeobrain (hbn). In an attempt to isolate mutants for these genes, we performed an EMS mutagenesis and isolated lethal mutants from the 57B region, among them mutants for otp, DRx, and hbn. With the help of two newly generated deletions from the 57B region, we mapped additional mutants to specific chromosomal intervals and identified several of these mutants from the 57B region molecularly. In addition, we generated mutants for CG15651 and RIC-3 by gene targeting and mutants for the genes CG9344, CG15649, CG15650, and ND-B14.7 using the CRISPR/Cas9 system. We determined the lethality period during development for most isolated mutants. In total, we analysed alleles from nine different genes from the 57B region of Drosophila, which could now be used to further explore the functions of the corresponding genes in the future.
Collapse
Affiliation(s)
- Eva Louise Steinmetz
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Zoology & Physiology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building B2.1, D-66123 Saarbrücken, Germany
| | - Sandra Noh
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Christine Klöppel
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Martin F. Fuhr
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Nicole Bach
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Mona Evelyn Raffael
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Kirsten Hildebrandt
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Fabienne Wittling
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, D-66123 Saarbrücken, Germany
| | - Doris Jann
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Medical Biochemistry & Molecular Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 45.2, D-66421 Homburg, Germany
| | - Uwe Walldorf
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| |
Collapse
|
2
|
Rashid MU, Lorzadeh S, Gao A, Ghavami S, Coombs KM. PSMA2 knockdown impacts expression of proteins involved in immune and cellular stress responses in human lung cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166617. [PMID: 36481484 DOI: 10.1016/j.bbadis.2022.166617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Proteasome subunit alpha type-2 (PSMA2) is a critical component of the 20S proteasome, which is the core particle of the 26S proteasome complex and is involved in cellular protein quality control by recognizing and recycling defective proteins. PSMA2 expression dysregulation has been detected in different human diseases and viral infections. No study yet has reported PSMA2 knockdown (KD) effects on the cellular proteome. METHODS We used SOMAScan, an aptamer-based multiplexed technique, to measure >1300 human proteins to determine the impact of PSMA2 KD on A549 human lung epithelial cells. RESULTS PSMA2 KD resulted in significant dysregulation of 52 cellular proteins involved in different bio-functions, including cellular movement and development, cell death and survival, and cancer. The immune system and signal transduction were the most affected cellular functions. PSMA2 KD caused dysregulation of several signaling pathways involved in immune response, cytokine signaling, organismal growth and development, cellular stress and injury (including autophagy and unfolded protein response), and cancer responses. CONCLUSIONS In summary, this study helps us better understand the importance of PSMA2 in different cellular functions, signaling pathways, and human diseases.
Collapse
Affiliation(s)
- Mahamud-Ur Rashid
- University of Manitoba, Department of Medical Microbiology & Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Ang Gao
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Kevin M Coombs
- University of Manitoba, Department of Medical Microbiology & Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada; Children's Hospital Research Institute of Manitoba, Room 513, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
3
|
Abstract
Influenza A virus (IAV), an obligatory intracellular parasite, uses host cellular molecules to complete its replication cycle and suppress immune responses. Proteasome subunit alpha type 2 (PSMA2) is a cellular protein highly expressed in IAV-infected human lung epithelial A549 cells. PSMA2 is part of the 20S proteasome complex that degrades or recycles defective proteins and involves proteolytic modification of many cellular regulatory proteins. However, the role of PSMA2 in IAV replication is not well understood. In this study, PSMA2 knockdown (KD) in A549 cells caused a significant reduction in extracellular progeny IAV, but intracellular viral protein translation and viral RNA transcription were not affected. This indicates that PSMA2 is a critical host factor for IAV maturation. To better understand the interplay between PSMA2 KD and IAV infection at the proteomic level, we used the SomaScan 1.3K version, which measures 1,307 proteins to analyze alterations induced by these treatments. We found seven cellular signaling pathways, including phospholipase C signaling, Pak signaling, and nuclear factor erythroid 2p45-related factor 2 (NRF2)-mediated oxidative stress response signaling, that were inhibited by IAV infection but significantly activated by PSMA2 KD. Further analysis of NRF2-mediated oxidative stress response signaling indicated IAV inhibits accumulation of reactive oxygen species (ROS), but ROS levels significantly increased during IAV infection in PSMA2 KD cells. However, IAV infection caused significantly higher NFR2 nuclear translocation that was inhibited in PSMA2 KD cells. This indicates that PSMA2 is required for NRF2-mediated ROS neutralization and that IAV uses PSMA2 to escape viral clearance via the NRF2-mediated cellular oxidative response. IMPORTANCE Influenza A virus (IAV) remains one of the most significant infectious agents, responsible for 3 million to 5 million illnesses each year and more than 50 million deaths during the 20th century. The cellular processes that promote and inhibit IAV infection and pathogenesis remain only partially understood. PSMA2 is a critical component of the 20S proteasome and ubiquitin-proteasome system, which is important in the replication of numerous viruses. This study examined host protein responses to IAV infection alone, PSMA2 knockdown alone, and IAV infection in the presence of PSMA2 knockdown and determined that interfering with PSMA2 function affected IAV maturation. These results help us better understand the importance of PSMA2 in IAV replication and may pave the way for designing additional IAV antivirals targeting PSMA2 or the host proteasome for the treatment of seasonal flu.
Collapse
|
4
|
Zhan X, Wang X, Desiderio DM. Pituitary adenoma nitroproteomics: current status and perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:580710. [PMID: 23533694 PMCID: PMC3606787 DOI: 10.1155/2013/580710] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
Abstract
Oxidative stress is extensively associated with tumorigenesis. A series of studies on stable tyrosine nitration as a marker of oxidative damage were performed in human pituitary and adenoma. This paper reviews published research on the mass spectrometry characteristics of nitropeptides and nitroproteomics of pituitary controls and adenomas. The methodology used for nitroproteomics, the current status of human pituitary nitroproteomics studies, and the future perspectives are reviewed. Enrichment of those low-abundance endogenous nitroproteins from human tissues or body fluid samples is the first important step for nitroproteomics studies. Mass spectrometry is the essential approach to determine the amino acid sequence and locate the nitrotyrosine sites. Bioinformatics analyses, including protein domain and motif analyses, are needed to locate the nitrotyrosine site within the corresponding protein domains/motifs. Systems biology techniques, including pathway analysis, are necessary to discover signaling pathway networks involving nitroproteins from the systematically global point of view. Future quantitative nitroproteomics will discover pituitary adenoma-specific nitroprotein(s). Structural biology techniques such as X-ray crystallography analysis will solidly clarify the effects of tyrosine nitration on structure and functions of a protein. Those studies will eventually address the mechanisms and biological functions of tyrosine nitration in pituitary tumorigenesis and will discover nitroprotein biomarkers for pituitary adenomas and targets for drug design for pituitary adenoma therapy.
Collapse
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.
| | | | | |
Collapse
|
5
|
Hodas JJL, Nehring A, Höche N, Sweredoski MJ, Pielot R, Hess S, Tirrell DA, Dieterich DC, Schuman EM. Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT). Proteomics 2012; 12:2464-76. [PMID: 22744909 DOI: 10.1002/pmic.201200112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Local protein synthesis and its activity-dependent modulation via dopamine receptor stimulation play an important role in synaptic plasticity - allowing synapses to respond dynamically to changes in their activity patterns. We describe here the metabolic labeling, enrichment, and MS-based identification of candidate proteins specifically translated in intact hippocampal neuropil sections upon treatment with the selective D1/D5 receptor agonist SKF81297. Using the noncanonical amino acid azidohomoalanine and click chemistry, we identified over 300 newly synthesized proteins specific to dendrites and axons. Candidates specific for the SKF81297-treated samples were predominantly involved in protein synthesis and synapse-specific functions. Furthermore, we demonstrate a dendrite-specific increase in proteins synthesis upon application of SKF81297. This study provides the first snapshot in the dynamics of the dopaminergic hippocampal neuropil proteome.
Collapse
Affiliation(s)
- Jennifer J L Hodas
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhan X, Desiderio DM. The use of variations in proteomes to predict, prevent, and personalize treatment for clinically nonfunctional pituitary adenomas. EPMA J 2010. [PMID: 23199087 PMCID: PMC3405333 DOI: 10.1007/s13167-010-0028-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pituitary adenomas account for ∼10% of intracranial tumors, and they cause the compression of nearby structures and the inappropriate expression of pituitary hormones. Unlike functional pituitary adenomas, nonfunctional (NF) pituitary adenomas account for ∼30% of pituitary tumors, and are large enough to cause blindness; because they do not cause any clinical hormone hypersecretion, they are difficult to detect at an early stage; and hypopituitarism results. No effective molecular biomarkers or chemical therapy have been approved for the clinical setting. Because an NF pituitary adenoma is highly heterogeneous, differences in the proteins (the proteome) can distinguish among those heterogeneity structures. The components of a proteome dynamically change as an NF adenoma progresses. Changes in protein expression and protein modifications, individually or in combination, might be biomarkers to predict the disease, monitor the tumor progression, and develop an accurate molecular classification for personalized patient treatment. The modalities of proteomic variation might also be useful in the interventional prevention and personalized treatment of patients to halt the occurrence and progression of NF pituitary adenomas.
Collapse
Affiliation(s)
- Xianquan Zhan
- Charles B. Stout Neuroscience Mass Spectrometry Laboratory, The University of Tennessee Health Science Center, 847 Monroe Avenue, Room 117, Memphis, TN 38163 USA
| | | |
Collapse
|
7
|
Christiansen H, Batusic D, Saile B, Hermann RM, Dudas J, Rave-Frank M, Hess CF, Schmidberger H, Ramadori G. Identification of genes responsive to gamma radiation in rat hepatocytes and rat liver by cDNA array gene expression analysis. Radiat Res 2006; 165:318-25. [PMID: 16494520 DOI: 10.1667/rr3503.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The mechanisms underlying hepatocellular damage after irradiation are obscure. We identified genes induced by radiation in isolated rat hepatocytes in vitro by cDNA array gene expression analysis and then screened in vivo experiments with those same genes using real-time PCR and Western blotting. Hepatocytes were irradiated and cDNA array analyses were performed 6 h after irradiation. The mRNA of differentially expressed genes was quantitatively analyzed by real-time PCR. cDNA array analyses showed an up-regulation of 10 genes in hepatocytes 6 h after irradiation; this was confirmed by real-time PCR. In vivo, rat livers were irradiated selectively. Treated and sham-irradiated controls were killed humanely 1, 3, 6, 12, 24 and 48 h after irradiation. Liver RNA was analyzed by real-time PCR; expression of in vivo altered genes was also analyzed at the protein level by Western blotting. Up-regulation was confirmed for three of the in vitro altered genes (multidrug resistance protein, proteasome component C3, eukaryotic translation initiation factor 2). Histologically, livers from irradiated animals were characterized by steatosis of hepatocytes. Thus we identified genes that may be involved in liver steatosis after irradiation. The methods shown in this work should help to further clarify the consequences of radiation exposure in the liver.
Collapse
Affiliation(s)
- Hans Christiansen
- Department of Radiotherapy, Goettingen University, 37075 Goettingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Identification of alpha-type subunits of the Xenopus 20S proteasome and analysis of their changes during the meiotic cell cycle. BMC BIOCHEMISTRY 2004; 5:18. [PMID: 15603592 PMCID: PMC544557 DOI: 10.1186/1471-2091-5-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 12/17/2004] [Indexed: 11/10/2022]
Abstract
Background The 26S proteasome is the proteolytic machinery of the ubiquitin-dependent proteolytic system responsible for most of the regulated intracellular protein degradation in eukaryotic cells. Previously, we demonstrated meiotic cell cycle dependent phosphorylation of α4 subunit of the 26S proteasome. In this study, we analyzed the changes in the spotting pattern separated by 2-D gel electrophoresis of α subunits during Xenopus oocyte maturation. Results We identified cDNA for three α-type subunits (α1, α5 and α6) of Xenopus, then prepared antibodies specific for five subunits (α1, α3, α5, α6, and α7). With these antibodies and previously described monoclonal antibodies for subunits α2 and α4, modifications to all α-type subunits of the 26S proteasome during Xenopus meiotic maturation were examined by 2D-PAGE. More than one spot for all subunits except α7 was identified. Immunoblot analysis of 26S proteasomes purified from immature and mature oocytes showed a difference in the blots of α2 and α4, with an additional spot detected in the 26S proteasome from immature oocytes (in G2-phase). Conclusions Six of α-type subunits of the Xenopus 26S proteasome are modified in Xenopus immature oocytes and two subunits (α2 and α4) are modified meiotic cell cycle-dependently.
Collapse
|
9
|
Abstract
Although the proteasome is responsible for the majority of intracellular protein degradation, and has been demonstrated to play a pivotal role in a diverse array of cellular activities, the role of the proteasome in the central nervous system is only beginning to be elucidated. Recent studies have demonstrated that proteasome inhibition occurs in numerous neurodegenerative conditions, and that proteasome inhibition is sufficient to induce neuron death, elevate intracellular levels of protein oxidation, and increase neural vulnerability to subsequent injury. The focus of this review is to describe what is currently known about proteasome biology in the central nervous system and to discuss the possible role of proteasome inhibition in the neurodegenerative process.
Collapse
Affiliation(s)
- Q Ding
- Department of Anatomy, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
10
|
Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, Allday MJ. A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome. EMBO J 2001; 20:2367-75. [PMID: 11350925 PMCID: PMC125454 DOI: 10.1093/emboj/20.10.2367] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p21WAF1/CIP1 is a key regulator of cell-cycle progression and its expression is tightly regulated at the level of transcription and by proteasome-dependent proteolysis. The turnover of p21WAF1/CIP1 by proteasomes does not always require the ubiquitylation of p21WAF1/CIP1 suggesting that there could be an alternative pathway into the proteasome. Here we show that the C8 alpha-subunit of the 20S proteasome interacts with the C-terminus of p21WAF1/CIP1 and mediates the degradation of p21WAF1/CIP1. A small deletion in this region that disrupts binding to C8 increased the half-life of p21WAF1/CIP1 expressed in vivo. In contrast a deletion that increased the affinity between C8 and p21WAF1/CIP1 significantly reduced the stability of the latter. These data suggest that interaction with a 20S proteasome alpha-subunit is a critical determinant of p21WAF1/CIP1 turn-over and show how non-ubiquitylated molecules might bypass the 19S regulator of the proteasome and become targeted directly to the 20S, core protease. Consistent with this, p21WAF1/CIP1 was degraded rapidly by purified 20S proteasomes in a manner that was dependent on the C8-interaction domain.
Collapse
Affiliation(s)
| | | | - Suchira Bose
- Virology and Cell Biology and Ludwig Institute for Cancer Research, Imperial College of Science, Technology and Medicine, Norfolk Place, London W2 1PG,
Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, UK and Department of Biochemistry, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan Corresponding author e-mail:
| | - Makoto Nakanishi
- Virology and Cell Biology and Ludwig Institute for Cancer Research, Imperial College of Science, Technology and Medicine, Norfolk Place, London W2 1PG,
Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, UK and Department of Biochemistry, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan Corresponding author e-mail:
| | - Jennifer Rivett
- Virology and Cell Biology and Ludwig Institute for Cancer Research, Imperial College of Science, Technology and Medicine, Norfolk Place, London W2 1PG,
Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, UK and Department of Biochemistry, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan Corresponding author e-mail:
| | - Martin J. Allday
- Virology and Cell Biology and Ludwig Institute for Cancer Research, Imperial College of Science, Technology and Medicine, Norfolk Place, London W2 1PG,
Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, UK and Department of Biochemistry, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan Corresponding author e-mail:
| |
Collapse
|
11
|
Abstract
The ubiquitin-proteasome pathway has emerged as a central player in the regulation of several diverse cellular processes. Here, we describe the important components of this complex biochemical machinery as well as several important cellular substrates targeted by this pathway and examples of human diseases resulting from defects in various components of the ubiquitin-proteasome pathway. In addition, this review covers the chemistry of synthetic and natural proteasome inhibitors, emphasizing their mode of actions toward the 20S proteasome. Given the importance of proteasome-mediated protein degradation in various intracellular processes, inhibitors of this pathway will continue to serve as both molecular probes of major cellular networks as well as potential therapeutic agents for various human diseases.
Collapse
Affiliation(s)
- J Myung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
12
|
Hadano S, Yanagisawa Y, Skaug J, Fichter K, Nasir J, Martindale D, Koop BF, Scherer SW, Nicholson DW, Rouleau GA, Ikeda J, Hayden MR. Cloning and characterization of three novel genes, ALS2CR1, ALS2CR2, and ALS2CR3, in the juvenile amyotrophic lateral sclerosis (ALS2) critical region at chromosome 2q33-q34: candidate genes for ALS2. Genomics 2001; 71:200-13. [PMID: 11161814 DOI: 10.1006/geno.2000.6392] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that manifests as selective upper and lower motor neuron degeneration. The autosomal recessive form of juvenile amyotrophic lateral sclerosis (ALS2) has previously been mapped to the 1.7-cM interval flanked by D2S116 and D2S2237 on human chromosome 2q33-q34. We identified three novel full-length transcripts encoded by three distinct genes (HGMW-approved symbols ALS2CR1, ALS2CR2, and ALS2CR3) within the ALS2 critical region. The intron-exon organizations of these genes as well as those of CFLAR, CASP10, and CASP8, which were previously mapped to this region, were defined. These genes were evaluated for mutations in ALS2 patients, and no disease-associated sequence alterations in either exons or intron-exon boundaries were observed. Sequence analysis of overlapping RT-PCR products covering the whole coding sequence for each transcript revealed no aberrant mRNA sequences. These data strongly indicate that ALS2CR1, ALS2CR2, ALS2CR3, CFLAR, CASP10, and CASP8 are not causative genes for ALS2.
Collapse
Affiliation(s)
- S Hadano
- NeuroGenes, International Cooperative Research Project, Japan Science and Technology Corporation, Isehara, 259-1193, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Machado RD, Pauciulo MW, Fretwell N, Veal C, Thomson JR, Vilariño Güell C, Aldred M, Brannon CA, Trembath RC, Nichols WC. A physical and transcript map based upon refinement of the critical interval for PPH1, a gene for familial primary pulmonary hypertension. The International PPH Consortium. Genomics 2000; 68:220-8. [PMID: 10964520 DOI: 10.1006/geno.2000.6291] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary pulmonary hypertension (PPH), an often fatal disorder, is characterized by sustained elevation of pulmonary artery pressure of unknown cause. In its familial form (FPPH), the disorder segregates as an autosomal dominant and displays markedly reduced penetrance. A gene for FPPH was previously localized to a 25-cM interval on the long arm of chromosome 2 (2q31-q33). We now report a complete yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC)/P1 artificial chromosome contig (PAC), assembled by STS content mapping, across a newly identified minimum nonrecombinant interval containing the gene designated PPH1. The physical map has served to establish polymorphic marker order unequivocally, enabling the establishment of detailed haplotypes for the region. Together with the identification of novel recombination events in affected individuals from six newly ascertained kindreds, these data have allowed the significant reduction of the minimum PPH1 critical interval to a 4.8-cM region. The region, flanked by the polymorphic markers D2S115 (centromeric) and D2S1384 (telomeric), corresponds to a minimum physical distance of 5.8 Mb at 2q33. Numerous expressed sequence tags and known genes were placed on the YAC/BAC contig spanning the PPH1 gene critical region.
Collapse
Affiliation(s)
- R D Machado
- Division of Medical Genetics, University of Leicester, Leicester, LE1 7RH, England
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES. Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol 2000; 35:721-8. [PMID: 11053662 DOI: 10.1016/s0531-5565(00)00137-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Healthy centenarians represent the best example of successful ageing. Various studies have shown that centenarians have escaped the major age-associated diseases, they have several well-conserved immune parameters and at least one gene allele has been identified and linked with their increased longevity. During ageing there is an accumulation of oxidised proteins, a phenomenon that has been related to an impaired function of the 20S proteasome in aged cells. We have, therefore, analysed the expression and the proteolytic activity of the proteasome in centenarian cells. Four fibroblast cultures derived from healthy centenarians were studied and compared with cultures derived from adult donors of different ages. Analysis of several proteasome subunits RNA expression levels, determination of one peptidase activity and identification of oxidised proteins in these samples revealed that centenarian cultures have a functional proteasome. In addition, it was found that the centenarian cultures exhibit characteristics similar to the younger rather than the older control donors derived cultures in all three assays. These data indicate that centenarian cells may be different from elderly donors cells, thus opening up new dimensions for the identification and characterisation of factors that are linked with longevity.
Collapse
Affiliation(s)
- N Chondrogianni
- National Hellenic Research Foundation, Laboratory of Molecular and Cellular Aging, Institute of Biological Research and Biotechnology, 48 Vas. Constantinou Avenue, 11635, Athens, Greece
| | | | | | | | | |
Collapse
|
15
|
Li GD, Li JL, Mugthin M, Ward SA. Molecular cloning of a gene encoding a 20S proteasome beta subunit from Plasmodium falciparum. Int J Parasitol 2000; 30:729-33. [PMID: 10856507 DOI: 10.1016/s0020-7519(00)00046-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel gene was cloned from Plasmodium falciparum. Database searches indicated this gene to be a member of the 20S proteasome beta-subunit family. Comparison of the gene's genomic DNA sequence with cDNA sequence revealed a 156-bp intron 85 bp downstream from the start codon. The nucleotide sequence of the gene contains one open reading frame encoding 265 amino acids with a predicted molecular mass of 30.9 kDa and a pI of 6.2. Northern blot analysis showed the transcript size to be approximately 1.6 kb indicating that some 800 bp of the transcript is non-coding.
Collapse
Affiliation(s)
- G D Li
- Department of Pharmacology and Therapeutics, The University of Liverpool, L69 3BX, Liverpool, UK
| | | | | | | |
Collapse
|
16
|
Tokumoto M, Yamaguchi A, Nagahama Y, Tokumoto T. Identification of the goldfish 20S proteasome beta6 subunit bound to nuclear matrix. FEBS Lett 2000; 472:62-6. [PMID: 10781806 DOI: 10.1016/s0014-5793(00)01441-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteasomes are large, multisubunit particles that act as the proteolytic machinery for most of the regulated intracellular protein breakdown in eukaryotic cells. Proteasomes are present in both the nucleus and cytoplasm. When we analyzed the molecular composition of protein constituents of the nuclear matrix preparation of goldfish oocytes by two-dimensional polyacrylamide gel electrophoresis followed by sequence analysis, we found a 26 kDa spot identical in amino acid sequence to the beta6 subunits of the 20S proteasome. No spot of other subunits of 20S proteasome was detected. Here we describe the cloning, sequencing and expression analysis of Carassius auratus, beta6_ca, which encodes one of the proteasome beta subunits from goldfish ovary. From the screening of an ovarian cDNA library, two types of cDNA were obtained, one 941 bp and the other 884 bp long. The deduced amino acid sequences comprise 239 and 238 residues, respectively. These deduced amino acid sequences are highly homologous to those of beta6 subunits of other vertebrates. Immunoblot analysis of nuclear matrix using anti-proteasome antibodies showed only a spot of beta6_ca. These results suggest that the beta6 subunit of the goldfish 20S proteasome, beta6_ca, is responsible for anchoring proteasomes in the nucleus.
Collapse
Affiliation(s)
- M Tokumoto
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
17
|
Rodriguez-Vilariño S, Arribas J, Arizti P, Castaño JG. Proteolytic processing and assembly of the C5 subunit into the proteasome complex. J Biol Chem 2000; 275:6592-9. [PMID: 10692467 DOI: 10.1074/jbc.275.9.6592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of mammalian 20 S proteasomes from individual subunits is beginning to be investigated. Proteasomes are made of four heptameric rings in the configuration alpha7beta7beta7alpha7. By using anti-proteasome and anti-subunit-specific antibodies, we characterized the processing and assembly of the beta subunit C5. The C5 precursor (25 kDa) remains as a free non-assembled polypeptide in the cell. The conversion of the C5 precursor to mature C5 (23 kDa) occurs concomitantly with its incorporation into 15 S proteasome intermediate and 20 S mature proteasome complexes. This processing is dependent on proteasome activity and takes place in the cytosol. These results are not fully compatible with the hypothesis that postulates that assembly of proteasomes takes place via a "half-proteasome" intermediate that contains one full alpha-ring and one full beta-ring of unprocessed beta subunit precursors.
Collapse
Affiliation(s)
- S Rodriguez-Vilariño
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Facultad de Medicina de la Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Williams A, Sun X, Fischer JE, Hasselgren PO. The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery 1999. [DOI: 10.1016/s0039-6060(99)70131-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Jørgensen L, Hendil KB. Proteasome subunit zeta, a putative ribonuclease, is also found as a free monomer. Mol Biol Rep 1999; 26:119-23. [PMID: 10363657 DOI: 10.1023/a:1006965602142] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
20 S Proteasomes are large proteinase complexes found in eukaryotic cells where they degrade cell proteins in an ATP-dependent manner. Proteasomes consist of 14 different subunits. One of them, zeta, was found in HeLa cells at a concentration of 890 microg per g of cell protein. A large proportion of zeta was found in the free state rather than incorporated into proteasomes, namely 28% in HeLa cells and 37% in BSC-1 cells. Free zeta was found in both nuclei and cytoplasm. In HeLa cells free zeta had a t1/2 of 2.8 h, compared to 5 d for proteasomes, and did not exchange with zeta in proteasomes. We confirmed (Petit F et al.: Biochem. J. 326: 93-98 (1997)) that both 20 S proteasomes and free zeta subunits possess RNase activity though the activities were very low: 4 mMoles and 0.6 mMoles of tobacco mosaic virus RNA degraded per mole of enzyme per min, respectively. The physiological function of the relatively abundant zeta monomers is not known.
Collapse
Affiliation(s)
- L Jørgensen
- August Krogh Institute, Copenhagen O, Denmark
| | | |
Collapse
|
20
|
Dahlmann B, Kopp F, Kristensen P, Hendil KB. Identical subunit topographies of human and yeast 20S proteasomes. Arch Biochem Biophys 1999; 363:296-300. [PMID: 10068451 DOI: 10.1006/abbi.1999.1104] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The arrangement of subunits in human 20S proteasomes was recently determined by us by immunoelectron microscopy and chemical cross-linking. The positions of 4 of the 14 subunits differed from those found in the yeast proteasome by X-ray crystallography. Double labeling of human 20S proteasomes with antibodies to subunits C2 and C5 has now shown that these subunits are nearest neighbors. The result contradicts our published model for the human proteasome but is in accordance with the subunit arrangement in yeast proteasomes, suggesting that yeast and human proteasomes most probably have identical subunit arrangements. Immunoelectron microscopy also showed that the C-terminal extension at the human C2 subunit is flexible but takes up a well-defined position in the proteasome.
Collapse
Affiliation(s)
- B Dahlmann
- Diabetes Forschungsinstitut, Auf' m Hennekamp 65, Düsseldorf, D-40225, Germany
| | | | | | | |
Collapse
|
21
|
Hadano S, Nichol K, Brinkman RR, Nasir J, Martindale D, Koop BF, Nicholson DW, Scherer SW, Ikeda JE, Hayden MR. A yeast artificial chromosome-based physical map of the juvenile amyotrophic lateral sclerosis (ALS2) critical region on human chromosome 2q33-q34. Genomics 1999; 55:106-12. [PMID: 9889004 DOI: 10.1006/geno.1998.5637] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The autosomal recessive form of juvenile amyotrophic lateral sclerosis (ALS2; RFALS Type 3) has previously been mapped to the 8-cM interval flanked by D2S115 and D2S155 on human chromosome 2q33-q34. We have established a yeast artificial chromosome (YAC) contig spanning an approximately 8-Mb region of the ALS2 candidate region and mapped 52 transcribed DNA sequences including 13 known genes and 39 expressed sequenced tags within this YAC contig. The establishment of a YAC contig and transcript map that spans the region containing the ALS2 mutation is an essential step in the identification of the ALS2 gene.
Collapse
Affiliation(s)
- S Hadano
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, University of British Columbia, 3024-980 West 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yoo SJ, Shim YK, Seong IS, Seol JH, Kang MS, Chung CH. Mutagenesis of two N-terminal Thr and five Ser residues in HslV, the proteolytic component of the ATP-dependent HslVU protease. FEBS Lett 1997; 412:57-60. [PMID: 9257689 DOI: 10.1016/s0014-5793(97)00742-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HslVU in E. coli is a new type of ATP-dependent protease consisting of two heat shock proteins: the HslU ATPase and the HslV peptidase that has two repeated Thr residues at its N terminus, like certain beta-type subunit of the 20S proteasomes. To gain an insight into the catalytic mechanism of HslV, site-directed mutagenesis was performed to replace each of the Thr residues with Ser or Val and to delete the first or both Thr. Also each of the five internal Ser residues in HslV were replaced with Ala. The results obtained by the mutational analysis revealed that the N-terminal Thr acts as the active site nucleophile and that certain Ser residues, particularly Ser124 and Ser172, also contribute to the peptide hydrolysis by the HslVU protease. The mutational studies also revealed that both Thr, Ser103, and Ser172, but not Ser124, are involved in the interaction of HslV with HslU and hence in the activation of HslU ATPase as well as in the HslVU complex formation.
Collapse
Affiliation(s)
- S J Yoo
- Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, South Korea
| | | | | | | | | | | |
Collapse
|
23
|
Klinkradt S, Naudé RJ, Muramoto K, Oelofsen W. Purification and characterization of proteasome from ostrich liver. Int J Biochem Cell Biol 1997; 29:611-22. [PMID: 9363639 DOI: 10.1016/s1357-2725(96)00143-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The proteasome (EC 3.4.99.46) is a high molecular mass (approximately 700 kDa) multisubunit enzyme complex which is the focus of worldwide research in order to identify the structure, mechanism of action and specificity of the complex. The purpose of the present study was to investigate the tryptic, chymotryptic and peptidylglutamyl-peptide hydrolysing (PGPH) activities of ostrich liver proteasome. The proteasome was purified from ostrich liver by employing ammonium sulphate fractionation, followed by three sequential chromatographic steps on Toyopearl Super Q-650 S, Sephadex G-150 and phenyl-Toyopearl columns. Temperature and pH optima were examined and the effect of inhibitors, detergents, fatty acids and cations on the peptidase activities was determined. Ostrich proteasome exhibited a relative M(r) of approximately 665,000 using non-denaturing gradient PAGE and dissociated into the characteristic "ladder" associated with the proteasome subunits during SDS-PAGE. The pH optima for the peptidase activities were found to be slightly alkaline (tryptic activity) and neutral (chymotryptic-like and PGPH activities). Ostrich liver proteasome was found to be activated in terms of the PGPH activity by fatty acids and SDS, whereas the chymotryptic and tryptic-like activities were differentially inhibited. Ostrich proteasome, in its inhibition by monovalent cations, was similar to the proteasomes extracted from other sources. The specificity of the proteasome appears to be very broad, although it lacks aminopeptidase activity. The yield compared favourably with similar extraction procedures which have been reported. On the basis of the physicochemical and kinetic properties which ostrich liver proteasome exhibited, it can be safely concluded that it corresponds well with the proteasomes isolated from many other sources.
Collapse
Affiliation(s)
- S Klinkradt
- Department of Biochemistry and Microbiology, University of Port Elizabeth, South Africa
| | | | | | | |
Collapse
|
24
|
Abstract
The proteasome activator PA28 or 11S regulator is a protein complex composed of two different but homologous polypeptides, termed PA28alpha and PA28beta. The purified activator protein (approximately 200 kDa) is a ring-shaped heteromultimer containing the two polypeptides, possibly with an (alpha3beta3 stoichiometry. The activator, which by itself shows no hydrolytic activity elicits activation of the proteasome's multiple peptidase activities by binding to the terminal rings of the proteinase. In vitro, active PA28 can be reconstituted from isolated alpha and beta subunits, yielding two different oligomers: with the single alpha subunit, PA28alpha homomultimers with moderate stimulatory activity toward 20S proteasomes are obtained whereas isolated beta-subunits are unable to form oligomers and are devoid of stimulatory activity. However, in the presence of both subunits, alphabeta heteromultimers form, concomitant with restoration of full stimulatory activity. The recent finding that PA28 modulates the proteasome-catalyzed production of antigenic peptides presented to the immune system on MHC class I molecules indicates a cellular function of the activator in antigen processing.
Collapse
Affiliation(s)
- L Kuehn
- Diabetes-Forschungsinstitut, Düsseldorf, Germany
| | | |
Collapse
|
25
|
Fujita J, Tsujinaka T, Yano M, Ebisui C, Saito H, Katsume A, Akamatsu K, Ohsugi Y, Shiozaki H, Monden M. Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways. Int J Cancer 1996; 68:637-43. [PMID: 8938147 DOI: 10.1002/(sici)1097-0215(19961127)68:5<637::aid-ijc14>3.0.co;2-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Progression of skeletal muscle atrophy is one of the characteristic features in cancer patients. Interleukin-6 (IL-6) has been reported to be responsible for the loss of lean body mass during cancer cachexia in colon-26 adenocarcinoma (C-26)-bearing mice. This study was carried out to elucidate the intracellular proteolytic pathways operating in skeletal muscle in C-26-bearing mice, and to examine the effect of anti IL-6 receptor antibody on muscle atrophy. On day 17 after tumor inoculation, the gastrocnemius muscle weight of C-26-bearing mice had significantly decreased to 69% of that of the pair-fed control mice. This weight loss occurred in association with increases in the mRNA levels of cathepsins B and L, poly-ubiquitin (Ub) and the subunits of proteasomes in the muscles. Furthermore, enzymatic activity of cathepsin B+L in the muscles also increased to 119% of the control. The administration of anti-murine IL-6 receptor antibody to C-26-bearing mice reduced the weight loss of the gastrocnemius muscles to 84% of that of the control mice, whose enzymatic activity of cathepsin B+L and mRNA levels of cathepsin L and poly-Ub were significantly suppressed compared with those of the C-26-bearing mice. Our data indicate that both the lysosomal cathepsin pathway and the ATP-dependent proteolytic pathway might be involved in the muscle atrophy of C-26-bearing mice. The results also suggest that anti IL-6 receptor antibody could be a potential therapeutic agent against muscle atrophy in cancer cachexia by inhibiting these proteolytic systems.
Collapse
Affiliation(s)
- J Fujita
- Department of Surgery II, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kuehn L, Dahlmann B. Reconstitution of proteasome activator PA28 from isolated subunits: optimal activity is associated with an alpha,beta-heteromultimer. FEBS Lett 1996; 394:183-6. [PMID: 8843160 DOI: 10.1016/0014-5793(96)00946-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PA28, a 200 kDa activator of 20S proteasomes, was purified from human placenta and was gel electrophoretically resolved into two different subunits, alpha and beta. In reconstitution experiments, alpha-subunits alone were found to re-associate forming homooligomers with an M(r) of about 200 kDa, which elicit a stimulatory effect on proteasomal peptide-hydrolyzing activity, albeit at a moderate level. Under the same conditions, isolated beta-subunits were neither found to associate nor did they display stimulatory activity. Significantly, when both alpha- and beta-subunits were present in the reconstitution assay, heteromultimers formed, concomitant with a marked increase in stimulatory activity when compared with that of alpha-homooligomers. The reconstituted PA28alpha,beta protein is indistinguishable from purified PA28 by several criteria: it displays the same molecular mass, shows the same abundance of alpha- and beta-subunits and has a similar stimulatory activity toward 20S proteasomes. These results indicate that optimal PA28 activity is associated with a heteromultimeric structure which contains the alpha- and beta-subunits in fixed stoichiometry, most likely as an alpha3beta3-heterohexamer.
Collapse
Affiliation(s)
- L Kuehn
- Biochemische Abteilung, Diabetes-Forschungsinstitut, Düsseldorf, Germany
| | | |
Collapse
|
27
|
Huang J, Kwong J, Sun EC, Liang TJ. Proteasome complex as a potential cellular target of hepatitis B virus X protein. J Virol 1996; 70:5582-91. [PMID: 8764072 PMCID: PMC190518 DOI: 10.1128/jvi.70.8.5582-5591.1996] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the biological importance of hepatitis B virus X protein (HBX) in the life cycle of hepatitis B virus has been well established, the cellular and molecular basis of its function remains largely undefined. Despite the association of multiple activities with HBX, none of them appear to provide a unifying hypothesis regarding the true biological function of HBX. Identification and characterization of cellular targets of HBX remain an essential goal in the elucidation of the molecular mechanisms of HBX. Using the Saccharomyces cerevisiae two-hybrid system, we have identified and characterized a novel subunit of the proteasome complex (XAPC7) that interacts specifically with HBX. We also showed that HBX binds specifically to XAPC7 in vitro. Mutagenesis studies have defined the domains of interaction to be critical for the function of HBX. Furthermore, overexpression of XAPC7 appeared to activate transcription by itself and antisense expression of XAPC7 was able to block transactivation by HBX. Therefore, the proteasome complex is possibly a functional target of HBX in cells.
Collapse
Affiliation(s)
- J Huang
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA
| | | | | | | |
Collapse
|
28
|
Rousset R, Desbois C, Bantignies F, Jalinot P. Effects on NF-kappa B1/p105 processing of the interaction between the HTLV-1 transactivator Tax and the proteasome. Nature 1996; 381:328-31. [PMID: 8692272 DOI: 10.1038/381328a0] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The viral Tax protein, which is encoded by human T-cell leukaemia virus HTLV-I, activates nuclear translocation of the NF-kappa B/Rel transcription factors and relieves cytoplasmic sequestration of RelA and Rel by heterodimerization with NF-kappa B1/p1O5 (refs 1,2). Proteolytic maturation of this precursor protein is performed by the proteasome complex. Here we show that Tax binds specifically to two subunits of the 20S proteasome, HsN3 and HC9. This interaction is weakened with HsN3 and lost for HC9 when a mutant of Tax is substituted that is selectively defective for NF-kappa B activation. Immunoprecipitation shows that p1O5 binds weakly to HC9 and that this interaction is reinforced by Tax. No bridging function of Tax between p1O5 and HsN3 was observed. From these results, we propose that Tax accelerates the proteolytic maturation of P105 by favouring its anchorage to the proteasome.
Collapse
Affiliation(s)
- R Rousset
- CNRS UMR49, Ecole Normale Supérieure de Lyon, France
| | | | | | | |
Collapse
|
29
|
Mansoor O, Beaufrere B, Boirie Y, Ralliere C, Taillandier D, Aurousseau E, Schoeffler P, Arnal M, Attaix D. Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients. Proc Natl Acad Sci U S A 1996; 93:2714-8. [PMID: 8610106 PMCID: PMC39696 DOI: 10.1073/pnas.93.7.2714] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cellular mechanisms responsible for enhanced muscle protein breakdown in hospitalized patients, which frequently results in lean body wasting, are unknown. To determine whether the lysosomal, Ca2+-activated, and ubiquitin-proteasome proteolytic pathways are activated, we measured mRNA levels for components of these processes in muscle biopsies from severe head trauma patients. These patients exhibited negative nitrogen balance and increased rates of whole-body protein breakdown (assessed by [13C]leucine infusion) and of myofibrillar protein breakdown (assessed by 3-methylhistidine urinary excretion). Increased muscle mRNA levels for cathepsin D, m-calpain, and critical components of the ubiquitin proteolytic pathway (i.e., ubiquitin, the 14-kDa ubiquitin-conjugating enzyme E2, and proteasome subunits) paralleled these metabolic adaptations. The data clearly support a role for multiple proteolytic processes in increased muscle proteolysis. The ubiquitin proteolytic pathway could be activated by altered glucocorticoid production and/or increased circulating levels of interleukin 1beta and interleukin 6 observed in head trauma patients and account for the breakdown of myofibrillar proteins, as was recently reported in animal studies.
Collapse
Affiliation(s)
- O Mansoor
- Service de Réanimation, Centre Hospitalo-Universitaire, Clermont- Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tsujinaka T, Fujita J, Ebisui C, Yano M, Kominami E, Suzuki K, Tanaka K, Katsume A, Ohsugi Y, Shiozaki H, Monden M. Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest 1996; 97:244-9. [PMID: 8550842 PMCID: PMC507086 DOI: 10.1172/jci118398] [Citation(s) in RCA: 295] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The muscles of IL-6 transgenic mice suffer from atrophy. Experiments were carried out on these transgenic mice to elucidate activation of proteolytic systems in the gastrocnemius muscles and blockage of this activation by treatment with the anti-mouse IL-6 receptor (mIL-6R) antibody. Muscle atrophy observed in 16-wk-old transgenic mice was completely blocked by treatment with the mIL-6R antibody. In association with muscle atrophy, enzymatic activities and mRNA levels of cathepsins (B and L) and mRNA levels of ubiquitins (poly- and mono-ubiquitins) increased, whereas the mRNA level of muscle-specific calpain (calpain 3) decreased. All these changes were completely eliminated by treatment with the mIL-6R antibody. This IL-6 receptor antibody could, therefore, be effective against muscle wasting in sepsis and cancer cachexia, where IL-6 plays an important role.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD/immunology
- Body Weight
- Calpain/genetics
- Cathepsin B/analysis
- Cathepsin B/genetics
- Cathepsin B/metabolism
- Cathepsin L
- Cathepsins/analysis
- Cathepsins/genetics
- Cathepsins/metabolism
- Cysteine Endopeptidases/genetics
- Endopeptidases
- Gene Expression
- Humans
- Interleukin-6/genetics
- Interleukin-6/immunology
- Interleukin-6/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Multienzyme Complexes/genetics
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscular Atrophy/pathology
- Muscular Atrophy/prevention & control
- Organ Size
- Proteasome Endopeptidase Complex
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Receptors, Interleukin/immunology
- Receptors, Interleukin-6
- Ubiquitins/genetics
Collapse
Affiliation(s)
- T Tsujinaka
- Department of Surgery II, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hoffman L, Rechsteiner M. Regulatory features of multicatalytic and 26S proteases. CURRENT TOPICS IN CELLULAR REGULATION 1996; 34:1-32. [PMID: 8646844 DOI: 10.1016/s0070-2137(96)80001-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It should be clear from the foregoing accounts that our understanding of MCP and 26S regulation is still rudimentary. Moreover, we have only recently identified about a dozen natural substrates of these two proteases. Those outside the field may view the situation with some dismay. Those who study the MCP and 26S enzymes are provided with rich opportunities to address fundamental questions of protein catabolism and metabolic regulation.
Collapse
Affiliation(s)
- L Hoffman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
32
|
Ni R, Tomita Y, Tokunaga F, Liang TJ, Noda C, Ichihara A, Tanaka K. Molecular cloning of two types of cDNA encoding subunit RC6-I of rat proteasomes. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:45-52. [PMID: 7578256 DOI: 10.1016/0167-4781(95)00113-u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new subunit, named RC6-I, of the rat 20 S proteasome was purified and the partial amino acid sequences of several peptide fragments obtained by digestion with lysyl-endopeptidase were determined by Edman degradation. Amplification of cDNAs encoding RC6-I by the polymerase chain reaction (PCR) technique revealed two types of cDNA, tentatively designated as RC6-IL and RC6-IS in order of size. The nucleotide sequences of the two cDNAs are identical except that RC6-IL contains an insertion of 18 nucleotides in the coding region compared with RC6-IS. The polypeptide predicted from the open reading frame of RC6-IS cDNA consists of 248 amino acid residues with a calculated molecular weight of 27,783. These values are consistent with those obtained by protein chemical analyses. Computer-assisted homology analysis showed that RC6-I belongs to the alpha-type subfamily of the proteasome gene family, which shows similarity to the alpha-subunit of the archaebacterium Thermoplasma acidophilum proteasome, and that the 18 nucleotide insert, encoding six amino acid residues, VVASVS, appears to be unique to RC6-IL, because this motif has not been conserved in any other alpha-type subunit. By reverse transcription (RT)-PCR analysis, the mRNAs for both RC6-IL and RC6-IS were found in all the rat tissues examined. These results suggest that proteasomes are present as a heterogeneous population, possibly for acquisition of diversity of functions.
Collapse
Affiliation(s)
- R Ni
- Institute for Enzyme Research, University of Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Seemüller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 1995; 268:579-82. [PMID: 7725107 DOI: 10.1126/science.7725107] [Citation(s) in RCA: 483] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The catalytic mechanism of the 20S proteasome from the archaebacterium Thermoplasma acidophilum has been analyzed by site-directed mutagenesis of the beta subunit and by inhibitor studies. Deletion of the amino-terminal threonine or its mutation to alanine led to inactivation of the enzyme. Mutation of the residue to serine led to a fully active enzyme, which was over ten times more sensitive to the serine protease inhibitor 3,4-dichloroisocoumarin. In combination with the crystal structure of a proteasome-inhibitor complex, the data show that the nucleophilic attack is mediated by the amino-terminal threonine of processed beta subunits. The conservation pattern of this residue in eukaryotic sequences suggests that at least three of the seven eukaryotic beta-type subunit branches should be proteolytically inactive.
Collapse
Affiliation(s)
- E Seemüller
- Abteilung für Strukturbiologie Max-Planck Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Lucero HA, Chojnicki EW, Mandiyan S, Nelson H, Nelson N. Cloning and expression of a yeast gene encoding a protein with ATPase activity and high identity to the subunit 4 of the human 26 S protease. J Biol Chem 1995; 270:9178-84. [PMID: 7721833 DOI: 10.1074/jbc.270.16.9178] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cloning, expression, and biochemical characterization of an essential gene of Saccharomyces cerevisiae that encodes for a new member of the TBP1-like subfamily of putative ATPases are described. The protein is 72% identical at the amino acid level to subunit four (S4) of the human 26 S protease and 73% identical to Schizosaccharomyces pombe MTS2 gene product. The purified, recombinant protein, designated Yhs4p, has an estimated molecular mass of 49 kDa and exhibits a Mg(2+)-dependent ATPase activity with nucleotide specificity and Km for ATP similar to those exhibited by the human 26 S protease. The observed ATPase activity was reduced by 73% upon the introduction of point mutation K229Q in the "P-loop" domain of the ATP-binding site relative to the nonmutated form of the protein. This is the first direct biochemical evidence supporting the putative ATPase activity of a member of the TBP1-like subfamily. Furthermore, the experimental results demonstrate a regulatory function for the amino-terminal region of the molecule. The amino-terminal truncated form of Yhs4p lacking two clusters of positively charged amino acids exhibits a greater ATPase activity. The ATPase activity of both the truncated and complete forms of Yhs4p is stimulated by polyanions. Polylysine partially inhibits the ATPase activity of the amino-terminal truncated form having no observable effect on the complete protein. N-Ethylmaleimide inhibits the ATPase activity of both forms of Yhs4p. We propose that Yhs4p ATPase may play an essential role in the regulatory function of the proteolytic activity of the yeast 26 S protease.
Collapse
Affiliation(s)
- H A Lucero
- Department of Physiology, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
35
|
Seemüller E, Lupas A, Zühl F, Zwickl P, Baumeister W. The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease. FEBS Lett 1995; 359:173-8. [PMID: 7867793 DOI: 10.1016/0014-5793(95)00036-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 20 S proteasome, found in eukaryotes and in the archaebacterium Thermoplasma acidophilum, forms the proteolytic core of the 26 S proteasome which is the central protease of the non-lysosomal protein degradation pathway. Inhibitor studies have indicated that the 20 S proteasome may be an unusual type of cysteine or serine protease and a recent study of the Thermoplasma beta subunit has indicated that it carries the proteolytic activity. We have attempted to obtain information on the nature of the active site by mutating the only cysteine, both histidines and two completely conserved aspartates in the archaebacterial complex as well as all serines of the beta subunit, without decreasing the catalytic activity of the enzyme to any significant extent. Indeed, mutation of the conserved aspartate in the beta subunit increased the activity of the proteasome threefold. We conclude that the proteasome is not a cysteine or serine protease.
Collapse
Affiliation(s)
- E Seemüller
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
36
|
Grune T, Reinheckel T, Joshi M, Davies KJ. Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem 1995; 270:2344-51. [PMID: 7836468 DOI: 10.1074/jbc.270.5.2344] [Citation(s) in RCA: 339] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exposure to various forms of mild oxidative stress significantly increased the intracellular degradation of both "short-lived" and "long-lived," metabolically radiolabeled, cell proteins in cultures of Clone 9 liver cells (normal liver epithelia). The oxidative stresses employed were bolus H2O2 addition; continuous H2O2 flux; the redox cycling quinones, menadione and paraquat; and the aldehydic products of lipid peroxidation, 4-hydroxynonenal, malonyldialdehyde, and hexenal. In general, exposure to more severe oxidative stress produced a concentration-dependent decline in intracellular proteolysis, in some cases to below baseline levels. Oxidatively modified "foreign" proteins (superoxide dismutase and hemoglobin) were also selectively degraded, in comparison with untreated foreign proteins, when added to lysates of Clone 9 liver cells. As with intracellular proteolysis, the degradation of foreign proteins added to cell lysates was greatly increased by mild oxidative modification, but depressed by more severe oxidative modification. The proteinase activity was recovered in > 300-kDa cell fractions, and inhibitor profiles and immunoprecipitation studies indicated that the multicatalytic proteinase complex, proteasome, was responsible for most of the selective degradation observed with mild oxidative stress; up to approximately 95% for intracellular proteolysis and 65-80% for degradation of foreign modified proteins. Seven days of daily treatment with an antisense oligodeoxynucleotide, directed against the initiation codon region of the proteasome C2 subunit gene, severely depressed the intracellular levels of several proteasome subunit polypeptides (by Western blot analysis), and also depressed the H2O2 induced increase in intracellular proteolysis by approximately 95%, without significantly affecting baseline proteolytic rates. Extensive studies revealed only small or no increases in the overall capacity of oxidatively stressed cells to degrade oxidatively modified protein substrates; a finding supported by both Western blot and Northern blot analyses which revealed no significant increase in the levels of proteasome subunit polypeptides or mRNA transcripts. We conclude that mild oxidative stress increases intracellular proteolysis by modifying cellular proteins, thus increasing their proteolytic susceptibility. In contrast, severe oxidative stress diminishes intracellular proteolysis, probably by generating severely damaged cell proteins that cannot be easily degraded (e.g. cross-linked/aggregated proteins), and by damaging proteolytic enzymes. We further conclude that the multicatalytic proteinase complex proteasome is responsible for most of the recognition and selective degradation of oxidatively modified proteins in Clone 9 liver cells.
Collapse
Affiliation(s)
- T Grune
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208
| | | | | | | |
Collapse
|
37
|
Hendil KB, Kristensen P, Uerkvitz W. Human proteasomes analysed with monoclonal antibodies. Biochem J 1995; 305 ( Pt 1):245-52. [PMID: 7826336 PMCID: PMC1136456 DOI: 10.1042/bj3050245] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The proteasome or multicatalytic endopeptidase from eukaryotic cells consists of at least 14 subunits that fall into two families, alpha and beta. Subunit-specific monoclonal antibodies against ten different subunits of human proteasomes have been produced, together with an antibody that reacts with a motif (prosbox 1), common to alpha-type subunits. Four of the subunit-specific antibodies were able to precipitate proteasomes. The subunit composition of HeLa-cell proteasomes precipitated with these four different antibodies were identical, as judged from two-dimensional electrophoresis. One of the four antibodies was used to obtain proteasomes from cell lines (HeLa, Daudi, IMR90 and BSC-1) and human tissues (placenta, kidney, and liver). Electrophoretic analysis of these proteasomes, combined with peptide mapping of some subunits, suggests that they all contain 14 types of subunits as their major constituents. However, one subunit was present in two isoelectric isoforms in all cells examined. Two other subunits occurred in two or three isoelectric isoforms in placenta, liver and kidney, but not in the cell cultures. Extracts of human cells (HeLa, IMR90, Daudi and erythrocytes) were analysed by non-denaturing electrophoresis and immunoblotting. All of the 11 subunits detected by antibodies were present in a pair of ATP-stabilized protein complexes, presumed to be the 26 S proteinase, and in a doublet of complexes which migrated more slowly than purified proteasomes. Besides being present in proteasomes, one subunit was also found to occur in the free state in cell extracts.
Collapse
Affiliation(s)
- K B Hendil
- August Krogh Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
38
|
Savioz A, Houghton I, Davies RW. Cloning and sequencing of a murine cDNA encoding the proteasome component C5. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1995; 5:307-9. [PMID: 7579585 DOI: 10.3109/10425179509030985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A cDNA encoding the mouse homologue to the rat and human component C5 of proteasome was isolated from a mouse ventral midbrain library. The deduced amino acid sequence shows 93% and 97.5% identity to the human and rat C5 component respectively.
Collapse
Affiliation(s)
- A Savioz
- Robertson Laboratory of Biotechnology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, U.K
| | | | | |
Collapse
|
39
|
Coux O, Nothwang HG, Silva Pereira I, Recillas Targa F, Bey F, Scherrer K. Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:769-80. [PMID: 7830725 DOI: 10.1007/bf00297284] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prosomes [or proteasomes, Multi-Catalytic Proteinase (MCP) are multisubunit protein complexes, found from archaebacteria to man, the structure of which (a 4-layer cylinder) is remarkable conserved. They were first observed as subcomplexes of untranslated mRNP, and then as a multicatalytic proteinase with several proteolytic activities. A number of sequences from subunits of these complexes are now available. Analysis of the sequences shows that these subunits are evolutionarily related, and reveals three highly conserved amino acid stretches. Based on a phylogenic approach, we propose to classify the sequenced subunits into 14 families, which fall into two superfamilies, of the alpha- and beta-type. These data, together with several recently published observations, suggest that some subunits may be interchangeable within the complexes, which would thus constitute a population of heterogenous particles.
Collapse
Affiliation(s)
- O Coux
- Institut Jacques Monod CNRS, Université Paris, France
| | | | | | | | | | | |
Collapse
|
40
|
Nothwang HG, Tamura T, Tanaka K, Ichihara A. Sequence analyses and inter-species comparisons of three novel human proteasomal subunits, HsN3, HsC7-I and HsC10-II, confine potential proteolytic active-site residues. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:361-8. [PMID: 7918633 DOI: 10.1016/0167-4781(94)90060-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Proteasomes play a major role in non-lysosomal pathways of protein turnover mediated by distinct multiple proteolytic activities. Identification of their active-site residues is important for elucidating their catalytic mechanisms. Here we report the nucleotide sequences of three human proteasomal subunits, HsN3, HsC7-I and HsC10-II, coding for proteins with 264, 201 and 205 amino acid residues with calculated molecular weights of 29,192, 22,836 and 22,931, respectively. Sequence comparison showed that all three proteins belong to the beta-type superfamily and that they are the human counterparts of subunits reported to participate in the peptidyl-glutamyl-peptide hydrolyzing, chymotrypsin-like and trypsin-like activity of this complex. Alignments of the putative catalytically active subunits of various species revealed several family-specifically conserved serinyl residues within highly conserved amino acid stretches. Based on localization and hydrophobicity, the roles of these amino acid residues as active site and substrate binding site candidates are discussed.
Collapse
Affiliation(s)
- H G Nothwang
- Institute for Enzyme Research, University of Tokushima, Japan
| | | | | | | |
Collapse
|
41
|
Heinemeyer W, Tröndle N, Albrecht G, Wolf DH. PRE5 and PRE6, the last missing genes encoding 20S proteasome subunits from yeast? Indication for a set of 14 different subunits in the eukaryotic proteasome core. Biochemistry 1994; 33:12229-37. [PMID: 7918444 DOI: 10.1021/bi00206a028] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 20S proteasome of eukaryotes is an abundant multicatalytic/multifunctional proteinase complex composed of an array of nonidentical subunits which are encoded by alpha- or beta-type members of the proteasomal gene family. In budding yeast, 14 subunits had been detected and 12 proteasomal genes had been cloned and sequenced so far. Starting from peptide sequences of purified subunits of the yeast 20S proteasome, we cloned two additional proteasomal genes, PRE5 and PRE6, which both encode essential alpha-type subunits. Sequence comparison of all known eukaryotic proteasomal proteins show the presence of a total of 14 subgroups, which can be divided into seven alpha- and seven beta-type groups. Including the Pre5 and Pre6 proteins, every subgroup contains a single yeast member. We anticipate that the 14 genes encoding subunits of the yeast proteasome represent the complete set of proteasomal genes of this organism. The ancestral archaebacterial proteasome is composed of four stacks of rings, the two outer rings containing seven identical alpha-subunits and the inner rings containing seven identical beta-subunits. We speculate that, in analogy to the archaebacterial proteasome, every eukaryotic proteasome is made of two halves of 14 distinct subunits, each half consisting of seven different alpha-type and 7 different beta-type subunits. In higher eukaryotes, subunit isoforms may contribute to variability in the subunit composition of the 20S proteasome allowing functional modulations.
Collapse
|
42
|
Akiyama K, Yokota K, Kagawa S, Shimbara N, Tamura T, Akioka H, Nothwang HG, Noda C, Tanaka K, Ichihara A. cDNA cloning and interferon gamma down-regulation of proteasomal subunits X and Y. Science 1994; 265:1231-4. [PMID: 8066462 DOI: 10.1126/science.8066462] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proteasomes are the proteolytic complex responsible for major histocompatibility complex (MHC) class I-restricted antigen presentation. Interferon gamma treatment increases expression MHC-encoded LMP2 and LMP7 subunits of the proteasome and decreases expression of two proteasome subunits, named X and Y, which alters the proteolytic specificity of proteasomes. Molecular cloning of complementary DNAs encoding X and Y showed that their proteins are proteasomal subunits with high amino acid similarity to LMP7 and LMP2, respectively. Thus, interferon gamma may induce subunit replacements of X and Y by LMP7 and LMP2, respectively, producing proteasomes perhaps more appropriate for the immunological processing of endogenous antigens.
Collapse
Affiliation(s)
- K Akiyama
- Department of Urology, School of Medicine, University of Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Scherrer K, Bey F. The prosomes (multicatalytic proteinases; proteasomes) and their relationship to the untranslated messenger ribonucleoproteins, the cytoskeleton, and cell differentiation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 49:1-64. [PMID: 7863004 DOI: 10.1016/s0079-6603(08)60047-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- K Scherrer
- Institute Jacques Monod CNRS, Paris, France
| | | |
Collapse
|
44
|
Shirley BW, Goodman HM. An Arabidopsis gene homologous to mammalian and insect genes encoding the largest proteasome subunit. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:586-94. [PMID: 8264533 DOI: 10.1007/bf00279901] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A gene encoding a protein with extensive homology to the largest subunit of the multicatalytic proteinase complex (proteasome) has been identified in Arabidopsis thaliana. This gene, referred to as AtPSM30, is entirely encompassed within a previously characterized radiation-induced deletion, which may thus provide the first example of a proteasome null mutation in a higher eukaryote. However, the growth rate and fertility of Arabidopsis plants do not appear to be significantly affected by this mutation, even though disruption experiments in yeast have shown that most proteasome subunits are essential. Analysis of mRNA levels in developing seedlings and mature plants indicates that expression of AtPSM30 is differentially regulated during development and is slightly induced in response to stress, as has been observed for proteasome genes in yeast, Drosophila, and mammals. Southern blot analysis indicates that the Arabidopsis genome contains numerous sequences closely related to AtPSM30, consistent with recent reports of at least two other proteasome genes in Arabidopsis. A comparison of the deduced amino acid sequences for all proteasome genes reported to date suggests that multiple proteasome subunits evolved in eukaryotes prior to the divergence of plants and animals.
Collapse
Affiliation(s)
- B W Shirley
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| | | |
Collapse
|
45
|
Fujii G, Tashiro K, Emori Y, Saigo K, Shiokawa K. Molecular cloning of cDNAs for two Xenopus proteasome subunits and their expression in adult tissues. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:65-72. [PMID: 8218417 DOI: 10.1016/0167-4781(93)90038-f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proteasome, a large protein complex with ATP-dependent protease activities, is composed of non-identical but closely related multi-subunits. Using cDNAs for rat proteasome subunits as probes, we obtained three cDNA clones for two Xenopus proteasome subunits from ovary cDNA library. The primary structures of the three cDNAs showed high homology to the corresponding proteasome subunits of other mammalian species (above 90%) and also considerable homology to those of Drosophila and yeast. These results indicate that the sequences of proteasome subunits are well conserved during evolution. Northern blot hybridization revealed that RNAs for the newly isolated subunits (XC8 and XC9) and the previously isolated subunit (XC3) occur at very high levels in testis and ovary, at moderately high levels in lung, skin kidney and spleen, and at low levels in liver, stomach and muscle. It was also shown that relative amounts of the mRNAs for the three subunits are similar in all the adult tissues examined. From these results, we concluded that the expression of the genes for the three subunits (XC3 XC8 and XC9-1) takes place in a roughly coordinated manner in different adult tissues.
Collapse
Affiliation(s)
- G Fujii
- Department of Biology, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
46
|
Abstract
The primary structure of a new type of subunit (RN3) of rat proteasomes (multicatalytic proteinase complexes) has been determined from the nucleotide sequence of the cDNA. The cDNA encodes a protein of 232 amino acids but the directly determined N-terminal amino acid sequence suggests that the subunit is post-translationally processed to a M(r) = 24k form. Sequence alignments reveal a similarity of RN3 to other proteasome subunits. It can be designated a B-type proteasomal subunit but is not closely related to the beta subunit of the archaebacterial proteinase or to other members of the B group.
Collapse
Affiliation(s)
- S Thomson
- Department of Biochemistry, University of Leicester, UK
| | | | | |
Collapse
|
47
|
Affiliation(s)
- A J Rivett
- Department of Biochemistry, University of Leicester, U.K
| |
Collapse
|
48
|
Bey F, Silva Pereira I, Coux O, Viegas-Péquignot E, Recillas Targa F, Nothwang HG, Dutrillaux B, Scherrer K. The prosomal RNA-binding protein p27K is a member of the alpha-type human prosomal gene family. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:193-205. [PMID: 7681138 DOI: 10.1007/bf00282801] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monoclonal antibodies demonstrated high conservation during evolution of a prosomal protein of M(r) 27,000 and differentiation--specific expression of the epitope. More than 90% of the reacting antigen was found as a p27K protein in the free messenger ribonucleoprotein (mRNP) fraction but another protein of M(r) 38,000, which shared protease fingerprint patterns with the p27K polypeptide, was also labelled in the nuclear and polyribosomal fractions. Sequencing of cDNA recombinant clones encoding the p27/38K protein and comparison with another prosomal protein, p30-33K, demonstrated the existence of a common characteristic sequence pattern containing three highly conserved segments. The genes Hs PROS-27 and Hs PROS-30 were mapped to chromosomes 14 (14q13) and 11 (11p15.1), respectively. The structure of the p27K protein shows multiple potential phosphorylation sites, an NTP-binding fold and an RNA-binding consensus sequence. The Hs PROS-27/beta-galactosidase fusion protein binds a single RNA of about 120 nucleotides from total HeLa cell RNA. Sequence comparisons show that the Hs PROS-27 and Hs PROS-30 genes belong to the gene family that encodes the prosome--MCP (multicatalytic proteinase)--proteasome proteins. Comparison with other members of the family from various species allowed us to show that the tripartite consensus sequence characteristic of the alpha-type sub-family is conserved from archeobacteria to man. The members of this gene family are characterised by very high evolutionary conservation of amino acid sequences of homologous genes and 20%-35% sequence similarity, between different family member within the same species and are clearly distinct from the beta-type family.
Collapse
Affiliation(s)
- F Bey
- Institut Jacques Monod du CNRS, Université Paris 7, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
A number of critical regulatory proteins in both prokaryotic and eukaryotic cells are subject to rapid, energy-dependent proteolysis. Rapid degradation combined with control over biosynthesis provides a mechanism by which the availability of a protein can be limited both temporally and spatially. Highly unstable regulatory proteins are involved in numerous biological functions, particularly at the commitment steps in developmental pathways and in emergency responses. The proteases involved in energy-dependent proteolysis are large proteins with the ability to use ATP to scan for appropriate targets and degrade complete proteins in a processive manner. These cytoplasmic proteases are also able to degrade many abnormal proteins in the cell.
Collapse
Affiliation(s)
- S Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
50
|
Früh K, Yang Y, Arnold D, Chambers J, Wu L, Waters J, Spies T, Peterson P. Alternative exon usage and processing of the major histocompatibility complex-encoded proteasome subunits. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41645-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|