1
|
Khramova YV, Katrukha VA, Chebanenko VV, Kostyuk AI, Gorbunov NP, Panasenko OM, Sokolov AV, Bilan DS. Reactive Halogen Species: Role in Living Systems and Current Research Approaches. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S90-S111. [PMID: 38621746 DOI: 10.1134/s0006297924140062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 04/17/2024]
Abstract
Reactive halogen species (RHS) are highly reactive compounds that are normally required for regulation of immune response, inflammatory reactions, enzyme function, etc. At the same time, hyperproduction of highly reactive compounds leads to the development of various socially significant diseases - asthma, pulmonary hypertension, oncological and neurodegenerative diseases, retinopathy, and many others. The main sources of (pseudo)hypohalous acids are enzymes from the family of heme peroxidases - myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and thyroid peroxidase. Main targets of these compounds are proteins and peptides, primarily methionine and cysteine residues. Due to the short lifetime, detection of RHS can be difficult. The most common approach is detection of myeloperoxidase, which is thought to reflect the amount of RHS produced, but these methods are indirect, and the results are often contradictory. The most promising approaches seem to be those that provide direct registration of highly reactive compounds themselves or products of their interaction with components of living cells, such as fluorescent dyes. However, even such methods have a number of limitations and can often be applied mainly for in vitro studies with cell culture. Detection of reactive halogen species in living organisms in real time is a particularly acute issue. The present review is devoted to RHS, their characteristics, chemical properties, peculiarities of interaction with components of living cells, and methods of their detection in living systems. Special attention is paid to the genetically encoded tools, which have been introduced recently and allow avoiding a number of difficulties when working with living systems.
Collapse
Affiliation(s)
- Yuliya V Khramova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Veronika A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Victoria V Chebanenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander I Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | | | - Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexey V Sokolov
- Institute of Experimental Medicine, Saint-Petersburg, 197022, Russia.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
2
|
Abstract
Heme-containing peroxidases are widely distributed in the animal and plant kingdoms and play an important role in host defense by generating potent oxidants. Myeloperoxidase (MPO), the prototype of heme-containing peroxidases, exists in neutrophils and monocytes. MPO has a broad spectrum of microbial killing. The difficulty of producing MPO at a large scale hinders its study and utilization. This study aimed to overexpress recombinant human MPO and characterize its microbicidal activities in vitro and in vivo. A human HEK293 cell line stably expressing recombinant MPO (rMPO) was established as a component of this study. rMPO was overexpressed and purified for studies on its biochemical and enzymatic properties, as well as its microbicidal activities. In this study, rMPO was secreted into culture medium as a monomer. rMPO revealed enzymatic activity similar to that of native MPO. rMPO, like native MPO, was capable of killing a broad spectrum of microorganisms, including Gram-negative and -positive bacteria and fungi, at low nM levels. Interestingly, rMPO could kill antibiotic-resistant bacteria, making it very useful for treatment of nosocomial infections and mixed infections. The administration of rMPO significantly reduced the morbidity and mortality of murine lung infections induced by Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus. In animal safety tests, the administration of 100 nM rMPO via tail vein did not result in any sign of toxic effects. Taken together, the data suggest that rMPO purified from a stably expressing human cell line is a new class of antimicrobial agents with the ability to kill a broad spectrum of pathogens, including bacteria and fungi with or without drug resistance. IMPORTANCE Over the past 2 decades, more than 20 new infectious diseases have emerged. Unfortunately, novel antimicrobial therapeutics are discovered at much lower rates. Infections caused by resistant microorganisms often fail to respond to conventional treatment, resulting in prolonged illness, greater risk of death, and high health care costs. Currently, this is best seen with the lack of a cure for coronavirus disease 2019 (COVID-19). To combat such untreatable microorganisms, there is an urgent need to discover new classes of antimicrobial agents. Myeloperoxidase (MPO) plays an important role in host defense. The difficulty of producing MPO on a large scale hinders its study and utilization. We have produced recombinant MPO at a large scale and have characterized its antimicrobial activities. Most importantly, recombinant MPO significantly reduced the morbidity and mortality of murine pneumonia induced by Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus. Our data suggest that recombinant MPO from human cells is a new class of antimicrobials with a broad spectrum of activity.
Collapse
|
3
|
Arnhold J. Heme Peroxidases at Unperturbed and Inflamed Mucous Surfaces. Antioxidants (Basel) 2021; 10:antiox10111805. [PMID: 34829676 PMCID: PMC8614983 DOI: 10.3390/antiox10111805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023] Open
Abstract
In our organism, mucous surfaces are important boundaries against the environmental milieu with defined fluxes of metabolites through these surfaces and specific rules for defense reactions. Major mucous surfaces are formed by epithelia of the respiratory system and the digestive tract. The heme peroxidases lactoperoxidase (LPO), myeloperoxidase (MPO), and eosinophil peroxidase (EPO) contribute to immune protection at epithelial surfaces and in secretions. Whereas LPO is secreted from epithelial cells and maintains microbes in surface linings on low level, MPO and EPO are released from recruited neutrophils and eosinophils, respectively, at inflamed mucous surfaces. Activated heme peroxidases are able to oxidize (pseudo)halides to hypohalous acids and hypothiocyanite. These products are involved in the defense against pathogens, but can also contribute to cell and tissue damage under pathological conditions. This review highlights the beneficial and harmful functions of LPO, MPO, and EPO at unperturbed and inflamed mucous surfaces. Among the disorders, special attention is directed to cystic fibrosis and allergic reactions.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
| |
Collapse
|
4
|
The inhibition of lactoperoxidase catalytic activity through mesna (2-mercaptoethane sodium sulfonate). J Inorg Biochem 2019; 203:110911. [PMID: 31734539 DOI: 10.1016/j.jinorgbio.2019.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 11/07/2019] [Indexed: 11/24/2022]
Abstract
Here, we show that mesna (sodium-2-mercaptoethane sulfonate), primarily used to prevent nephrotoxicity and urinary tract toxicity caused by chemotherapeutic agents such as cyclophosphamide and ifosfamide, modulates the catalytic activity of lactoperoxidase (LPO) by binding tightly to the enzyme, functioning either as a one electron substrate for LPO Compounds I and II, destabilizing Compound III. Lactoperoxidase is a hemoprotein that utilizes hydrogen peroxide (H2O2) and thiocyanate (SCN-) to produce hypothiocyanous acid (HOSCN), an antimicrobial agent also thought to be associated with carcinogenesis. Our results revealed that mesna binds stably to LPO within the SCN- binding site, dependent of the heme iron moiety, and its combination with LPO-Fe(III) is associated with a disturbance in the water molecule network in the heme cavity. At low concentrations, mesna accelerated the formation and decay of LPO compound II via its ability to serve as a one electron substrate for LPO compounds I and II. At higher concentrations, mesna also accelerated the formation of Compound II but it decays to LPO-Fe(III) directly or through the formation of an intermediate, Compound I*, that displays characteristic spectrum similar to that of LPO Compound I. Mesna inhibits LPO's halogenation activity (IC50 value of 9.08 μM) by switching the reaction from a 2e- to a 1e- pathway, allowing the enzyme to function with significant peroxidase activity (conversion of H2O2 to H2O without generation of HOSCN). Collectively, mesna interaction with LPO may serve as a potential mechanism for modulating its steady-state catalysis, impacting the regulation of local inflammatory and infectious events.
Collapse
|
5
|
Myeloperoxidase and Eosinophil Peroxidase Inhibit Endotoxin Activity and Increase Mouse Survival in a Lipopolysaccharide Lethal Dose 90% Model. J Immunol Res 2019; 2019:4783018. [PMID: 31663003 PMCID: PMC6791248 DOI: 10.1155/2019/4783018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/21/2019] [Accepted: 08/20/2019] [Indexed: 01/24/2023] Open
Abstract
Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are cationic haloperoxidases with potent microbicidal and detoxifying activities. MPO selectively binds to and kills some Gram-positive bacteria (GPB) and all Gram-negative bacteria (GNB) tested. GNB contain endotoxin, i.e., lipopolysaccharide (LPS) comprising a toxic lipid A component. The possibility that MPO and EPO bind and inhibit the endotoxin of GNB was tested by mixing MPO or EPO with LPS or lipid A and measuring for inhibition of endotoxin activity using the chromogenic Limulus amebocyte lysate (LAL) assay. The endotoxin-inhibiting activities of MPO and EPO were also tested in vivo using an LPS 90% lethal dose (LD90) mouse model studied over a five-day period. Mixing MPO or EPO with a fixed quantity of LPS from Escherichia coli O55:B5 or with diphosphoryl lipid A from E. coli F583 inhibited LAL endotoxin activity in proportion to the natural log of the MPO or EPO concentration. MPO and EPO enzymatic activities were not required for inhibition, and MPO haloperoxidase action did not increase endotoxin inhibition. Both MPO and EPO increased mouse survival in the LPS LD90 model. In conclusion, MPO and EPO nonenzymatically inhibited in vitro endotoxin activity using the LAL assay, and MPO and high-dose EPO significantly increased mouse survival in a LPS LD90 model, and such survival was increased in a dose-dependent manner.
Collapse
|
6
|
Schuster D, Zederbauer M, Langer T, Kubin A, Furtmüller PG. Pharmacophore-based discovery of 2-(phenylamino)aceto-hydrazides as potent eosinophil peroxidase (EPO) inhibitors. J Enzyme Inhib Med Chem 2018; 33:1529-1536. [PMID: 30284485 PMCID: PMC6179059 DOI: 10.1080/14756366.2018.1512598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
There is an increasing interest in developing novel eosinophil peroxidase (EPO) inhibitors, in order to provide new treatment strategies against chronic inflammatory and neurodegenerative diseases caused by eosinophilic disorder. Within this study, a ligand-based pharmacophore model for EPO inhibitors was generated and used for in silico screening of large 3 D molecular structure databases, containing more than 4 million compounds. Hits obtained were clustered and a total of 277 compounds were selected for biological assessment. A class of 2-(phenyl)amino-aceto-hydrazides with different substitution pattern on the aromatic ring was found to contain the most potent EPO inhibitors, exhibiting IC50 values down to 10 nM. The generated pharmacophore model therefore, represents a valuable tool for the selection of compounds for biological testing. The compounds identified as potent EPO inhibitors will serve to initiate a hit to lead and lead optimisation program for the development of new therapeutics against eosinophilic disorders.
Collapse
Affiliation(s)
- Daniela Schuster
- Institute of Pharmacy, Division of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical Private University Salzburg, Salzburg, Austria
| | | | - Thierry Langer
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Paul G. Furtmüller
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
7
|
Bertozo LDC, Zeraik ML, Ximenes VF. Dansylglycine, a fluorescent probe for specific determination of halogenating activity of myeloperoxidase and eosinophil peroxidase. Anal Biochem 2017; 532:29-37. [DOI: 10.1016/j.ab.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/25/2022]
|
8
|
El-Fakharany EM, Uversky VN, Redwan EM. Comparative Analysis of the Antiviral Activity of Camel, Bovine, and Human Lactoperoxidases Against Herpes Simplex Virus Type 1. Appl Biochem Biotechnol 2016; 182:294-310. [PMID: 27854033 DOI: 10.1007/s12010-016-2327-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
|
9
|
Singh RP, Singh A, Sirohi HV, Singh AK, Kaur P, Sharma S, Singh TP. Dual binding mode of antithyroid drug methimazole to mammalian heme peroxidases - structural determination of the lactoperoxidase-methimazole complex at 1.97 Å resolution. FEBS Open Bio 2016; 6:640-50. [PMID: 27398304 PMCID: PMC4932444 DOI: 10.1002/2211-5463.12051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 11/09/2022] Open
Abstract
Lactoperoxidase (LPO, EC 1.11.1.7) is a member of the mammalian heme peroxidase family which also includes thyroid peroxidase (TPO). These two enzymes have a sequence homology of 76%. The structure of LPO is known but not that of TPO. In order to determine the mode of binding of antithyroid drugs to thyroid peroxidase, we have determined the crystal structure of LPO complexed with an antithyroid drug, methimazole (MMZ) at 1.97 Å resolution. LPO was isolated from caprine colostrum, purified to homogeneity and crystallized with 20% poly(ethylene glycol)‐3350. Crystals of LPO were soaked in a reservoir solution containing MMZ. The structure determination showed the presence of two crystallographically independent molecules in the asymmetric unit. Both molecules contained one molecule of MMZ, but with different orientations. MMZ was held tightly between the heme moiety on one side and the hydrophobic parts of the side chains of Arg255, Glu258, and Leu262 on the opposite side. The back of the cleft contained the side chains of Gln105 and His109 which also interacted with MMZ. In both orientations, MMZ had identical buried areas and formed a similar number of interactions. It appears that the molecules of MMZ can enter the substrate‐binding channel of LPO in two opposite orientations. But once they reach the distal heme pocket, their orientations are frozen due to equally tight packing of MMZ in both orientations. This is a novel example of an inhibitor binding to an enzyme with two orientations at the same site with nearly equal occupancies.
Collapse
Affiliation(s)
- Rashmi Prabha Singh
- Department of Biophysics All India Institute of Medical Sciences New Delhi India
| | - Avinash Singh
- Department of Biophysics All India Institute of Medical Sciences New Delhi India
| | - Harsh Vardhan Sirohi
- Department of Biophysics All India Institute of Medical Sciences New Delhi India
| | - Amit Kumar Singh
- Department of Biophysics All India Institute of Medical Sciences New Delhi India
| | - Punit Kaur
- Department of Biophysics All India Institute of Medical Sciences New Delhi India
| | - Sujata Sharma
- Department of Biophysics All India Institute of Medical Sciences New Delhi India
| | - Tej P Singh
- Department of Biophysics All India Institute of Medical Sciences New Delhi India
| |
Collapse
|
10
|
Sokolov AV, Kostevich VA, Zakharova ET, Samygina VR, Panasenko OM, Vasilyev VB. Interaction of ceruloplasmin with eosinophil peroxidase as compared to its interplay with myeloperoxidase: Reciprocal effect on enzymatic properties. Free Radic Res 2015; 49:800-11. [DOI: 10.3109/10715762.2015.1005615] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Abu-Soud HM, Maitra D, Shaeib F, Khan SN, Byun J, Abdulhamid I, Yang Z, Saed GM, Diamond MP, Andreana PR, Pennathur S. Disruption of heme-peptide covalent cross-linking in mammalian peroxidases by hypochlorous acid. J Inorg Biochem 2014; 140:245-54. [PMID: 25193127 PMCID: PMC4449957 DOI: 10.1016/j.jinorgbio.2014.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 12/14/2022]
Abstract
Myeloperoxidase (MPO), lactoperoxidase (LPO) and eosinophil peroxidase (EPO) play a central role in oxidative damage in inflammatory disorders by utilizing hydrogen peroxide and halides/pseudo halides to generate the corresponding hypohalous acid. The catalytic sites of these enzymes contain a covalently modified heme group, which is tethered to the polypeptide chain at two ester linkages via the methyl group (MPO, EPO and LPO) and one sulfonium bond via the vinyl group (MPO only). Covalent cross-linking of the catalytic site heme to the polypeptide chain in peroxidases is thought to play a protective role, since it renders the heme moiety less susceptible to the oxidants generated by these enzymes. Mass-spectrometric analysis revealed the following possible pathways by which hypochlorous acid (HOCl) disrupts the heme-protein cross-linking: (1) the methyl-ester bond is cleaved to form an alcohol; (2) the alcohol group undergoes an oxygen elimination reaction via the formation of an aldehyde intermediate or undergoes a demethylation reaction to lose the terminal CH2 group; and (3) the oxidative cleavage of the vinyl-sulfonium linkage. Once the heme moiety is released it undergoes cleavage at the carbon-methyne bridge either along the δ-β or a α-γ axis to form different pyrrole derivatives. These results indicate that covalent cross-linking is not enough to protect the enzymes from HOCl mediated heme destruction and free iron release. Thus, the interactions of mammalian peroxidases with HOCl modulates their activity and sets a stage for initiation of the Fenton reaction, further perpetuating oxidative damage at sites of inflammation.
Collapse
Affiliation(s)
- Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Faten Shaeib
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sana N Khan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ibrahim Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ghassan M Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA 30912, USA
| | - Peter R Andreana
- The University of Toledo, Department of Chemistry and School of Green Chemistry and Engineering, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Malik A, Batra JK. Antimicrobial activity of human eosinophil granule proteins: involvement in host defence against pathogens. Crit Rev Microbiol 2012; 38:168-81. [PMID: 22239733 DOI: 10.3109/1040841x.2011.645519] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eosinophils have been associated with the pathophysiology of various allergic diseases and asthma. Eosinophils secrete a number of granule proteins that have been identified as effector molecules responsible for many of the actions of eosinophils. The four major eosinophil granule proteins, major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil derived neurotoxin (EDN) and eosinophil peroxidase have been shown to be involved in a number of eosinophil associated functions. EDN possesses antiviral activity against single stranded RNA viruses like respiratory syncytial virus, Hepatitis and HIV, whereas ECP and MBP have antibacterial and antiparasitic properties. This review summarizes the studies on antipathogenic activities of eosinophil granule proteins against bacteria, viruses, protozoans and helminths.
Collapse
Affiliation(s)
- Anu Malik
- Immunochemistry Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
13
|
Souza CEA, Maitra D, Saed GM, Diamond MP, Moura AA, Pennathur S, Abu-Soud HM. Hypochlorous acid-induced heme degradation from lactoperoxidase as a novel mechanism of free iron release and tissue injury in inflammatory diseases. PLoS One 2011; 6:e27641. [PMID: 22132121 PMCID: PMC3222650 DOI: 10.1371/journal.pone.0027641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/21/2011] [Indexed: 12/02/2022] Open
Abstract
Lactoperoxidase (LPO) is the major consumer of hydrogen peroxide (H2O2) in the airways through its ability to oxidize thiocyanate (SCN−) to produce hypothiocyanous acid, an antimicrobial agent. In nasal inflammatory diseases, such as cystic fibrosis, both LPO and myeloperoxidase (MPO), another mammalian peroxidase secreted by neutrophils, are known to co-localize. The aim of this study was to assess the interaction of LPO and hypochlorous acid (HOCl), the final product of MPO. Our rapid kinetic measurements revealed that HOCl binds rapidly and reversibly to LPO-Fe(III) to form the LPO-Fe(III)-OCl complex, which in turn decayed irreversibly to LPO Compound II through the formation of Compound I. The decay rate constant of Compound II decreased with increasing HOCl concentration with an inflection point at 100 µM HOCl, after which the decay rate increased. This point of inflection is the critical concentration of HOCl beyond which HOCl switches its role, from mediating destabilization of LPO Compound II to LPO heme destruction. Lactoperoxidase heme destruction was associated with protein aggregation, free iron release, and formation of a number of fluorescent heme degradation products. Similar results were obtained when LPO-Fe(II)-O2, Compound III, was exposed to HOCl. Heme destruction can be partially or completely prevented in the presence of SCN−. On the basis of the present results we concluded that a complex bi-directional relationship exists between LPO activity and HOCl levels at sites of inflammation; LPO serve as a catalytic sink for HOCl, while HOCl serves to modulate LPO catalytic activity, bioavailability, and function.
Collapse
Affiliation(s)
- Carlos Eduardo A. Souza
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | | | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ranguelova K, Chatterjee S, Ehrenshaft M, Ramirez DC, Summers FA, Kadiiska MB, Mason RP. Protein Radical Formation Resulting from Eosinophil Peroxidase-catalyzed Oxidation of Sulfite. J Biol Chem 2010; 285:24195-205. [PMID: 20501663 DOI: 10.1074/jbc.m109.069054] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eosinophil peroxidase (EPO) is an abundant heme protein in eosinophils that catalyzes the formation of cytotoxic oxidants implicated in asthma, allergic inflammatory disorders, and cancer. It is known that some proteins with peroxidase activity (horseradish peroxidase and prostaglandin hydroperoxidase) can catalyze oxidation of bisulfite (hydrated sulfur dioxide), leading to the formation of sulfur trioxide anion radical ((.)SO(3)(-)). This free radical further reacts with oxygen to form peroxymonosulfate anion radical ((-)O(3)SOO(.)) and the very reactive sulfate anion radical (SO(4)()), which is nearly as strong an oxidant as the hydroxyl radical. However, the ability of EPO to generate reactive sulfur radicals has not yet been reported. Here we demonstrate that eosinophil peroxidase/H(2)O(2) is able to oxidize bisulfite, ultimately forming the sulfate anion radical (SO(4)()), and that these reactive intermediates can oxidize target proteins to protein radicals, thereby initiating protein oxidation. We used immuno-spin trapping and confocal microscopy to study protein oxidation by EPO/H(2)O(2) in the presence of bisulfite in a pure enzymatic system and in human promyelocytic leukemia HL-60 clone 15 cells, maturated to eosinophils. Polyclonal antiserum raised against the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) detected the presence of DMPO covalently attached to the proteins resulting from the DMPO trapping of protein free radicals. We found that sulfite oxidation mediated by EPO/H(2)O(2) induced the formation of radical-derived DMPO spin-trapped human serum albumin and, to a lesser extent, of DMPO-EPO. These studies suggest that EPO-dependent oxidative damage may play a role in tissue injury in bisulfite-exacerbated eosinophilic inflammatory disorders.
Collapse
Affiliation(s)
- Kalina Ranguelova
- Laboratory of Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Comhair SAA, Erzurum SC. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2010; 12:93-124. [PMID: 19634987 PMCID: PMC2824520 DOI: 10.1089/ars.2008.2425] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An imbalance in reducing and oxidizing (redox) systems favoring a more oxidative environment is present in asthma and linked to the pathophysiology of the defining symptoms and signs including airflow limitation, hyper-reactivity, and airway remodeling. High levels of hydrogen peroxide, nitric oxide ((*)NO), and 15-F(2t)-isoprostane in exhaled breath, and excessive oxidative protein products in lung epithelial lining fluid, peripheral blood, and urine provide abundant evidence for pathologic oxidizing processes in asthma. Parallel studies document loss of reducing potential by nonenzymatic and enzymatic antioxidants. The essential first line antioxidant enzymes superoxide dismutases (SOD) and catalase are reduced in asthma as compared to healthy individuals, with lowest levels in those patients with the most severe asthma. Loss of SOD and catalase activity is related to oxidative modifications of the enzymes, while other antioxidant gene polymorphisms are linked to susceptibility to develop asthma. Monitoring of exhaled (*)NO has entered clinical practice because it is useful to optimize asthma care, and a wide array of other biochemical oxidative and nitrative biomarkers are currently being evaluated for asthma monitoring and phenotyping. Novel therapeutic strategies that target correction of redox abnormalities show promise for the treatment of asthma.
Collapse
Affiliation(s)
- Suzy A A Comhair
- Pathobiology, Lerner Research Institute, and the Respiratory Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
16
|
Battistuzzi G, Bellei M, Vlasits J, Banerjee S, Furtmüller PG, Sola M, Obinger C. Redox thermodynamics of lactoperoxidase and eosinophil peroxidase. Arch Biochem Biophys 2009; 494:72-7. [PMID: 19944669 DOI: 10.1016/j.abb.2009.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Eosinophil peroxidase (EPO) and lactoperoxidase (LPO) are important constituents of the innate immune system of mammals. These heme enzymes belong to the peroxidase-cyclooxygenase superfamily and catalyze the oxidation of thiocyanate, bromide and nitrite to hypothiocyanate, hypobromous acid and nitrogen dioxide that are toxic for invading pathogens. In order to gain a better understanding of the observed differences in substrate specificity and oxidation capacity in relation to heme and protein structure, a comprehensive spectro-electrochemical investigation was performed. The reduction potential (E degrees ') of the Fe(III)/Fe(II) couple of EPO and LPO was determined to be -126mV and -176mV, respectively (25 degrees C, pH 7.0). Variable temperature experiments show that EPO and LPO feature different reduction thermodynamics. In particular, reduction of ferric EPO is enthalpically and entropically disfavored, whereas in LPO the entropic term, which selectively stabilizes the oxidized form, prevails on the enthalpic term that favors reduction of Fe(III). The data are discussed with respect to the architecture of the heme cavity and the substrate channel. Comparison with published data for myeloperoxidase demonstrates the effect of heme to protein linkages and heme distortion on the redox chemistry of mammalian peroxidases and in consequence on the enzymatic properties of these physiologically important oxidoreductases.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Singh A, Singh N, Sharma S, Shin K, Takase M, Kaur P, Srinivasan A, Singh T. Inhibition of lactoperoxidase by its own catalytic product: crystal structure of the hypothiocyanate-inhibited bovine lactoperoxidase at 2.3-A resolution. Biophys J 2009; 96:646-54. [PMID: 19167310 PMCID: PMC2716474 DOI: 10.1016/j.bpj.2008.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022] Open
Abstract
To the best of our knowledge, this is the first report on the structure of product-inhibited mammalian peroxidase. Lactoperoxidase is a heme containing an enzyme that catalyzes the inactivation of a wide range of microorganisms. In the presence of hydrogen peroxide, it preferentially converts thiocyanate ion into a toxic hypothiocyanate ion. Samples of bovine lactoperoxidase containing thiocyanate (SCN(-)) and hypothiocyanate (OSCN(-)) ions were purified and crystallized. The structure was determined at 2.3-A resolution and refined to R(cryst) and R(free) factors of 0.184 and 0.221, respectively. The determination of structure revealed the presence of an OSCN(-) ion at the distal heme cavity. The presence of OSCN(-) ions in crystal samples was also confirmed by chemical and spectroscopic analysis. The OSCN(-) ion interacts with the heme iron, Gln-105 N(epsilon1), His-109 N(epsilon2), and a water molecule W96. The sulfur atom of the OSCN(-) ion forms a hypervalent bond with a nitrogen atom of the pyrrole ring D of the heme moiety at an S-N distance of 2.8 A. The heme group is covalently bound to the protein through two ester linkages involving carboxylic groups of Glu-258 and Asp-108 and the modified methyl groups of pyrrole rings A and C, respectively. The heme moiety is significantly distorted from planarity, whereas pyrrole rings A, B, C, and D are essentially planar. The iron atom is displaced by approximately 0.2 A from the plane of the heme group toward the proximal site. The substrate channel resembles a long tunnel whose inner walls contain predominantly aromatic residues such as Phe-113, Phe-239, Phe-254, Phe-380, Phe-381, Phe-422, and Pro-424. A phosphorylated Ser-198 was evident at the surface, in the proximity of the calcium-binding channel.
Collapse
Affiliation(s)
- A.K. Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Nagendra Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Kouichirou Shin
- Nutritional Science Laboratory, Morinaga Milk Industry, Zama, Kanagawa, Japan
| | - Mitsunori Takase
- Nutritional Science Laboratory, Morinaga Milk Industry, Zama, Kanagawa, Japan
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - A. Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - T.P. Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Cheng G, Salerno JC, Cao Z, Pagano PJ, Lambeth JD. Identification and characterization of VPO1, a new animal heme-containing peroxidase. Free Radic Biol Med 2008; 45:1682-94. [PMID: 18929642 PMCID: PMC2659527 DOI: 10.1016/j.freeradbiomed.2008.09.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 08/14/2008] [Accepted: 09/02/2008] [Indexed: 11/22/2022]
Abstract
Animal heme-containing peroxidases play roles in innate immunity, hormone biosynthesis, and the pathogenesis of inflammatory diseases. Using the peroxidase-like domain of Duox1 as a query, we carried out homology searching of the National Center for Biotechnology Information database. Two novel heme-containing peroxidases were identified in humans and mice. One, termed VPO1 for vascular peroxidase 1, exhibits its highest tissue expression in heart and vascular wall. A second, VPO2, present in humans but not in mice, is 63% identical to VPO1 and is highly expressed in heart. The peroxidase homology region of VPO1 shows 42% identity to myeloperoxidase and 57% identity to the insect peroxidase peroxidasin. A molecular model of the VPO1 peroxidase region reveals a structure very similar to that of known peroxidases, including a conserved heme binding cavity, critical catalytic residues, and a calcium binding site. The absorbance spectra of VPO1 are similar to those of lactoperoxidase, and covalent attachment of the heme to VPO1 protein was demonstrated by chemiluminescent heme staining. VPO1 purified from heart or expressed in HEK cells is catalytically active, with a K(m) for H(2)O(2) of 1.5 mM. When co-expressed in cells, VPO1 can use H(2)O(2) produced by NADPH oxidase enzymes. VPO1 is likely to carry out peroxidative reactions previously attributed exclusively to myeloperoxidase in the vascular system.
Collapse
Affiliation(s)
- Guangjie Cheng
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
19
|
Lu T, Galijasevic S, Abdulhamid I, Abu-Soud HM. Analysis of the mechanism by which melatonin inhibits human eosinophil peroxidase. Br J Pharmacol 2008; 154:1308-17. [PMID: 18516076 PMCID: PMC2483384 DOI: 10.1038/bjp.2008.173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/20/2008] [Accepted: 03/19/2008] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Eosinophil peroxidase (EPO) catalyses the formation of oxidants implicated in the pathogenesis of various respiratory diseases including allergy and asthma. Mechanisms for inhibiting EPO, once released, are poorly understood. The aim of this work is to determine the mechanisms by which melatonin, a hormone produced in the brain by the pineal gland, inhibits the catalytic activity of EPO. EXPERIMENTAL APPROACH We utilized H2O2-selective electrode and direct rapid kinetic measurements to determine the pathways by which melatonin inhibits human EPO. KEY RESULTS In the presence of plasma levels of bromide (Br-), melatonin inactivates EPO at two different points in the classic peroxidase cycle. First, it binds to EPO and forms an inactive complex, melatonin-EPO-Br, which restricts access of H2O2 to the catalytic site of the oxidation enzyme. Second, melatonin competes with Br- and switches the reaction from a two electron (2e-) to a one electron (1e-) pathway allowing the enzyme to function with catalase-like activity. Melatonin is a bulky molecule and binds to the entrance of the EPO haem pocket (regulatory sites). Furthermore, Br- seems to enhance the affinity of this binding. In the absence of Br-, melatonin accelerated formation of EPO Compound II and its decay by serving as a 1e- substrate for EPO Compounds I and II. CONCLUSIONS AND IMPLICATIONS The interplay between EPO and melatonin may have a broader implication in the function of several biological systems. This dual regulation by melatonin is unique and represents a new mechanism for melatonin to control EPO and its downstream inflammatory pathways.
Collapse
Affiliation(s)
- T Lu
- Department of Obstetrics and Gynecology, The CS Mott Center for Human Growth and Development, Wayne State University School of Medicine Detroit, MI, USA
| | - S Galijasevic
- Department of Obstetrics and Gynecology, The CS Mott Center for Human Growth and Development, Wayne State University School of Medicine Detroit, MI, USA
| | - I Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine Detroit, MI, USA
| | - H M Abu-Soud
- Department of Obstetrics and Gynecology, The CS Mott Center for Human Growth and Development, Wayne State University School of Medicine Detroit, MI, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
20
|
Singh AK, Singh N, Sharma S, Singh SB, Kaur P, Bhushan A, Srinivasan A, Singh TP. Crystal Structure of Lactoperoxidase at 2.4 Å Resolution. J Mol Biol 2008; 376:1060-75. [DOI: 10.1016/j.jmb.2007.12.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/05/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
|
21
|
Ciaccio C, Gambacurta A, De Sanctis G, Spagnolo D, Sakarikou C, Petrella G, Coletta M. rhEPO (recombinant human eosinophil peroxidase): expression in Pichia pastoris and biochemical characterization. Biochem J 2006; 395:295-301. [PMID: 16396635 PMCID: PMC1422775 DOI: 10.1042/bj20051385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 12/02/2005] [Accepted: 01/06/2006] [Indexed: 11/17/2022]
Abstract
A Pichia pastoris expression system has for the first time been successfully developed to produce rhEPO (recombinant human eosinophil peroxidase). The full-length rhEPO coding sequence was cloned into the pPIC9 vector in frame with the yeast alpha-Factor secretion signal under the transcriptional control of the AOX (acyl-CoA oxidase) promoter, and transformed into P. pastoris strain GS115. Evidence for the production of rhEPO by P. pastoris as a glycosylated dimer precursor of approx. 80 kDa was determined by SDS/PAGE and gel filtration chromatography. Recombinant hEPO undergoes proteolytic processing, similar to that in the native host, to generate two chains of approx. 50 and 20 kDa. A preliminary biochemical characterization of purified rhEPO demonstrated that the spectral and kinetic properties of the recombinant wild-type EPO are comparable with those of the native enzyme and are accompanied by oxidizing activity towards several physiological anionic substrates such as SCN-, Br- and Cl-. On the basis of the estimated K(m) and kcat values it is evident that the pseudohalide SCN- is the most specific substrate for rhEPO, consistent with the catalytic properties of other mammalian EPOs purified from blood.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 2005; 445:199-213. [PMID: 16288970 DOI: 10.1016/j.abb.2005.09.017] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/27/2005] [Accepted: 09/28/2005] [Indexed: 11/30/2022]
Abstract
Myeloperoxidase (MPO), eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase are heme-containing oxidoreductases (EC 1.7.1.11), which bind ligands and/or undergo a series of redox reactions. Though sharing functional and structural homology, reflecting their phylogenetic origin, differences are observed regarding their spectral features, substrate specificities, redox properties, and kinetics of interconversion of the relevant redox intermediates ferric and ferrous peroxidase, compound I, compound II, and compound III. Depending on substrate availability, these heme enzymes path through the halogenation cycle and/or the peroxidase cycle and/or act as poor (pseudo-)catalases. Based on the published crystal structures of free MPO and its complexes with cyanide, bromide and thiocyanate as well as on sequence analysis and modeling, we critically discuss structure-function relationships. This analysis highlights similarities and distinguishing features within the mammalian peroxidases and intents to provide the molecular and enzymatic basis to understand the prominent role of these heme enzymes in host defense against infection, hormone biosynthesis, and pathogenesis.
Collapse
Affiliation(s)
- Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, Metalloprotein Research Group, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
23
|
Spalteholz H, Panasenko OM, Arnhold J. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase. Arch Biochem Biophys 2005; 445:225-34. [PMID: 16111649 DOI: 10.1016/j.abb.2005.06.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 06/28/2005] [Accepted: 06/30/2005] [Indexed: 11/17/2022]
Abstract
The formation of chloro- and bromohydrins from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine following incubation with myeloperoxidase or eosinophil peroxidase in the presence of hydrogen peroxide, chloride and/or bromide was analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. These products were only formed below a certain pH threshold value, that increased with increasing halide concentration. Thermodynamic considerations on halide and pH dependencies of reduction potentials of all redox couples showed that the formation of a given reactive halide species in halide oxidation coupled with the reduction of compound I of heme peroxidases is only possible below a certain pH threshold that depends on halide concentration. The comparison of experimentally derived and calculated data revealed that Cl(2), Br(2), or BrCl will primarily be formed by the myeloperoxidase-H(2)O(2)-halide system. However, the eosinophil peroxidase-H(2)O(2)-halide system forms directly HOCl and HOBr.
Collapse
Affiliation(s)
- Holger Spalteholz
- Institute of Medical Physics and Biophysics, University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany
| | | | | |
Collapse
|
24
|
Tahboub YR, Galijasevic S, Diamond MP, Abu-Soud HM. Thiocyanate modulates the catalytic activity of mammalian peroxidases. J Biol Chem 2005; 280:26129-36. [PMID: 15894800 DOI: 10.1074/jbc.m503027200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the potential role of the co-substrate, thiocyanate (SCN-), in modulating the catalytic activity of myeloperoxidase (MPO) and other members of the mammalian peroxidase superfamily (lactoperoxidase (LPO) and eosinophil peroxidase (EPO)). Pre-incubation of SCN- with MPO generates a more complex biological setting, because SCN- serves as either a substrate or inhibitor, causing diverse impacts on the MPO heme iron microenvironment. Consistent with this hypothesis, the relationship between the association rate constant of nitric oxide binding to MPO-Fe(III) as a function of SCN- concentration is bell-shaped, with a trough comparable with normal SCN- plasma levels. Rapid kinetic measurements indicate that MPO, EPO, and LPO Compound I formation occur at rates slower than complex decay, and its formation serves to simultaneously catalyze SCN- via 1e- and 2e- oxidation pathways. For the three enzymes, Compound II formation is a fundamental feature of catalysis and allows the enzymes to operate at a fraction of their possible maximum activities. MPO and EPO Compound II is relatively stable and decays gradually within minutes to ground state upon H2O2 exhaustion. In contrast, LPO Compound II is unstable and decays within seconds to ground state, suggesting that SCN- may serve as a substrate for Compound II. Compound II formation can be partially or completely prevented by increasing SCN- concentration, depending on the experimental conditions. Collectively, these results illustrate for the first time the potential mechanistic differences of these three enzymes. A modified kinetic model, which incorporates our current findings with the mammalian peroxidases classic cycle, is presented.
Collapse
Affiliation(s)
- Yahya R Tahboub
- Department of Obstetrics and Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Ajay Srivastava
- School of Medicine, University of Texas Medical Branch, Galveston 77555, USA
| | | | | |
Collapse
|
26
|
Furtmüller PG, Arnhold J, Jantschko W, Pichler H, Obinger C. Redox properties of the couples compound I/compound II and compound II/native enzyme of human myeloperoxidase. Biochem Biophys Res Commun 2003; 301:551-7. [PMID: 12565898 DOI: 10.1016/s0006-291x(02)03075-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Myeloperoxidase (MPO) is an important component of the neutrophil's antimicrobial armory and has been implicated in promoting tissue damage in numerous inflammatory diseases. For the first time the standard reduction potential of the redox couple compound II/native enzyme has been determined to be (0.97+/-0.01)V at pH 7.0 and 25 degrees C. This was achieved by rapid mixing of preformed compound II with either tyrosine or nitrite by using the sequential-mixing stopped-flow technique and measuring spectrophotometrically the concentrations of the reacting species and products at equilibrium. Using the recently determined standard reduction potential for the couple compound I/native enzyme (1.16 V), the reduction potential of the couple compound I/compound II was calculated to be 1.35 V at pH 7 and 25 degrees C. These data reveal substantial differences between the two known heme peroxidase superfamilies and reflect the dramatic differences observed in the oxidisability of substrates by the MPO redox intermediates compound I and compound II.
Collapse
Affiliation(s)
- Paul Georg Furtmüller
- Institute of Chemistry, Metalloprotein Research Group, University of Agricultural Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | |
Collapse
|
27
|
Jantschko W, Furtmüller PG, Allegra M, Livrea MA, Jakopitsch C, Regelsberger G, Obinger C. Redox intermediates of plant and mammalian peroxidases: a comparative transient-kinetic study of their reactivity toward indole derivatives. Arch Biochem Biophys 2002; 398:12-22. [PMID: 11811944 DOI: 10.1006/abbi.2001.2674] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A comparative study on the reactivity of five indole derivatives (tryptamine, N-acetyltryptamine, tryptophan, melatonin, and serotonin), with the redox intermediates compound I (k2) and compound II (k3) of the plant enzyme horseradish peroxidase (HRP) and the two mammalian enzymes lactoperoxidase (LPO) and myeloperoxidase (MPO), was performed using the sequential-mixing stopped-flow technique. The calculated bimolecular rate constants (k2, k3) revealed substantial differences regarding the oxidazibility of the substrates by redox intermediates at pH 7.0 and 25 degrees C. With HRP it was shown that k2 and k3 are mainly determined by the reduction potential (Eo') of the substrate with k2 being 7-45 times higher than k3. Compound I of mammalian peroxidases was a much better oxidant than HRP compound I with the consequence that the influence of the indole structure on k2 of LPO and MPO was small varying by a factor of only 88 and 38, respectively, which is in strong contrast to a factor of 160,000 determined for k2 of HRP. Interestingly, the k3 values for all three enzymes were very similar. Oxidation of substrates by mammalian peroxidase compound II is strongly constrained by the nature of the substrate. The k3 values for the five indoles varied by a factor of 3,570 (LPO) and 200,000 (MPO), suggesting that the reduction potential of compound II of mammalian peroxidase is less positive than that of compound I, which is in contrast to the plant enzyme.
Collapse
Affiliation(s)
- Walter Jantschko
- Institute of Chemistry, University of Agricultural Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | | | | | | | | | | | | |
Collapse
|
28
|
Arnhold J, Furtmüller PG, Regelsberger G, Obinger C. Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5142-8. [PMID: 11589706 DOI: 10.1046/j.0014-2956.2001.02449.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The standard reduction potential of the redox couple compound I/native enzyme has been determined for human myeloperoxidase (MPO) and eosinophil peroxidase (EPO) at pH 7.0 and 25 degrees C. This was achieved by rapid mixing of peroxidases with either hydrogen peroxide or hypochlorous acid and measuring spectrophotometrically concentrations of the reacting species and products at equilibrium. By using hydrogen peroxide, the standard reduction potential at pH 7.0 and 25 degrees C was 1.16 +/- 0.01 V for MPO and 1.10 +/- 0.01 V for EPO, independently of the concentration of hydrogen peroxide and peroxidases. In the case of hypochlorous acid, standard reduction potentials were dependent on the hypochlorous acid concentration used. They ranged from 1.16 V at low hypochlorous acid to 1.09 V at higher hypochlorous acid for MPO and from 1.10 V to 1.03 V for EPO. Thus, consistent results for the standard reduction potentials of redox couple compound I/native enzyme of both peroxidases were obtained with all hydrogen peroxide and at low hypochlorous acid concentrations: possible reasons for the deviation at higher concentrations of hypochlorous acid are discussed. They include instability of hypochlorous acid, reactions of hypochlorous acid with different amino-acid side chains in peroxidases as well as the appearance of a compound I-chloride complex.
Collapse
Affiliation(s)
- J Arnhold
- Institute of Medical Physics and Biophysics, School of Medicine, University of Leipzig, Germany
| | | | | | | |
Collapse
|
29
|
Furtmüller PG, Jantschko W, Regelsberger G, Obinger C. Spectral and kinetic studies on eosinophil peroxidase compounds I and II and their reaction with ascorbate and tyrosine. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1548:121-8. [PMID: 11451445 DOI: 10.1016/s0167-4838(01)00230-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eosinophil peroxidase, the major granule protein in eosinophils, is the least studied human peroxidase. Here, we have performed spectral and kinetic measurements to study the nature of eosinophil peroxidase intermediates, compounds I and II, and their reduction by the endogenous one-electron donors ascorbate and tyrosine using the sequential-mixing stopped-flow technique. We demonstrate that the peroxidase cycle of eosinophil peroxidase involves a ferryl/porphyrin radical compound I and a ferryl compound II. In the absence of electron donors, compound I is shown to be transformed to a species with a compound II-like spectrum. In the presence of ascorbate or tyrosine compound I is reduced to compound II with a second-order rate constant of (1.0+/-0.2)x10(6) M(-1) s(-1) and (3.5+/-0.2)x10(5) M(-1) s(-1), respectively (pH 7.0, 15 degrees C). Compound II is then reduced by ascorbate and tyrosine to native enzyme with a second-order rate constant of (6.7+/-0.06)x10(3) M(-1) s(-1) and (2.7+/-0.06)x10(4) M(-1) s(-1), respectively. This study revealed that eosinophil peroxidase compounds I and II are able to react with tyrosine and ascorbate via one-electron oxidations and therefore generate monodehydroascorbate and tyrosyl radicals. The relatively fast rates of the compound I reduction demonstrate that these reactions may take place in vivo and are physiologically relevant.
Collapse
Affiliation(s)
- P G Furtmüller
- Institute of Chemistry, University of Agricultural Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | |
Collapse
|
30
|
Arlandson M, Decker T, Roongta VA, Bonilla L, Mayo KH, MacPherson JC, Hazen SL, Slungaard A. Eosinophil peroxidase oxidation of thiocyanate. Characterization of major reaction products and a potential sulfhydryl-targeted cytotoxicity system. J Biol Chem 2001; 276:215-24. [PMID: 11013238 DOI: 10.1074/jbc.m004881200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the pseudohalide thiocyanate (SCN(-)) is the preferred substrate for eosinophil peroxidase (EPO) in fluids of physiologic halide composition, the product(s) of this reaction have not been directly identified, and mechanisms underlying their cytotoxic potential are poorly characterized. We used nuclear magnetic resonance spectroscopy (NMR), electrospray ionization mass spectrometry, and quantitative chemical analysis to identify the principal reaction products of both the EPO/SCN(-)/H(2)O(2) system and activated eosinophils as roughly equimolar amounts of OSCN(-) (hypothiocyanite) and OCN(-) (cyanate). Red blood cells exposed to increasing concentrations of OSCN(-)/OCN(-) are first depleted of glutathione, after which glutathione S-transferase and glyceraldehyde-3-phosphate dehydrogenase then ATPases undergo sulfhydryl (SH) reductant-reversible inactivation before lysing. OSCN(-)/OCN(-) inactivates red blood cell membrane ATPases 10-1000 times more potently than do HOCl, HOBr, and H(2)O(2). Exposure of glutathione S-transferase to [(14)C]OSCN(-)/OCN(-) causes SH reductant-reversible disulfide bonding and covalent isotope labeling. We propose that EPO/SCN(-)/H(2)O(2) reaction products comprise a potential SH-targeted cytotoxic system that functions in striking contrast to HOCl, the highly but relatively indiscriminantly reactive product of the neutrophil myeloperoxidase system.
Collapse
Affiliation(s)
- M Arlandson
- Department of Internal Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
We now show that NO serves as a substrate for multiple members of the mammalian peroxidase superfamily under physiological conditions. Myeloperoxidase (MPO), eosinophil peroxidase, and lactoperoxidase all catalytically consumed NO in the presence of the co-substrate hydrogen peroxide (H(2)O(2)). Near identical rates of NO consumption by the peroxidases were observed in the presence versus absence of plasma levels of Cl(-). Although rates of NO consumption in buffer were accelerated in the presence of a superoxide-generating system, subsequent addition of catalytic levels of a model peroxidase, MPO, to NO-containing solutions resulted in the rapid acceleration of NO consumption. The interaction between NO and compounds I and II of MPO were further investigated during steady-state catalysis by stopped-flow kinetics. NO dramatically influenced the build-up, duration, and decay of steady-state levels of compound II, the rate-limiting intermediate in the classic peroxidase cycle, in both the presence and absence of Cl(-). Collectively, these results suggest that peroxidases may function as a catalytic sink for NO at sites of inflammation, influencing its bioavailability. They also support the potential existence of a complex and interdependent relationship between NO levels and the modulation of steady-state catalysis by peroxidases in vivo.
Collapse
Affiliation(s)
- H M Abu-Soud
- Department of Cell Biology and Department of Cardiology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
32
|
Thomsen AR, Sottrup-Jensen L, Gleich GJ, Oxvig C. The status of half-cystine residues and locations of N-glycosylated asparagine residues in human eosinophil peroxidase. Arch Biochem Biophys 2000; 379:147-52. [PMID: 10864452 DOI: 10.1006/abbi.2000.1866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The determination by protein chemistry methods of the half-cystine status in human eosinophil peroxidase (EPO) is reported. EPO is two-chained and has a total of 14 half-cystine residues. Cys141 and Cys152 form an intrachain bridge in the light chain of EPO. Disulfide bridges connect Cys253 and Cys263, Cys257 and Cys287, Cys359 and Cys370, Cys570 and Cys635, and Cys676 and Cys701, forming five intrachain disulfide bridges in the heavy chain of EPO. Cys291 and Cys455 are found to be unpaired, containing free sulfhydryl groups. The pattern of disulfide bridges is in agreement with that predicted from the X-ray crystallographic structure of canine myeloperoxidase (MPO) (Zeng, J., and Fenna, R. E. (1992) J. Mol. Biol. 226, 185-207) to be general for the class of mammalian peroxidases, including EPO, MPO, lactoperoxidase (LPO), and thyroid peroxidase (TPO). Of four candidate sites in EPO for attachment of glucosamine-based carbohydrate, Asn327 and Asn363 are occupied, whereas Asn700 and Asn708 are unsubstituted. Furthermore, a discrepancy in the literature regarding the sequence of residues 645-659 is resolved.
Collapse
Affiliation(s)
- A R Thomsen
- Department of Molecular and Structural Biology, University of Aarhus, Science Park, Gustav Wieds Vej 10 C, Arhus C, DK-8000, Denmark
| | | | | | | |
Collapse
|
33
|
Madhavan ND, Naidu KA. Purification and partial characterization of peroxidase from human term placenta of non-smokers: metabolism of benzo(a)pyrene-7, 8-dihydrodiol. Placenta 2000; 21:501-9. [PMID: 10940200 DOI: 10.1053/plac.2000.0537] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Peroxidase (Donor: H(2)O(2)oxidoreductase EC 1.11.1.7) from human term placentae of non-smokers was purified to homogeneity by a combination of NH(4)Cl extraction, affinity chromatography, (NH(4))(2)SO(4)precipitation, ion-exchange and gel filtration chromatography. The homogeneity of purified human placental peroxidase (HTPP) was confirmed by gel filtration, reverse phase high performance liquid chromatography (HPLC) and SDS-PAGE. Peroxidase was found to be a membrane bound enzyme. A high concentration of NH(4)Cl (1.2 m) was needed to extract and solublize the enzyme. Removal of the salt resulted in irreversible precipitation of the enzyme. The protein exhibited a molecular mass of 126 000 kDa according to gel filtration and approximately 60 000 kDa by SDS-PAGE, indicating that the peroxidase is a homodimer. The purified peroxidase showed an optimum pH range of 7 to 8.5 and the K(m)for H(2)O(2)and guaiacol were found to be 0.08 m m and 10.0 m m, respectively. The purified peroxidase oxidized several substrates, namely potassium iodide, tetramethyl benzidine, guaiacol, ortho dianisidne and tyrosine. The enzyme was resistant to thermal denaturation up to 70 degrees C and also to chaotropic agents, guanidinium chloride and urea. Spectral properties indicated the presence of Soret band at 433 which shifted to 451 nm on complexation with cyanide. The circular dichroism studies showed that HTPP has a predominantly helical secondary structure. The enzyme showed similarities to the myeloperoxidase with regard to spectral and catalytical properties but differed significantly in amino acid composition, the R(z)value and molecular mass. Purified HTPP differed from eosinophil peroxidase in all physico-chemical properties indicating that it is not of eosinophil origin, but may represent a distinct, constitutive peroxidase in human placenta. Further, purified peroxidase catalyzed oxidation of benzo(a)pyrene-7, 8-dihydrodiol in presence of tyrosine and hydrogen peroxide to BP-tetrols, the hydrolytic products of BP-diol-epoxides, demonstrating the ability of peroxidase in bioactivation of benzo(a)pyrene in human placenta.
Collapse
Affiliation(s)
- N D Madhavan
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore, India
| | | |
Collapse
|
34
|
Wolf SM, Ferrari RP, Traversa S, Biemann K. Determination of the carbohydrate composition and the disulfide bond linkages of bovine lactoperoxidase by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2000; 35:210-217. [PMID: 10679983 DOI: 10.1002/(sici)1096-9888(200002)35:2<210::aid-jms931>3.0.co;2-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The extent and distribution of N-glycosylation and the nature of most of the disulfide bond linkages were determined for bovine lactoperoxidase through proteolytic and glycolytic digestions combined with matrix-assisted laser desorption/ionization mass spectrometric analysis. In addition, 98% of the primary sequence of the protein was confirmed. All five of the asparagines present in sequons were found to be glycosylated, predominantly by high mannose and complex structures. Six disulfide bonds were assigned, including Cys 32-Cys 45, Cys 146-Cys 156, Cys 150-Cys 174, Cys 254-Cys 265, Cys 473-Cys 530 and Cys 571-Cys 596.
Collapse
Affiliation(s)
- S M Wolf
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
35
|
Lardinois OM, Medzihradszky KF, Ortiz de Montellano PR. Spin trapping and protein cross-linking of the lactoperoxidase protein radical. J Biol Chem 1999; 274:35441-8. [PMID: 10585414 DOI: 10.1074/jbc.274.50.35441] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lactoperoxidase (LPO) reacts with H(2)O(2) to sequentially give two Compound I intermediates: the first with a ferryl (Fe(IV)=O) species and a porphyrin radical cation, and the second with the same ferryl species and a presumed protein radical. However, little actual evidence is available for the protein radical. We report here that LPO reacts with the spin trap 3,5-dibromo-4-nitroso-benzenesulfonic acid to give a 1:1 protein-bound radical adduct. Furthermore, LPO undergoes the H(2)O(2)-dependent formation of dimeric and trimeric products. Proteolytic digestion and mass spectrometric analysis indicates that the dimer is held together by a dityrosine link between Tyr-289 in each of two LPO molecules. The dimer retains full catalytic activity and reacts to the same extent with the spin trap, indicating that the spin trap reacts with a radical center other than Tyr-289. The monomeric protein recovered from incubations of LPO with H(2)O(2) is fully active but no longer forms dimers when incubated with H(2)O(2), clear evidence that it has also been structurally modified. Myeloperoxidase, a naturally dimeric protein, and eosinophil peroxidase do not undergo H(2)O(2)-dependent oligomerization. Analysis of the interface in the LPO dimers indicates that the same protein surface is involved in LPO dimerization as in the normal formation of myeloperoxidase dimers. Oligomerization of LPO alters its physical properties and may alter its ability to interact with macromolecular substrates.
Collapse
Affiliation(s)
- O M Lardinois
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446, USA
| | | | | |
Collapse
|
36
|
Wu W, Chen Y, Hazen SL. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem 1999; 274:25933-44. [PMID: 10464338 DOI: 10.1074/jbc.274.36.25933] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eosinophil peroxidase (EPO) has been implicated in promoting oxidative tissue injury in conditions ranging from asthma and other allergic inflammatory disorders to cancer and parasitic/helminthic infections. Studies thus far on this unique peroxidase have primarily focused on its unusual substrate preference for bromide (Br(-)) and the pseudohalide thiocyanate (SCN(-)) forming potent hypohalous acids as cytotoxic oxidants. However, the ability of EPO to generate reactive nitrogen species has not yet been reported. We now demonstrate that EPO readily uses nitrite (NO(2)(-)), a major end-product of nitric oxide ((.)NO) metabolism, as substrate to generate a reactive intermediate that nitrates protein tyrosyl residues in high yield. EPO-catalyzed nitration of tyrosine occurred more readily than bromination at neutral pH, plasma levels of halides, and pathophysiologically relevant concentrations of NO(2)(-). Furthermore, EPO was significantly more effective than MPO at promoting tyrosine nitration in the presence of plasma levels of halides. Whereas recent studies suggest that MPO can also promote protein nitration through indirect oxidation of NO(2)(-) with HOCl, we found no evidence that EPO can indirectly mediate protein nitration by a similar reaction between HOBr and NO(2)(-). EPO-dependent nitration of tyrosine was modulated over a physiologically relevant range of SCN(-) concentrations and was accompanied by formation of tyrosyl radical addition products (e.g. o,o'-dityrosine, pulcherosine, trityrosine). The potential role of specific antioxidants and nucleophilic scavengers on yields of tyrosine nitration and bromination by EPO are examined. Thus, EPO may contribute to nitrotyrosine formation in inflammatory conditions characterized by recruitment and activation of eosinophils.
Collapse
Affiliation(s)
- W Wu
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
37
|
Oxvig C, Thomsen AR, Overgaard MT, Sorensen ES, Højrup P, Bjerrum MJ, Gleich GJ, Sottrup-Jensen L. Biochemical evidence for heme linkage through esters with Asp-93 and Glu-241 in human eosinophil peroxidase. The ester with Asp-93 is only partially formed in vivo. J Biol Chem 1999; 274:16953-8. [PMID: 10358043 DOI: 10.1074/jbc.274.24.16953] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The covalent heme attachment has been extensively studied by spectroscopic methods in myeloperoxidase and lactoperoxidase (LPO) but not in eosinophil peroxidase (EPO). We show that heme linkage to the heavy chain is invariably present, whereas heme linkage to the light chain of EPO is present in less than one-third of EPO molecules. Mass analysis of isolated heme bispeptides supports the hypothesis of a heme b linked through two esters to the polypeptide. Mass analysis of heme monopeptides reveals that >90% have a nonderivatized methyl group at the position of the light chain linkage. Apparently, an ester had not been formed during biosynthesis. The light chain linkage could be formed by incubation with hydrogen peroxide, in accordance with a recent hypothesis of autocatalytic heme attachment based on studies with LPO (DePillis, G. D., Ozaki, S., Kuo, J. M., Maltby, D. A., and Ortiz de Montellano P. R. (1997) J. Biol. Chem. 272, 8857-8860). By sequence analysis of isolated heme peptides after aminolysis, we unambiguously identified the acidic residues, Asp-93 of the light chain and Glu-241 of the heavy chain, that form esters with the heme group. This is the first biochemical support for ester linkage to two specific residues in eosinophil peroxidase. From a parallel study with LPO, we show that Asp-125 and Glu-275 are engaged in ester linkage. The species with a nonderivatized methyl group was not found among LPO peptides.
Collapse
Affiliation(s)
- C Oxvig
- Department of Molecular and Structural Biology, Science Park Division, University of Aarhus, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kiryu C, Makiuchi M, Miyazaki J, Fujinaga T, Kakinuma K. Physiological production of singlet molecular oxygen in the myeloperoxidase-H2O2-chloride system. FEBS Lett 1999; 443:154-8. [PMID: 9989595 DOI: 10.1016/s0014-5793(98)01700-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The putative role of singlet oxygen (1O2) in the respiratory burst of neutrophils has remained elusive due to the lack of reliable means to study its quantitative production. To measure 1O2 directly from biological or chemical reactions in the near infrared region, we have developed a highly sensitive detection system which employs two InGaAs/InP pin photodiodes incorporated with a dual charge integrating amplifier circuit. Using this detection system, we detected light emission derived from a myeloperoxidase (MPO)-mediated reaction in physiological conditions: pH 7.4, 1-30 nM MPO, 10-100 microM H2O2 and 100-130 mM CI in place of Br without the use of deuterium oxide. The MNPO-H2O2-CI(-) system exhibited a single emission peak at 1.27 microm with a spectral distribution identical to that of delta singlet oxygen. Our results suggest physiological production of 1O2 in the MPO-H2O2-CI(-) system at an intravacuolar neutral pH. The MPO-mediated generation of 1O2, which may have an important role in host defense mechanisms, is discussed in connection with previous results.
Collapse
Affiliation(s)
- C Kiryu
- Biophotonics Information Laboratories, Yamagata Advanced Technology Research Center, Japan
| | | | | | | | | |
Collapse
|
39
|
Yue KT, Taylor KL, Kinkade JM, Sinclair RB, Powers LS. X-ray absorption and resonance raman spectroscopy of human myeloperoxidase at neutral and acid pH. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1338:282-94. [PMID: 9128147 DOI: 10.1016/s0167-4838(96)00210-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myeloperoxidase (MPO), an important enzyme in the oxygen-dependent host defense system of human polymorphonuclear leukocytes, utilizes hydrogen peroxide to catalyze the production of hypochlorous acid, an oxidizing bactericidal agent. While MPO shows significant sequence homology with other peroxidases and this homology is particularly striking among the active-site residues, MPO exhibits unusual spectral features and the unique ability to catalyze the oxidation of chloride ions. We have investigated the MPO active-site with X-ray absorption (XAS) and resonance Raman (RRS) spectroscopies at neutral pH and also at the physiological acidic pH (pH approximately 3) and have compared these results with those of horseradish peroxidase (HRP). At pH 7.5, XAS results show that the iron heme active site is 6-coordinate where the distal ligand is likely nitrogen or oxygen, but not sulfur. The heme is distorted compared to HRP, other peroxidases, and heme compounds, but at pH approximately 3, the distal ligand is lost and the heme is less distorted. RRS results under identical pH conditions show that the skeletal core-size sensitive modes and v3 are shifted to higher frequency at pH approximately 3 indicating a 6- to 5-coordination change of high spin ferric heme. In addition, a new band at 270 cm(-1) is observed at pH approximately 3 which is consistent with the loss of the sixth ligand. The higher symmetry of the heme at pH approximately 3 is reflected by a single v4 mode in the (RRS) spectrum. HRP also loses its loosely associated distal water at this pH, but little change in heme distortion is observed. This change suggests that loss of the distal ligand in MPO releases stress on the heme which may facilitate binding of chloride ion.
Collapse
Affiliation(s)
- K T Yue
- National Center for the Design of Molecular Function, Utah State University, Logan 85322-4630, USA
| | | | | | | | | |
Collapse
|
40
|
Schneider T, Issekutz AC. Quantitation of eosinophil and neutrophil infiltration into rat lung by specific assays for eosinophil peroxidase and myeloperoxidase. Application in a Brown Norway rat model of allergic pulmonary inflammation. J Immunol Methods 1996; 198:1-14. [PMID: 8914592 DOI: 10.1016/0022-1759(96)00143-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Conditions for measuring selectively eosinophil peroxidase (EPO) and the neutrophil myeloperoxidase (MPO) in inflamed rat lung were determined. EPO could be specifically measured with o-phenylene diamine as chromogen at pH 8.0 in the presence of 3 mM bromide and MPO with tetramethylbenzidine as chromogen at pH 5.0 in the absence of bromide but with the EPO inhibitor, resorcinol. Aeroallergen challenge of sensitized Brown Norway rats with ovalbumin, but not with saline, resulted in a pronounced eosinophilic lung inflammation with some focal hemorrhages and an increase in lung wet weights. Quantitation of the eosinophil and neutrophil accumulation required lyophilization of lung samples, a hypotonic wash to remove contaminating hemoglobin, which interfered with the MPO assay, followed by extraction with the detergent cetyltrimethylammonium chloride. Based on lung EPO and MPO activities and standardization of enzyme activity with purified eosinophils and neutrophils, the total number of eosinophils and neutrophils in the lungs was calculated at 24 h (n = 19), 48 h (n = 9) and 72 h (n = 4) after challenge, as 56 +/- 6.4 x 10(6), 119 +/- 28 x 10(6) and 108 +/- 33 x 10(6) for eosinophils, respectively, and 94 +/- 6.8 x 10(6), 49 +/- 5.0 x 10(6) and 32 +/- 5.5 x 10(6) for neutrophils, respectively. We conclude that, with the assay conditions outlined here, EPO and MPO can be used to quantitate the tissue infiltration of eosinophils and neutrophils in the rat even in mixed inflammatory reactions.
Collapse
Affiliation(s)
- T Schneider
- Department of Pediatrics and Microbiology-Immunology, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
41
|
van Pelt LJ, van Zwieten R, Weening RS, Roos D, Verhoeven AJ, Bolscher BG. Limitations on the use of dihydrorhodamine 123 for flow cytometric analysis of the neutrophil respiratory burst. J Immunol Methods 1996; 191:187-96. [PMID: 8666838 DOI: 10.1016/0022-1759(96)00024-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Intracellular oxidation of dihydrorhodamine 123 (DHR) to the fluorescent compound rhodamine 123 (Rho123) was used to detect the production of oxygen metabolites in activated neutrophils. Total leukocyte preparations can be used in this assay, which is a great advantage when priming of the respiratory burst is studied. We have defined the conditions that should be taken into account when priming is studied with this assay. We found that neither the extent nor the kinetics of DHR oxidation match those of NADPH oxidase activity. In addition, DHR oxidation is influenced by the absolute and relative number of neutrophils in the leukocyte suspension, by the DHR concentration and by myeloperoxidase availability. The results presented in this study emphasize the need for carefully designed experiments when DHR is used to study the respiratory burst in neutrophils.
Collapse
Affiliation(s)
- L J van Pelt
- Emma Children's Hospital, Department of Pediatrics, University of Amsterdam, Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Thomas EL, Bozeman PM, Jefferson MM, King CC. Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines. J Biol Chem 1995; 270:2906-13. [PMID: 7852368 DOI: 10.1074/jbc.270.7.2906] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Myeloperoxidase and eosinophil peroxidase catalyzed the oxidation of bromide ion by hydrogen peroxide (H2O2) and produced a brominating agent that reacted with amine compounds to form bromamines, which are long-lived oxidants containing covalent nitrogen-bromine bonds. Results were consistent with oxidation of bromide to an equilibrium mixture of hypobromous acid (HOBr) and hypobromite ion (OBr-). Up to 1 mol of bromamine was produced per mole of H2O2, indicating that bromamine formation prevented the reduction of HOBr/OBr- by H2O2 and the loss of oxidizing and brominating activity. Bromamines differed from HOBr/OBr- in that bromamines reacted slowly with H2O2, were not reduced by dimethyl sulfoxide, and had absorption spectra similar to those of chloramines, but shifted 36 nm toward higher wavelengths. Mono- and di-bromo derivatives (RNHBr and RNHBr2) of the beta-amino acid taurine were relatively stable with half-lives of 70 and 16 h at pH 7, 37 degrees C. The mono-bromamine was obtained with a 200-fold excess of amine over the amount of HOBr/OBr- and the di-bromamine at a 2:1 ratio of HOBr/OBr- to the amine. In the presence of physiologic levels of both bromide (0.1 mM) and chloride (0.1 M), myeloperoxidase and eosinophil peroxidase produced mixtures of bromamines and chloramines containing 6 +/- 4% and 88 +/- 4% bromamine. In contrast, only the mono-chloramine derivative (RNHCl) was formed when a mixture of hypochlorous acid (HOCl) and hypochlorite ion (OCl-) was added to solutions containing bromide and excess amine. The rapid formation of the chloramine prevented the oxidation of bromide by HOCl/OCl-, and the chloramine did not react with bromide within 1 h at 37 degrees C. The results indicate that when enzyme-catalyzed bromide or chloride oxidation took place in the presence of an amine compound at 10 mM or higher, bromamines were not produced in secondary reactions such as the oxidation of bromide by HOCl/OCl- and the exchange of bromide with chlorine atoms of chloramines. Therefore, the amount of bromamine produced by myeloperoxidase or eosinophil peroxidase was equal to the amount of bromide oxidized by the enzyme. Bromide was preferred over chloride as the substrate for both enzymes.
Collapse
Affiliation(s)
- E L Thomas
- Dental Research Center, University of Tennessee, Memphis 38163
| | | | | | | |
Collapse
|
43
|
Abstract
Recent work has highlighted the eosinophil's role as an effector cell in a wide array of disease entities, including parasitic infections and allergic and nonallergic diseases. The eosinophil is filled with granules containing toxic cationic proteins, capable of harming tissue when released to the extracellular space. In the eye, toxic eosinophil cationic granule proteins have been encountered in conjunctiva, cornea, tears, and contact lenses of patients suffering from ocular allergy, suggesting an effector role for the eosinophil in the ophthalmic manifestations of atopy. Laboratory investigations indicate that eosinophil granule major basic protein, the principal eosinophil granule protein, may adversely influence corneal epithelium, and promote corneal ulceration in the severest forms of ocular allergy. Further, the eosinophil may play a contributory pathophysiologic role in some nonallergic ophthalmic diseases such as Wegener's granulomatosis, orbital pseudo-tumor, and histiocytosis X. The eosinophil's morphologic, immunologic, and biochemical characteristics will be reviewed and its role in certain ophthalmic diseases thoroughly examined.
Collapse
Affiliation(s)
- S D Trocme
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, School of Medicine, Galveston
| | | |
Collapse
|
44
|
Salmaso BL, Puppels GJ, Caspers PJ, Floris R, Wever R, Greve J. Resonance Raman microspectroscopic characterization of eosinophil peroxidase in human eosinophilic granulocytes. Biophys J 1994; 67:436-46. [PMID: 7919017 PMCID: PMC1225376 DOI: 10.1016/s0006-3495(94)80499-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A resonance Raman microspectroscopic study is presented of eosinophil peroxidase (EPO) in human eosinophilic granulocytes. Experiments were carried out at the single cell level with laser excitation in Soret-, Qv-, and charge transfer absorption bands of the active site heme of the enzyme. The Raman signal obtained from the cells was almost exclusively due to EPO. Methods were developed to determine depolarization ratios and excitation profiles of Raman bands of EPO in situ. A number of Raman band assignments based on earlier experiments with isolated EPO have been revised. The results show that in agreement with literature on isolated eosinophil peroxidase, the prosthetic group of the enzyme in the (unactivated) cells is a high spin, 6-coordinated, ferric protoporphyrin IX. The core size of the heme is about 2.04 A. The proximal and distal axial ligands are most likely a histidine with the strong imidazolate character typical for peroxidases, and a weakly bound water molecule, respectively. The data furthermore indicate that the central iron is displaced from the plane of the heme ring. The unusual low wavenumber Raman spectrum of EPO, strongly resembling that of lactoperoxidase, intestinal peroxidase and myeloperoxidase, suggests that these mammalian peroxidases are closely related, and characterized by, as yet unspecified, interactions between the peripheral substituents and the protein, different from those found in other protoheme proteins.
Collapse
Affiliation(s)
- B L Salmaso
- Department of Applied Physics, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Arciero D, Hooper A. A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced states. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32655-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Hori H, Fenna R, Kimura S, Ikeda-Saito M. Aromatic substrate molecules bind at the distal heme pocket of myeloperoxidase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37206-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Thomas EL, Jefferson MM, Joyner RE, Cook GS, King CC. Leukocyte myeloperoxidase and salivary lactoperoxidase: identification and quantitation in human mixed saliva. J Dent Res 1994; 73:544-55. [PMID: 8120219 DOI: 10.1177/00220345940730021001] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human salivary lactoperoxidase (HS-LP) is synthesized and secreted by the salivary glands, whereas myeloperoxidase (MPO) is found in PMN leukocytes, which migrate into the oral cavity at gingival crevices. HS-LP levels vary with changes in salivary gland function, but increased numbers of MPO-containing leukocytes indicate infection or inflammation of oral tissues. To determine the contribution of each enzyme to the peroxidase activity of mixed-saliva samples, activity was assayed at pH 5.4 with tetramethylbenzidine as the substrate, with and without the inhibitor dapsone (4,4'-diaminodiphenylsulfone). Dapsone blocked the activity of HS-LP but not MPO. The enzymes were also separated and partially purified from the soluble portion of saliva samples and from detergent extracts of the saliva sediment. Chromatographic properties of the proteins were similar to those of LP from bovine milk (BM-LP) and MPO from human leukocytes. The identity and amounts of the enzymes were confirmed by the absorption spectra and by immunoblotting with antibodies to BM-LP and human MPO. Eosinophil peroxidase (EPO), a distinct enzyme found in eosinophilic leukocytes, was not detected by chromatography or with antibodies to human EPO. On average, 75% of the activity in samples from normal donors was due to MPO and 25% to HS-LP. When corrected for the lower specific activity of HS-LP in this assay, the average amount of MPO (3.6 micrograms/mL) was twice the amount of HS-LP (1.9 micrograms/mL). The amount of MPO corresponded to 1 x 10(6) PMN leukocytes/mL of saliva. The enzymes were distributed differently: Eighty-nine percent of the HS-LP was in the soluble portion of saliva, and 78% of the MPO was in the sediment, which contained 51% of the total activity. In contrast to results obtained with PMN leukocytes from blood, detergent was not required for MPO activity to be measured in saliva, indicating that the enzyme was accessible to peroxidase substrates. The results indicate that MPO is responsible for a large portion of peroxidase-catalyzed reactions in mixed saliva. The unique function of HS-LP may be carried out within the salivary glands, prior to secretion into the oral cavity.
Collapse
Affiliation(s)
- E L Thomas
- Dental Research Center, University of Tennessee, Memphis 38163
| | | | | | | | | |
Collapse
|
48
|
Ferryl iron and protein free radicals. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0167-7306(08)60439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Lukat GS, Doran MB, Utschig LM, Goff HM. Magnetic resonance spectroscopy, calcium content, and anion coordination studies of bovine and goat lactoperoxidase. J Inorg Biochem 1993; 50:157-71. [PMID: 8388915 DOI: 10.1016/0162-0134(93)80022-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bovine lactoperoxidase from two purebred strains and a commercial source as well as lactoperoxidase isolated from Alpine goat milk were examined by proton NMR spectroscopy for structural comparison of the heme site. Hyperfine shifted proton NMR spectra for both the native enzymes and cyanide complexes were equivalent for the protein obtained from the four separate sources. Activity assays (guaiacol and iodide ion oxidations) were also employed to compare the enzyme from various sources. Bovine lactoperoxidase was shown to contain 1.5 +/- 0.1 calcium ions per heme unit. Lactoperoxidase complexes with nitrite ion and thiocyanate ion were characterized for comparison with the cyanide complex. The nitrite complex exhibits a proton NMR hyperfine shift pattern at ambient temperature consistent with a low-spin ferric formulation. Interaction of lactoperoxidase with thiocyanate ion was monitored by NMR and EPR spectroscopy. Proton NMR spectra of lactoperoxidase in the presence of excess thiocyanate ion illustrated the retention of a high-spin ferric configuration consistent with predominant binding of the physiological thiocyanate substrate at a non-heme site at room temperature. However, EPR spectroscopy at cryogenic temperatures revealed the existence of a low-spin lactoperoxidase thiocyanate complex. This result may be explained by low-affinity ambient temperature thiocyanate heme binding that is greatly enhanced at liquid helium temperature.
Collapse
Affiliation(s)
- G S Lukat
- Department of Chemistry, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
50
|
Dolman KM, Damsma I, Tool AT, Sonnenberg A, von dem Borne AE, Goldschmeding R. A novel specificity of anticytoplasmic autoantibodies directed against eosinophil peroxidase. Clin Exp Immunol 1993; 92:58-64. [PMID: 8385587 PMCID: PMC1554860 DOI: 10.1111/j.1365-2249.1993.tb05948.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Vasculitis associated anticytoplasmic autoantibodies (ANCA) are directed against enzymes in the granules of both neutrophils and monocytes. These autoantibodies can be detected by indirect immunofluorescence technique (IIFT) using ethanol-fixed cytospins. We here report the identification of a novel specificity of autoantibodies, present in the sera of eight patients, that reacted only with eosinophils in the IIFT. By immunoprecipitation and ELISA experiments it was shown that the autoantibodies in these sera were directed against eosinophil peroxidase (EPO). There was no apparent influence on initial substrate conversion rate, but reduced plateau levels suggested increased inactivation of the enzyme in the course of the peroxidase reaction. Flow cytometry studies demonstrated the presence of EPO on the surface of primed eosinophils. Anti-EPO sera and purified anti-EPO immunoglobulins significantly increased the release of reactive oxygen species from primed eosinophils. The patients with anti-EPO antibodies suffered from clinically diverse disorders, with more or less generalized manifestations involving the kidneys, blood vessels, lungs and/or joints.
Collapse
Affiliation(s)
- K M Dolman
- Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam
| | | | | | | | | | | |
Collapse
|