1
|
Takeo E, Sugiura Y, Ohnishi Y, Kishima H, Fukusaki E, Shimma S. Mass Spectrometric Enzyme Histochemistry for Choline Acetyltransferase Reveals De Novo Acetylcholine Synthesis in Rodent Brain and Spinal Cord. ACS Chem Neurosci 2021; 12:2079-2087. [PMID: 34078081 DOI: 10.1021/acschemneuro.0c00720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Choline acetyltransferase (ChAT), responsible for the synthesis of acetylcholine, plays an important role in neurotransmission. However, no method to visualize the ChAT activity in tissues has been reported to date. In this study, mass spectrometry imaging (MSI) was used to visualize ChAT activity in situ, which is difficult with conventional enzyme histochemistry. By using choline chloride-trimethyl-d9 (choline-d9) as a substrate and simultaneously supplying an inhibitor of cholinesterase to tissues, we succeeded in directly visualizing the ChAT activity in the rodent brain and spinal cord. The findings revealed heterogeneous ChAT activity in the striatum of the mouse brain and in the spinal lower motor neurons that connect the anterior horn to the ventral root. Furthermore, extending the developed method to spinal cord injury (SCI) model mice revealed the site-specific effect of primary and secondary injury on ChAT activity. This study shows that the MSI-based enzyme histochemistry of ChAT could be a useful tool for studying cholinergic neurons.
Collapse
Affiliation(s)
- Emi Takeo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuichiro Ohnishi
- Department of Neurosurgery, Graduate school of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate school of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Bellier JP, Yuan PQ, Mukaisho K, Tooyama I, Taché Y, Kimura H. A Novel Antiserum Against a Predicted Human Peripheral Choline Acetyltransferase (hpChAT) for Labeling Neuronal Structures in Human Colon. Front Neuroanat 2019; 13:37. [PMID: 31040770 PMCID: PMC6476985 DOI: 10.3389/fnana.2019.00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Choline acetyltransferase (ChAT), the enzyme synthesizing acetylcholine (ACh), has an exon-skipping splice variant which is expressed preferentially in the peripheral nervous system (PNS) and thus termed peripheral ChAT (pChAT). A rabbit antiserum previously produced against rat pChAT (rpChAT) has been used for immunohistochemistry (IHC) to study peripheral cholinergic structures in various animals. The present study was undertaken to develop a specific antiserum against a predicted human pChAT (hpChAT) protein. A novel mouse antiserum has been successfully raised against a unique 14-amino acid sequence of hpChAT protein. Our Western blot using this antiserum (termed here anti-hpChAT serum) on human colon extracts revealed only a single band of 47 kDa, matching the deduced size of hpChAT protein. By IHC, the antiserum gave intense staining in many neuronal cells and fibers of human colon but not brain, and such a pattern of staining seemed identical with that reported in colon of various animals using anti-rpChAT serum. In the antibody-absorption test, hpChAT-immunoreactive staining in human colon was completely blocked by using the antiserum pre-absorbed with the antigen peptide. Double immunofluorescence in human colon moreover indicated that structures stained with anti-hpChAT were also stained with anti-rpChAT, and vice versa. hpChAT antiserum allowed the identification of cell types, as Dogiel type cells in intramural plexuses, and fiber innervation of colon muscles and mucosae. The present results demonstrate the specificity and reliability of the hpChAT antiserum as a novel tool for immunohistochemical studies in human colon, opening venues to map cholinergic innervation in other human PNS tissues.
Collapse
Affiliation(s)
- Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States.,VA Greater Los Angeles Health System, Los Angeles, CA, United States
| | - Kenichi Mukaisho
- Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States.,VA Greater Los Angeles Health System, Los Angeles, CA, United States
| | - Hiroshi Kimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
3
|
Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations. Brain Struct Funct 2014; 220:3413-34. [DOI: 10.1007/s00429-014-0864-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023]
|
4
|
Cholinergic left-right asymmetry in the habenulo-interpeduncular pathway. Proc Natl Acad Sci U S A 2013; 110:21171-6. [PMID: 24327734 DOI: 10.1073/pnas.1319566110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The habenulo-interpeduncular pathway, a highly conserved cholinergic system, has emerged as a valuable model to study left-right asymmetry in the brain. In larval zebrafish, the bilaterally paired dorsal habenular nuclei (dHb) exhibit prominent left-right differences in their organization, gene expression, and connectivity, but their cholinergic nature was unclear. Through the discovery of a duplicated cholinergic gene locus, we now show that choline acetyltransferase and vesicular acetylcholine transporter homologs are preferentially expressed in the right dHb of larval zebrafish. Genes encoding the nicotinic acetylcholine receptor subunits α2 and β4 are transcribed in the target interpeduncular nucleus (IPN), suggesting that the asymmetrical cholinergic pathway is functional. To confirm this, we activated channelrhodopsin-2 specifically in the larval dHb and performed whole-cell patch-clamp recording of IPN neurons. The response to optogenetic or electrical stimulation of the right dHb consisted of an initial fast glutamatergic excitatory postsynaptic current followed by a slow-rising cholinergic current. In adult zebrafish, the dHb are divided into discrete cholinergic and peptidergic subnuclei that differ in size between the left and right sides of the brain. After exposing adults to nicotine, fos expression was activated in subregions of the IPN enriched for specific nicotinic acetylcholine receptor subunits. Our studies of the newly identified cholinergic gene locus resolve the neurotransmitter identity of the zebrafish habenular nuclei and reveal functional asymmetry in a major cholinergic neuromodulatory pathway of the vertebrate brain.
Collapse
|
5
|
Thomas MG, Saldanha M, Mistry RJ, Dexter DT, Ramsden DB, Parsons RB. Nicotinamide N-methyltransferase expression in SH-SY5Y neuroblastoma and N27 mesencephalic neurones induces changes in cell morphology via ephrin-B2 and Akt signalling. Cell Death Dis 2013; 4:e669. [PMID: 23764850 PMCID: PMC3702289 DOI: 10.1038/cddis.2013.200] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 01/12/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) N-methylates nicotinamide to produce 1-methylnicotinamide (MeN). We have previously shown that NNMT expression protected against neurotoxin-mediated cell death by increasing Complex I (CxI) activity, resulting in increased ATP synthesis. This was mediated via protection of the NDUFS3 subunit of CxI from degradation by increased MeN production. In the present study, we have investigated the effects of NNMT expression on neurone morphology and differentiation. Expression of NNMT in SH-SY5Y human neuroblastoma and N27 rat mesencephalic dopaminergic neurones increased neurite branching, synaptophysin expression and dopamine accumulation and release. siRNA gene silencing of ephrin B2 (EFNB2), and inhibition of Akt phosphorylation using LY294002, demonstrated that their sequential activation was responsible for the increases observed. Incubation of SH-SY5Y with increasing concentrations of MeN also increased neurite branching, suggesting that the effects of NNMT may be mediated by MeN. NNMT had no significant effect on the expression of phenotypic and post-mitotic markers, suggesting that NNMT is not involved in determining phenotypic fate or differentiation status. These results demonstrate that NNMT expression regulates neurone morphology in vitro via the sequential activation of the EFNB2 and Akt cellular signalling pathways.
Collapse
Affiliation(s)
- M G Thomas
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - M Saldanha
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - R J Mistry
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - D T Dexter
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - D B Ramsden
- Department of Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TH, UK
| | - R B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
6
|
Giannakopoulou D, Daguin-Nerrière V, Mitsacos A, Kouvelas ED, Neveu I, Giompres P, Brachet P. Ectopic expression of TrKA in the adult rat basal ganglia induces both nerve growth factor-dependent and -independent neuronal responses. J Neurosci Res 2012; 90:1507-21. [DOI: 10.1002/jnr.23031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/16/2011] [Accepted: 12/27/2011] [Indexed: 12/30/2022]
|
7
|
Bellier JP, Kimura H. Peripheral type of choline acetyltransferase: biological and evolutionary implications for novel mechanisms in cholinergic system. J Chem Neuroanat 2011; 42:225-35. [PMID: 21382474 DOI: 10.1016/j.jchemneu.2011.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 01/29/2023]
Abstract
The peripheral type of choline acetyltransferase (pChAT) is an isoform of the well-studied common type of choline acetyltransferase (cChAT), the synthesizing enzyme of acetylcholine. Since pChAT arises by exons skipping, its amino acid sequence is similar to that of cChAT, except the lack of a continuous peptide sequence encoded by all the four exons from 6 to 9. While cChAT expression has been observed in both the central and peripheral nervous systems, pChAT is preferentially expressed in the peripheral nervous system. pChAT appears to be a reliable marker for the visualization of peripheral cholinergic neurons and their processes, whereas other conventional markers including cChAT have not been used successfully for it. In mammals like rodents, pChAT immunoreactivity has been observed in most, if not all, physiologically identified peripheral cholinergic structures such as all parasympathetic postganglionic neurons and most neurons of the enteric nervous system. In addition, pChAT has been found in many peripheral neurons that are derived from the neural crest. These include sensory neurons of the trigeminal ganglion and the dorsal root ganglion, and sympathetic postganglionic neurons. Recent studies moreover indicate that pChAT, as well as cChAT, appears ubiquitously expressed among various species not only of vertebrate mammals but also of invertebrate mollusks. This finding implies that the alternative splicing mechanism to generate pChAT and cChAT has been preserved during evolution, probably for some functional benefits.
Collapse
Affiliation(s)
- J-P Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | | |
Collapse
|
8
|
Sanabra C, Mengod G. Neuroanatomical distribution and neurochemical characterization of cells expressing adenylyl cyclase isoforms in mouse and rat brain. J Chem Neuroanat 2010; 41:43-54. [PMID: 21094251 DOI: 10.1016/j.jchemneu.2010.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 12/15/2022]
Abstract
Transmembrane adenylyl cyclases (Adcy) are involved in the regulation of multiple brain processes such as synaptic plasticity, learning and memory. They synthesize intracellular cyclic adenosine monophosphate (cAMP) following activation by G-protein coupled receptors. We examined the neuroanatomical distribution of the nine Adcy isoforms in rat and mouse brain by in situ hybridization, as well as their location in glutamatergic, GABAergic and cholinergic neurons in several mouse brain areas by double in situ hybridization. The Adcys are widely distributed throughout the brain in both rat and mouse, being especially abundant in cortex, hippocampus, thalamic nuclei, the olfactory system and the granular layer of the cerebellum. Double-labeling experiments showed that Adcy isoforms are differently expressed in glutamatergic, GABAergic and cholinergic neuronal cell populations. We report the neuroanatomical distribution of the nine known Adcy isoforms in rat and mouse brain and their cellular localization.
Collapse
Affiliation(s)
- Cristina Sanabra
- Departament de Neuroquímica i Neurofarmacologia, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, CIBERNED, 08036 Barcelona, Spain
| | | |
Collapse
|
9
|
In situ hybridization study of the distribution of choline acetyltransferase mRNA and its splice variants in the mouse brain and spinal cord. Neuroscience 2009; 159:344-57. [DOI: 10.1016/j.neuroscience.2008.12.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/29/2008] [Accepted: 12/30/2008] [Indexed: 02/05/2023]
|
10
|
Salani M, Anelli T, Tocco GA, Lucarini E, Mozzetta C, Poiana G, Tata AM, Biagioni S. Acetylcholine-induced neuronal differentiation: muscarinic receptor activation regulates EGR-1 and REST expression in neuroblastoma cells. J Neurochem 2009; 108:821-34. [PMID: 19187099 DOI: 10.1111/j.1471-4159.2008.05829.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotransmitters are considered part of the signaling system active in nervous system development and we have previously reported that acetylcholine (ACh) is capable of enhancing neuronal differentiation in cultures of sensory neurons and N18TG2 neuroblastoma cells. To study the mechanism of ACh action, in this study, we demonstrate the ability of choline acetyltransferase-transfected N18TG2 clones (e.g. 2/4 clone) to release ACh. Analysis of muscarinic receptors showed the presence of M1-M4 subtypes and the activation of both IP(3) and cAMP signal transduction pathways. Muscarinic receptor activation increases early growth response factor-1 (EGR-1) levels and treatments with agonists, antagonists, and signal transduction enzyme inhibitors suggest a role for M3 subtype in EGR-1 induction. The role of EGR-1 in the enhancement of differentiation was investigated transfecting in N18TG2 cells a construct for EGR-1. EGR-1 clones show increased neurite extension and a decrease in Repressor Element-1 silencing transcription factor (REST) expression: both these features have also been observed for the 2/4 clone. Transfection of this latter with EGR zinc-finger domain, a dominant negative inhibitor of EGR-1 action, increases REST expression, and decreases fiber outgrowth. The data reported suggest that progression of the clone 2/4 in the developmental program is dependent on ACh release and the ensuing activation of muscarinic receptors, which in turn modulate the level of EGR-1 and REST transcription factors.
Collapse
Affiliation(s)
- Monica Salani
- Dipartimento di Biologia Cellulare e dello Sviluppo, Unità di Ricerca di Neurobiologia e Centro di Ricerca in Neurobiologia Daniel Bovet, Università La Sapienza, Piazzale Aldo Moro, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Oberle S, Schober A, Meyer V, Holtmann B, Henderson C, Sendtner M, Unsicker K. Loss of leukemia inhibitory factor receptor beta or cardiotrophin-1 causes similar deficits in preganglionic sympathetic neurons and adrenal medulla. J Neurosci 2006; 26:1823-32. [PMID: 16467531 PMCID: PMC6793615 DOI: 10.1523/jneurosci.4127-05.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Leukemia inhibitory factor (LIF) receptor beta (LIFRbeta) is a receptor for a variety of neurotrophic cytokines, including LIF, ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1). These cytokines play an essential role for the survival and maintenance of developing and postnatal somatic motoneurons. CNTF may also serve the maintenance of autonomic, preganglionic sympathetic neurons (PSNs) in the spinal cord, as suggested by its capacity to prevent their death after destruction of one of their major targets, the adrenal medulla. Although somatic motoneurons and PSNs share a common embryonic origin, they are distinct in several respects, including responses to lesions. We have studied PSNs in mice with targeted deletions of the LIFRbeta or CT-1 genes, respectively. We show that LIF, CNTF, and CT-1 are synthesized in embryonic adrenal gland and spinal cord and that PSNs express LIFRbeta. In embryonic day 18.5 LIFRbeta (-/-) and CT-1 (-/-) mice, PSNs were reduced by approximately 20%. PSNs projecting to the adrenal medulla were more severely affected (-55%). Although LIFRbeta (-/-) mice revealed normal numbers of adrenal chromaffin cells and axons terminating on chromaffin cells, levels of adrenaline and numbers of adrenaline-synthesizing cells were significantly reduced. We conclude that activation of LIFRbeta is required for normal development of PSNs and one of their prominent targets, the adrenal medulla. Thus, both somatic motoneurons and PSNs in the spinal cord depend on LIFRbeta signaling for their development and maintenance, although PSNs seem to be overall less affected than somatic motoneurons by LIFRbeta deprivation.
Collapse
|
12
|
Toyoda KI, Okano H, Bamba H, Hisa Y, Oomura Y, Imamura T, Furukawa S, Tooyama I. Comparison of FGF1 (aFGF) expression between the dorsal motor nucleus of vagus and the hypoglossal nucleus of rat. Acta Histochem Cytochem 2006; 39:1-7. [PMID: 17460766 PMCID: PMC1831852 DOI: 10.1267/ahc.05047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 12/18/2005] [Indexed: 11/22/2022] Open
Abstract
Neurons in the dorsal motor nucleus of the vagus (DMNV) are more severely affected by axonal injury than most other nerves, such as those of the hypoglossal nucleus. However, the mechanism underlying such a response remains unclear. In this study, we compared the expression of fibroblast growth factor 1 (FGF1), a neurotrophic factor, between the DMNV and the hypoglossal nucleus by RT-PCR and immunohistochemical analyses. RT-PCR showed that the level of FGF1 mRNA expression in the DMNV was lower than that in the hypoglossal nucleus (P<0.01). Immunohistochemistry revealed that FGF1 was localized to neurons. FGF1-positive neurons in large numbers were evenly distributed in the hypoglossal nucleus, whereas FGF1-positive neurons were located in the lateral part of the DMNV. Double immunostaining for FGF1 and choline acetyltransferase demonstrated that 22.7% and 78% of cholinergic neurons were positive for FGF1 in the DMNV and hypoglossal nucleus, respectively. A tracing study with cholera toxin B subunit (CTb) demonstrated that cholinergic neurons sending their axons from the DMNV to the superior laryngeal nerve were FGF1-negative. The results suggest that the low expression of FGF1 in the DMNV is due to severe damage of neurons in the DMNV.
Collapse
Affiliation(s)
- Ken-ichiro Toyoda
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatukinowa-cho, Otsu 520–2192, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto 602–8566, Japan
| | - Hiroyuki Okano
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatukinowa-cho, Otsu 520–2192, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto 602–8566, Japan
| | - Hitoshi Bamba
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto 602–8566, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto 602–8566, Japan
| | - Yutaka Oomura
- Department of Physiology, School of Medicine, Kyushu University, Fukuoka 812–8582, Japan
| | - Toru Imamura
- Signaling Molecules Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Higashi, Tsukuba, Ibaraki 305–8566, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Mitahora-higashi 5–6–1, Gifu 502–8585, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatukinowa-cho, Otsu 520–2192, Japan
- Correspondence to: Ikuo Tooyama, Professor, Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu 520–2192, Japan. E-mail:
| |
Collapse
|
13
|
Kitajima K, Takahashi R, Yokota Y. Localization of Id2 mRNA in the adult mouse brain. Brain Res 2006; 1073-1074:93-102. [PMID: 16443197 DOI: 10.1016/j.brainres.2005.12.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 12/01/2005] [Accepted: 12/12/2005] [Indexed: 10/25/2022]
Abstract
Id proteins are negative regulators of basic helix-loop-helix transcription factors and are involved in cellular differentiation and proliferation. Four members of the Id gene family exhibit closely related but distinct expression patterns in various mammalian organs of not only embryos but also adults. Among them, Id2 is known to be expressed in Purkinje cells and neurons in the cortical layers of the adult mouse brain, suggesting that Id2 is involved in some neural functions in the adult. To get insight into the role of Id2 in the nervous system, we investigated the localization of Id2 mRNA-expressing cells in the adult mouse brain in detail by in situ hybridization with the radiolabeled antisense probe and compared it with the localization of other Id gene family members. The results indicated that Id2 mRNA is detected in more varied brain regions than previously reported. These regions include the amygdaloid complex, caudate putamen, globus pallidus, substantia nigra pars reticulata, suprachiasmatic nucleus, and the anterior part of the subventricular zone. These results suggest the possibility that Id2 plays a role in the neural activity and cognitive functions. On the other hand, Id1 was barely detectable. Although moderate or low expression of Id3 was observed diffusely, high expression was observed in some specific regions including the molecular layer of the dentate gyrus and the external capsule. Id4 mRNA was detected in the regions such as the caudate putamen and the lateral amygdaloid nucleus. Thus, the expression pattern of Id2 is distinct from those of other Id gene family members.
Collapse
Affiliation(s)
- Kazuhito Kitajima
- Department of Molecular Genetics, School of Medicine, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
| | | | | |
Collapse
|
14
|
Huber K, Ernsberger U. Cholinergic differentiation occurs early in mouse sympathetic neurons and requires Phox2b. Gene Expr 2006; 13:133-9. [PMID: 17017126 PMCID: PMC6032475 DOI: 10.3727/000000006783991854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The generation of neurotransmitter identity in the autonomic nervous system is a classical model system to study the development of neuronal diversity. Analysis of the expression of genes coding for enzymes of noradrenaline biosynthesis in the sympathoadrenal system allowed the characterization of factors involved in the differentiation of the noradrenergic transmitter phenotype. The development of cholinergic properties in the autonomic system is less well understood. Here we show that expression of mRNAs for choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT), both encoded by the cholinergic gene locus, is induced in mouse sympathetic ganglia at embryonic day 11 (E11). Positive cells amount to more than 50% of Phox2b-positive sympathetic cells at cervical levels. The proportion declines caudally, decreasing to approximately 20% of Phox2b-positive cells at lower thoracic levels. In the adrenal anlage, ChAT and VAChT mRNA are largely undetectable at E11 and E13. In mice homozygous for a mutational inactivation of the transcription factor Phox2b, ChAT and VAChT mRNA expression is absent from sympathetic ganglia. The data show that expression from the cholinergic gene locus is regulated differently in sympathetic neurons and adrenal chromaffin cells. Phox2b is required for development of cholinergic neurons but does not suffice to support cholinergic properties in chromaffin cells.
Collapse
Affiliation(s)
- K Huber
- Institut für Anatomie und Zellbiologie III, Interdisziplindäres Zentrum für Neurowissenschaften, Ruprecht-Karls-Universität Heidelberg, Imn Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | | |
Collapse
|
15
|
Moon SJ, Fujikawa Y, Nishihara T, Kono S, Kozono K, Ikenaga T, Esaka M, Iijima N, Nagamatsu Y, Yoshida M, Uematsu K. Partial cloning and expression of mRNA coding choline acetyltransferase in the spinal cord of the goldfish, Carassius auratus. Comp Biochem Physiol B Biochem Mol Biol 2005; 141:253-60. [PMID: 15951213 DOI: 10.1016/j.cbpc.2005.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 01/31/2005] [Accepted: 02/02/2005] [Indexed: 11/21/2022]
Abstract
Choline acetyltransferase (ChAT, EC 2.3.1.6) synthesizes a neurotransmitter, acetylcholine in cholinergic neurons. ChAT is considered to be the most specific marker for cholinergic neurons. To obtain a better marker of the neurons, as the first step, we isolated a partial ChAT cDNA from the goldfish (Carassius auratus) brain by RT-PCR methods. The partial cDNA of the goldfish ChAT was composed of 718 nucleotides. The amino acid sequence of the goldfish ChAT is approximately 70% identical to those of mammalian and chicken ChAT. Northern blot analysis demonstrated that ChAT mRNA was expressed in the brain and the spinal cord of the goldfish, and much abundant in the spinal cord. In the spinal cord of the goldfish, ChAT-positive neurons were detected mainly in the ventral horn by in situ hybridization. In addition, fluorescence in situ hybridization combined with a retrograde labeling by using True Blue demonstrated ChAT mRNA positive neurons were exactly motoneurons. In the cord, putative presynaptic sympathetic neurons were also labeled.
Collapse
Affiliation(s)
- Soon-Ju Moon
- Laboratory of Fish Physiology, Graduate School of Biosphere Sciences, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Reyes-Irisarri E, Pérez-Torres S, Mengod G. Neuronal expression of cAMP-specific phosphodiesterase 7B mRNA in the rat brain. Neuroscience 2005; 132:1173-85. [PMID: 15857719 DOI: 10.1016/j.neuroscience.2005.01.050] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 01/27/2005] [Accepted: 01/28/2005] [Indexed: 11/30/2022]
Abstract
cAMP plays an important role as second messenger molecule controlling multiple cellular processes in the brain. cAMP levels depend critically on the phosphodiesterases (PDE) activity, enzymes responsible for the clearance of intracellular cAMP. We have examined the regional distribution and cellular localization of mRNA coding for the cAMP-specific phosphodiesterase 7B (PDE7B) in rat brain by in situ hybridization histochemistry. PDE7B mRNA is specifically distributed in rat brain, preferentially in neuronal cell populations. The highest levels of hybridization are observed in olfactory tubercle, islands of Calleja, dentate gyrus, caudate-putamen and some thalamic nuclei. Positive hybridization signals are also detected in other areas, such as cerebral cortex, Purkinje cells of the cerebellum and area postrema. By double in situ hybridization histochemistry, we found that 74% and 79% of the cells expressing PDE7B mRNA in striatum and olfactory tubercle, respectively, were GABAergic cells (expressing glutamic acid decarboxylase mRNA), in contrast with the lack of expression in the few cholinergic cells (expressing choline acetyltransferase mRNA) present in those two areas (around 0.4% in olfactory tubercle). In the thalamic nuclei, a majority of cells containing PDE7B mRNA also expresses a glutamatergic marker (76.7% express vesicular glutamate transporter vGluT1 and 76% express vGluT2 mRNAs). Almost all PDE7B expressing cells in dentate gyrus (93%) were glutamatergic. These results offer a neuroanatomical and neurochemical base that will support the search for specific functions for cAMP dependent PDEs and for the development of specific PDE7 inhibitors.
Collapse
Affiliation(s)
- E Reyes-Irisarri
- Department of Neurochemistry, Institut d'Investigacions, Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC, IDIBAPS), Spain
| | | | | |
Collapse
|
17
|
Vilaró MT, Cortés R, Mengod G. Serotonin 5-HT4receptors and their mRNAs in rat and guinea pig brain: Distribution and effects of neurotoxic lesions. J Comp Neurol 2005; 484:418-39. [PMID: 15770652 DOI: 10.1002/cne.20447] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Serotonin 5-HT4 receptors are widely distributed in the periphery and in brain, where they modulate the release of various neurotransmitters and have been implicated in learning and memory. Nine C-terminal splice variants of this receptor have been cloned in mammalian species. In the rat, three such variants have been described: 5-HT4(a), 5-HT4(b), and 5-HT4(e). In the present study, we have examined several aspects of the distribution of these receptors in brain. First, we provide, in rat and guinea pig, a detailed comparison of the distribution of 5-HT4 receptors labeled by the antagonist [125I]-SB 207710 with the distribution of their encoding mRNA visualized by in situ hybridization histochemistry (ISHH). The results suggest that, in several projection systems (striato-nigral and striato-pallidal pathways, projection from dentate granule cells to field CA3, habenulo-interpeduncular pathway), 5-HT4 receptors are located both somatodendritically and axonally. Second, we have analyzed the distribution of mRNA for the three known rat splice variants by reverse transcription-polymerase chain reaction (RT-PCR) and by ISHH. RT-PCR indicates that all three variants are widely distributed, with 5-HT4(b) mRNA being present in all regions examined (olfactory tubercle, striatum, hippocampus, inferior colliculus, substantia nigra, parietal cortex) and 5-HT4(a) and 5-HT4(e) showing a somewhat more restricted distribution. In other regions (periaqueductal gray, reticular formation, medial septum, diagonal band), faint ISHH signals are observed for 5-HT4(a)+4(e) mRNAs, whereas 5-HT4(b) mRNA signals are almost undetectable. Finally, neurotoxic lesions of basal ganglia components in guinea pig also indicate a location of these receptors on terminals of striatal projection neurons.
Collapse
Affiliation(s)
- M Teresa Vilaró
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain.
| | | | | |
Collapse
|
18
|
Mukherjee RS, Hausman RE. Cloning of chicken choline acetyltransferase and its expression in early embryonic retina. ACTA ACUST UNITED AC 2004; 129:54-66. [PMID: 15469882 DOI: 10.1016/j.molbrainres.2004.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2004] [Indexed: 11/17/2022]
Abstract
The enzyme choline acetyltransferase [EC 2.3.1.6] (ChAT) synthesizes the neurotransmitter acetylcholine that plays a key morphogenic role in vertebrate retina development. As the embryonic avian retina is particularly useful for morphogenetic studies, we cloned the complete coding region of chicken ChAT cDNA. At the deduced amino acid level, chicken ChAT is approximately 76% identical to mammalian ChAT proteins. We also report here the cloning of the complete 5' end of the complex cholinergic locus. This locus contains both the ChAT gene and the nested intronless gene for the vesicular acetylcholine transporter (VAChT). The genomic organization of the 5' end of the chicken cholinergic locus is similar to that reported in other vertebrate species. A 5.7 kb mRNA corresponding to the ChAT message was detected in both embryonic retina and post-hatch brain. An analysis of the ChAT mRNA in embryonic chick retina shows that the message can be detected by E6 and its level increased during early retinal development. Vertebrate ChAT mRNAs can contain one or more of three non-coding exons, M, N or R and by RT-PCR we demonstrate, at least, a chicken ChAT mRNA containing exon M.
Collapse
Affiliation(s)
- Richa S Mukherjee
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
19
|
Burau K, Stenull I, Huber K, Misawa H, Berse B, Unsicker K, Ernsberger U. c-ret regulates cholinergic properties in mouse sympathetic neurons: evidence from mutant mice. Eur J Neurosci 2004; 20:353-62. [PMID: 15233745 DOI: 10.1111/j.1460-9568.2004.03500.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The search for signalling systems regulating development of noradrenergic and cholinergic sympathetic neurons is a classical problem of developmental neuroscience. While an essential role of bone morphogenetic proteins for induction of noradrenergic properties is firmly established, factors involved in the development of cholinergic traits in vivo are still enigmatic. Previous studies have shown that the c-ret receptor and cholinergic properties are coexpressed in chick sympathetic neurons. Using in situ hybridization we show now that a loss-of-function mutation of the c-ret receptor in mice dramatically reduces numbers of cells positive for choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) in stellate ganglia of homozygous newborn animals. The number of neurons positive for tyrosine hydroxylase (TH) mRNA, the rate-limiting enzyme of noradrenaline synthesis, is reduced to a smaller degree and expression levels are not detectably altered. Already at embryonic day 16 (E16), ChAT and VAChT-positive cells are affected by the c-ret mutation. At E14, however, ChAT and VAChT mRNAs are detectable at low levels and no difference is observed between wildtype and mutant mice. Our data suggest that c-ret signalling is necessary for the maturation of cholinergic sympathetic neurons but dispensable for de novo induction of ChAT and VAChT expression.
Collapse
Affiliation(s)
- K Burau
- Interdisciplinary Center for Neurosciences, Department of Neuroanatomy, University of Heidelberg, INF 307, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Shimojo M, Hersh LB. Regulation of the cholinergic gene locus by the repressor element-1 silencing transcription factor/neuron restrictive silencer factor (REST/NRSF). Life Sci 2004; 74:2213-25. [PMID: 15017977 DOI: 10.1016/j.lfs.2003.08.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The cholinergic gene locus is comprised of two genes, the choline acetyltransferase gene and the vesicular acetylcholine transporter gene. The vesicular acetylcholine transporter gene is located within the first intron of the choline acetyltransferase gene. This arrangement permits coordinate regulation of the locus. Protein kinase A regulates expression of the cholinergic gene locus in PC12 cells. This regulation was found to be dependent on the presence of a 21-bp DNA sequence known as the repressor element- (RE- 1)/neuron-restrictive silencer element(NRSE). Repressor element-I silencing transcription factor (REST)/ neuron-restrictive silencer factor (NRSF), which binds to the RE-I/NRSE, is a zinc finger containing transcriptional repressor that blocks the expression of many neuronal RE-I/NRSE containing genes in nonneuronal cells. However, REST/NRSF expression has also been observed in neurons as well as the PC 12 cell line used in these studies. REST/NRSF truncated isoforms were expressed in neuronal cells, suggesting they also function in regulating neuronal gene expression. A study of REST4, one of the REST/NRSF isoforms, suggests that it regulates transcription of the cholinergic gene locus by blocking the repressor activity of REST/NRSF. Protein kinase A regulation of the cholinergic gene locus in PC 12 cells can thus be attributed, at least in part, to increased synthesis of REST4, which in turn derepresses the repressor activity of REST/NRSF.
Collapse
Affiliation(s)
- Masahito Shimojo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Chandler Medical Center, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
21
|
Gauda EB, Cooper R, Johnson SM, McLemore GL, Marshall C. Autonomic microganglion cells: a source of acetylcholine in the rat carotid body. J Appl Physiol (1985) 2004; 96:384-91. [PMID: 14660500 DOI: 10.1152/japplphysiol.00897.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic chemosensitivity of peripheral arterial chemoreceptors and the ventilatory response to O2 deprivation increases with postnatal development. Multiple putative neurotransmitters, which are synthesized in the carotid body (CB), are thought to mediate signals generated by hypoxia. Acetylcholine (ACh) is believed to be a major excitatory neurotransmitter participating in hypoxic chemosensitivity. However, it is not known whether ACh originates from type I cells in the CB. In these studies, we tested the hypothesis that choline acetyltransferase (ChAT) and vesicular ACh transporter (VAChT) mRNAs are expressed in the CB and that mRNA levels would increase with postnatal maturation or exposure to hypoxia. Semiquantitative in situ hybridization histochemistry and immunohistochemistry were used to localize cholinergic markers within neurons and cells of the rat CB, the nodose-petrosal-jugular ganglion complex, and the superior cervical ganglion up to postnatal day 28. We show that the pattern of distribution, in tissue sections, is similar for both ACh markers; however, the level of VAChT mRNA is uniformly greater than that of ChAT. VAChT mRNA and immunoreactivity are detected abundantly in the nodose-petrosal-jugular ganglion complex in a number of microganglion cells embedded in nerve fibers innervating the CB for all postnatal groups, whereas ChAT mRNA is detected in only a few of these cells. Contrary to our hypothesis, postnatal maturation caused a reduction in ACh trait expression, whereas hypoxic exposure did not induce the upregulation of VAChT and ChAT mRNA levels in the CB, microganglion, or within the ganglion complex. The present findings indicate that the source of ACh in the CB is likely within autonomic microganglion cells and cholinergic nerve terminals.
Collapse
Affiliation(s)
- Estelle B Gauda
- Division of Neonatology, Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287-3200, USA.
| | | | | | | | | |
Collapse
|
22
|
Gauda EB, Cooper R, Johnson SM. Autonomic ganglion cells: likely source of acetylcholine in the rat carotid body. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 536:505-15. [PMID: 14635706 DOI: 10.1007/978-1-4419-9280-2_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Estelle B Gauda
- Department of Pediatrics, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
23
|
Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 2003; 457:213-35. [PMID: 12541307 DOI: 10.1002/cne.10454] [Citation(s) in RCA: 439] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The melanocortin 4 receptor (MC4-R) plays a pivotal role in maintaining energy homeostasis in rodents and humans. For example, MC4-R deletion or mutation results in obesity, hyperphagia, and insulin resistance. Additionally, subsets of leptin-induced autonomic responses can be blocked by melanocortin receptor antagonism, suggesting that MC4-R-expressing neurons are downstream targets of leptin. However, the critical autonomic control sites expressing MC4-Rs are still unclear. In the present study, we systematically examined the distribution of MC4-R mRNA in the adult rat central nervous system, including the spinal cord, by using in situ hybridization histochemistry (ISHH) with a novel cRNA probe. Autonomic control sites expressing MC4-R mRNA in the hypothalamus included the anteroventral periventricular, ventromedial preoptic, median preoptic, paraventricular, dorsomedial, and arcuate nuclei. The subfornical organ, dorsal hypothalamic, perifornical, and posterior hypothalamic areas were also observed to express MC4-R mRNA. Within extrahypothalamic autonomic control sites, MC4-R-specific hybridization was evident in the infralimbic and insular cortices, bed nucleus of the stria terminalis, central nucleus of the amygdala, periaqueductal gray, lateral parabrachial nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus (DMV), and intermediolateral nucleus of the spinal cord (IML). By using dual-label ISHH, we confirmed that the cells expressing MC4-R mRNA in the IML and DMV were autonomic preganglionic neurons as cells in both sites coexpressed choline acetyltransferase mRNA. The distribution of MC4-R mRNA is consistent with the proposed roles of central melanocortin systems in feeding and autonomic regulation.
Collapse
Affiliation(s)
- Toshiro Kishi
- Department of Neurology, Beth Israel Deaconess Medical Center, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02215,USA
| | | | | | | | | | | |
Collapse
|
24
|
De Jaco A, Augusti-Tocco G, Biagioni S. Muscarinic acetylcholine receptors induce neurite outgrowth and activate the synapsin I gene promoter in neuroblastoma clones. Neuroscience 2002; 113:331-8. [PMID: 12127090 DOI: 10.1016/s0306-4522(02)00179-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The possible role of acetylcholine as a modulator of neuronal differentiation has been tested using a neuroblastoma cell line (N18TG2), which does not synthesize any neurotransmitter. Acetylcholine synthesis has been activated in this line by transfection with a construct containing a choline acetyltransferase (ChAT) cDNA; ChAT-positive clones share a higher ability to grow fibers and an activation of synapsin I expression compared to the parental cells. Atropine, a muscarinic antagonist, abolishes the higher ability to grow fibers of ChAT-positive transfected clones, and the cholinergic agonist carbachol induces higher neurite outgrowth in the parental line. In transient transfections of ChAT-positive clones, the expression of a reporter gene under the control of synapsin I promoter is considerably reduced by atropine, while it is not modified by carbachol; in contrast, in the parental cells, which do not synthesize acetylcholine, the reporter gene expression is induced by carbachol and this effect is abolished by atropine. The data presented provide evidence for the existence of a direct modulation of fiber outgrowth and synapsin I expression by muscarinic receptor activation, which may be related to early growth response gene-1 (EGR-1) levels.
Collapse
Affiliation(s)
- A De Jaco
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | | | | |
Collapse
|
25
|
Grundschober C, Malosio ML, Astolfi L, Giordano T, Nef P, Meldolesi J. Neurosecretion competence. A comprehensive gene expression program identified in PC12 cells. J Biol Chem 2002; 277:36715-24. [PMID: 12070162 DOI: 10.1074/jbc.m203777200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phenotype of neurosecretory cells is characterized by clear vesicles and dense granules, both discharged by regulated exocytosis. However, these organelles are lacking completely in a few neurosecretion-incompetent clones of the pheochromocytoma PC12 line, in which other specific features are maintained (incompetent clones). In view of the heterogeneity of PC12 cells, a differential characterization of the incompetent phenotype based on the comparison of a single incompetent and a single wild-type clone would have been inconclusive. Therefore, we have compared two pairs of PC12 clones, studying in parallel the transcript levels of 4,200 genes and 19,000 express sequence tags (ESTs) by high density oligonucleotide arrays. After accurate data processing for quality control and filtration, a total of 755 transcripts, corresponding to 448 genes and 307 ESTs, was found consistently changed, with 46% up-regulated and 54% down-regulated in incompetent versus wild-type clones. Many but not all neurosecretion genes were profoundly down-regulated in incompetent cells. Expression of endocytosis genes was normal, whereas that of many nuclear and transcription factors, including some previously shown to play key roles in neurogenesis, was profoundly changed. Additional differences appeared in genes involved in signaling and metabolism. Taken together these results demonstrate for the first time that expression of neurosecretory vesicles and granules is part of a complex gene expression program that includes many other features that so far have not been recognized.
Collapse
Affiliation(s)
- Christophe Grundschober
- Central Nervous System, F. Hoffmann-La Roche Ltd., Grenzacherstrasse, Basel 4070, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Hoch W, Betz H, Schramm M, Wolters I, Becker CM. Modulation by NMDA Receptor Antagonists of Glycine Receptor Isoform Expression in Cultured Spinal Cord Neurons. Eur J Neurosci 2002; 4:389-395. [PMID: 12106346 DOI: 10.1111/j.1460-9568.1992.tb00887.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two developmentally regulated isoforms of the inhibitory glycine receptor harbouring different alpha subunit variants, GlyRN (neonatal) and GlyRA (adult), have previously been identified in rodent spinal cord. Primary cultures of embyronic spinal neurons, however, express predominantly GlyRN. Here, N-methyl-d-aspartate (NMDA) receptor antagonists were found to significantly increase glycine receptor levels in mouse spinal cord cultures. In the presence of 2-amino-5-phosphonovalerate or MK-801 (dizocilpine), both GlyRN and GlyRA contents were elevated, as revealed by isoform-selective immunoassays and amplification of corresponding alpha subunit transcripts by the polymerase chain reaction. This effect of NMDA receptor antagonists was restricted to a 'sensitive' period within the second week after plating. Apparently, NMDA receptor-mediated glutamate neurotoxicity prevented GlyRA accumulation under standard culture conditions. Our data indicate that neuronal maturation in cell culture depends on conditions which minimize cell death resulting from glutamate release into the culture medium.
Collapse
Affiliation(s)
- W. Hoch
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, W-6900 Heidelberg, FRG
| | | | | | | | | |
Collapse
|
27
|
Robert I, Quirin-Stricker C. A novel untranslated 'exon H' of the human choline acetyltransferase gene in placenta. J Neurochem 2001; 79:9-16. [PMID: 11595752 DOI: 10.1046/j.1471-4159.2001.00508.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the existence of 5'-region(s) of human choline acetyltransferase (hChAT) mRNA in placenta we analyzed the presence or absence of ChAT 5'-untranslated regions (UTR) in human neuronal and non-neuronal cells. Total RNA from human spinal cord, placenta, cultured choriocarcinoma JEG-3 and neuroblastoma CHP126 and MC-IXC cells was reverse transcribed and used for polymerase chain reaction amplification (RT-PCR). We used a sense primer located in the 5'-flanking region, in the previously defined intronic sequence and an anti-sense primer located in the common coding exon 2 of the hChAT gene. An amplified product of 567 bp in size was obtained only in human placenta and in JEG-3 cells whereas it was absent in spinal cord, CHP126 and MC-IXC cells. It was designated 'H-type' of ChAT mRNA. Whereas CHP126 produced the R- and N-type of ChAT mRNAs, no transcript of the N-and R-type was detected in JEG-3 and human placenta. In addition, CHP126 and JEG-3 cells and placenta showed the expression of the M-type of ChAT mRNA. The identity of the amplified 567 bp product (H-type) was confirmed by Southern hybridization and sequencing. The nucleotide sequence of the amplified fragment in placenta revealed the existence of a previously unknown type of ChAT mRNA produced by alternative splicing. Using primer extension we further determined the transcription initiation site of the H-type hChAT mRNA in placenta. These results demonstrate the expression of a novel ChAT mRNA isoform in human placenta in addition to the M-type. These data may be possibly explained by the presence of a placenta specific promoter in the ChAT gene, which might be the proximal promoter P1.
Collapse
Affiliation(s)
- I Robert
- Laboratoire de Génétique Moléculaire des Eucaryotes, CNRS, Biologie Moléculaire et de Génie Génétique, INSERM, Institut de Chimie Biologique, Faculté de Médecine, Strasbourg, France
| | | |
Collapse
|
28
|
Ohno K, Tsujino A, Brengman JM, Harper CM, Bajzer Z, Udd B, Beyring R, Robb S, Kirkham FJ, Engel AG. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci U S A 2001; 98:2017-22. [PMID: 11172068 PMCID: PMC29374 DOI: 10.1073/pnas.98.4.2017] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2000] [Accepted: 12/22/2000] [Indexed: 11/18/2022] Open
Abstract
Choline acetyltransferase (ChAT; EC ) catalyzes the reversible synthesis of acetylcholine (ACh) from acetyl CoA and choline at cholinergic synapses. Mutations in genes encoding ChAT affecting motility exist in Caenorhabditis elegans and Drosophila, but no CHAT mutations have been observed in humans to date. Here we report that mutations in CHAT cause a congenital myasthenic syndrome associated with frequently fatal episodes of apnea (CMS-EA). Studies of the neuromuscular junction in this disease show a stimulation-dependent decrease of the amplitude of the miniature endplate potential and no deficiency of the ACh receptor. These findings point to a defect in ACh resynthesis or vesicular filling and to CHAT as one of the candidate genes. Direct sequencing of CHAT reveals 10 recessive mutations in five patients with CMS-EA. One mutation (523insCC) is a frameshifting null mutation. Three mutations (I305T, R420C, and E441K) markedly reduce ChAT expression in COS cells. Kinetic studies of nine bacterially expressed ChAT mutants demonstrate that one mutant (E441K) lacks catalytic activity, and eight mutants (L210P, P211A, I305T, R420C, R482G, S498L, V506L, and R560H) have significantly impaired catalytic efficiencies.
Collapse
Affiliation(s)
- K Ohno
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Toliver-Kinsky T, Wood T, Perez-Polo JR. Nuclear factor kappaB/p49 is a negative regulatory factor in nerve growth factor-induced choline acetyltransferase promoter activity in PC12 cells. J Neurochem 2000; 75:2241-51. [PMID: 11080175 DOI: 10.1046/j.1471-4159.2000.0752241.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anovel nuclear factor kappaB (NF-kappaB) binding site has been identified within the promoter region of the mouse gene encoding choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine and has been implicated in the cognitive deficits associated with aging and Alzheimer's disease. This binding site, which is located within the nerve growth factor (NGF)-responsive enhancer element, was recognized by the NF-kappaB protein p49 but not p65 or p50. p49 from both basal forebrain and PC12 nuclear extracts interacted with this specific sequence in electrophoretic mobility shift assays. Mutation of the NF-kappaB site caused an increase in NGF-induced promoter activation, whereas overexpression of p49 in NGF-differentiated PC12 cells caused a decrease in endogenous ChAT enzyme activity and a decrease in promoter activity that was specifically mediated through this NF-kappaB binding site. Treatment of PC12 cells with NGF resulted in a drastic reduction in nuclear p49 binding to the ChAT NF-kappaB site after 24 h, but nuclear p49 levels were not altered, suggesting that late NGF-mediated events prevent binding of p49 to the ChAT promoter by an unknown mechanism other than nuclear translocation. Decreased ChAT expression and increased NF-kappaB activity in the brain are associated with aging and Alzheimer's disease. These data indicate that p49 is a negative regulator of ChAT expression and suggest a possible mechanism for aging-associated declines in cholinergic function.
Collapse
Affiliation(s)
- T Toliver-Kinsky
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-0652, USA.
| | | | | |
Collapse
|
30
|
De Jaco A, Ajmone-Cat MA, Baldelli P, Carbone E, Augusti-Tocco G, Biagioni S. Modulation of acetylcholinesterase and voltage-gated Na(+) channels in choline acetyltransferase- transfected neuroblastoma clones. J Neurochem 2000; 75:1123-31. [PMID: 10936194 DOI: 10.1046/j.1471-4159.2000.0751123.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurotransmitters appear early in the developing embryo and may play a role in the regulation of neuronal differentiation. To study potential effects of acetylcholine production in neuronal differentiation, we used the FB5 subclone of N18TG2 murine neuroblastoma cells stably transfected with cDNA for choline acetyltransferase. We tested whether the forced acetylcholine production can modify the expression or the cellular localization of different neuronal markers. We studied the activity, localization, and secretion of acetylcholinesterase in view of its possible role in the modulation of the morphogenetic action of acetylcholine and of its proposed role of a regulator of neurite outgrowth. FB5 cells are characterized by a high level of acetylcholinesterase, predominantly released into the culture medium. Acetylcholinesterase secretion into the medium was lower in choline acetyltransferase-transfected clones than in nontransfected and antisense-transfected controls. Moreover, sequential extraction of acetylcholinesterase revealed that detergent-extracted, i.e., membrane-associated, activity was higher in the transfected clones expressing choline acetyltransferase activity than in both control groups. These observations suggest that a shift occurs in the utilization of acetylcholinesterase in choline acetyltransferase-transfected clones from a secretion pathway to a pathway leading to membrane localization. In addition, the choline acetyltransferase-positive clones showed higher densities of voltage-gated Na(+) channels and enhanced high-affinity choline uptake, suggesting the accomplishment of a more advanced differentiated neuronal phenotype. Finally, binding experiments demonstrated the presence of muscarinic acetylcholine receptors in all examined clones. This observation is consistent with the proposed existence of an autocrine loop, which may be important for the enhancement in the expression of neurospecific traits.
Collapse
Affiliation(s)
- A De Jaco
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Roma, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Di Marco A, Demartis A, Gloaguen I, Lazzaro D, Delmastro P, Ciliberto G, Laufer R. Leptin receptor-mediated regulation of cholinergic neurotransmitter phenotype in cells of central nervous system origin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2939-44. [PMID: 10806392 DOI: 10.1046/j.1432-1033.2000.01308.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leptin is an adipocyte-secreted hormone that regulates body weight and exerts effects on hematopoiesis, reproduction, and immunity. The leptin receptor (OBR) shares sequence similarity and signaling capabilities with receptors for cytokines of the ciliary neurotrophic factor (CNTF) family. Our previous finding that CNTF and leptin exert similar anti-obesity effects and activate common neuronal signaling pathways, prompted us to investigate whether leptin may share with CNTF the ability to regulate the expression of specific neuronal genes. To this end, we established a cell line, derived from the murine septal cholinergic neuronal cell line SN-56, which stably expresses OBR. In this cell line, termed SN-56/OBR, leptin induces STAT transcription factor activation and STAT-dependent reporter gene expression in a manner similar to that of CNTF. Furthermore, in SN-56/OBR cells both CNTF and leptin produce changes in neurotransmitter and neuropeptide phenotype characteristic of cholinergic neurons, such as an increase in choline acetyltransferase and vasoactive intestinal polypeptide, and a decrease in neuropeptide Y expression. SN-56/OBR cells thus constitute an interesting new model system to investigate leptin action in cells of central nervous system origin. Possible physiological implications of OBR's intrinsic ability to regulate cholinergic phenotypic markers are discussed.
Collapse
Affiliation(s)
- A Di Marco
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Pomezia, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Preston Z, Lee K, Widdowson L, Richardson PJ, Pinnock RD. Tachykinins increase [3H]acetylcholine release in mouse striatum through multiple receptor subtypes. Neuroscience 2000; 95:367-76. [PMID: 10658616 DOI: 10.1016/s0306-4522(99)00440-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tachykinins have been suggested to play a significant role in the mammalian striatum, at least in part by the control of acetylcholine release from cholinergic interneurons. In the present study, we have examined the ability of known tachykinin agonists and antagonists to modulate the activity of these interneurons in mouse striatal slices. Using whole-cell patch-clamp recordings, the selective neurokinin-1, neurokinin-2 and neurokinin-3 receptor agonists [sar9,Met(O2)11]substance P, [beta-ala8]neurokinin A(4-10) and senktide each produced a dose-dependent depolarization of visually identified cholinergic interneurons that was retained under conditions designed to interrupt synaptic transmission. The nature of these neurons and the expression of multiple tachykinin receptors was confirmed using single-cell reverse transcriptase-polymerase chain reaction analysis. Using in vitro superfusion techniques, the selective neurokinin-1, neurokinin-2 and neurokinin-3 receptor agonists [sar9,Met(O2)11]substance P, [beta-ala8]neurokinin A(4-10) and senktide, respectively, each produced a dose-dependent increase in acetylcholine release, the selectivity of which was confirmed using the neurokinin-1, neurokinin-2 and neurokinin-3 receptor antagonists SR140333, GR94800 and SR142801 (100 nM). U73122 (10 microM), a phospholipase C inhibitor, blocked [sar9,Met(O2)11]substance P- and senktide-induced acetylcholine release, but had no effect on [beta-ala8]neurokinin A(4-10)-induced release. The protein kinase C inhibitors chelerythrine and Ro-31-8220 (both 1 microM) significantly inhibited responses induced by all three agonists. These findings indicate that tachykinins modulate the activity of mouse striatal cholinergic interneurons. Furthermore, neurokinin-2 receptors are shown to perform a role in mouse that has not been identified previously in other species.
Collapse
MESH Headings
- 2-Amino-5-phosphonovalerate/pharmacology
- Acetylcholine/pharmacokinetics
- Alkaloids
- Animals
- Benzophenanthridines
- Choline O-Acetyltransferase/genetics
- Choline O-Acetyltransferase/metabolism
- Corpus Striatum/chemistry
- Corpus Striatum/metabolism
- Electrophysiology
- Enzyme Inhibitors/pharmacology
- Estrenes/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- In Situ Hybridization
- Indoles/pharmacology
- Interneurons/chemistry
- Interneurons/enzymology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Neurokinin A/analogs & derivatives
- Neurokinin A/pharmacology
- Oligopeptides/pharmacology
- Peptide Fragments/pharmacology
- Phenanthridines/pharmacology
- Phosphodiesterase Inhibitors/pharmacology
- Piperidines/pharmacology
- Pyrrolidinones/pharmacology
- Quinoxalines/pharmacology
- Quinuclidines/pharmacology
- RNA, Messenger/analysis
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/metabolism
- Receptors, Neurokinin-2/genetics
- Receptors, Neurokinin-2/metabolism
- Receptors, Neurokinin-3/antagonists & inhibitors
- Receptors, Neurokinin-3/genetics
- Receptors, Neurokinin-3/metabolism
- Receptors, Tachykinin/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Substance P/analogs & derivatives
- Substance P/pharmacology
- Tachykinins/metabolism
- Tetrodotoxin/pharmacology
- Tritium
- omega-N-Methylarginine/pharmacology
Collapse
Affiliation(s)
- Z Preston
- Parke-Davis Neuroscience Research Centre, Cambridge University Forvie Site, UK
| | | | | | | | | |
Collapse
|
33
|
Abstract
The synthesis, storage and release of acetylcholine (ACh) requires the expression of several specialized proteins, including choline acetyltransferase (ChAT) and the vesicular ACh transporter (VAChT). The VAChT gene is located within the first intron of the ChAT gene. This unique genomic organization permits coordinated activation of expression of the two genes by extracellular factors. Much less is known about factors that reduce the expression of the cholinergic phenotype. A cholinergic deficit is one of the primary features of Alzheimer's disease (AD), and AD brains are characterized by amyloid deposits composed primarily of A beta peptides. Although A beta peptides are neurotoxic, part of the cholinergic deficit in AD could be attributed to the suppression of cholinergic markers in the absence of cell death. Indeed, we and others demonstrated that synthetic A beta peptides, at submicromolar concentrations that cause no cytotoxicity, reduce the expression of cholinergic markers in neuronal cells. Another feature of AD is abnormal phospholipid turnover, which might be related to the progressive accumulation of apolipoprotein E (apoE) within amyloid plaques, leading perhaps to the reduction of apoE content in the CSF of AD patients. ApoE is a component of very low density lipoproteins (VLDL). As a first step in investigating a potential neuroprotective function of apoE, we determined the effects of VLDL on ACh content in neuronal cells. We found that VLDL increases ACh levels, and that it can partially offset the anticholinergic actions of A beta peptides.
Collapse
Affiliation(s)
- J K Blusztajn
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, MA 02118, USA.
| | | |
Collapse
|
34
|
Tooyama I, Kimura H. A protein encoded by an alternative splice variant of choline acetyltransferase mRNA is localized preferentially in peripheral nerve cells and fibers. J Chem Neuroanat 2000; 17:217-26. [PMID: 10697248 DOI: 10.1016/s0891-0618(99)00043-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Central cholinergic systems have been visualized by immunohistochemistry using antibodies to choline acetyltransferase (ChAT). Peripheral cholinergic cells and fibers, however, have been hardly detectable with most of these antibodies. This phenomenon suggests that a different form of ChAT may exist in peripheral tissues. Here we report two types of mRNA for ChAT expressed by alternative splicing in rat pterygopalatine ganglion. One is exactly identical with ChAT mRNA reported in the central nervous system (ChAT of a common type; cChAT). The other lacks exons 6, 7, 8 and 9, which was detected only in the pterygopalatine ganglion (ChAT of a peripheral type; pChAT). The peculiarity of pChAT in chemical structure, possessing a splice joint of the exons 5 and 10, led us to produce rabbit antisera against a recombinant peptide of 41 amino acids which spans over the splice joint. On Western blots using a successfully obtained antiserum, an intense band of about 50 kDa, corresponding to the expected molecular weight of pChAT, was detected in the pterygopalatine ganglion but not in the brain. Immunohistochemistry using the antiserum failed to reveal positive staining of known brain cholinergic structures, while it permitted us to observe peripheral, probably cholinergic, nerve cells and fibers including those in the pterygopalatine ganglion and enteric nervous system.
Collapse
Affiliation(s)
- I Tooyama
- Neuroanatomny Unit, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan.
| | | |
Collapse
|
35
|
Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 1999; 49:921-37. [PMID: 10594838 DOI: 10.1046/j.1440-1827.1999.00977.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine, is presently the most specific indicator for monitoring the functional state of cholinergic neurones in the central and peripheral nervous systems. ChAT is a single-strand globular protein. The enzyme is synthesized in the perikaryon of cholinergic neurones and transported to the nerve terminals probably by both slow and rapid axoplasmic flows. ChAT exists in at least two forms in cholinergic nerve terminals: (i) soluble; and (ii) non-ionically membrane-bound forms. Multiple mRNA species of ChAT (R-, N-and M-types) are transcribed from different promoter regions and produced by different splicing in the mouse, rat, and human. All transcripts encode the same ChAT protein in rodents, while in human M-type mRNA has the capability to generate both large and small forms of ChAT proteins and R-and N-types ChAT mRNA generate a small form, which corresponds to the rodent ChAT. The genomic structure of ChAT is unique compared with other enzymes for neurotransmitters. The first intron of the ChAT gene encompasses the open reading frame encoding another protein, vesicular acetylcholine transporter (VAChT), which is responsible for the transportation of acetylcholine from the cytoplasm into the synaptic vesicles. The expressions of ChAT and VAChT appear to be coordinately regulated by multiple regulatory elements in cholinergic neurones. Immunohistochemical and in situ hybridization studies have revealed the localization of cholinergic neurones in the central nervous system: the medial septal nucleus, the nucleus of the diagonal band of Broca, the basal nucleus of Meynert, the caudate nucleus, the putamen, the nucleus accumbens, the pedunculopontine tegmental nucleus, the laterodorsal tegmental nucleus, the medial habenular nucleus, the parabigeminal nucleus, some cranial nerve nuclei, and the anterior horn of the spinal cord. Focally distributed cholinergic neurones project fibers to many areas in the central nervous system and construct a complicated cholinergic network, playing an important role in neuropsychic activities, such as learning, memory, arousal, sleep and movement. Central cholinergic neurones are involved in several neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, in which disturbance of the central cholinergic system does not appear to be closely related to the etiology, but rather to the development of clinical symptoms. In addition, abnormalities of ChAT in the brain have been recently demonstrated in schizophrenia and sudden infant death syndrome.
Collapse
Affiliation(s)
- Y Oda
- First Department of Pathology, Faculty of Medicine, Kanazawa Univesity, Japan.
| |
Collapse
|
36
|
Kayadjanian N, Schofield WN, Andren J, Sirinathsinghji DJ, Besson MJ. Cortical and nigral deafferentation and striatal cholinergic markers in the rat dorsal striatum: different effects on the expression of mRNAs encoding choline acetyltransferase and muscarinic m1 and m4 receptors. Eur J Neurosci 1999; 11:3659-68. [PMID: 10564373 DOI: 10.1046/j.1460-9568.1999.00788.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of the striatal m1 and m4 muscarinic receptor mRNA as well as the choline acetyltransferase (ChAT) mRNA expression by nigral dopaminergic and cortical glutamatergic afferent fibres was investigated using quantitative in situ hybridization histochemistry. The effects induced by a unilateral lesion of the medial forebrain bundle and a bilateral lesion of the sensorimotor (SM) cortex were analysed in the dorsal striatum 3 weeks after the lesions. Dopaminergic denervation of the striatum resulted in a marked decrease in the levels of m4 mRNA throughout the striatum, while the levels of muscarinic m1 mRNA and ChAT mRNA in cholinergic neurons were unaffected by the lesion. In contrast, following bilateral cortical ablation, the levels of the muscarinic m1 mRNA were significantly increased in the striatal projection area of the SM cortex, whereas the expression of m4 mRNA remained unchanged. Single cholinergic cell analysis by computer-assisted grain counting revealed a decreased labelling for ChAT mRNA per neuron following cortical ablation. However, in contrast to the topographical m1 mRNA changes, the decreased ChAT mRNA expression was evenly distributed within the striatum, suggesting an indirect cortical control upon striatal cholinergic interneurons. Altogether, these data suggest that dopaminergic nigral and glutamatergic cortical afferents modulate differentially cholinergic markers, at the pre- and post-synaptic levels. Beside the fact that nigral and cortical inputs exert an opposite control on cholinergic neurotransmission, our study further shows that this control involved different muscarinic receptor subtypes: the m4 and m1 receptors, respectively.
Collapse
Affiliation(s)
- N Kayadjanian
- Laboratoire de Neurochimie-Anatomie, Institut des Neurosciences, CNRS UMR 7624, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
37
|
Abstract
Previous studies reported the presence of choline acetyltransferase (ChAT) mRNA and protein in the mammalian testis. We have now found that none of the ChAT mRNAs produced in the testis is capable of encoding a full-length ChAT protein. Two ChAT cDNAs were isolated from an adult rat testis cDNA library encoding N-terminally truncated ChAT proteins of 450 and 414 amino acids (aa), respectively, the former containing a novel N-terminal extension of 69 residues. Rapid Amplification of cDNA Ends (RACE) analysis revealed a complex pattern of 5' untranslated mRNA termini generated from the ChAT gene locus in the testis, all representing truncated versions of the ChAT enzyme. Two of these proteins were produced in transfected fibroblasts and found to lack ChAT activity. Neither did they show binding to the ChAT substrates, acetyl CoA and choline, in a competition assay. These results indicate that mammalian testis lacks a bona fide ChAT enzyme but expresses truncated ChAT proteins with a possible unique function to the testis.
Collapse
Affiliation(s)
- P Lönnerberg
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
38
|
Mori S, Sugawara S, Kikuchi T, Tanji M, Narumi O, Stoykova A, Nishikawa SI, Yokota Y. The leukemic oncogene tal-2 is expressed in the developing mouse brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 64:199-210. [PMID: 9931488 DOI: 10.1016/s0169-328x(98)00323-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
tal-1 (T-cell acute leukemia-1; also known as SCL) and tal-2 genes belong to a family of basic helix-loop-helix transcription factors and were originally isolated from the breakpoints of chromosomal translocations in human T-cell leukemia cell lines. tal-1 is expressed not only in hematopoietic cells but also in several endothelial structures and the central nervous system during development. On the other hand, the detailed function and the sites of expression of tal-2 have remained obscure. We cloned the tal-2 cDNA from a mouse embryonic cDNA library and examined its expression pattern in the mouse, comparing with that of tal-1. In situ analyses revealed that tal-2 transcripts are detected at embryonic day 12.5 in the following regions; 1) the diencephalon-the zona limitans intrathalamica and the pretectum, 2) the mesencephalon-the tectum, and the anterior and posterior tegmentum, 3) the metencephalon-the isthmus and the anterior pons. In the diencephalon and the mesencephalon, the expression sites of tal-2 gene were similar to those of tal-1, and its expression was stronger than that of tal-1. In the metencephalon, tal-2 expression was observed in the anterior pons, whereas tal-1 transcripts were detected in the entire pons, and showed stronger expression than tal-2. The tal-2 messages were barely detectable in the brain at birth. These results suggest that tal-1 and tal-2 are involved in the development of specific areas of the central nervous system.
Collapse
Affiliation(s)
- S Mori
- Department of Molecular Genetics, Kyoto University Graduate School of Medicine, Shogoin Kawahara-cho 53, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Pahud G, Salem N, van de Goor J, Medilanski J, Pellegrinelli N, Eder-Colli L. Study of subcellular localization of membrane-bound choline acetyltransferase in Drosophila central nervous system and its association with membranes. Eur J Neurosci 1998; 10:1644-53. [PMID: 9751137 DOI: 10.1046/j.1460-9568.1998.00177.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Choline acetyltransferase (ChAT), the enzyme which catalyses the biosynthesis of the neurotransmitter acetylcholine, exists in a soluble and membrane-bound form in cholinergic nerve terminals of different animal species. This study was performed on the enzyme present in Drosophila central nervous system. We show that the two forms of the enzyme have the same apparent molecular weight (75 kDa) when analysed by immunoblotting using an antibody we raised against the recombinant enzyme. According to different authors, membrane-bound enzyme might be associated with synaptic vesicles or plasma membrane. Subfractionation of Drosophila head homogenates in linear glycerol gradients showed that ChAT does not associate with synaptic vesicles. Analysis of ChAT activity and immunoreactivity showed that two peaks of ChAT were produced. One peak was present in fractions containing soluble components and the other was associated with rapidly sedimenting membranes containing plasma membranes. ChAT in the first peak was mainly hydrophilic. A large proportion of ChAT associated with rapidly sedimenting membranes was amphiphilic. Further fractionation of these membranes by flotation in sucrose gradients showed that membrane-associated ChAT sedimented in fractions containing plasma membrane marker. Membrane-bound ChAT was neither solubilized nor converted to hydrophilic enzyme after membrane treatment with 1 M hydroxylamine, suggesting that the enzyme is not palmitoylated and therefore not anchored to membrane through thioester-linked long chain fatty acid. Partial solubilization of ChAT present on membranes with urea and carbonate suggests that this form of ChAT is a peripheral membrane protein. Carbonate solubilization of membrane-bound ChAT converted the enzyme from hydrophobic to hydrophilic protein.
Collapse
Affiliation(s)
- G Pahud
- Department of Pharmacology and APSIC, Centre Médical Universitaire, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Roghani A, Shirzadi A, Butcher LL, Edwards RH. Distribution of the vesicular transporter for acetylcholine in the rat central nervous system. Neuroscience 1998; 82:1195-212. [PMID: 9466440 DOI: 10.1016/s0306-4522(97)00291-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to develop another selective marker for cholinergic cell bodies and fibres, we have raised a highly specific polyclonal antibody against a peptide derived from the C-terminus of a recently cloned putative vesicular acetylcholine transporter. This antibody recognizes the vesicular acetylcholine transporter protein on western blots of membranes from transfected monkey fibroblast COS cells as well as from various rat brain regions but not from untransfected COS cells or rat liver. In separate mapping studies, the antibody was found to stain cell bodies and fibres in all of the regions of the nervous system known to be cholinergic, including (i) the various nuclei of the basal nuclear complex and their projections to the hippocampus, amygdala, and cerebral cortex, (ii) the caudate-putamen nucleus, accumbens nucleus, olfactory tubercle, and islands of Calleja complex, (iii) the medial habenula, (iv) the mesopontine cholinergic complex and its projections to the thalamus, extrapyramidal motor nuclei, basal forebrain, cingulate cortex, raphe and reticular nuclei, and some cranial nerve nuclei, and (v) the somatic motor and autonomic nuclei of the cranial and spinal nerves. In many of these cholinergic neurons, it is possible to detect immunoreactivity for the vesicular acetylcholine transporter in proximal portions of processes and their branches, as well as in numerous puncta in close association with them. Some of these puncta are large and surround cell bodies and processes of neurons in several regions, including the somatic motor neurons of cranial nerve nuclei in the brainstem and in the ventral horn of the spinal cord. Double immunofluorescence studies indicated that neurons positive for the vesicular acetylcholine transporter also stained for the biosynthetic enzyme of acetylcholine, choline acetyltransferase. We conclude that antibody against the C-terminus of the putative vesicular acetylcholine transporter provides another marker for cholinergic neurons that, unlike in situ hybridization procedures, labels terminals as well as cell bodies. Therefore this antibody has the potential to reveal changes in number and morphology of cholinergic cell bodies and their terminal varicosities that occur in both physiologic and pathologic conditions.
Collapse
Affiliation(s)
- A Roghani
- Department of Neurology, University of California, Los Angeles 90095, USA
| | | | | | | |
Collapse
|
41
|
Organization and transmitter specificity of medullary neurons activated by sustained hypertension: implications for understanding baroreceptor reflex circuitry. J Neurosci 1998. [PMID: 9412514 DOI: 10.1523/jneurosci.18-01-00371.1998] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In situ expression of c-fos observed in response to phenylephrine (PE)-induced hypertension provided a basis for characterizing the organization and neurotransmitter specificity of neurons at nodal points of medullary baroreflex circuitry. Sustained hypertension induced by a moderate dose of PE provoked patterns of c-fos mRNA and protein expression that conformed in the nucleus of the solitary tract (NTS) to the termination patterns of primary baroreceptor afferents and in the caudal ventrolateral medulla (CVLM) to a physiologically defined depressor region. A majority of barosensitive CVLM neurons concurrently displayed markers for the GABAergic phenotype; few were glycinergic. Phenylephrine-sensitive GABAergic neurons that were retrogradely labeled after tracer deposits in pressor sites of the rostral ventrolateral medulla (RVLM) occupied a zone extending approximately 1.4 mm rostrally from the level of the calamus scriptorius, intermingled partly with catecholaminergic neurons of the A1 and C1 cell groups. By contrast, barosensitive neurons of the NTS were found to be phenotypically complex, with very few projecting directly to the RVLM. Extensive colocalization of PE-induced Fos-IR and markers for the nitric oxide phenotype were seen in a circumscribed, rostral, portion of the baroreceptor afferent zone of the NTS, whereas only a small proportion of PE-sensitive neurons in the NTS were found to be GABAergic. PE treatment parameters have been identified that provide a basis for defining and characterizing populations of neurons at the first station in the central processing of primary baroreceptor input and at a key inhibitory relay in the CVLM.
Collapse
|
42
|
Miller MA, Kolb PE, Raskind MA. GALR1 galanin receptor mRNA is co-expressed by galanin neurons but not cholinergic neurons in the rat basal forebrain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 52:121-9. [PMID: 9450684 DOI: 10.1016/s0169-328x(97)00250-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The neuropeptide galanin (GAL) has been proposed to be an inhibitory modulator of cholinergic transmission in the hippocampus and may impair memory by directly affecting the activity of basal forebrain (BF) cholinergic neurons. Alternatively, GAL may act indirectly and modulate the activity of other neurotransmitter systems which, in turn, influence cholinergic transmission. We have used double in situ hybridization histochemistry to evaluate the co-expression of the GAL receptor subtype, GALR1, within cholinergic neurons in the medial septum/diagonal band of adult male rats. In alternate brain sections, we assessed the co-expression of GALR1 mRNA within another forebrain cell group implicated in memory functions, the neurons of the bed nucleus of the stria terminalis (BNST) and medial amygdala (AMe) which co-express vasopressin (VP) and GAL and project to septo-hippocampus. Despite the abundance of GALR1 mRNA-expressing neurons in the cholinergic BF, we found no evidence for the co-expression of this receptor subtype within cholinergic neurons in the medial septum/diagonal band. In contrast, we detected an extensive co-expression (95%) of GALR1 mRNA within extrahypothalamic VP/GAL neurons. These results do not support the idea that GAL, acting via the GALR1 receptor, directly impairs BF cholinergic neurons but suggest, instead, that non-cholinergic neurons in the BF may play a role in mediating the inhibitory actions of GAL on cholinergic function. However, our findings provide anatomical evidence that GAL could directly modulate the activity and/or secretion pattern of extrahypothalmic VP/GAL neurons into septo-hippocampal regions.
Collapse
Affiliation(s)
- M A Miller
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
43
|
Quirin-Stricker C, Mauvais C, Schmitt M. Transcriptional activation of human choline acetyltransferase by AP2- and NGF-induced factors. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:165-74. [PMID: 9387876 DOI: 10.1016/s0169-328x(97)00141-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ChAT (choline acetyltransferase) is the enzyme responsible for acetylcholine synthesis and is specifically expressed in cholinergic neurons. To further characterize the transcriptional regulation of the hCHAT (human ChAT) gene by NGF, we examined the effects upon ChAT promoter activity of a family of transcription factors which are activated by NGF and several extracellular stimuli and encoded by immediate-early genes. These include NGFI-A (Egr1, zif268), NGFI-C (Egr2), Krox-20 and NGFI-B (Nurr77). Two fragments of the hChAT gene were used for functional analysis carrying 944 bp (P1) and 4000 bp (P1 + P2) of the 5' flanking region in front of the chloramphenicol acetyltransferase (CAT) reporter gene. They were transiently co-transfected with NGFI-A, NGFI-C, Krox-20 and NGFI-B expression vectors in NG108-15, SN6 and COS-1 cells. CAT activity after transfection of the p4000 ChAT-CAT reporter into both neuronal cell lines (NG108-15 and SN6 cells) was increased up to 5-fold in the presence of co-transfected NGFI-A and up to 5- and 12-fold after co-transfection of NGFI-C expression vector in NG108-15 and SN6 cells, respectively. In NG108-15 cells, dbcAMP excerted a strong enhancing activity on the transactivation properties of NGFI-C while this was not observed when cells were transfected with NGFI-A. These trans-activation effects were specific for neuronal cells. When NG108-15 cells were treated with dbcAMP in the presence of H89, a specific PKA inhibitor, the increase of transcriptional activity of NGFI-C was abolished, indicating that a signalling transduction mechanism through PKA plays a role in NGFI-C-induced trans-activation. Electrophoretic mobility-shift assays showed that the sequence GCCCGGGGAG (NGFRE) located 1205 bp upstream of the first coding ATG (E1) can bind NGFI-A but not NGFI-C. Several possibilities explaining the observed results are discussed. Finally, transfections of ChAT-CAT reporters including the P1 + P2 region or a minimal ChAT enhancer present in the P2 region in front of a heterologous promoter indicated the presence of a regulatory element which conferred AP2-dependent trans-activation with homologous as well as with heterologous promoter constructs.
Collapse
Affiliation(s)
- C Quirin-Stricker
- Institut de Chimie Biologique, U184/INSERM, LGME/CNRS, Faculté de Médecine, Strasbourg, France
| | | | | |
Collapse
|
44
|
Cronin CN. The conserved serine-threonine-serine motif of the carnitine acyltransferases is involved in carnitine binding and transition-state stabilization: a site-directed mutagenesis study. Biochem Biophys Res Commun 1997; 238:784-9. [PMID: 9325168 DOI: 10.1006/bbrc.1997.7390] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There has been speculation that the carnitine acyltransferase reaction mechanism may involve the formation of an acyl-serine intermediate. A serine-threonine-serine (STS) motif that is conserved throughout the carnitine acyltransferase family, and is present also in the choline acetyltransferases, contains the only two conserved serines. The functional role of this motif in carnitine octanoyltransferase was probed by using a site-directed mutagenesis strategy to generate all seven possible alanine substitutions: single, double and triple mutants. Kinetic analyses of these mutant enzymes demonstrated that the STS motif is not essential for catalysis, thereby excluding an acyl-serine intermediate from the reaction mechanism. The kinetic analyses support, however, substantial roles for the STS motif in carnitine binding and transition-state stabilization.
Collapse
Affiliation(s)
- C N Cronin
- Department of Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
45
|
Cronin CN. cDNA cloning, recombinant expression, and site-directed mutagenesis of bovine liver carnitine octanoyltransferase--Arg505 binds the carboxylate group of carnitine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1029-37. [PMID: 9288928 DOI: 10.1111/j.1432-1033.1997.01029.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cDNA for bovine liver carnitine octanoyltransferase (COT) has been cloned by a combination of lambda gt11 library screening and 3' rapid amplification of cDNA ends (3'-RACE). The cDNA comprises 338 bases of 5' non-coding sequence, a reading frame of 1839 bases including the stop codon, and 820 bases of 3' non-coding DNA. The deduced amino acid sequence of 612 residues predicts a protein with a calculated mass of 70263 Da and pI 6.28. The enzyme was expressed in recombinant soluble form in Escherichia coli and was purified by a two-step procedure to near-homogeneity with a yield of purified protein of 2-3 mg/l culture. Recombinant COT had similar kinetic properties to those of the enzyme isolated directly from beef liver. Arg505 in COT, conserved in all reported carnitine acyltransferase sequences but replaced by asparagine or isoleucine in the choline acetyltransferases, was converted to asparagine by site-directed mutagenesis. This single mutation resulted in a greater than 1650-fold increase in the Km value for COT towards carnitine, but had little effect on the value of k(cat) or the Km value for the acyl-CoA substrate. In addition, although choline was an extremely poor substrate for COT, the k(cat)/Km ratio towards this substrate was increased fourfold as a result of the mutation. These data support the notion that Arg505 in COT, and other carnitine acyltransferases, contributes to substrate binding by forming a salt bridge with the carboxylate moiety of carnitine.
Collapse
Affiliation(s)
- C N Cronin
- Department of Veterans Affairs Medical Center, and Department of Biochemistry and Biophysics, University of California, San Francisco 94121, USA.
| |
Collapse
|
46
|
Salim KN, McEwen BS, Chao HM. Ginsenoside Rb1 regulates ChAT, NGF and trkA mRNA expression in the rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:177-82. [PMID: 9221915 DOI: 10.1016/s0169-328x(97)00042-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ginsenoside Rb1 (Rb1), a saponin of North American ginseng (Panax quinquefolium L.), has been found to exert beneficial effects on memory and learning, putatively through its actions on the cholinergic system. In situ hybridization studies show that Rb1 increases the expression of choline acetyltransferase and trkA mRNAs in the basal forebrain and nerve growth factor mRNA in the hippocampus. Other neurotrophins (brain-derived neurotrophic factor, neurotrophin-3), genes encoding neuropeptides (preproenkephalin, preprotachykinin) and amyloid protein precursor were also studied, but no significant change was observed. These findings support the specificity of the effects of Rb1 on certain aspects of the cholinergic and neurotrophic systems.
Collapse
Affiliation(s)
- K N Salim
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
47
|
Ichikawa T, Ajiki K, Matsuura J, Misawa H. Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: in situ hybridization histochemistry and immunohistochemistry. J Chem Neuroanat 1997; 13:23-39. [PMID: 9271193 DOI: 10.1016/s0891-0618(97)00021-5] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) are proteins that are required for cholinergic neurotransmission. Present knowledge concerning the organization of cholinergic structures has been derived primarily from immunohistochemistry for ChAT. In the present study, we investigated the distribution of mRNAs and the corresponding proteins for ChAT and VAChT by in situ hybridization histochemistry and immunohistochemistry. The patterns of distribution of perikarya containing ChAT mRNA. ChAT protein, VAChT mRNA and VAChT protein were similar in most regions, and co-localization in the same neuron of mRNAs for ChAT and VAChT, that of ChAT mRNA and ChAT protein, and that of VAChT mRNA and VAChT protein were demonstrated. However, in the cerebral cortex and hypothalamus, ChAT-immunoreactive perikarya were present, but they did not contain mRNAs for ChAT and VAChT, and VAChT protein. On the other hand, in the cerebellum, Purkinje cell bodies contained VAChT mRNA and VAChT protein, but they did not contain either ChAT mRNA or ChAT protein. Axon bundles were clearly revealed by immunohistochemistry for ChAT, but they were not detected by that for VAChT. Both ChAT and VAChT antibodies revealed preterminal axons and terminal-like structures. In the forebrain, they were present in the olfactory bulb, nucleus of the lateral olfactory tract, olfactory tubercle, lateral septal nucleus, amygdala, hippocampus, neocortex, caudate-putamen, thalamus and median eminence of the hypothalamus. In the brainstem, they were localized in the superior colliculus, interpeduncular nucleus and some cranial nerve motor nuclei, and further in the ventral horn of the spinal cord. These results indicate strongly that ChAT and VAChT are expressed in most of the cholinergic neurons, and that immunohistochemistry for VAChT is as useful to detect cholinergic terminal fields as that for ChAT.
Collapse
Affiliation(s)
- T Ichikawa
- Department of Anatomy and Embryology, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | | | |
Collapse
|
48
|
Misawa H, Matsuura J, Oda Y, Takahashi R, Deguchi T. Human choline acetyltransferase mRNAs with different 5'-region produce a 69-kDa major translation product. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 44:323-33. [PMID: 9073174 DOI: 10.1016/s0169-328x(96)00231-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Choline acetyltransferase (ChAT, EC 2.3.1.6) is the biosynthetic enzyme for acetylcholine. We have previously shown that multiple ChAT mRNA species with different 5'-noncoding regions are expressed in the rat and mouse. However, the diversity of ChAT mRNA species in human has not completely been elucidated. In this work N1- and N2-type ChAT cDNAs were cloned from a human brain cDNA library and the N-exon located in the human ChAT gene. Polymerase chain reaction analysis indicates that four species of ChAT mRNAs (R-, N1-, N2- and M-types) are produced in human brain and spinal cord. In all human transcripts, the ATG initiation codon in the rat, mouse and pig was replaced by ACG, which does not serve as an initiation codon for translation. In vitro translation and mammalian expression analyses revealed that N1-, N2- and R-type mRNAs give rise to a single 69 kDa enzyme, while M-type mRNA produces both 82 and 69 kDa enzymes. The translation efficiency of M-type mRNA was lower than that of the other mRNA species. Moreover, the translation efficiency of human ChAT mRNAs was considerably lower than that of rat ChAT mRNA, suggesting that the ATG codons for human ChAT are unfavorable for translation initiation compared with the initiation codon for rat ChAT. These results provide rational explanations for the previous reports that human ChAT protein purified from the brain and placenta had 66-70 kDa molecular mass, and that ChAT activity in a single motor neuron of human was far lower than that of other vertebrates. Sequencing of monkey ChAT gene showed that the initiation ATG in rodent ChAT was also replaced by ACA in the monkey.
Collapse
Affiliation(s)
- H Misawa
- Department of Neurology, Tokyo Metropolitan Institute for Neuroscience, Fuchu City, Japan.
| | | | | | | | | |
Collapse
|
49
|
Arvidsson U, Riedl M, Elde R, Meister B. Vesicular acetylcholine transporter (VAChT) protein: A novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970224)378:4<454::aid-cne2>3.0.co;2-1] [Citation(s) in RCA: 302] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Wang W, Salvaterra PM, Loera S, Chiu AY. Brain-derived neurotrophic factor spares choline acetyltransferase mRNA following axotomy of motor neurons in vivo. J Neurosci Res 1997; 47:134-43. [PMID: 9008144 DOI: 10.1002/(sici)1097-4547(19970115)47:2<134::aid-jnr2>3.0.co;2-g] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Choline acetyltransferase (ChAT) is a functional and specific marker gene for neurons such as primary motor neurons that synthesize and release acetylcholine as a neurotransmitter. In adult mammals, transection of the peripheral nerve results in a loss of immunoreactivity for ChAT in the injured motor neurons without affecting their cell number. Using a quantitative RNase protection assay, we have investigated dynamic changes in ChAT mRNA levels following axotomy of motor neurons in the brainstem of adult rats. One week after transection of the left hypoglossal nerve, levels of ChAT mRNA in the ipsilateral side of the hypoglossal motor nucleus decreased dramatically to around 10% when compared to the uninjured contralateral side. When cut axons were chronically exposed to brain-derived neurotrophic factor (BDNF) for 1 week, ChAT mRNA levels were maintained at 63% of control levels. Thus, BDNF can abrogate the injury-induced loss of ChAT mRNA in mature motor neurons in vivo. In contrast, neither neurotrophin 4/5 nor nerve growth factor could prevent the decrease in message. This effect of BDNF on ChAT mRNA levels following peripheral injury to motor neurons demonstrates the existence of regulatory pathways responsive to neurotrophic factors that can "rescue" or "protect" cholinergic gene expression.
Collapse
Affiliation(s)
- W Wang
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|