1
|
Cui C, Wang C, Cao M, Kang X. Ca 2+/calmodulin-dependent Protein Kinases in Leukemia Development. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:144-150. [PMID: 34263253 PMCID: PMC8276974 DOI: 10.33696/immunology.3.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ca2+/calmodulin (CaM) signaling is important for a wide range of cellular functions. It is not surprised the role of this signaling has been recognized in tumor progressions, such as proliferation, invasion, and migration. However, its role in leukemia has not been well appreciated. The multifunctional Ca2+/CaM-dependent protein kinases (CaMKs) are critical intermediates of this signaling and play key roles in cancer development. The most investigated CaMKs in leukemia, especially myeloid leukemia, are CaMKI, CaMKII, and CaMKIV. The function and mechanism of these kinases in leukemia development are summarized in this study.
Collapse
Affiliation(s)
- Changhao Cui
- School of Life Science and Medicine, Dalian University of Technology, Liaoning 124221, China
| | - Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri, 1 Hospital Drive, Columbia, Missouri 65212, USA
| | - Min Cao
- Center for Precision Medicine, Department of Medicine, University of Missouri, 1 Hospital Drive, Columbia, Missouri 65212, USA
| | - Xunlei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri, 1 Hospital Drive, Columbia, Missouri 65212, USA
| |
Collapse
|
2
|
Brzozowski JS, Skelding KA. The Multi-Functional Calcium/Calmodulin Stimulated Protein Kinase (CaMK) Family: Emerging Targets for Anti-Cancer Therapeutic Intervention. Pharmaceuticals (Basel) 2019; 12:ph12010008. [PMID: 30621060 PMCID: PMC6469190 DOI: 10.3390/ph12010008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/25/2023] Open
Abstract
The importance of Ca2+ signalling in key events of cancer cell function and tumour progression, such as proliferation, migration, invasion and survival, has recently begun to be appreciated. Many cellular Ca2+-stimulated signalling cascades utilise the intermediate, calmodulin (CaM). The Ca2+/CaM complex binds and activates a variety of enzymes, including members of the multifunctional Ca2+/calmodulin-stimulated protein kinase (CaMK) family. These enzymes control a broad range of cancer-related functions in a multitude of tumour types. Herein, we explore the cancer-related functions of these kinases and discuss their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joshua S Brzozowski
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute (HMRI) and University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Kathryn A Skelding
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute (HMRI) and University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
3
|
Beg A, Khan FI, Lobb KA, Islam A, Ahmad F, Hassan MI. High throughput screening, docking, and molecular dynamics studies to identify potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. J Biomol Struct Dyn 2018; 37:2179-2192. [PMID: 30044185 DOI: 10.1080/07391102.2018.1479310] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CAMKIV) is associated with many diseases including cancer and neurodegenerative disorders and thus being considered as a potential drug target. Here, we have employed the knowledge of three-dimensional structure of CAMKIV to identify new inhibitors for possible therapeutic intervention. We have employed virtual high throughput screening of 12,500 natural compounds of Zinc database to screen the best possible inhibitors of CAMKIV. Subsequently, 40 compounds which showed significant docking scores (-11.6 to -10.0 kcal/mol) were selected and further filtered through Lipinski rule and drug likeness parameter to get best inhibitors of CAMKIV. Docking results are indicating that ligands are binding to the hydrophobic cavity of the kinase domain of CAMKIV and forming a significant number of non-covalent interactions. Four compounds, ZINC02098378, ZINC12866674, ZINC04293413, and ZINC13403020, showing excellent binding affinity and drug likeness were subjected to molecular dynamics simulation to evaluate their mechanism of interaction and stability of protein-ligand complex. Our observations clearly suggesting that these selected ligands may be further employed for therapeutic intervention to address CAMKIV associated diseases. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anam Beg
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Faez Iqbal Khan
- b Computational Mechanistic Chemistry and Drug Discovery , Rhodes University , Grahamstown , South Africa
| | - Kevin A Lobb
- b Computational Mechanistic Chemistry and Drug Discovery , Rhodes University , Grahamstown , South Africa
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
4
|
Han F, Nakano T, Yamamoto Y, Shioda N, Lu YM, Fukunaga K. Improvement of depressive behaviors by nefiracetam is associated with activation of CaM kinases in olfactory bulbectomized mice. Brain Res 2009; 1265:205-14. [PMID: 19233146 DOI: 10.1016/j.brainres.2009.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 12/27/2022]
Abstract
Olfactory bulbectomized (OBX) mice exhibit depressive-like behaviors as assessed by the tail suspension test (TST) and the forced swim test (FST). Interestingly, chronic intraperitoneal administration (1 mg/kg/day) of nefiracetam (DM-9384), a prototype cognitive enhancer, significantly improved depressive-like behaviors as well as spatial reference memory assessed by Y-maze task. As previously reported (Moriguchi, S., Han, F., Nakagawasai, O., Tadano, T., Fukunaga, K., 2006. Decreased calcium/calmoculin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. J. Neurochem. 97, 22-29), decreased activities of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) in the hippocampal CA1 region and amygdala were observed in OBX mice. Nefiracetam treatment (1 mg/kg/day) significantly elevated CaMKII but not ERK activities in the amygdala, prefrontal cortex and hippocampal CA1 regions. In addition, we found an elevation of cAMP response element-binding protein (CREB) phosphorylation in the amygdala and prefrontal cortex but not in the hippocampal CA1 region. Increased CREB phosphorylation was associated with activation of CaMKI and CaMKIV as well as CaMKII in these regions. Taken together, in addition to CaMKII, CaMKI and CaMKIV activation mediated by nefiracetam treatment might mediate CREB phosphorylation following chronic nefiracetam treatment, thereby eliciting an anti-depressive and cognition-enhancing effect on OBX mice.
Collapse
Affiliation(s)
- Feng Han
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
In this article the calcium/calmodulin-dependent protein kinases are reviewed. The primary focus is on the structure and function of this diverse family of enzymes, and the elegant regulation of their activity. Structures are compared in order to highlight the conserved architecture of their catalytic domains with respect to each other as well as protein kinase A, a prototype for kinase structure. In addition to reviewing structure and function in these enzymes, the variety of biological processes for which they play a mediating role are also examined. Finally, how the enzymes become activated in the intracellular setting is considered by exploring the reciprocal interactions that exist between calcium binding to calmodulin when interacting with the CaM-kinases.
Collapse
Affiliation(s)
- M. T. Swulius
- Department of Neurobiology and Anatomy, The University of Texas Medical School-Houston, Houston, Texas 77030 USA
| | - M. N. Waxham
- Department of Neurobiology and Anatomy, The University of Texas Medical School-Houston, Houston, Texas 77030 USA
| |
Collapse
|
6
|
Colomer J, Means AR. Physiological roles of the Ca2+/CaM-dependent protein kinase cascade in health and disease. Subcell Biochem 2008; 45:169-214. [PMID: 18193638 DOI: 10.1007/978-1-4020-6191-2_7] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous hormones, growth factors and physiological processes cause a rise in cytosolic Ca2+, which is translated into meaningful cellular responses by interacting with a large number of Ca2(+)-binding proteins. The Ca2(+)-binding protein that is most pervasive in mediating these responses is calmodulin (CaM), which acts as a primary receptor for Ca2+ in all eukaryotic cells. In turn, Ca2+/CaM functions as an allosteric activator of a host of enzymatic proteins including a considerable number of protein kinases. The topic of this review is to discuss the physiological roles of a sub-set of these protein kinases which can function in cells as a Ca2+/CaM-dependent kinase signaling cascade. The cascade was originally believed to consist of a CaM kinase kinase that phosphorylates and activates one of two CaM kinases, CaMKI or CaMKIV. The unusual aspect of this cascade is that both the kinase kinase and the kinase require the binding of Ca2+/CaM for activation. More recently, one of the CaM kinase kinases has been found to activate another important enzyme, the AMP-dependent protein kinase so the concept of the CaM kinase cascade must be expanded. A CaM kinase cascade is important for many normal physiological processes that when misregulated can lead to a variety of disease states. These processes include: cell proliferation and apoptosis that may conspire in the genesis of cancer; neuronal growth and function related to brain development, synaptic plasticity as well as memory formation and maintenance; proper function of the immune system including the inflammatory response, activation of T lymphocytes and hematopoietic stem cell maintenance; and the central control of energy balance that, when altered, can lead to obesity and diabetes. Although the study of the CaM-dependent kinase cascades is still in its infancy continued analysis of the pathways regulated by these Ca2(+)-initiated signaling cascades holds considerable promise for the future of disease-related research.
Collapse
Affiliation(s)
- J Colomer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center USA
| | | |
Collapse
|
7
|
Kamata A, Sakagami H, Tokumitsu H, Sanda M, Owada Y, Fukunaga K, Kondo H. Distinct developmental expression of two isoforms of Ca2+/calmodulin-dependent protein kinase kinases and their involvement in hippocampal dendritic formation. Neurosci Lett 2007; 423:143-8. [PMID: 17669591 DOI: 10.1016/j.neulet.2007.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 06/24/2007] [Accepted: 07/02/2007] [Indexed: 11/28/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase kinases (CaMKKs) are upstream protein kinases that phosphorylate and activate CaMKI and CaMKIV, both of which are involved in a variety of neuronal functions. Here, we first demonstrated that the two isoforms of CaMKK were differentially expressed during neural development by in situ hybridization. We also demonstrated that both dominant negative and pharmacological interference with CaMKK inhibitor, STO-609 resulted in a significant decrease in the number of primary dendrites of cultured hippocampal neurons. Our present findings provide the detailed anatomical information on the developmental expression of CaMKKs and the functional involvement of CaMKK in the formation of primary dendrites.
Collapse
Affiliation(s)
- Akifumi Kamata
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
The calcium/calmodulin-dependent protein kinase cascades. CALCIUM - A MATTER OF LIFE OR DEATH 2007. [DOI: 10.1016/s0167-7306(06)41013-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Kamata A, Sakagami H, Tokumitsu H, Owada Y, Fukunaga K, Kondo H. Spatiotemporal expression of four isoforms of Ca2+/calmodulin-dependent protein kinase I in brain and its possible roles in hippocampal dendritic growth. Neurosci Res 2006; 57:86-97. [PMID: 17056143 DOI: 10.1016/j.neures.2006.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/06/2006] [Accepted: 09/16/2006] [Indexed: 10/24/2022]
Abstract
Among multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs), CaMKI has been shown to comprise a family of four structurally related isoforms (alpha, beta, gamma, and delta) encoded by separate genes with abundant expression in mature brain. In this study, we first examined the developmental gene expression of the four isoforms of CaMKI in mouse brain with special attention to the hippocampal formation by in situ hybridization analysis. The four isoforms of CaMKI were found to exhibit distinct spatiotemporal expression during neuronal development. We also examined the functional involvement of CaMKI in the dendritic formation of cultured hippocampal neurons. The overexpression of kinase-dead mutants of CaMKI reduced the average dendritic length of the transfected neurons without any significant effects on the number of primary dendrites and the branching index. Our present findings provide the detailed anatomical information on the developmental expression of the four isoforms of CaMKI in mouse brain, which represents the possible functional involvement of CaMKI in the basal dendritic growth of hippocampal neurons.
Collapse
Affiliation(s)
- Akifumi Kamata
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Seals RC, Urban RJ, Sekar N, Veldhuis JD. Up-regulation of basal transcriptional activity of the cytochrome P450 cholesterol side-chain cleavage (CYP11A) gene by isoform-specific calcium-calmodulin-dependent protein kinase in primary cultures of ovarian granulosa cells. Endocrinology 2004; 145:5616-22. [PMID: 15319355 DOI: 10.1210/en.2003-1528] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intracellular calcium ions (Ca2+) regulate steroidogenesis in the placenta, adrenal gland, testis, and ovary. Earlier data indicate that Ca2+/calmodulin-dependent protein kinase (CamK) may mediate Ca(2+)-dependent up-regulation of CYP11A (cholesterol side-chain cleavage). To examine this notion further, we assessed the expression and actions of isotype-specific CamK on in vitro transcription of the swine CYP11A gene promoter in primary cultures of ovarian granulosa-luteal cells. RT-PCR and oligodeoxynucleotide sequencing identified gene transcripts encoding CamKII and IV in granulosa and theca cells and corpora lutea. DNA sequence homology with the cognate human and rat genes was 97 and 94% (CamKII) and 96 and 88% (CamKIV), respectively. SDS-PAGE and isoform-specific immunoblotting corroborated expression of CamKII (approximately 52 kDa) and CamKIV (approximately 60 kDa) proteins. To monitor transcriptional control, granulosa-luteal cells were transfected transiently with a putative 5'-upstream regulatory region of the homologous CYP11A gene -2320 to +23 bp from the transcriptional start site driving luciferase (CYP11A/luc). Coexpression of constitutively active CamKIV elevated basal transcription by 3.5 +/- 0.2-fold (P < 0.001), whereas inactive mutant CamKIV and native CamKII had no effect. Forskolin, an activator of adenylyl cyclase, stimulated expression of CYP11A/luciferase by 4.5 +/- 0.9-fold (P < 0.001) and did not enhance transcriptional drive by exogenous CamKIV. Preliminary promoter-deletional analyses showed that a proximal 5'-fragment -100 to +23 bp, but not -50/+23 bp, retained full responsiveness to CamKIV (4.5 +/- 0.4-fold; P < 0.001). Threefold cotransfection of -100/+23 bp CYP11A/luciferase, active CamKIV, and a dominant-negative mutant of the cAMP-responsive element binding protein (10, 100, and 250 ng) inhibited CamKIV-stimulated transcriptional activity by 17, 47, and 48% (pooled sem+/- 2%) [P < 0.01]. The dominant-negative mutant of the cAMP-responsive element binding protein also repressed forskolin's stimulation of -100/+23 CYP11A/luciferase by 12, 38, and 52% (P < 0.01). Based on these ensemble outcomes, we postulate that endogenous CamKIV may serve as a Ca(2+)-dependent effector mechanism to maintain basal CYP11A gene expression in ovarian granulosa-luteal cells.
Collapse
Affiliation(s)
- Richard C Seals
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
11
|
Vreugdenhil E, de Kloet ER, Schaaf M, Datson NA. Genetic dissection of corticosterone receptor function in the rat hippocampus. Eur Neuropsychopharmacol 2001; 11:423-30. [PMID: 11704419 DOI: 10.1016/s0924-977x(01)00119-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The hippocampus, a brain structure with a crucial role in learning and memory and an involvement in stress-related neurological or psychiatric disorders, is extremely sensitive to aberrant levels of corticosteroid stress hormones (CORT). We hypothesized that CORT-affected brain disorders are the result of aberrant expression of specific CORT-responsive genes. In order to identify such genes, we have applied several gene expression profiling techniques such as differential display, DNA micro-arrays and in particular the highly sensitive serial analysis of gene expression (SAGE). Using SAGE, a total of 76,790 hippocampal tags were generated which together represent 28,748 unique mRNAs of which 4626 gave a hit with rat sequences in Genbank. By comparing SAGE profiles derived from rat hippocampi treated with different concentrations of corticosteroids, we have identified over 200 CORT-responsive genes with significant differential expression in hippocampus. The identified products include genes that are important for the plasticity of hippocampal neurones such as neural cell adhesion molecules, growth-promoting proteins, genes involved in axogenesis, synaptogenesis and signal-transduction. One novel corticosteroid-responsive gene, classified as Ca2+/calmodulin-dependent protein kinase (CaMK)-VI, exhibited structural resemblance with the family of CaMKs, in particular with that of CaMK-IV. We also identified an alternatively spliced mRNA of this gene encoding a peptide (CaMK-kinase related peptide or CARP) which may function in an autoregulatory feedback loop. These findings suggest a novel mode of operation of the CaMK pathway in control of Ca2+ homeostasis relevant for CORT-related brain disorders.
Collapse
Affiliation(s)
- E Vreugdenhil
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, P.O. Box 9503, 2300 RA, The Netherlands.
| | | | | | | |
Collapse
|
12
|
Blaeser F, Toppari J, Heikinheimo M, Yan W, Wallace M, Ho N, Chatila TA. CaMKIV/Gr is dispensable for spermatogenesis and CREM-regulated transcription in male germ cells. Am J Physiol Endocrinol Metab 2001; 281:E931-7. [PMID: 11595648 DOI: 10.1152/ajpendo.2001.281.5.e931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The calcium/calmodulin-dependent protein kinase type IV/Gr (CaMKIV/Gr) is expressed in male germ cells and spermatids and has been implicated in controlling the differentiation of germ cells into mature spermatozoa. The function of CaMKIV/Gr in spermatogenesis was investigated using CaMKIV/Gr-deficient mice generated by targeted gene disruption. CaMKIV/Gr-deficient males exhibited normal spermatogenesis, and their fertility was similar to that of wild-type littermates. Notwithstanding the function of CaMKIV/Gr as an activator of cAMP response element (CRE)-dependent transcription, mRNA levels of several testis-specific CRE modulator (CREM)-regulated genes were unaltered. These results indicate that CaMKIV/Gr is not essential for spermatogenesis or for CRE-regulated gene transcription in the testis.
Collapse
Affiliation(s)
- F Blaeser
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Soderling TR, Stull JT. Structure and regulation of calcium/calmodulin-dependent protein kinases. Chem Rev 2001; 101:2341-52. [PMID: 11749376 DOI: 10.1021/cr0002386] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T R Soderling
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
14
|
Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81:1143-95. [PMID: 11427694 DOI: 10.1152/physrev.2001.81.3.1143] [Citation(s) in RCA: 584] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebellar Purkinje cells exhibit a unique type of synaptic plasticity, namely, long-term depression (LTD). When two inputs to a Purkinje cell, one from a climbing fiber and the other from a set of granule cell axons, are repeatedly associated, the input efficacy of the granule cell axons in exciting the Purkinje cell is persistently depressed. Section I of this review briefly describes the history of research around LTD, and section II specifies physiological characteristics of LTD. Sections III and IV then review the massive data accumulated during the past two decades, which have revealed complex networks of signal transduction underlying LTD. Section III deals with a variety of first messengers, receptors, ion channels, transporters, G proteins, and phospholipases. Section IV covers second messengers, protein kinases, phosphatases and other elements, eventually leading to inactivation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-selective glutamate receptors that mediate granule cell-to-Purkinje cell transmission. Section V defines roles of LTD in the light of the microcomplex concept of the cerebellum as functionally eliminating those synaptic connections associated with errors during repeated exercises, while preserving other connections leading to the successful execution of movements. Section VI examines the validity of this microcomplex concept based on the data collected from recent numerous studies of various forms of motor learning in ocular reflexes, eye-blink conditioning, posture, locomotion, and hand/arm movements. Section VII emphasizes the importance of integrating studies on LTD and learning and raises future possibilities of extending cerebellar research to reveal memory mechanisms of implicit learning in general.
Collapse
Affiliation(s)
- M Ito
- Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
15
|
Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J Neurosci 2000. [PMID: 10964952 DOI: 10.1523/jneurosci.20-17-06459.2000] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Ca(2+)/calmodulin-dependent protein kinase type IV/Gr (CaMKIV/Gr) is a key effector of neuronal Ca(2+) signaling; its function was analyzed by targeted gene disruption in mice. CaMKIV/Gr-deficient mice exhibited impaired neuronal cAMP-responsive element binding protein (CREB) phosphorylation and Ca(2+)/CREB-dependent gene expression. They were also deficient in two forms of synaptic plasticity: long-term potentiation (LTP) in hippocampal CA1 neurons and a late phase of long-term depression in cerebellar Purkinje neurons. However, despite impaired LTP and CREB activation, CaMKIV/Gr-deficient mice exhibited no obvious deficits in spatial learning and memory. These results support an important role for CaMKIV/Gr in Ca(2+)-regulated neuronal gene transcription and synaptic plasticity and suggest that the contribution of other signaling pathways may spare spatial memory of CaMKIV/Gr-deficient mice.
Collapse
|
16
|
Wu JY, Means AR. Ca(2+)/calmodulin-dependent protein kinase IV is expressed in spermatids and targeted to chromatin and the nuclear matrix. J Biol Chem 2000; 275:7994-9. [PMID: 10713118 DOI: 10.1074/jbc.275.11.7994] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase IV and calspermin are two proteins encoded by the Camk4 gene. Both are highly expressed in the testis, where in situ hybridization studies in rat testes have demonstrated that CaMKIV mRNA is localized to pachytene spermatocytes, while calspermin mRNA is restricted to spermatids. We have examined the expression patterns of both CaMKIV and calspermin in mouse testis and unexpectedly find that CaMKIV is expressed in spermatogonia and spermatids but excluded from spermatocytes, while calspermin is found only in spermatids. CaMKIV and calspermin expression in the testis are stage-dependent and appear to be coordinately regulated. In germ cells, we find that CaMKIV is associated with the chromatin. We further demonstrate that a fraction of CaMKIV in spermatids is hyperphosphorylated and specifically localized to the nuclear matrix. These novel findings may implicate CaMKIV in chromatin remodeling during nuclear condensation of spermatids.
Collapse
Affiliation(s)
- J Y Wu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
17
|
Lawson ND, Zain M, Zibello T, Picciotto MR, Nairn AC, Berliner N. Modulation of a calcium/calmodulin-dependent protein kinase cascade by retinoic acid during neutrophil maturation. Exp Hematol 1999; 27:1682-90. [PMID: 10560916 DOI: 10.1016/s0301-472x(99)00108-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Retinoic acid is a lipophilic derivative of vitamin A that can cause differentiation in a variety of cell types. A large body of evidence has shown that normal retinoid signaling is required for proper neutrophil maturation in vitro and in vivo. In this study, we have found that calcium/calmodulin dependent (CaM) protein kinase kinase alpha (CaMKKalpha) is upregulated in an immediate early fashion during retinoic acid induced neutrophil maturation. Furthermore, we describe the expression and modulation of various components of the CaM kinase cascade during neutrophil maturation. We have confirmed upregulation of CaMKKalpha protein by Western analysis and further show that CaMKKbeta is expressed, although its protein levels are constant throughout induction. We also find that neutrophil progenitor cells express both CaMKI and CaMKIV transcripts. RNase protection and Western analysis show that CaMKIV is downregulated during neutrophil maturation. In contrast, CaMKI transcript and protein is expressed in uninduced cells and is induced by all-trans retinoic acid. These data represent the first report of a CaM kinase cascade in myeloid cells and suggests that this cascade may mediate some of the well-characterized effects of calcium on neutrophil function. These observations also support the idea that the retinoic acid receptors play a major role in mediating neutrophil specific gene expression and differentiation.
Collapse
Affiliation(s)
- N D Lawson
- Department of Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
18
|
Engels BM, Lucassen PJ, de Kloet ER, Vreugdenhil E. Regional distribution of a novel calcium/calmodulin-dependent protein kinase mRNA in the rat brain. Brain Res 1999; 835:365-8. [PMID: 10415397 DOI: 10.1016/s0006-8993(99)01636-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The regional distribution of a novel Ca(2+)/calmodulin-dependent protein kinase (CaMK-VI) was examined in the adult rat brain by in situ hybridization. High levels of CaMK-VI mRNA were detected in the hippocampus, piriform cortex and habenula, moderate levels in different thalamic nuclei and cerebral cortex, and low levels in the frontal and parietal cortex. This discrete distribution pattern suggests an important role for CaMK-VI in limbic brain regions.
Collapse
Affiliation(s)
- B M Engels
- Division of Medical Pharmacology, LACDR, Leiden University, P.O. Box 9503, 2300 RA, Leiden, Netherlands
| | | | | | | |
Collapse
|
19
|
Ahn S, Ginty DD, Linden DJ. A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 1999; 23:559-68. [PMID: 10433267 DOI: 10.1016/s0896-6273(00)80808-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recently, it has been shown that cerebellar LTD has a late phase that may be blocked by protein synthesis inhibitors. To understand the mechanisms underlying the late phase, we interfered with the activation of transcription factors that might couple synaptic activation to protein synthesis. Particle-mediated transfection of cultured Purkinje neurons with an expression vector encoding a dominant inhibitory form of CREB resulted in a nearly complete blockade of the late phase. Kinases that activate CREB were inhibited, and LTD was assessed. Inhibition of PKA or the MAPK/RSK cascades were without effect on the late phase, while constructs designed to interfere with CaMKIV function attenuated the late phase. These results indicate that the activation of CaMKIV and CREB are necessary to establish a late phase of cerebellar LTD.
Collapse
Affiliation(s)
- S Ahn
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
20
|
Sakagami H, Umemiya M, Kobayashi T, Saito S, Kondo H. Immunological evidence that the beta isoform of Ca2+/calmodulin-dependent protein kinase IV is a cerebellar granule cell-specific product of the CaM kinase IV gene. Eur J Neurosci 1999; 11:2531-6. [PMID: 10383642 DOI: 10.1046/j.1460-9568.1999.00675.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase IV (CaM kinase IV) exists as two monomeric isoforms, alpha and beta. In this study, we raised an antibody against the beta isoform and provided immunohistochemical evidence for specific expression of the beta isoform in cerebellar granule cells as a single gene-derived translational product distinct from the alpha isoform. Immunohistochemical examination showed that the beta-immunoreactivity was confined to the nuclei of the cerebellar granule cells, in contrast to the more widespread immunoreactivity for the alpha isoform in both nuclei and cytoplasm of the cerebellar granule cells and many other neurons with dominant nuclear localization. In developing cerebella, the beta-immunoreactivity gradually appeared in the internal granule cells during the postnatal 2nd and 3rd weeks, while the alpha-immunoreactivity had already appeared in the internal granule cells in the 1st postnatal week. Unlike the alpha isoform, beta-immunoreactivity was not detected in the Purkinje cells at any developmental stages. The differential expression of the alpha and beta isoforms suggests that each isoform may be involved in different cerebellar functions.
Collapse
Affiliation(s)
- H Sakagami
- Division of Histology, Department of Cell Biology, Graduate School of Medical Sciences, Tohoku University, Japan
| | | | | | | | | |
Collapse
|
21
|
Vreugdenhil E, Datson N, Engels B, de Jong J, van Koningsbruggen S, Schaaf M, de Kloet ER. Kainate-elicited seizures induce mRNA encoding a CaMK-related peptide: A putative modulator of kinase activity in rat hippocampus. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199904)39:1<41::aid-neu4>3.0.co;2-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Krebs J. Calmodulin-dependent protein kinase IV: regulation of function and expression. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1448:183-9. [PMID: 9920409 DOI: 10.1016/s0167-4889(98)00142-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calmodulin-dependent protein kinase IV (CaMKIV) is a key mediator of Ca2+-induced gene expression. This serine/threonine kinase is itself activated by a calmodulin kinase kinase. In the present contribution the gene structure, regulation of activity, the role in Ca2+-dependent gene expression, and the hormonal induction and controlled expression of CaMKIV during tissue development are reviewed.
Collapse
Affiliation(s)
- J Krebs
- Institute of Biochemistry III, Swiss Federal Institute of Technology (ETH), Zürich.
| |
Collapse
|
23
|
Sakagami H, Saito S, Kitani T, Okuno S, Fujisawa H, Kondo H. Localization of the mRNAs for two isoforms of Ca2+/calmodulin-dependent protein kinase kinases in the adult rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 54:311-5. [PMID: 9555071 DOI: 10.1016/s0169-328x(97)00362-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase (CaM kinase) I and IV are thought to be activated by CaM kinase kinases (CaMKK). We examined the distribution of mRNAs for two isoforms (alpha and beta) of CaMKKs in the brain by in situ hybridization histochemistry. In the adult rat brain, CaMKK alpha mRNAs are widely distributed throughout the brain, whereas CaMKK beta mRNAs are restricted to some neuronal populations, particularly the cerebellar granule cells.
Collapse
Affiliation(s)
- H Sakagami
- Department of Histology, Tohoku University, School of Medicine, Sendai 980, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Synaptic transmission is a key signaling event, whereby an action potential-induced release of chemical neurotransmitters again generates a positive or negative electrical activity via opening of postsynaptic channels. Thereafter, information spreads through space, from the postsynaptic membranes to the dendrites, to the soma, to the nucleus, to the presynaptic terminals and, in some cases, back to the originally stimulated synapses. Furthermore, information is also often converted in time, either by shifting the phase of electrical activity during the integration of EPSPs and IPSPs into the generation of an action potential, or by triggering a long-lasting cascade of enzymatic or protein-protein interaction-mediated events in the cytoplasm and in the nucleus. Recent studies of the signaling from the synapse to the nucleus now allow us to consider how various patterns of synaptic activity could couple with activation of specific nuclear transcription factors and thus regulate neuronal gene expression. The critical importance of Ca(2+)-dependent signaling processes in such regulatory events will be discussed below.
Collapse
Affiliation(s)
- H Bito
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
25
|
Abstract
Stimulation of cells by Ca(2+)-linked signaling agents increases Ca2+ levels within both the cell cytosol and nucleus. The multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) family, consisting of CaM kinases I, II and IV, have all been detected within the nucleus and each may serve as a mediator of nuclear Ca2+ signals. Certain isoforms of the large multimeric CaM kinase II are targeted to the nucleus as a result of an alternatively spliced nuclear localization signal. By contrast, CaM kinases I and IV are monomeric and likely gain nuclear access by passive diffusion through nuclear pores. These kinases have activation properties which may allow them to discriminate between Ca2+ signals which differ in their spike frequency, amplitude and duration. In addition, these kinases have the ability to control gene expression through the phosphorylation of key regulatory sites on nuclear transcription factors. CaM kinases may thus serve to decode Ca2+ signals to the nucleus in order to produce a multitude of cellular responses including control of cell cycle, apoptosis and synaptic efficacy.
Collapse
Affiliation(s)
- E K Heist
- Department of Neurobiology, Stanford University School of Medicine, CA 94305-5125, USA
| | | |
Collapse
|
26
|
Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 1996; 87:1203-14. [PMID: 8980227 DOI: 10.1016/s0092-8674(00)81816-4] [Citation(s) in RCA: 878] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While changes in gene expression are critical for many brain functions, including long-term memory, little is known about the cellular processes that mediate stimulus-transcription coupling at central synapses. In studying the signaling pathways by which synaptic inputs control the phosphorylation state of cyclic AMP-responsive element binding protein (CREB) and determine expression of CRE-regulated genes, we found two important Ca2+/calmodulin (CaM)-regulated mechanisms in hippocampal neurons: a CaM kinase cascade involving nuclear CaMKIV and a calcineurin-dependent regulation of nuclear protein phosphatase 1 activity. Prolongation of the synaptic input on the time scale of minutes, in part by an activity-induced inactivation of calcineurin, greatly extends the period over which phospho-CREB levels are elevated, thus affecting induction of downstream genes.
Collapse
Affiliation(s)
- H Bito
- Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, California 94305-5426, USA
| | | | | |
Collapse
|
27
|
Krebs J, Honegger P. Calmodulin kinase IV: expression and function during rat brain development. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1313:217-22. [PMID: 8898857 DOI: 10.1016/0167-4889(96)00092-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression of calmodulin kinase IV (CaMKIV) can be induced by the thyroid hormone T3 in a time- and concentration-dependent manner at a very early stage of brain differentiation using a fetal rat telencephalon primary cell culture system which can grow and differentiate under chemically defined conditions (Krebs et al. (1996) J. Biol. Chem. 271, 11055-11058). After the induction of CaMKIV by T3 we examined the influence of prolonged absence of T3 from the culture medium on the expression of CaMKIV. We could demonstrate that after the T3-dependent induction of CaMKIV, omission of the hormone, even for 8 days, from the medium did not downregulate the expression of CaMKIV indicating that different regulatory mechanisms became important for the expression of the enzyme. We further showed that CaMKIV could be involved in the Ca(2+) -dependent expression of the immediate early gene c-fos, probably via phosphorylation of the transcription factor CREB. Convergence of signal transduction pathways on this transcription factor by using different protein kinases may explain the importance of CREB for the regulation of different cellular processes.
Collapse
Affiliation(s)
- J Krebs
- Laboratory of Biochemistry III, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | | |
Collapse
|
28
|
Chatila T, Anderson KA, Ho N, Means AR. A unique phosphorylation-dependent mechanism for the activation of Ca2+/calmodulin-dependent protein kinase type IV/GR. J Biol Chem 1996; 271:21542-8. [PMID: 8702940 DOI: 10.1074/jbc.271.35.21542] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The activity of the Ca2+/calmodulin-dependent protein kinase IV/Gr (CaMKIV/Gr) is shown to be strictly regulated by phosphorylation of three residues both in vitro and in response to antigen receptor-mediated signaling in lymphocytes. One residue, Thr-200, is indispensable for enhancement of Ca2+/calmodulin-dependent basal activity by CaMKIV/Gr kinase. This event requires Ca2+/calmodulin in the full-length CaMKIV/Gr but is Ca2+/calmodulin-independent when a truncated version of CaMKIV/Gr is used as a substrate (DeltaCaMKIV/Gr1-317 (Delta1-317)). The other two residues, Ser12 and Ser13, are apparently autophosphorylated by the Ca2+/calmodulin-bound CaMKIV/Gr. Phosphorylation of neither Ser12-Ser13 nor Thr312 (the residue in a homologous position to Thr286 of CaMKIIalpha influences the development of Ca2+/calmodulin-independent activity or any other property of CaMKIV/Gr examined. Similarly, removal of the NH2-terminal 20 amino acids has no effect on the activation or function of CaMKIV/Gr. However, mutation of both Ser12 and Ser13 residues to Ala in Delta1-317 completely abrogates activity, while individual substitutions have no effect. These results indicate that the NH2-terminal Ser cluster mediates a novel type of intrasteric inhibition and suggest that three events are required for CaMKIV/Gr activation: 1) Ca2+/calmodulin binding; 2) phosphorylation of the Ca2+/calmodulin-bound enzyme on Thr200 by a Ca2+/calmodulin-dependent protein kinase kinase; and 3) autophosphorylation of Ser12-Ser13. This three-step requirement is unique among the multifunctional Ca2+/calmodulin-dependent kinases.
Collapse
Affiliation(s)
- T Chatila
- Department of Pediatrics, Washington University School of Medicine, St. Louis Missouri 63110, USA
| | | | | | | |
Collapse
|
29
|
Ji RR, Shi TJ, Xu ZQ, Zhang Q, Sakagami H, Tsubochi H, Kondo H, Hökfelt T. Ca2+/calmodulin-dependent protein kinase type IV in dorsal root ganglion: colocalization with peptides, axonal transport and effect of axotomy. Brain Res 1996; 721:167-73. [PMID: 8793097 DOI: 10.1016/0006-8993(95)01316-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using the indirect immunofluorescence technique, the distribution of Ca2+/calmodulin-dependent protein kinase IV (CaM kinase IV) was studied in dorsal root ganglia (DRGs) and the sciatic nerve under normal circumstances and after axotomy and nerve ligation. CaM kinase IV-like immunoreactivity (-LI) was observed mainly in small DRG neurons but also in some large ones with the immunoreactivity mainly confined to the cell nuclei and with varying levels in the cytoplasm. CaM kinase IV-LI was present in around 1/4 of all CGRP-positive neurons and in the vast majority of the somatostatin-positive neurons. The enzyme levels decreased markedly after axotomy. The enzyme was also observed in axons in the sciatic nerve and accumulated both proximal and distal to a ligation. The present results suggest that CaM kinase is not of direct importance for upregulation of neuropeptides in DRG neurons after nerve injury. In addition to a nuclear function it may also play a role in the peripheral processes of DRG neurons.
Collapse
Affiliation(s)
- R R Ji
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Krebs J, Means RL, Honegger P. Induction of calmodulin kinase IV by the thyroid hormone during the development of rat brain. J Biol Chem 1996; 271:11055-8. [PMID: 8626646 DOI: 10.1074/jbc.271.19.11055] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This communication reports the specific induction of calmodulin kinase IV by the thyroid hormone 3,3',5-triiodo-L-thyronine (T3) in a time- and concentration-dependent manner at a very early stage of brain differentiation using a fetal rat telencephalon primary cell culture system, which can grow and differentiate under chemically defined conditions. The induction of the enzyme that can be observed both on the mRNA and on the protein level is T3-specific, i.e. it cannot be induced by retinoic acid or reverse T3, and can be inhibited on both the transcriptional and the translational level by adding to the culture medium actinomycin D or cycloheximide, respectively. The earliest detection of calmodulin kinase IV in the fetal brain tissue of the rat is at days E16/E17, both on the mRNA as well as on the protein level. This is the first report in which a second messenger-dependent kinase involved in the control of cell regulatory processes is itself controlled by a primary messenger, the thyroid hormone.
Collapse
Affiliation(s)
- J Krebs
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | | |
Collapse
|
31
|
Sakagami H, Kondo H. Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase type IV in the mature and developing rat retina. Brain Res 1996; 719:154-60. [PMID: 8782875 DOI: 10.1016/0006-8993(96)00088-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The localization of Ca2+/calmodulin-dependent protein kinase IV (CaM kinase IV) in the mature and developing rat retina was examined by immunohistochemistry and in situ hybridization histochemistry. In immunoblotting analysis, a single band of 63 kDa was detected in the crude homogenate of the adult rat retina, indicating the presence of the alpha polypeptide of CaM kinase IV. In the adult rat retina, most of the bipolar cells and some ganglion cells exhibited CaM kinase IV-immunoreactivity. By immunoelectron microscopy, the immunoreactive product was predominantly localized to the nucleus of immunoreactive cells. In the developing rat retina, immunoreactive bipolar cells were first detected on postnatal day 10 (P10), and they were abundant on P14. All these findings suggest that CaM kinase IV may participate in some yet unknown nuclear Ca(2+)-relating visual signal-processing of the retina.
Collapse
Affiliation(s)
- H Sakagami
- Department of Anatomy, Tohoku University, School of Medicine, Sendai, Japan
| | | |
Collapse
|
32
|
Watanabe S, Okuno S, Kitani T, Fujisawa H. Inactivation of calmodulin-dependent protein kinase IV by autophosphorylation of serine 332 within the putative calmodulin-binding domain. J Biol Chem 1996; 271:6903-10. [PMID: 8636117 DOI: 10.1074/jbc.271.12.6903] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When brain calmodulin-dependent protein kinase IV is incubated with calmodulin-dependent protein kinase IV kinase under the phosphorylation conditions in the presence of Ca2+/calmodulin, rapid initial incorporation of 1 mol of phosphate into 1 mol of the enzyme by the action of the kinase kinase occurs, resulting in marked activation of the enzyme, and the subsequent incorporation of more than 3 mol of phosphate by autophosphorylation occurs, resulting in no significant change in the activity (Okuno, S., Kitani, T., and Fujisawa, H. (1994) J. Biochem. (Tokyo) 116, 923-930; Okuno, S., Kitani, T., and Fujisawa, H. (1995) J. Biochem. (Tokyo) 117, 686-690). After the maximal phosphorylation, the continued incubation in the presence of excess EGTA resulted in additional autophosphorylation of the enzyme, leading to a complete loss of the Ca2+/calmodulin-dependent activity, while causing no significant change in the Ca2+/calmodulin-independent activity. The amino acid sequence analysis revealed that the autophosphorylation after removal of Ca2+ occurred on Ser332, Ser333, Ser337, and Ser341. Analysis by site-directed mutagenesis clearly showed that the autophosphorylation site responsible for the inactivation is Ser332. Thus, calmodulin-dependent protein kinase IV activated by the kinase kinase may lose its Ca2+/calmodulin-dependent activity by autophosphorylation on Ser332 located within the putative calmodulin-binding domain in the absence of Ca2+.
Collapse
Affiliation(s)
- S Watanabe
- Department of Biochemistry, Asahikawa Medical College, Asahikawa 078, Japan
| | | | | | | |
Collapse
|
33
|
Sawamura Y, Sakagami H, Kondo H. Localization of mRNA for Ca2+/calmodulin-dependent protein kinase I in the brain of developing and mature rats. Brain Res 1996; 706:259-66. [PMID: 8822365 DOI: 10.1016/0006-8993(95)01161-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The gene expression of Ca2+/calmodulin-dependent protein kinase I (CaM kinase I) in the brain of developing and adult rats was examined by in situ hybridization histochemistry. During the development, CaM kinase I showed two chronological expression patterns; the persistent and relative high expression as observed in the olfactory bulb and cerebellar cortex, and the gradual decrease in the expression during the postnatal development as observed in most other brain regions. The gene expression was not detected in the germinal ventricular zone and cerebellar external granular layer. In the mature brain, CaM kinase I mRNA was expressed widely, though weakly in general, in almost all neurons, except for the olfactory bulb, cerebellum and hippocampus expressing at high intensity. These findings suggest that CaM kinase I may play a variety of neuronal Ca2+/calmodulin-mediated signaling processes in the developing and mature brains.
Collapse
Affiliation(s)
- Y Sawamura
- Department of Anatomy, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
34
|
Park IK, Soderling TR. Activation of Ca2+/calmodulin-dependent protein kinase (CaM-kinase) IV by CaM-kinase kinase in Jurkat T lymphocytes. J Biol Chem 1995; 270:30464-9. [PMID: 8530476 DOI: 10.1074/jbc.270.51.30464] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase IV (CaM-kinase IV), a member of the CaM-kinase family involved in transcriptional regulation, is stimulated by Ca2+/CaM but also requires phosphorylation by a CaM-kinase kinase for full activation. In this study we investigated the physiological role of a CaM-kinase cascade in Jurkat T human lymphocytes through antigen receptor (CD3) signaling. Total and Ca(2+)-independent CaM-kinase IV activities were increased 8-14-fold by anti-CD3 antibody. This CD3-mediated activation involved phosphorylation since the immunoprecipitated CaM-kinase IV from stimulated Jurkat cells could be subsequently inactivated in vitro by protein phosphatase 2A. CaM-kinase IV immunoprecipitated from unstimulated Jurkat cells or CD3-negative mutant Jurkat cells could be activated in vitro 10-40-fold by CaM-kinase kinase purified from rat brain or thymus, whereas CaM-kinase IV from CD3-stimulated wild-type Jurkat cells was only activated to 2-3-fold by exogenous CaM-kinase kinase. CaM-kinase IV activation was triggered by Ca2+ acting through calmodulin since activation could also be elicited by ionomycin treatment, and CD3-mediated activation was blocked by the calmodulin antagonist calmidazolium. These data are consistent with a CaM-kinase cascade in which CaM-kinase IV is activated by a CaM-kinase kinase cascade triggered by elevated intracellular calcium in Jurkat cells.
Collapse
Affiliation(s)
- I K Park
- Vollum Institute, Oregon Health Sciences University, Portland 97201-3098, USA
| | | |
Collapse
|
35
|
Sun Z, Means RL, LeMagueresse B, Means AR. Organization and analysis of the complete rat calmodulin-dependent protein kinase IV gene. J Biol Chem 1995; 270:29507-14. [PMID: 7493991 DOI: 10.1074/jbc.270.49.29507] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A 42-kilobase pair region of rat DNA containing the Ca2+/calmodulin-dependent protein kinase IV (CaM kinase IV) gene has been cloned and characterized. The gene consists of 12 exons and 11 introns and is predicted to encode both beta and alpha forms of CaM kinase IV as well as the testis-specific calmodulin-binding protein calspermin. The promoter utilized to generate the alpha-kinase isoform is located in intron 1, whereas the promoter utilized to produce the calspermin transcript is contained in intron 10. The calspermin promoter region which extends from -200 to +321 relative to the calspermin transcription initiation site that contains two cyclic AMP response elements (CRE) at -70 and -50 and has been shown previously to be inactive in NIH3T3 cells (Sun, Z., Sassone-Corsi, P., and Means, A. R. (1995) Mol. Cell. Biol. 15, 561-571) was ligated to the lacZ reporter gene and used to generate transgenic mice. The promoter was expressed exclusively in postmeiotic testis where beta-galactosidase was found predominantly in elongating spermatids. The cell and developmental specificity of transgene expression was very similar to the pattern shown by the endogenous gene. Although the transgene promoter was silent in somatic tissues, beta-galactosidase expression could be restored in primary cultures of skin fibroblasts by introduction of vectors encoding CREM tau and CaM kinase IV.
Collapse
Affiliation(s)
- Z Sun
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
36
|
Sakagami H, Tsubochi H, Kondo H. Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase type IV in the peripheral ganglia and paraganglia of developing and mature rats. Brain Res 1994; 666:173-81. [PMID: 7882027 DOI: 10.1016/0006-8993(94)90769-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase type IV (CaM kinase IV) was examined in rat peripheral ganglia and paraganglia as well as brain. In sensory ganglia including the trigeminal and dorsal root ganglia, small- to medium-sized neurons were intensely immunoreactive. In the spinal cord, immunoreactive small neurons were seen in superficial laminae of the dorsal horn, whereas motoneurons were immunonegative. In autonomic ganglia including the superior cervical, celiac, and submandibular ganglia, almost all neurons were intensely immunoreactive for CaM kinase IV. In the small intestine, immunoreactive neurons were seen in the submucosal and myenteric ganglia. In all immunoreactive neurons, the immunoreactivity was localized predominantly in cell nuclei, whereas nucleoli and nerve fibers were completely free from immunoreaction. From the wide distribution and predominant nuclear localization of CaM kinase IV, it is suggested that CaM kinase IV might be involved in the modulation of gene transcription through the nuclear Ca(2+)-signaling in the peripheral as well as central nervous system.
Collapse
Affiliation(s)
- H Sakagami
- Department of Anatomy, Tohoku University, School of Medicine, Sendai, Japan
| | | | | |
Collapse
|