1
|
Glidewell-Kenney CA, Shao PP, Iyer AK, Grove AMH, Meadows JD, Mellon PL. Neurokinin B causes acute GnRH secretion and repression of GnRH transcription in GT1-7 GnRH neurons. Mol Endocrinol 2013; 27:437-54. [PMID: 23393128 DOI: 10.1210/me.2012-1271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genetic studies in human patients with idiopathic hypogonadotropic hypogonadism (IHH) identified mutations in the genes that encode neurokinin B (NKB) and the neurokinin 3 receptor (NK3R). However, determining the mechanism whereby NKB regulates gonadotropin secretion has been difficult because of conflicting results from in vivo studies investigating the luteinizing hormone (LH) response to senktide, a NK3R agonist. NK3R is expressed in a subset of GnRH neurons and in kisspeptin neurons that are known to regulate GnRH secretion. Thus, one potential source of inconsistency is that NKB could produce opposing direct and indirect effects on GnRH secretion. Here, we employ the GT1-7 cell model to elucidate the direct effects of NKB on GnRH neuron function. We find that GT1-7 cells express NK3R and respond to acute senktide treatment with c-Fos induction and increased GnRH secretion. In contrast, long-term senktide treatment decreased GnRH secretion. Next, we focus on the examination of the mechanism underlying the long-term decrease in secretion and determine that senktide treatment represses transcription of GnRH. We further show that this repression of GnRH transcription may involve enhanced c-Fos protein binding at novel activator protein-1 (AP-1) half-sites identified in enhancer 1 and the promoter, as well as chromatin remodeling at the promoter of the GnRH gene. These data indicate that NKB could directly regulate secretion from NK3R-expressing GnRH neurons. Furthermore, whether the response is inhibitory or stimulatory toward GnRH secretion could depend on the history or length of exposure to NKB because of a repressive effect on GnRH transcription.
Collapse
Affiliation(s)
- Christine A Glidewell-Kenney
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093-0674, USA
| | | | | | | | | | | |
Collapse
|
2
|
Neuroendocrine regulation of GnRH release and expression of GnRH and GnRH receptor genes in the hypothalamus-pituitary unit in different physiological states. Reprod Biol 2010; 10:85-124. [PMID: 20668503 DOI: 10.1016/s1642-431x(12)60054-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review is focused on the relationship between neuroendocrine regulation of GnRH/LH secretion and the expression of GnRH and GnRH receptor (GnRHR) genes in the hypothalamic-pituitary unit during different physiological states of animals and under stress. Moreover, the involvement of hypothalamic GABA-ergic, Beta-endorphinergic, CRH-ergic, noradrenergic, dopaminergic and GnRH-ergic systems in the regulation of expression of the GnRH and GnRHR genes as well as secretion of GnRH/LH is analyzed. It appears that the neural mechanisms controlling GnRH gene expression in different physiological states may be distinct from those regulating GnRH/LH release. The hypothalamic GnRHR gene is probably located in different neural systems and may act in a specific way on GnRH gene expression and GnRH release.
Collapse
|
3
|
Foecking EM, McDevitt MA, Acosta-Martínez M, Horton TH, Levine JE. Neuroendocrine consequences of androgen excess in female rodents. Horm Behav 2008; 53:673-92. [PMID: 18374922 PMCID: PMC2413177 DOI: 10.1016/j.yhbeh.2007.12.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 12/28/2022]
Abstract
Androgens exert significant organizational and activational effects on the nervous system and behavior. Despite the fact that female mammals generally produce low levels of androgens, relative to the male of the same species, increasing evidence suggests that androgens can exert profound effects on the normal physiology and behavior of females during fetal, neonatal, and adult stages of life. This review examines the effects of exposure to androgens at three stages of development--as an adult, during early postnatal life and as a fetus, on reproductive hormone secretions in female rats. We examine the effects of androgen exposure both as a model of neuroendocrine sexual differentiation and with respect to the role androgens play in the normal female. We then discuss the hypothesis that androgens may cause epigenetic modification of estrogen target genes in the brain. Finally we consider the clinical consequences of excess androgen exposure in women.
Collapse
Affiliation(s)
- Eileen M Foecking
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
4
|
Maffucci JA, Walker DM, Ikegami A, Woller MJ, Gore AC. NMDA receptor subunit NR2b: effects on LH release and GnRH gene expression in young and middle-aged female rats, with modulation by estradiol. Neuroendocrinology 2008; 87:129-41. [PMID: 18025808 PMCID: PMC2671961 DOI: 10.1159/000111136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 10/09/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The loss of reproductive capacity during aging involves changes in the neural regulation of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons controlling reproduction. This neuronal circuitry includes glutamate receptors on GnRH neurons. Previously, we reported an increase in the expression of the NR2b subunit protein of the NMDA receptor on GnRH neurons in middle-aged compared to young female rats. Here, we examined the functional implications of the NR2b subunit on the onset of reproductive aging, using an NR2b-specific antagonist ifenprodil. METHODS Young (3-5 months) and middle-aged (10-13 months) female rats were ovariectomized (OVX), 17beta-estradiol (E2) or vehicle (cholesterol) treated, and implanted with a jugular catheter. Serial blood sampling was undertaken every 10 min for 4 h, with ifenprodil (10 mg/kg) or vehicle injected (i.p.) after 1 h of baseline sampling. The pulsatile release of pituitary LH and levels of GnRH mRNA in hypothalamus were quantified as indices of the reproductive axis. RESULTS Our results showed effects of ifenprodil on both endpoints. In OVX rats given cholesterol, neither age nor ifenprodil had any effects on LH release. In E2-treated rats, aging was associated with significant decreases in pulsatile LH release. Additionally, ifenprodil stimulated parameters of pulsatile LH release in both young and middle-aged animals. Ifenprodil had few effects on GnRH mRNA; the only significant effect of ifenprodil was found in the middle-aged, cholesterol group. CONCLUSION Together, these findings support a role for the NR2b subunit of the NMDAR in GnRH/LH regulation. Because most of these effects were exhibited on pituitary LH release in the absence of a concomitant change in GnRH gene expression, it is likely that NMDA receptors containing the NR2b subunit play a role in GnRH-induced LH release, independent of de novo GnRH gene expression.
Collapse
Affiliation(s)
| | - Deena M. Walker
- Institute for Neuroscience, University of Texas, Austin, TX 78712
| | - Aiko Ikegami
- Division of Pharmacology & Toxicology, University of Texas, Austin, TX 78712
| | - Michael J. Woller
- Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190
| | - Andrea C. Gore
- Institute for Neuroscience, University of Texas, Austin, TX 78712
- Division of Pharmacology & Toxicology, University of Texas, Austin, TX 78712
- Institute for Cellular & Molecular Biology, University of Texas, Austin, TX 78712
- Correspondence: Dr. Andrea C. Gore, Division of Pharmacology and Toxicology, The University of Texas at Austin, 1 University Station A1915, Austin, TX 78712, USA, Phone: 512-471-3669, Fax: 512-471-5002,
| |
Collapse
|
5
|
Abstract
Comprehensive studies have provided a clear understanding of the effects of gonadal steroids on the secretion of gonadotropin releasing hormone (GnRH), but some inconsistent results exist with regard to effects on synthesis. It is clear that regulation of both synthesis and the secretion of GnRH are effected by neurotransmitter systems in the brain. Thus, steroid regulation of GnRH synthesis and secretion can be direct, but the predominant effects are transmitted through steroid-responsive neuronal systems in various parts of the brain. There is also emerging evidence of direct effects on GnRH cells. Overriding effects on synthesis and secretion of GnRH can be observed during aging, in undernutrition and under stressful situations; these involve various neuronal systems, which may have serial or parallel effects on GnRH cells. The effect of aging is accompanied by changes in GnRH synthesis, but comprehensive studies of synthesis during undernutrition and stress are less well documented. Altered GnRH and gonadotropin secretion that occurs in seasonal breeding animals and during the pubertal transition is not generally accompanied by changes in GnRH synthesis. Secretion of GnRH from the brain is a reflection of the inherent function of GnRH cells and the inputs that integrate all of the central regulatory elements. Ultimately, the pattern of secretion dictates the reproductive status of the organism. In order to fully understand the central mechanisms that control reproduction, more extensive studies are required on the neuronal circuitry that provides input to GnRH cells.
Collapse
Affiliation(s)
- Iain J Clarke
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton 3168, Australia.
| | | |
Collapse
|
6
|
Tang Q, Mazur M, Mellon PL. The protein kinase C pathway acts through multiple transcription factors to repress gonadotropin-releasing hormone gene expression in hypothalamic GT1-7 neuronal cells. Mol Endocrinol 2005; 19:2769-79. [PMID: 15994198 PMCID: PMC2935804 DOI: 10.1210/me.2004-0463] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The GnRH gene uses two well-defined regions to target expression to a small population of hypothalamic GnRH neurons: a 173-bp proximal promoter and a 300-bp enhancer localized at approximately -1800 to -1500 bp from the start site. Interaction of multiple factors with the GnRH enhancer and promoter is required to confer neuron-specific expression in vivo and in cells in culture. In addition, the expression of the GnRH gene is regulated by numerous neurotransmitters and hormones. Several of these effectors act through membrane receptors to trigger the protein kinase C pathway, and 12-O-tetradecanoyl phorbol-13-acetate (TPA), a modulator of this pathway, has been shown to suppress GnRH gene expression through the promoter. We find that TPA suppresses expression through the GnRH enhancer as well as the promoter. In the enhancer, an Oct-1 binding site, a Pbx/Prep binding site, Msx/Dlx binding sites, and a previously unidentified protein-binding element at -1793, all contribute to TPA suppression. TPA treatment leads to decreased binding of Oct-1 and Pbx1a/Prep to their sites. However, a complex formed by GT1-7 nuclear extracts on the -1793 site is not affected by TPA treatment. It is known that cooperative interaction among multiple factors is necessary for GnRH gene expression; thus, one mechanism by which TPA suppresses GnRH gene expression is to disengage some of these factors from their cis-regulatory elements.
Collapse
Affiliation(s)
- Qingbo Tang
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
7
|
Ottem EN, Godwin JG, Krishnan S, Petersen SL. Dual-phenotype GABA/glutamate neurons in adult preoptic area: sexual dimorphism and function. J Neurosci 2005; 24:8097-105. [PMID: 15371511 PMCID: PMC6729791 DOI: 10.1523/jneurosci.2267-04.2004] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
It is generally assumed that the inhibitory neurotransmitter GABA and the stimulatory neurotransmitter glutamate are released from different neurons in adults. However, this tenet has made it difficult to explain how the same afferent signals can cause opposite changes in GABA and glutamate release. Such reciprocal release is a central mechanism in the neural control of many physiological processes including activation of gonadotropin-releasing hormone (GnRH) neurons, the neural signal for ovulation. Activation of GnRH neurons requires simultaneous suppression of GABA and stimulation of glutamate release, each of which occurs in response to a daily photoperiodic signal, but only in the presence of estradiol (E2). In rodents, E2 and photoperiodic signals converge in the anteroventral periventricular nucleus (AVPV), but it is unclear how these signals differentially regulate GABA and glutamate secretion. We now report that nearly all neurons in the AVPV of female rats express both vesicular glutamate transporter 2 (VGLUT2), a marker of hypothalamic glutamatergic neurons, as well as glutamic acid decarboxylase and vesicular GABA transporter (VGAT), markers of GABAergic neurons. These dual-phenotype neurons are the main targets of E2 in the region and are more than twice as numerous in females as in males. Moreover, dual-phenotype synaptic terminals contact GnRH neurons, and at the time of the surge, VGAT-containing vesicles decrease and VGLUT2-containing vesicles increase in these terminals. Thus, we propose a new model for ovulation that includes dual-phenotype GABA/glutamate neurons as central transducers of hormonal and neural signals to GnRH neurons.
Collapse
Affiliation(s)
- Erich N Ottem
- Department of Biology, Center for Neuroendocrine Studies, University of Massachusetts-Amherst, Amherst, Massachusetts 01002, USA
| | | | | | | |
Collapse
|
8
|
Gore AC. Gonadotropin-releasing hormone (GnRH) neurons: gene expression and neuroanatomical studies. PROGRESS IN BRAIN RESEARCH 2003; 141:193-208. [PMID: 12508571 DOI: 10.1016/s0079-6123(02)41094-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Andrea C Gore
- Kastor Neurobiology of Aging Laboratories, Fishberg Research Center for Neurobiology, and Brookdale Department of Geriatrics and Development, Box 1639, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
9
|
Gore AC. Gonadotropin-releasing hormone neurons, NMDA receptors, and their regulation by steroid hormones across the reproductive life cycle. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:235-48. [PMID: 11744089 DOI: 10.1016/s0165-0173(01)00121-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of ovarian steroid hormones on gonadotropin-releasing hormone (GnRH) neurons have been studied for many years. In addition to their regulation by sex steroids, GnRH neurons are affected by inputs from neurotransmitters such as glutamate, acting via the NMDA receptor (NMDAR). Moreover, the NMDAR itself is subject to estrogen regulation. Thus, effects of ovarian steroids on GnRH neurons and the NMDAR, and their interactions, are under intense investigation. Messenger RNA and protein levels of GnRH and NMDAR subunits were measured in neuroendocrine brain regions in response to estrogen treatment, or across the reproductive cycle. Stimulatory effects of ovarian steroids on GnRH gene expression occur during the preovulatory LH surge in young adult rats, and this is abolished in middle-aged rats that have an attenuated LH surge. Effects of estrogen on GnRH neurons have also been studied in the ovariectomized, estrogen-primed rat, and while results vary between laboratories, there appear to be age-related changes in the sensitivity of GnRH neurons to estrogen. Estrogen also has effects on NMDAR mRNA levels. In intact rats, mRNA levels of NMDAR decrease during reproductive aging in the preoptic area, the site of GnRH perikarya, while in the medial basal hypothalamus-median eminence, the site of GnRH neuroterminals, levels of NMDAR subunit mRNAs increase with aging. Thus, glutamatergic inputs to GnRH perikarya and neuroterminals and other neuroendocrine cells may change during reproductive aging in intact rats. In ovariectomized rats, NMDAR subunit mRNA levels also undergo age-related changes, and respond to estrogen replacement in a subunit- and age-specific manner. Notably, there are major differences in NMDAR gene expression during aging between intact and ovariectomized rats, suggesting that ovarian factors other than estrogen play a role in the regulation of this receptor.
Collapse
Affiliation(s)
- A C Gore
- Mount Sinai School of Medicine, Kastor Neurobiology of Aging Laboratories, Fishborg Center Neurobiology, Brookdate Dept. Geriatrics, Box 1639, New York, NY 10029, USA.
| |
Collapse
|
10
|
Gore AC, Wersinger SR, Rissman EF. Effects of female pheromones on gonadotropin-releasing hormone gene expression and luteinizing hormone release in male wild-type and oestrogen receptor-alpha knockout mice. J Neuroendocrinol 2000; 12:1200-4. [PMID: 11106978 DOI: 10.1046/j.1365-2826.2000.00578.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pheromones are an important class of environmental cues that affect the hypothalamic-pituitary-gonadal axis in a variety of vertebrate species, including humans. When male mice contact female-soiled bedding, or urine, they display a reflexive luteinizing hormone (LH) surge within 30 min. Aside from the requirement that males have gonads to show this response, the physiological mechanisms that underlie this pituitary response are unknown. In this experiment, we asked if female pheromones acted at the level of gonadotropin-releasing hormone (GnRH) gene expression to affect this hormone response. In addition, we also examined the contribution of one of the oestrogen receptors (ERalpha) by studying this neuroendocrine reflex in wild-type and oestrogen receptor-alpha knockout (ERalphaKO) males. Both ERalphaKO and wild-type males showed the expected LH surge, 45 and 90 min after contact with female pheromones. Males housed in clean bedding or bedding soiled by another adult male did not display the LH elevation. Interestingly, this dramatic change in LH concentrations was not accompanied by any alterations in GnRH mRNA expression or levels of primary transcript in the preoptic area-anterior hypothalamus. The one exception to this was a significant increase in GnRH mRNA expression in tissue collected from wild-type males exposed to bedding from another male. This is particularly intriguing since LH was not elevated in these males. These data replicate and extend our previous finding that ERalphaKO males do exhibit an LH surge in response to female pheromones. Thus, this neuroendocrine response is regulated by a steroid receptor other than ERalpha and does not require alterations in GnRH mRNA expression.
Collapse
Affiliation(s)
- A C Gore
- Fishberg Research Center for Neurobiology, Kastor Neurobiology of Aging Laboratories and Henry L. Schwartz Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
11
|
Gore AC, Yeung G, Morrison JH, Oung T. Neuroendocrine aging in the female rat: the changing relationship of hypothalamic gonadotropin-releasing hormone neurons and N-methyl-D-aspartate receptors. Endocrinology 2000; 141:4757-67. [PMID: 11108291 DOI: 10.1210/endo.141.12.7841] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The reproductive axis undergoes alterations during aging, resulting in acyclicity and the loss of reproductive function. In the hypothalamus, changes intrinsic to GnRH neurons may play a critical role in this process, as may changes in inputs to GnRH neurons from neurotransmitters such as glutamate. We investigated the effects of age and reproductive status on neuroendocrine glutamatergic NMDA receptors (NRs), their regulation of GnRH neurons, and their expression on GnRH neurons, in female rats. First, we quantified NR subunit messenger RNAs (mRNAs) in preoptic area-anterior hypothalamus (POA-AH) and medial basal hypothalamus (MBH), the sites of GnRH perikarya and neuroterminals, respectively. In POA-AH, NR1 mRNA levels varied little with age or reproductive status. NR2a and NR2b mRNA levels decreased significantly between cycling and acyclic rats. In MBH, NR mRNAs all increased with aging, particularly in acyclic animals. Second, we tested the effects of N-methyl-D,L-aspartate (NMA) on GnRH mRNA levels in POA-AH of aging rats. NMA elevated GnRH mRNA levels in young rats, but decreased them in middle-aged rats. Third, we quantified expression of the NR1 subunit on GnRH perikarya in aging rats using double label immunocytochemistry. NR1 expression on GnRH cell bodies varied with age and reproductive status, with 30%, 19%, and 46% of GnRH somata double labeled with NR1 in young proestrous, middle-aged proestrous, and middle-aged persistent estrous rats, respectively. Thus, 1) the expression of hypothalamic NR subunit mRNAs correlates with reproductive status; 2) changes in NR subunit mRNA levels, if reflected by changes in protein levels, may result in alterations in the stoichiometry of the NR during aging, with possible physiological consequences; 3) the effects of NR activation on GnRH mRNA switches from stimulatory to inhibitory during reproductive aging; and 4) expression of the NR1 subunit on GnRH perikarya changes with reproductive status. These molecular, physiological, and cellular neuroendocrine changes are proposed to be involved in the transition to acyclicity in aging female rats.
Collapse
Affiliation(s)
- A C Gore
- Fishberg Research Center for Neurobiology, and Henry L. Schwartz Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | |
Collapse
|
12
|
Wu TJ, Gibson MJ, Roberts JL. Effect of N-methyl-D,L-aspartate (NMA) on gonadotropin-releasing hormone (GnRH) gene expression in male mice. Brain Res 2000; 862:238-41. [PMID: 10799691 DOI: 10.1016/s0006-8993(00)02083-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The glutamate analog N-methyl-D,L-aspartate (NMA) affects the regulation of GnRH and LH release in mammals. Several laboratories have reported a rapid and transient increase in GnRH mRNA levels of male rats after NMA injection. Studies employing the simultaneous measurements of nuclear GnRH primary transcript RNA, a reflection of gene transcription, and GnRH mRNA suggest that NMA's effect on GnRH gene expression in the rat is likely due to post-transcriptional regulation. Despite the increasingly widespread use of transgenic mice, surprisingly little is known about the regulation of GnRH gene expression in the mouse. In this study, we assessed in detail the effects of NMA on GnRH gene expression in adult male mice. In the first experiment, GnRH mRNA levels in mice killed 60-min post-NMA injection (20 mg/kg bw, ip; n=9/treatment group) were lower (P<0.05) when compared to controls (saline vehicle). In the second experiment, mice (n=7/treatment group) were administered NMA or saline vehicle and were killed at 15-, 60- and 120-min post-injection. Consistent with the first experiment, treatment with NMA resulted in a significant decrease (P<0.05) in cytoplasmic GnRH mRNA compared to control levels at 15- and 60-min but not 120-min. NMA treatment decreased the nuclear GnRH primary transcript RNA at 120-min but not at earlier time points. In summary, we have shown that regulation by NMA of GnRH gene expression in mice differs substantially from rats. This differential regulation of GnRH gene expression between rats and mice warrants further investigation.
Collapse
Affiliation(s)
- T J Wu
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY, USA
| | | | | |
Collapse
|
13
|
Affiliation(s)
- A E Herbison
- Laboratory of Neuroendocrinology, Babraham Institute, Cambridge, United Kingdom.
| |
Collapse
|
14
|
Bhat GK, Mahesh VB, Ping L, Chorich L, Wiedmeier VT, Brann DW. Opioid-glutamate-nitric oxide connection in the regulation of luteinizing hormone secretion in the rat. Endocrinology 1998; 139:955-60. [PMID: 9492025 DOI: 10.1210/endo.139.3.5844] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Opioid neurons are recognized to be an important component of the inhibitory "brake" in the CNS that restrains LHRH secretion. Opioid inhibition could be exerted directly on LHRH neurons, or it could be achieved via indirect mechanisms involving restrainment of excitatory "accelerator" neurons that facilitate LHRH release. The purpose of the present study was to explore the second hypothesis by investigating whether removal of opioid inhibition by administering the opioid antagonist, naloxone leads to enhanced activation of glutamate and nitric oxide (NO) neurons, which are known to be important excitatory "accelerator" components for the control of LHRH secretion. Naloxone administration (2.5 mg/kg) to adult male rats induced a significant elevation of serum LH levels at 20 min post injection. NOS activity in preoptic area (POA) and medial basal hypothalamic (MBH) fragments was demonstrated to be significantly elevated 20 min post naloxone injection. Administration of a glutamate (NMDA) receptor antagonist (MK-801, 0.2 mg/kg) abolished the naloxone-induced increase in NOS activity in the POA and MBH, with a corresponding block of the naloxone-induced LH release. Glutamate appears to only be involved in LH surge generation and not to regulate basal LH levels, as MK-801 had no effect on basal LH release. Because previous work by our laboratory and others have provided evidence that NO is a mediator of glutamate effects in the hypothalamus, these findings are interpreted to mean that opioid inhibition is mediated on glutamate neurons that are upstream of NO neurons. In support of this contention, we found that NMDA treatment enhanced NOS activity in the male rat POA and MBH fragments in vitro, an effect that was specific as it was completely blocked by the NMDA receptor antagonist, MK-801. Additionally, in vivo microdialysis studies revealed that naloxone treatment significantly enhances glutamate release in the preoptic area (POA) at 15 min post injection in conscious, unanesthetized, freely moving male rats. Release rates of the control amino acid, serine did not change significantly following naloxone injection. Taken as a whole, these findings provide evidence for an opioid-glutamate-NO pathway in the control of LHRH secretion, and they demonstrate the importance of "brake-accelerator" interactions in the control of LHRH and LH secretion.
Collapse
Affiliation(s)
- G K Bhat
- Department of Physiology and Endocrinology, School of Medicine, Medical College of Georgia, Augusta 30912-3000, USA
| | | | | | | | | | | |
Collapse
|
15
|
Holloway AC, Leatherland JF. Effects of N-methyl-D,L-aspartate (NMA) on growth hormone and thyroid hormone levels in steroid-primed immature rainbow trout (Oncorhynchus mykiss). ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-010x(19971001)279:2<126::aid-jez3>3.0.co;2-q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Brann DW, Mahesh VB. Excitatory amino acids: evidence for a role in the control of reproduction and anterior pituitary hormone secretion. Endocr Rev 1997; 18:678-700. [PMID: 9331548 DOI: 10.1210/edrv.18.5.0311] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D W Brann
- Department of Physiology and Endocrinology, Medical College of Georgia, Augusta 30912, USA
| | | |
Collapse
|
17
|
Abstract
The pulsatile release of gonadotropin-releasing hormone (GnRH) into the portal vasculature is responsible for the maintenance of reproductive function. Levels of GnRH decapeptide available for this process can be regulated at transcriptional, posttranscriptional, and posttranslational levels. In the immortalized neuronal GT1 cell lines which synthesize and secrete GnRH, regulation of GnRH biosynthesis has been studied using activators of the protein kinase A (PKA), protein kinase C (PKC), and calcium second messenger systems. These substances, while stimulating GnRH release, cause a universal inhibition of all biosynthetic indices measured to date, including decreases in transcription of the proGnRH gene, GnRH mRNA levels, mRNA stability, and translational efficiency. In contrast, in the animal, the mechanism for the regulation of GnRH gene expression appears to be primarily posttranscriptional, since changes in GnRH mRNA levels often occur in the absence of changes in GnRH primary transcript levels an index of GnRH gene transcription. For example, GnRH mRNA levels increase in response to stimulation with glutamate analogs, while GnRH primary transcript levels are unchanged. However, parallel changes in GnRH mRNA and primary transcript have been observed on proestrus prior to the LH/GnRH surge, suggesting that the regulation of GnRH mRNA levels in vivo involves a complex interplay of transcriptional and posttranscriptional processes.
Collapse
Affiliation(s)
- A C Gore
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
18
|
Yeo TT, Gore AC, Jakubowski M, Dong KW, Blum M, Roberts JL. Characterization of gonadotropin-releasing hormone gene transcripts in a mouse hypothalamic neuronal GT1 cell line. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:255-62. [PMID: 9013781 DOI: 10.1016/s0169-328x(96)00129-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have characterized the nuclear and cytoplasmic RNA transcripts derived from the gonadotropin releasing hormone (GnRH) gene in a mouse hypothalamic neuronal GT1 cell line. Analyses of nuclear GnRH RNA precursors present in the GT1 cells by RNase protection assay show that there is no particular order of intron excision, suggesting the existence of multiple processing pathways. A similar pattern is observed in mouse preoptic area-anterior hypothalamus (POA-AH). In GT1 cells, approximately 5% of the total GnRH RNA transcripts are found in the nucleus. In contrast, in the POA-AH of mice, nuclear transcripts comprise 40% of the total GnRH transcripts. Thus the GT1 cells, while similar in overall GnRH RNA processing to mouse hypothalamic GnRH neurons, do not exhibit the high abundance of nuclear GnRH RNA transcripts seen in the rodent GnRH neuron in vivo. Quantitative analysis of the nuclear RNA species shows that the GnRH primary transcript comprises more than 90% of the total nuclear GnRH mRNA precursors in both GT1 cells and mouse POA-AH and thus GnRH processing intermediates account for fewer than 10% of these precursors. Using these probes, we have examined changes in GnRH primary transcript expression in GT1-7 cells. In the presence of RNA synthesis inhibitors, the half-life of the GnRH primary transcript was found to be quite short, approximately 18 min, suggesting that the level of primary transcript would reflect levels of GnRH gene transcription. When GT1-7 cells are treated with the phorbol ester PMA (phorbol, 12-myristate, 13-acetate) for 1 h, GnRH primary transcript levels decrease by approximately 70%. Supporting the hypothesis that GnRH primary transcript is a good indicator of GnRH gene transcription is the finding that 1 h of PMA treatment results in a similar (approximately 50%) decrease in GnRH gene transcription, as assayed by nuclear run-on assay. Our observation that GT1 cells resemble mouse hypothalamic GnRH neurons in their pattern of intron excision and in the ratio of primary transcript to other nuclear transcripts emphasizes the utility of these cells for studying the regulation of GnRH gene expression in this immortalized hypothalamic cell line.
Collapse
Affiliation(s)
- T T Yeo
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
19
|
Gonadotropin-releasing hormone and NMDA receptor gene expression and colocalization change during puberty in female rats. J Neurosci 1996. [PMID: 8757241 DOI: 10.1523/jneurosci.16-17-05281.1996] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During development, an increase in gonadotropin-releasing hormone (GnRH) release occurs that is critical for the initiation of puberty. This increase is attributable, at least in part, to activation of the GnRH neurosecretory system by inputs from neurotransmitters, such as glutamate, acting via NMDA receptors. We examined changes in GnRH and NMDA-R1 gene expression by RNase protection assay of preoptic area-anterior hypothalamic (POA-AH) dissections of female rats undergoing normal puberty or in which precocious puberty was induced by treatment with the glutamate agonist NMA. GnRH mRNA levels increased significantly throughout normal development; this was accelerated by treatment with NMA. NMDA-R1 mRNA levels increased only between P10 and P20. The acceleration of the elevation in GnRH mRNA levels by NMDA suggests that a stimulation of GnRH gene expression may be a rate-limiting factor for the onset of puberty. This is attributable to a post-transcriptional mechanism because GnRH primary transcript levels, an index of proGnRH gene transcription, were not observed to change during puberty. Alterations in the colocalization of GnRH neurons with the NMDA-R1 subunit during puberty also were assessed immunocytochemically. The percentage of GnRH neurons that double-labeled with NMDA-R1 was 2% in prepubertal rats and 3% in pubertal rats; this increased to 19% in postpubertal rats. Taken together, these studies suggest that an increase in glutamatergic input to GnRH neurons plays a role in the increase in GnRH release and gene expression that occurs at the initiation of puberty.
Collapse
|
20
|
Sagrillo CA, Grattan DR, McCarthy MM, Selmanoff M. Hormonal and neurotransmitter regulation of GnRH gene expression and related reproductive behaviors. Behav Genet 1996; 26:241-77. [PMID: 8754250 DOI: 10.1007/bf02359383] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gonadotropin-releasing hormone (GnRH), having a highly conserved structure across mammalian species, plays a pivotal role in the control of the neuroendocrine events and the inherent sexual behaviors essential for reproductive function. Recent advances in molecular genetic technology have contributed greatly to the investigation of several aspects of GnRH physiology, particularly steroid hormone and neurotransmitter regulation of GnRH gene expression. Behavioral studies have focused on the actions of GnRH in steroid-sensitive brain regions to understand better its role in the facilitation of mating behavior. To date, however, there are no published reports which directly correlate GnRH gene expression and reproductive behavior. The intent of this article is to review the current understanding of the way in which changes in GnRH gene expression, and modifications of GnRH neuronal activity, may ultimately influence reproductive behavior.
Collapse
Affiliation(s)
- C A Sagrillo
- Department of Physiology, University of Maryland, School of Medicine, Baltimore 21201-1559, USA
| | | | | | | |
Collapse
|
21
|
Crowley WR, Kalra SP. Neonatal exposure to estradiol prevents the expression of ovarian hormone-induced luteinizing hormone and prolactin surges in adulthood but not antecedent changes in neuropeptide Y or adrenergic transmitter activity: implications for sexual differentiation of gonadotropin secretion. Brain Res 1994; 663:257-65. [PMID: 7874509 DOI: 10.1016/0006-8993(94)91271-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sex differences in adult patterns of mating behavior and gonadotropin secretion in rats are determined in part by the presence or absence of gonadal steroids during a perinatal critical period. For example, male rats and female rats exposed neonatally to androgen do not exhibit LH surge patterns when treated appropriately with ovarian hormones in adulthood, and there is evidence that this may be due to a failure of ovarian hormones to activate the hypothalamic neuronal systems that stimulate LH secretion in such animals. Because considerable evidence suggests that estradiol formed centrally from testosterone is responsible for the permanent defeminization of mating behavior and gonadotropin secretion, the present studies compared normal females with normal males and with females treated neonatally with estradiol on the ability of ovarian hormones to induce several important neurochemical changes antecedent to the LH surge, including changes in neuropeptide Y (NPY) and LH-releasing hormone (LHRH) concentrations in the median eminence, as well as changes in turnover rates for catecholamine transmitters in the medial basal hypothalamus and medial preoptic area. Normal ovariectomized female rats responded to sequential treatment with estradiol followed by progesterone with afternoon LH and prolactin (PRL) surges, and with sequential accumulation followed by decline in concentrations of LHRH and NPY in the median eminence prior to the LH surge. In addition, administration of progesterone increased the turnover rates of norepinephrine (NE) and epinephrine (EPI) in the arcuate-median eminence region of normal females.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W R Crowley
- Department of Pharmacology, University of Tennessee, Memphis College of Medicine 38163
| | | |
Collapse
|
22
|
He JR, Molnar J, Barraclough CA. Morphine amplifies norepinephrine (NE)-induced LH release but blocks NE-stimulated increases in LHRH mRNA levels: comparison of responses obtained in ovariectomized, estrogen-treated normal and androgen-sterilized rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 20:71-8. [PMID: 8255183 DOI: 10.1016/0169-328x(93)90111-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In these studies we examined the temporal effects of intracerebroventricular (i.c.v.) infusions of norepinephrine (NE) on plasma LH and on LHRH mRNA levels in the organum vasculosum of the lamina terminalis (OVLT) and in neurons located in the rostral (r), middle (m) and caudal (c) preoptic areas (POA) of ovariectomized, estrogen-treated rats. Thereafter, we compared these responses to those which occur in androgen-sterilized rats (ASR). NE infusions not only increased plasma LH concentrations but within 1 h after NE, LHRH mRNA levels also were increased significantly in the OVLT and rPOA but not in the mPOA or cPOA. By 4 h, these message levels still were elevated in the OVLT and rPOA and they now also were significantly higher than control values in the mPOA and cPOA. While NE also increased LH secretion in ASR, the plasma LH concentrations obtained were markedly blunted compared to control values. Moreover, NE infusions did not alter single cell levels of LHRH mRNA in any region of the rostral hypothalamus. Previously, we have reported that morphine (s.c.) markedly amplifies NE-induced LH release and questioned whether these responses are accompanied by concomitant augmented increases in LHRH mRNA levels. Morphine alone did not affect basal LHRH mRNA or plasma LH levels. However, when rats were pretreated with morphine (-15 min) and NE was infused i.c.v. at 0 time, significant amplification of LH release occurred but, unexpectedly, morphine completely blocked NE-induced increases in LHRH mRNA levels in all of the neurons we examined. Morphine also amplified LH release in ASR but these responses were significantly less than those obtained in control rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J R He
- Department of Physiology, School of Medicine, University of Maryland, Baltimore 21201-1559
| | | | | |
Collapse
|