1
|
Birnie MT, Baram TZ. The evolving neurobiology of early-life stress. Neuron 2025:S0896-6273(25)00134-5. [PMID: 40101719 DOI: 10.1016/j.neuron.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Because early-life stress is common and constitutes a strong risk factor for cognitive and mental health disorders, it has been the focus of a multitude of studies in humans and experimental models. Yet, we have an incomplete understanding of what is perceived as stressful by the developing brain, what aspects of stress influence brain maturation, what developmental ages are particularly vulnerable to stress, which molecules mediate the effects of stress on brain operations, and how transient stressful experiences can lead to enduring emotional and cognitive dysfunctions. Here, we discuss these themes, highlight the challenges and progress in resolving them, and propose new concepts and avenues for future research.
Collapse
Affiliation(s)
- Matthew T Birnie
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Peña CJ. Early-life stress sensitizes response to future stress: Evidence and mechanisms. Neurobiol Stress 2025; 35:100716. [PMID: 40134543 PMCID: PMC11932861 DOI: 10.1016/j.ynstr.2025.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Early-life stress sensitizes individuals to additional stressors and increases lifetime risk for mood and anxiety disorders. Research in both human populations and rodent models of early-life stress have sought to determine how different types of stressors contribute to vulnerability, and whether there are developmental sensitive periods for such effects. Although differences in the type and timing of rodent early-life stress paradigms have led to differences in specific behavioral outcomes, this complexity is present among humans as well. Robust rodent research now shows how early-life stress increases sensitivity to future stressors at behavioral, neural circuit, and molecular levels. These recent discoveries are laying the foundation for translation to more effective interventions relevant for those who experienced childhood stress and trauma.
Collapse
Affiliation(s)
- Catherine Jensen Peña
- Princeton Neuroscience Institute, Princeton University, 40 Woodlands Way, Princeton, NJ, 08544, USA
| |
Collapse
|
3
|
Hamden JE, Salehzadeh M, Bajaj H, Li MX, Soma KK. Lipopolysaccharide differentially alters systemic and brain glucocorticoid levels in neonatal and adult mice. J Neuroendocrinol 2025; 37:e13481. [PMID: 39694531 PMCID: PMC11791005 DOI: 10.1111/jne.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Glucocorticoids (GCs) are secreted by the adrenal glands and increase in response to stressors (e.g., infection). The brain regulates local GC levels via GC synthesis, regeneration and/or metabolism. Little is known about local GC regulation within discrete brain regions at baseline or in response to stress. We treated male and female C57BL/6J mice at postnatal day 5 (PND5) or PND90 with lipopolysaccharide (LPS; 50 μg/kg bw i.p.) or vehicle and collected blood and brain after 4 h. We microdissected the prefrontal cortex, hippocampus, hypothalamus and amygdala. We measured seven steroids, including corticosterone, via liquid chromatography-tandem mass spectrometry and measured transcripts for key steroidogenic enzymes (Cyp11b1, Hsd11b1, Hsd11b2) via qPCR. At both ages, LPS increased GC levels in blood and all brain regions; however, the increases were much greater at PND90 than at PND5. Interestingly, PND5 corticosterone levels were lower in prefrontal cortex than in blood, but higher in amygdala than in blood. These changes in corticosterone levels align with local changes in steroidogenic enzyme expression, demonstrating robust regional heterogeneity and a possible mechanism for the region-specific effects of early-life stress. In contrast, PND90 corticosterone levels were lower in all brain regions than in blood and similar among regions, and steroidogenic enzyme mRNA levels were generally not affected by LPS. Together, these data indicate that local GC levels within discrete brain regions are more heterogeneous at baseline and in response to LPS at PND5 than at PND90, as a result of increased local GC production and metabolism in the neonatal brain.
Collapse
Affiliation(s)
- Jordan E. Hamden
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Melody Salehzadeh
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hitasha Bajaj
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Graduate Program in NeuroscienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Michael X. Li
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kiran K. Soma
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Graduate Program in NeuroscienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
4
|
Talani G, Biggio F, Mostallino MC, Batzu E, Biggio G, Sanna E. Sex-specific changes in voluntary alcohol consumption and nucleus accumbens synaptic plasticity in C57BL/6J mice exposed to neonatal maternal separation. Neuropharmacology 2025; 262:110212. [PMID: 39521040 DOI: 10.1016/j.neuropharm.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The long-term influence of early-life stress on brain neurophysiology has been extensively investigated using different animal models. Among these, repeated maternal separation (RMS) in rodents is one of the most commonly adopted. In this study, we elucidated the long-lasting effects of exposure to postnatal RMS in C57BL/6J adult mice on voluntary alcohol consumption and nucleus accumbens (NAc) neurophysiology. Mice were separated from their dam for 360 min daily from postnatal day 2 (PND2) to PND17, and experiments were then performed in adult (PND60) animals. In addition, as recent evidence showed that circulating estrogens may play a protective role against stress effects on brain function, including the organization and activation of neuronal structures, we also evaluated the effect of a single injection of β-estradiol 3-benzoate (EB) at PND2, which is known to disrupt male sex differentiation, in male RMS mice. The RMS exposure was associated with an increased voluntary alcohol consumption and preference in male mice, but not in female mice or male mice treated with a single injection of EB. Patch clamp experiments conducted in NAc medium spiny neurons (MSNs) revealed that excitatory but not inhibitory synaptic transmission and long-term plasticity of glutamatergic synapses were significantly impaired in male but not in female mice exposed to the RMS protocol. This effect was again prevented in RMS male mice treated with EB. Our findings strengthen the idea of a sex-dependent influence of early-life stress on long-lasting modifications in synaptic transmission and plasticity in brain areas involved in goal-directed behavior and alcohol intake.
Collapse
Affiliation(s)
- Giuseppe Talani
- CNR Institute of Neuroscience, National Research Council, 09042, Monserrato, CA, Italy.
| | - Francesca Biggio
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042, Monserrato, CA, Italy
| | | | - Elisabetta Batzu
- CNR Institute of Neuroscience, National Research Council, 09042, Monserrato, CA, Italy
| | - Giovanni Biggio
- CNR Institute of Neuroscience, National Research Council, 09042, Monserrato, CA, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Enrico Sanna
- CNR Institute of Neuroscience, National Research Council, 09042, Monserrato, CA, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042, Monserrato, CA, Italy
| |
Collapse
|
5
|
de Sousa JIT, Gonçalves JDL, de Queiroz AM, de Carvalho FK, de Paula-Silva FWG. Study protocol on the impact of postnatal maternal separation stress on dental enamel formation in a murine experimental model. PLoS One 2024; 19:e0315667. [PMID: 39700153 DOI: 10.1371/journal.pone.0315667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Dental development is a complex process influenced by genetic and environmental factors. Dental enamel, primarily composed of hydroxyapatite, is formed through complex cellular and biochemical mechanisms. Although this is a stable process, genetic, nutritional, and environmental factores can lead to developmental defects such as hypomineralization and hypoplasia. Molar incisor hypomineralization is a type of hypomineralization that represents a public health challenge. Its etiology is not yet fully understood, but factors such as hypoxia, medication exposure, adverse events in early childhood, and genetic influences are considered. This study protocol aims to investigate whether postnatal adverse events can impact amelogenesis, exploring the role of stress in the etiology of dental enamel defects. Specific objectives include evaluating enamel structure and mechanical properties by comparing the offspring of rats exposed to postnatal maternal separation with control animals (non-exposed). Additionally, we will evaluate weight, length, survival assessment, and developmental milestones between the groups. Macrophotographic analysis, microtomography, microhardness testing, and electron microscopy will enable a detailed assessment of enamel morphology and its mechanical properties. Histological and molecular analyses-such as immunohistochemistry, indirect immunofluorescence, and in situ zymography-will be performed to evaluate possible changes in proteins and enzymes that are essential for proper enamel biomineralization.
Collapse
Affiliation(s)
- Júlia Ingryd Targino de Sousa
- Department of Pediatric Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana de Lima Gonçalves
- Department of Pediatric Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandra Mussolino de Queiroz
- Department of Pediatric Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabrício Kitazono de Carvalho
- Department of Pediatric Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
6
|
Veríssimo LF, Alves FHF, Estrada VB, da Costa Marques LA, Andrade KC, Bonancea AM, Okano NT, Corrêa FMDA, Pelosi GG. Cardiovascular effects of early maternal separation and escitalopram treatment in rats with depressive-like behaviour. Auton Neurosci 2024; 256:103223. [PMID: 39616948 DOI: 10.1016/j.autneu.2024.103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Depression and cardiovascular diseases are two of the world's major health problems. Escitalopram (ESC) is widely used because of its safety in relation to other drugs in that class; however, it can affect the cardiovascular system. The present study evaluated the cardiovascular parameters of depressive-like male rats and the cardiovascular effects of ESC treatment on that condition. The EMS protocol consisted of separating the litter from the dam for 3 h over 13 days. Animals were anesthetized with tribromoethanol (250 mg/kg, intraperitoneally) and the catheters were inserted into the femoral and into the femoral vein. Depressive-like rats showed an increase in the pressor response to phenylephrine (Emax:depressive = 50.36 ± 2.997 mmHg; non-depressive = 39.51 ± 3.328 mmHg; p < 0.05) and a reduction in the EC50 (depressive = 0.6203 ± 0.03005 μg/kg; non-depressive = 0.7320 ± 0.03519 μg/kg; p < 0.05) with no change in the other cardiovascular parameters. After treatment with ESC, a reduction of intrinsic heart rate was observed in the depressive-like rats (control: 342 ± 6 bpm; ESC: 316 ± 5 bpm; p < 0.05). In addition, ESC treatment increased the bradycardic (control: -97.81 ± 8.3 bpm; ESC: -137.1 ± 12.31 bpm; p = 0.0236; t = 2.502) during the baroreflex response, caused by an increase in cardiac parasympathetic modulation in the heart, in depressive-like rats (p < 0.001). The findings suggest that depressive-like rats showed cardiovascular changes, and that ESC treatment was able to reverse these changes, suggesting that ESC has a good safety profile for depressive patients with cardiovascular disease due to increased parasympathetic modulation.
Collapse
Affiliation(s)
- Luiz Fernando Veríssimo
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | | | - Viviane Batista Estrada
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | | | - Karoliny Coelho Andrade
- Department of Health Sciences Faculty of Medicine Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Amanda Monteiro Bonancea
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Natália Tavares Okano
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | | | - Gislaine Garcia Pelosi
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| |
Collapse
|
7
|
Baram TZ, Birnie MT. Enduring memory consequences of early-life stress / adversity: Structural, synaptic, molecular and epigenetic mechanisms. Neurobiol Stress 2024; 33:100669. [PMID: 39309367 PMCID: PMC11415888 DOI: 10.1016/j.ynstr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Adverse early life experiences are strongly associated with reduced cognitive function throughout life. The link is strong in many human studies, but these do not enable assigning causality, and the limited access to the live human brain can impede establishing the mechanisms by which early-life adversity (ELA) may induce cognitive problems. In experimental models, artificially imposed chronic ELA/stress results in deficits in hippocampus dependent memory as well as increased vulnerability to the deleterious effects of adult stress on memory. This causal relation of ELA and life-long memory impairments provides a framework to probe the mechanisms by which ELA may lead to human cognitive problems. Here we focus on the consequences of a one-week exposure to adversity during early postnatal life in the rodent, the spectrum of the ensuing memory deficits, and the mechanisms responsible. We highlight molecular, cellular and circuit mechanisms using convergent trans-disciplinary approaches aiming to enable translation of the discoveries in experimental models to the clinic.
Collapse
Affiliation(s)
- Tallie Z. Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Matthew T. Birnie
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
8
|
Zhang Y, Wang S, Hei M. Maternal separation as early-life stress: Mechanisms of neuropsychiatric disorders and inspiration for neonatal care. Brain Res Bull 2024; 217:111058. [PMID: 39197670 DOI: 10.1016/j.brainresbull.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The establishment of positive early parent-infant relationships provide essential nourishment and social stimulation for newborns. During the early stages of postnatal brain development, events such as synaptogenesis, neuronal maturation and glial differentiation occur in a highly coordinated manner. Maternal separation, as an early-life stress introducer, can disrupt the formation of parent-child bonds and exert long-term adverse effects throughout life. When offspring are exposed to maternal separation, the body regulates the stress of maternal separation through multiple mechanisms, including neuroinflammatory responses, neuroendocrinology, and neuronal electrical activity. In adulthood, early maternal separation has long-term effects, such as the induction of neuropsychiatric disorders such as anxiety, depression, and cognitive dysfunction. This review summarized the application of maternal separation models and the mechanisms of stress system response in neuropsychiatric disorders, serving as both a reminder and inspiration for approaches to improve neonatal care, "from bench to bedside".
Collapse
Affiliation(s)
- Yuan Zhang
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Mingyan Hei
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China.
| |
Collapse
|
9
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
10
|
Lyons-Ruth K, Chasson M, Khoury J, Ahtam B. Reconsidering the nature of threat in infancy: Integrating animal and human studies on neurobiological effects of infant stress. Neurosci Biobehav Rev 2024; 163:105746. [PMID: 38838878 PMCID: PMC11699975 DOI: 10.1016/j.neubiorev.2024.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Early life stress has been associated with elevated risk for later psychopathology. One mechanism that may contribute to such long-term risk is alterations in amygdala development, a brain region critical to stress responsivity. Yet effects of stress on the amygdala during human infancy, a period of particularly rapid brain development, remain largely unstudied. In order to model how early stressors may affect infant amygdala development, several discrepancies across the existing literatures on early life stress among rodents and early threat versus deprivation among older human children and adults need to be reconciled. We briefly review the key findings of each of these literatures. We then consider them in light of emerging findings from studies of human infants regarding relations among maternal caregiving, infant cortisol response, and infant amygdala volume. Finally, we advance a developmental salience model of how early threat may impact the rapidly developing infant brain, a model with the potential to integrate across these divergent literatures. Future work to assess the value of this model is also proposed.
Collapse
Affiliation(s)
- Karlen Lyons-Ruth
- Department of Psychiatry, Cambridge Hospital, Harvard Medical School, 1493 Cambridge St, Cambridge, MA 02468, USA.
| | - Miriam Chasson
- Department of Psychiatry, Cambridge Hospital, Harvard Medical School, 1493 Cambridge St, Cambridge, MA 02468, USA.
| | - Jennifer Khoury
- Department of Psychiatry, Cambridge Hospital, Harvard Medical School, 1493 Cambridge St, Cambridge, MA 02468, USA.
| | - Banu Ahtam
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Nisar R, Inamullah A, Ghalib AUF, Nisar H, Sarkaki A, Afzal A, Tariq M, Batool Z, Haider S. Geraniol mitigates anxiety-like behaviors in rats by reducing oxidative stress, repairing impaired hippocampal neurotransmission, and normalizing brain cortical-EEG wave patterns after a single electric foot-shock exposure. Biomed Pharmacother 2024; 176:116771. [PMID: 38795639 DOI: 10.1016/j.biopha.2024.116771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Anxiety-like conditions can interfere with daily activities as the adaptive mechanism fails to cope with stress. These conditions are often linked with increased oxidative stress, and abrupt neurotransmission and electroencephalography (EEG) wave pattern. Geraniol, a monoterpenoid, has antioxidant and anti-inflammatory activities, as well as brain-calming effects. Therefore, in this study, geraniol was tested for the potential anxiolytic effects in a rat model of anxiety. The rats were exposed to an electric foot shock (1 mA for 1 s) to develop anxiety-like symptoms. Treatment was carried out using geraniol (10 and 30 mg/kg) and the standard diazepam drug. The behavior of the rats was analyzed using the open field test, light-dark test, and social interaction test. Afterward, the rats were decapitated to collect samples for neurochemical and biochemical analyses. The cortical-EEG wave pattern was also obtained. The study revealed that the electric foot shock induced anxiety-like symptoms, increased oxidative stress, and altered hippocampal neurotransmitter levels. The power of low-beta and high-beta was amplified with the increased coupling of delta-beta waves in anxiety group. However, the treatment with geraniol and diazepam normalized cortical-EEG wave pattern and hippocampal serotonin and catecholamines profile which was also reflected by reduced anxious behavior and normalized antioxidant levels. The study reports an anxiolytic potential of geraniol, which can be further explored in future.
Collapse
Affiliation(s)
- Rida Nisar
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Aimen Inamullah
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asad Ullah Faiz Ghalib
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hareem Nisar
- Institute of Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asia Afzal
- Department of Biochemistry, Federal Urdu University of Arts, Sciences & Technology, Karachi, Pakistan
| | - Maryam Tariq
- Dual General Adult and Old Age Trainee, Humber Teaching NHS Foundation Trust, Hull, UK
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
12
|
Wilkinson MP, Robinson ES, Mellor JR. Analysis of hippocampal synaptic function in a rodent model of early life stress. Wellcome Open Res 2024; 9:300. [PMID: 39221440 PMCID: PMC11362746 DOI: 10.12688/wellcomeopenres.22276.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Early life stress (ELS) is an important risk factor in the aetiology of depression. Developmental glucocorticoid exposure impacts multiple brain regions with the hippocampus being particularly vulnerable. Hippocampal mediated behaviours are dependent upon the ability of neurones to undergo long-term potentiation (LTP), an N-methyl-D-aspartate receptor (NMDAR) mediated process. In this study we investigated the effect of ELS upon hippocampal NMDAR function. Methods Hooded Long-Evans rat pups (n=82) were either undisturbed or maternally separated for 180 minutes per day (MS180) between post-natal day (PND) 1 and PND14. Model validation consisted of sucrose preference (n=18) and novelty supressed feeding (NSFT, n=34) tests alongside assessment of corticosterone (CORT) and paraventricular nucleus (PVN) cFos reactivity to stress and hippocampal neurogenesis (all n=18). AMPA/NMDA ratios (n=19), miniEPSC currents (n=19) and LTP (n=15) were assessed in whole-cell patch clamp experiments in CA1 pyramidal neurones. Results MS180 animals showed increased feeding latency in the NSFT alongside increased overall CORT in the restraint stress experiment and increased PVN cFos expression in males but no changes in neurogenesis or sucrose preference. MS180 was associated with a lower AMPA/NMDA ratio with no change in miniEPSC amplitude or area. There was no difference in short- or long-term potentiation between MS180 and control animals nor were there any changes during the induction protocol. Conclusions The MS180 model showed a behavioural phenotype consistent with previous work. MS180 animals showed increased NMDAR function with preliminary evidence suggesting that this was not concurrent with an increase in LTP.
Collapse
Affiliation(s)
- Matthew P. Wilkinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
- Hello Bio Ltd, Bristol, BS11 0QL, UK
| | - Emma S.J. Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
| | - Jack R. Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
| |
Collapse
|
13
|
Pasquetta L, Ferreyra E, Wille-Bille A, Pautassi RM, Ramirez A, Piovano J, Molina JC, Miranda-Morales RS. C57BL/6J offspring mice reared by a single-mother exhibit, compared to mice reared in a biparental parenting structure, distinct neural activation patterns and heightened ethanol-induced anxiolysis. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06627-4. [PMID: 38811403 DOI: 10.1007/s00213-024-06627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
RATIONALE Parenting experiences with caregivers play a key role in neurodevelopment. We recently reported that adolescents reared by a single-mother (SM) display an anxiety-prone phenotype and drink more alcohol, compared to peers derived from a biparental (BP) rearing condition. OBJECTIVES To investigate if SM and BP offspring infant mice exhibit differential sensitivity to ethanol-induced locomotor activity and differential activity patterns in brain areas related to anxiety response. We also analyzed anxiety response and ethanol-induced anxiolysis in SM and BP adolescents. METHODS Mice reared in SM or BP conditions were assessed for (a) ethanol-induced locomotor activity at infancy, (b) central expression of Fos-like proteins (likely represented mostly by FosB, a transcription factor that accumulates after chronic stimuli exposure and serves as a molecular marker of neural plasticity) and cathecolaminergic activity, and (c) anxiety-like behavior and ethanol-induced anxiolysis in adolescence. RESULTS Infant mice were sensitive to the stimulating effects of 2.0 g/kg alcohol, regardless parenting structure. SM mice exhibited, relative to BP mice, a significantly greater number of Fos-like positive cells in the central amygdala and basolateral amygdala nuclei. Ethanol treatment, but not parenting condition, induced greater activation of dopaminergic neurons in ventral tegmental area. SM, but not BP, adolescent mice were sensitive to ethanol-induced anxiolysis. CONCLUSIONS These results highlight the complex relationship between parenting experiences and neurodevelopment. The SM parenting may result in greater neural activation patterns in brain areas associated with anxiety response, potentially contributing to increased basal anxiety and alcohol sensitivity.
Collapse
Affiliation(s)
- Lucila Pasquetta
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Eliana Ferreyra
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Aranza Wille-Bille
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Abraham Ramirez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Jesica Piovano
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Juan Carlos Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina.
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| |
Collapse
|
14
|
Bhattacharya A, Chakraborty M, Chanda A, Alqahtani T, Kumer A, Dhara B, Chattopadhyay M. Neuroendocrine and cellular mechanisms in stress resilience: From hormonal influence in the CNS to mitochondrial dysfunction and oxidative stress. J Cell Mol Med 2024; 28:e18220. [PMID: 38509751 PMCID: PMC10955164 DOI: 10.1111/jcmm.18220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Recent advancements in neuroendocrinology challenge the long-held belief that hormonal effects are confined to perivascular tissues and do not extend to the central nervous system (CNS). This paradigm shift, propelled by groundbreaking research, reveals that synthetic hormones, notably in anti-inflammatory medications, significantly influence steroid psychosis, behavioural, and cognitive impairments, as well as neuropeptide functions. A seminal development in this field occurred in 1968 with McEven's proposal that rodent brains are responsive to glucocorticoids, fundamentally altering the understanding of how anxiety impacts CNS functionality and leading to the identification of glucocorticosteroids and mineralocorticoids as distinct corticotropic receptors. This paper focuses on the intricate roles of the neuroendocrine, immunological, and CNS in fostering stress resilience, underscored by recent animal model studies. These studies highlight active, compensatory, and passive strategies for resilience, supporting the concept that anxiety and depression are systemic disorders involving dysregulation across both peripheral and central systems. Resilience is conceptualized as a multifaceted process that enhances psychological adaptability to stress through adaptive mechanisms within the immunological system, brain, hypothalamo-pituitary-adrenal axis, and ANS Axis. Furthermore, the paper explores oxidative stress, particularly its origin from the production of reactive oxygen species (ROS) in mitochondria. The mitochondria's role extends beyond ATP production, encompassing lipid, heme, purine, and steroidogenesis synthesis. ROS-induced damage to biomolecules can lead to significant mitochondrial dysfunction and cell apoptosis, emphasizing the critical nature of mitochondrial health in overall cellular function and stress resilience. This comprehensive synthesis of neuroendocrinological and cellular biological research offers new insights into the systemic complexity of stress-related disorders and the imperative for multidisciplinary approaches in their study and treatment.
Collapse
Affiliation(s)
- Arghya Bhattacharya
- Department of PharmacologyCalcutta Institute of Pharmaceutical Technology and AHSUluberiaWest BengalIndia
| | - Manas Chakraborty
- Department of Pharmaceutical BiotechnologyCalcutta institute of pharmaceutical technology and AHSUluberiaWest BengalIndia
| | - Ananya Chanda
- Department of Pharmaceutical ScienceAdamas UniversityBarasatWest BengalIndia
| | - Taha Alqahtani
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Ajoy Kumer
- Department of ChemistryCollege of Arts and Sciences, IUBAT‐International University of Business Agriculture and TechnologyDhakaBangladesh
| | - Bikram Dhara
- Center for Global Health ResearchSaveetha Medical College and Hospital, Saveetha Institute of Medical and Technical SciencesChennaiIndia
- Department of Health SciencesNovel Global Community and Educational FoundationHebershamNew South WalesAustralia
| | - Moitreyee Chattopadhyay
- Department of Pharmaceutical TechnologyMaulana Abul Kalam Azad University of TechnologyKolkataWest BengalIndia
| |
Collapse
|
15
|
Salinas-García AF, Roque A, Zamudio-Flores J, Meléndez-Herrera E, Kline AE, Lajud N. Early Life Stress Negatively Impacts Spatial Learning Acquisition and Increases Hippocampal CA1 Microglial Activation After a Mild Traumatic Brain Injury in Adult Male Rats. J Neurotrauma 2024; 41:514-528. [PMID: 37885223 DOI: 10.1089/neu.2023.0452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Early life stress (ELS) affects neurogenesis and spatial learning, and increases neuroinflammation after a pediatric mild traumatic brain injury (mTBI). Previous studies have shown that ELS has minimal effects in juveniles but shows age-dependent effects in adults. Hence, we aimed to evaluate the effects of ELS in adult male rats after an mTBI. Maternal separation for 180 min per day (MS180) during the first 21 post-natal (P) days was used as the ELS model. At P110, the rats were subjected to a mild controlled cortical impact injury (2.6 mm) or sham surgery. Spatial learning was evaluated in the Morris water maze (MWM) 14 days after surgery and both microglial activation and neurogenesis were quantified. The results indicate that MS180 + mTBI, but not control (CONT) + mTBI, rats show deficiencies in the acquisition of spatial learning. mTBI led to comparable increases in microglial activation in both the hilus and cortical regions for both groups. However, MS180 + mTBI rats exhibited a greater increase in microglial activation in the ipsilateral CA1 hippocampus subfield compared with CONT + mTBI. Interestingly, for the contralateral CA1 region, this effect was observed exclusively in MS180 + mTBI. ELS and mTBI independently caused a decrease in hippocampal neurogenesis and this effect was not increased further in MS180 + mTBI rats. The findings demonstrate that ELS and mTBI synergistically affect cognitive performance and neuroinflammation, thus supporting the hypothesis that increased inflammation resulting from the combination of ELS and mTBI could underlie the observed effects on learning.
Collapse
Affiliation(s)
- Ana Fernanda Salinas-García
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Angélica Roque
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Jonathan Zamudio-Flores
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Esperanza Meléndez-Herrera
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Anthony E Kline
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania. USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania. USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania. USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania. USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania. USA
| | - Naima Lajud
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
| |
Collapse
|
16
|
Bajaj S, Mahesh R. Converged avenues: depression and Alzheimer's disease- shared pathophysiology and novel therapeutics. Mol Biol Rep 2024; 51:225. [PMID: 38281208 DOI: 10.1007/s11033-023-09170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Depression, a highly prevalent disorder affecting over 280 million people worldwide, is comorbid with many neurological disorders, particularly Alzheimer's disease (AD). Depression and AD share overlapping pathophysiology, and the search for accountable biological substrates made it an essential and intriguing field of research. The paper outlines the neurobiological pathways coinciding with depression and AD, including neurotrophin signalling, the hypothalamic-pituitary-adrenal axis (HPA), cellular apoptosis, neuroinflammation, and other aetiological factors. Understanding overlapping pathways is crucial in identifying common pathophysiological substrates that can be targeted for effective management of disease state. Antidepressants, particularly monoaminergic drugs (first-line therapy), are shown to have modest or no clinical benefits. Regardless of the ineffectiveness of conventional antidepressants, these drugs remain the mainstay for treating depressive symptoms in AD. To overcome the ineffectiveness of traditional pharmacological agents in treating comorbid conditions, a novel therapeutic class has been discussed in the paper. This includes neurotransmitter modulators, glutamatergic system modulators, mitochondrial modulators, antioxidant agents, HPA axis targeted therapy, inflammatory system targeted therapy, neurogenesis targeted therapy, repurposed anti-diabetic agents, and others. The primary clinical challenge is the development of therapeutic agents and the effective diagnosis of the comorbid condition for which no specific diagnosable scale is present. Hence, introducing Artificial Intelligence (AI) into the healthcare system is revolutionary. AI implemented with interdisciplinary strategies (neuroimaging, EEG, molecular biomarkers) bound to have accurate clinical interpretation of symptoms. Moreover, AI has the potential to forecast neurodegenerative and psychiatric illness much in advance before visible/observable clinical symptoms get precipitated.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| |
Collapse
|
17
|
Cascino G, Monteleone AM. Early traumatic experiences and the hypothalamus-pituitary-adrenal axis in people with eating disorders: A narrative review. Psychoneuroendocrinology 2024; 159:106665. [PMID: 37944210 DOI: 10.1016/j.psyneuen.2023.106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Exposure to trauma during childhood is a non-specific risk factor for psychiatric disorders, including eating disorders (EDs), over the life course. Moreover, an association between stressful life events and the onset/maintenance of EDs has been documented. Therefore, the hypothalamus-pituitary-adrenal (HPA) axis, namely the main component of the endogenous stress response system, has been proposed to be implicated in the pathophysiology of EDs. In this narrative review the current knowledge concerning the effects of early trauma exposure on the HPA axis activity and their putative role in the pathophysiology of EDs will be illustrated. Research findings corroborate the idea that childhood trauma exposure has long-lasting dysregulating effects on the activity of the HPA axis, which may contribute to the biological background of the early trauma-related risk for the development of EDs across the life span. Moreover, literature data support the existence of a "maltreated ecophenotype" in EDs characterized by specific clinic and neuroendocrine features, which may have important implications in treatment programming for such a type of patients.
Collapse
Affiliation(s)
- Giammarco Cascino
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.
| | | |
Collapse
|
18
|
Moschonas EH, Annas EM, Zamudio-Flores J, Jarvis JM, Lajud N, Bondi CO, Kline AE. Pediatric Traumatic Brain Injury: Models, Therapeutics, and Outcomes. ADVANCES IN NEUROBIOLOGY 2024; 42:147-163. [PMID: 39432041 DOI: 10.1007/978-3-031-69832-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Pediatric traumatic brain injury (TBI) is a significant healthcare issue, but potential treatments are absent despite robust investigation in several clinical trials. Factors attributed to clinical TBI, such as heterogeneity of injury and single-dose pharmacological treatments as well as timing of administration, may be reasons for the negative studies. Preclinical models of TBI can reduce some of the impediments by highlighting differences in injury depending on injury severity and location and by conducting dose response studies, thus providing better therapeutic targets and pharmacological profiles for clinical use. In this chapter, there were sufficient reports to make comparisons between the models in terms of pathophysiology, behavioral dysfunction, and the efficacy of therapeutic interventions. The models used to date include controlled cortical impact (CCI), weight drop, fluid percussion, and abusive head trauma. Several therapeutics were identified after CCI injury but none in the other models, which underscores the need for studies evaluating the therapies reported after CCI injury as well as novel potential approaches.
Collapse
Affiliation(s)
- Eleni H Moschonas
- Department of Physical Medicine & Rehabilitation, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ellen M Annas
- Department of Physical Medicine & Rehabilitation, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Zamudio-Flores
- Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - Jessica M Jarvis
- Department of Physical Medicine & Rehabilitation, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Naima Lajud
- Instituto de Investigaciones sobre los Recursos Naturales - Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Corina O Bondi
- Departments of Physical Medicine & Rehabilitation and Neurobiology, Center for Neuroscience, and Safar Center for Resuscitation Research, John G. Rangos Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anthony E Kline
- Departments of Physical Medicine & Rehabilitation, Critical Care Medicine, and Psychology, and Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, John G. Rangos Research Center, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Lloyd KM, Gabard-Durnam L, Beaudry K, De Lisio M, Raine LB, Bernard-Willis Y, Watrous JNH, Whitfield-Gabrieli S, Kramer AF, Hillman CH. Cross-sectional analysis reveals COVID-19 pandemic community lockdown was linked to dysregulated cortisol and salivary alpha amylase in children. Front Public Health 2023; 11:1210122. [PMID: 38169630 PMCID: PMC10758420 DOI: 10.3389/fpubh.2023.1210122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The COVID-19 pandemic altered everyday life starting in March 2020. These alterations extended to the lives of children as their normal routines were disrupted by community lockdowns, online learning, limited in-person social contact, increased screen time, and reduced physical activity. Considerable research has investigated the physical health impact of COVID-19 infection, but far fewer studies have investigated the physiological impact of stressful pandemic-related changes to daily life, especially in children. The purpose of this study was to leverage an ongoing clinical trial to investigate physiological consequences associated with chronic stress of pandemic community lockdown on children. As a part of the clinical trial, children provided saliva samples. Saliva samples were analyzed for cortisol and salivary alpha amylase (sAA) content. This secondary cross-sectional analysis included 94 preadolescent children located within the Greater Boston, Massachusetts community. Children participated in the study either before, during, or following the pandemic community lockdown to form three groups for comparison. In response to chronic stress caused by the pandemic community lockdown, participants demonstrated dysregulation of fast-acting catecholamine response of the locus-coeruleus-norepinephrine system and slower-acting glucocorticoid response, resulting in an asymmetrical relationship of hypocortisolism (M = 0.78 ± 0.19 μg/mL, p < 0.001) paired with higher sAA (M = 12.73 ± 4.06 U/mL, p = 0.01). Results suggest that the abrupt COVID-19 disruption to daily life, including the stressful experience of community lockdown, had physiological effects on typically developing children. Further research is required to investigate mental health outcomes of children following the chronic stress of the pandemic community lockdown.
Collapse
Affiliation(s)
- Katherine M. Lloyd
- Department of Psychology, Northeastern University, Boston, MA, United States
| | | | - Kayleigh Beaudry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael De Lisio
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lauren B. Raine
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA, United States
| | - Ysabeau Bernard-Willis
- Department of Psychology, Northeastern University, Boston, MA, United States
- Division of Cognitive and Behavioral Neurology at Brigham and Women’s Hospital, Boston, MA, United States
| | | | | | - Arthur F. Kramer
- Department of Psychology, Northeastern University, Boston, MA, United States
- University of Illinois Beckman Institute, Champaign-Urbana, IL, United States
| | - Charles H. Hillman
- Department of Psychology, Northeastern University, Boston, MA, United States
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
20
|
Shi DD, Zhang YD, Zhang S, Liao BB, Chu MY, Su S, Zhuo K, Hu H, Zhang C, Wang Z. Stress-induced red nucleus attenuation induces anxiety-like behavior and lymph node CCL5 secretion. Nat Commun 2023; 14:6923. [PMID: 37903803 PMCID: PMC10616295 DOI: 10.1038/s41467-023-42814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Previous studies have speculated that brain activity directly controls immune responses in lymphoid organs. However, the upstream brain regions that control lymphoid organs and how they interface with lymphoid organs to produce stress-induced anxiety-like behavior remain elusive. Using stressed human participants and rat models, we show that CCL5 levels are increased in stressed individuals compared to controls. Stress-inducible CCL5 is mainly produced from cervical lymph nodes (CLN). Retrograde tracing from CLN identifies glutamatergic neurons in the red nucleus (RN), the activities of which are tightly correlated with CCL5 levels and anxiety-like behavior in male rats. Ablation or chemogenetic inhibition of RN glutamatergic neurons increases anxiety levels and CCL5 expression in the serum and CLNs, whereas pharmacogenetic activation of these neurons reduces anxiety levels and CCL5 synthesis after restraint stress exposure. Chemogenetic inhibition of the projection from primary motor cortex to RN elicits anxiety-like behavior and CCL5 synthesis. This brain-lymph node axis provides insights into lymph node tissue as a stress-responsive endocrine organ.
Collapse
Affiliation(s)
- Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing-Bing Liao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Chu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiming Zhuo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Rombaut C, Roura-Martinez D, Lepolard C, Gascon E. Brief and long maternal separation in C57Bl6J mice: behavioral consequences for the dam and the offspring. Front Behav Neurosci 2023; 17:1269866. [PMID: 37936649 PMCID: PMC10626007 DOI: 10.3389/fnbeh.2023.1269866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Animal models, especially rodents, have become instrumental to experimentally investigate the effects of an adverse post-natal environment on the developing brain. For this purpose, maternal separation (MS) paradigms have been widely used in the last decades. Nonetheless, how MS affects maternal behavior and, ultimately, the offspring depend on multiple variables. Methods To gain further insights into the consequences of MS, we decided to thoroughly measure and compare the effects of short (15 min, 3 times/day) vs. long (3 h, 1 time/day) separation on multiple maternally-associated behaviors and across the entire post-natal period. Results Compared to unhandled control litters, our results confirmed previous studies and indicated that SMS enhanced the time and variety of maternal care whereas LMS resulted in poor caregiving. We also showed that SMS-accrued caregiving persisted during the whole post-natal period. In contrast, LMS effects on maternal behavior were restricted to the early life (P2-P10). Finally, we also analyzed the behavioral consequences of these different rearing social environments on the offspring. We found that MS has profound effects in social tasks. We showed that affiliative touch, a type of prosocial behavior that provides comfort to others, is particularly sensitive to the modification of maternal caregiving. Discussion Our results provide further support to the contention that interactions during the early post-natal period critically contribute to emotional processing and brain co-construction.
Collapse
Affiliation(s)
| | | | | | - Eduardo Gascon
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| |
Collapse
|
22
|
Bratzu J, Ciscato M, Pisanu A, Talani G, Frau R, Porcu P, Diana M, Fumagalli F, Romualdi P, Rullo L, Trezza V, Ciccocioppo R, Sanna F, Fattore L. Communal nesting differentially attenuates the impact of pre-weaning social isolation on behavior in male and female rats during adolescence and adulthood. Front Behav Neurosci 2023; 17:1257417. [PMID: 37915532 PMCID: PMC10616881 DOI: 10.3389/fnbeh.2023.1257417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Early social isolation (ESI) disrupts neurodevelopmental processes, potentially leading to long-lasting emotional and cognitive changes in adulthood. Communal nesting (CN), i.e., the sharing of parental responsibilities between multiple individuals in a nest, creates a socially enriching environment known to impact social and anxiety-related behaviors. Methods This study examines the effects of (i) the CN condition and of (ii) ESI during the 3rd week of life (i.e., pre-weaning ESI) on motor, cognitive, and emotional domains during adolescence and adulthood in male and female rats reared in the two different housing conditions, as well as (iii) the potential of CN to mitigate the impact of ESI on offspring. Results We found that in a spontaneous locomotor activity test, females exhibited higher activity levels compared to males. In female groups, adolescents reared in standard housing (SH) condition spent less time in the center of the arena, suggestive of increased anxiety levels, while the CN condition increased the time spent in the center during adolescence, but not adulthood, independently from ESI. The prepulse inhibition (PPI) test showed a reduced PPI in ESI adolescent animals of both sexes and in adult males (but not in adult females), with CN restoring PPI in males, but not in adolescent females. Further, in the marble burying test SH-ESI adolescent males exhibited higher marble burying behavior than all other groups, suggestive of obsessive-compulsive traits. CN completely reversed this stress-induced effect. Interestingly, ESI and CN did not have a significant impact on burying behavior in adult animals of both sexes. Discussion Overall, our findings (i) assess the effects of ESI on locomotion, sensorimotor gating, and compulsive-like behaviors, (ii) reveal distinct vulnerabilities of males and females within these domains, and (iii) show how early-life social enrichment may successfully counteract some of the behavioral alterations induced by early-life social stress in a sex-dependent manner. This study strengthens the notion that social experiences during early-life can shape emotional and cognitive outcomes in adulthood, and points to the importance of social enrichment interventions for mitigating the negative effects of early social stress on neurodevelopment.
Collapse
Affiliation(s)
- Jessica Bratzu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Maria Ciscato
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Augusta Pisanu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Giuseppe Talani
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Marco Diana
- G.Minardi’ Cognitive Neuroscience Laboratory, CPMB Science Department, University of Sassari, Sassari, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, University of Milan, Milan, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Viviana Trezza
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Liana Fattore
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
23
|
Mazzari G, Lowry CA, Langgartner D, Reber SO. Subcutaneous Mycobacterium vaccae ameliorates the effects of early life adversity alone or in combination with chronic stress during adulthood in male and female mice. Neurobiol Stress 2023; 26:100568. [PMID: 37727147 PMCID: PMC10506060 DOI: 10.1016/j.ynstr.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/28/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023] Open
Abstract
Chronic psychosocial stress is a burden of modern society and poses a clear risk factor for a plethora of somatic and affective disorders, of which most are associated with an activated immune status and chronic low-grade inflammation. Preclinical and clinical studies further suggest that a failure in immunoregulation promotes an over-reaction of the inflammatory stress response and, thus, predisposes an individual to the development of stress-related disorders. Therefore, all genetic (i.e., sex) and environmental (i.e., early life adversity; ELA) factors facilitating an adult's inflammatory stress response are likely to increase their stress vulnerability. In the present study we investigated whether repeated subcutaneous (s.c.) administrations with a heat-killed preparation of Mycobacterium vaccae (M. vaccae; National Collection of Type Cultures (NCTC) 11659), an abundant soil saprophyte with immunoregulatory properties, are protective against negative behavioral, immunological and physiological consequences of ELA alone or of ELA followed by chronic psychosocial stress during adulthood (CAS) in male and female mice. ELA was induced by the maternal separation (MS) paradigm, CAS was induced by 19 days of chronic subordinate colony housing (CSC) in males and by a 7-week exposure to the social instability paradigm (SIP) in females. Our data indicate that ELA effects in both sexes, although relatively mild, were to a great extent prevented by subsequent s.c. M. vaccae administrations. Moreover, although the use of different paradigms for males and females impedes a direct comparison, male mice seemed to be more susceptible to CAS than females, with only females benefitting slightly from the stress protective effects of s.c. M. vaccae administrations when given prior to CAS alone. Finally, our data support the hypothesis that female mice are more vulnerable to the additive effects of ELA and CAS than male mice and that s.c. M. vaccae administrations subsequent to ELA but prior to CAS are protective in both sexes. Taken together and considering the limitation that CAS in males and females was induced by different paradigms, our findings are consistent with the hypotheses that murine stress vulnerability during different phases of life is strongly sex dependent and that developing immunoregulatory approaches, such as repeated s.c. administrations with immunoregulatory microorganisms, have potential for prevention/treatment of stress-related disorders.
Collapse
Affiliation(s)
- Giulia Mazzari
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| | - Christopher A. Lowry
- Department of Integrative Physiology, Department of Psychology and Neuroscience, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
24
|
Gryksa K, Schmidtner AK, Masís-Calvo M, Rodríguez-Villagra OA, Havasi A, Wirobski G, Maloumby R, Jägle H, Bosch OJ, Slattery DA, Neumann ID. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: A unique model for comorbid depression and social dysfunctions. Neurosci Biobehav Rev 2023; 152:105292. [PMID: 37353047 DOI: 10.1016/j.neubiorev.2023.105292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Animal models of selective breeding for extremes in emotionality are a strong experimental approach to model psychopathologies. They became indispensable in order to increase our understanding of neurobiological, genetic, epigenetic, hormonal, and environmental mechanisms contributing to anxiety disorders and their association with depressive symptoms or social deficits. In the present review, we extensively discuss Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour on the elevated plus-maze. After 30 years of breeding, we can confirm the prominent differences between HAB and LAB rats in trait anxiety, which are accompanied by consistent differences in depressive-like, social and cognitive behaviours. We can further confirm a single nucleotide polymorphism in the vasopressin promotor of HAB rats causative for neuropeptide overexpression, and show that low (or high) anxiety and fear levels are unlikely due to visual dysfunctions. Thus, HAB and LAB rats continue to exist as a reliable tool to study the multiple facets underlying the pathology of high trait anxiety and its comorbidity with depression-like behaviour and social dysfunctions.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Anna K Schmidtner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Marianella Masís-Calvo
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Odir A Rodríguez-Villagra
- Centro de Investigación en Neurosciencias, Universidad de Costa Rica, San Pedro, San José, Costa Rica.
| | - Andrea Havasi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Gwendolyn Wirobski
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
25
|
Meng X, Bao B, Yue G. Global research trends on maternal separation paradigms as an early life stress model: A bibliometric analysis. Heliyon 2023; 9:e18469. [PMID: 37533990 PMCID: PMC10392086 DOI: 10.1016/j.heliyon.2023.e18469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
Background Maternal separation (MS) is an early life stress model that is often studied to determine how early life stress affects brain development and psychopathological adaptation. As society has developed, public health problems have become increasingly prominent, and this research area has attracted significant attention. However, to date, there has been no systematic bibliometric study on MS. The aim of this study was to analyze the trends and frontiers in MS using bibliometrics and provide a scientific reference to researchers in the field. Methods Utilizing VOSviewer, CiteSpace, and Microsoft Excel, examined data obtained from the WoSCC, which encompasses the years 2002-2021. Results In this bibliometric study, we analyzed 6209 articles related to MS authored by 24,174 researchers across 121 countries and regions and published in 2219 journals. The United States had the most publications (2,232, 35.95%) and both the United States and the United Kingdom had the highest h-index. Institutions in the United States and France had the most published articles and citations. Keyword clustering analysis revealed associations between MS and adverse early life experiences, the hypothalamic-pituitary-adrenal (HPA) axis, stress, gene expression, and depression. Conclusions This bibliometric analysis highlights the current research focus on the long-term effects of MS on emotional cognition, the HPA axis, epigenetic changes, and their links to gut microbiome imbalances. Future research may expand on these findings to investigate the underlying mechanisms and broader health and societal implications of MS. These results provide a comprehensive overview of the current research landscape in MS and offer valuable insights for researchers to guide future investigations in this field.
Collapse
Affiliation(s)
- Xiaoying Meng
- Institute of Basic Theory for Chinese Medicine,China Academy of Chinese Medical Sciences, Beijing, China
| | - Binghao Bao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine,China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Drljača J, Milošević N, Milanović M, Abenavoli L, Milić N. When the microbiome helps the brain-current evidence. CNS Neurosci Ther 2023; 29 Suppl 1:43-58. [PMID: 36601680 PMCID: PMC10314113 DOI: 10.1111/cns.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 12/17/2022] [Indexed: 01/06/2023] Open
Abstract
The gut microbiota-brain axis has been recognized as a network of connections that provides communication between the gut microflora and both central and autonomic nervous system. The gut microbiota alteration has been targeted for therapy in various neurodegenerative and psychiatric disbalances. Psychobiotics are probiotics that contribute beneficially to the brain function and the host mental health as a result of an interaction with the commensal gut bacteria, although their mechanism of action has not been completely revealed. In this state-of-art review, the findings about the potential therapeutic effects of the psychobiotics alone or in combination with conventional medicine in the treatment of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, as well as in some psychiatric diseases like depression, schizophrenia, and bipolar disorder, have been summarized. The evidence of the psychobiotics therapeutic outcomes obtained in preclinical and clinical trials have been given respectively for the observed neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Jovana Drljača
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| | - Nataša Milošević
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| | - Maja Milanović
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| | - Ludovico Abenavoli
- Department of Health SciencesUniversity Magna Graecia Campus “Salvatore Venuta”CatanzaroItaly
| | - Nataša Milić
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| |
Collapse
|
27
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
28
|
Guez-Barber D, Eisch AJ, Cristancho AG. Developmental Brain Injury and Social Determinants of Health: Opportunities to Combine Preclinical Models for Mechanistic Insights into Recovery. Dev Neurosci 2023; 45:255-267. [PMID: 37080174 PMCID: PMC10614252 DOI: 10.1159/000530745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Epidemiological studies show that social determinants of health are among the strongest factors associated with developmental outcomes after prenatal and perinatal brain injuries, even when controlling for the severity of the initial injury. Elevated socioeconomic status and a higher level of parental education correlate with improved neurologic function after premature birth. Conversely, children experiencing early life adversity have worse outcomes after developmental brain injuries. Animal models have provided vital insight into mechanisms perturbed by developmental brain injuries, which have indicated directions for novel therapeutics or interventions. Animal models have also been used to learn how social environments affect brain maturation through enriched environments and early adverse conditions. We recognize animal models cannot fully recapitulate human social circumstances. However, we posit that mechanistic studies combining models of developmental brain injuries and early life social environments will provide insight into pathways important for recovery. Some studies combining enriched environments with neonatal hypoxic injury models have shown improvements in developmental outcomes, but further studies are needed to understand the mechanisms underlying these improvements. By contrast, there have been more limited studies of the effects of adverse conditions on developmental brain injury extent and recovery. Uncovering the biological underpinnings for early life social experiences has translational relevance, enabling the development of novel strategies to improve outcomes through lifelong treatment. With the emergence of new technologies to analyze subtle molecular and behavioral phenotypes, here we discuss the opportunities for combining animal models of developmental brain injury with social construct models to deconvolute the complex interactions between injury, recovery, and social inequity.
Collapse
Affiliation(s)
- Danielle Guez-Barber
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana G. Cristancho
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Abelson JL, Sánchez BN, Mayer SE, Briggs H, Liberzon I, Rajaram N. Do diurnal salivary cortisol curves carry meaningful information about the regulatory biology of the HPA axis in healthy humans? Psychoneuroendocrinology 2023; 150:106031. [PMID: 36801587 DOI: 10.1016/j.psyneuen.2023.106031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Salivary cortisol stress biomarkers have been extensively used in epidemiological work to document links between stress and ill health. There has been little effort to ground field friendly cortisol measures in the hypothalamic-pituitary-adrenal (HPA) axis regulatory biology that is likely relevant to delineating mechanistic pathways leading from stress exposure to detrimental health outcomes. Here, we utilized a healthy convenience sample (n = 140) to examine normal linkages between extensively collected salivary cortisol measures and available laboratory probes of HPA axis regulatory biology. Participants provided 9 saliva samples per day over 6 days within a month, while engaging in usual activities, and also participated in 5 regulatory tests (adrenocorticoptripin stimulation, dexamethasone/corticotropin-releasing-hormone stimulation, metyrapone, dexamethasone suppression, and Trier Social Stress Test). Logistical regression was used to test specific predictions linking cortisol curve components to regulatory variables and to explore widely for non-predicted associations. We found support for 2 of 3 original hypotheses, showing associations (1) between cortisol diurnal decline and feedback sensitivity as measured by dexamethasone suppression, and (2) between morning cortisol levels and adrenal sensitivity. We did not find links between central drive (metyrapone test) and end of day salivary levels. We confirmed an a priori expectation of limited linkage between regulatory biology and diurnal salivary cortisol measures, beyond those predicted. These data support an emerging focus on measures related to diurnal decline in epidemiological stress work. They raise questions about the biological meaning of other curve components, including morning cortisol levels, and perhaps CAR (Cortisol Awakening Response). If morning cortisol dynamics are linked to stress, more work on adrenal sensitivity in stress adaptation and stress-health links may be warranted.
Collapse
Affiliation(s)
- James L Abelson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Brisa N Sánchez
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Stefanie E Mayer
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Hedieh Briggs
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Nirmala Rajaram
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Dos Santos AS, Segabinazi E, de Almeida W, Faustino AM, Bronauth LP, Dos Santos TM, Ferreira FS, Wyse ATS, Marcuzzo S, Pereira LO. Resistance exercise was safe for the pregnancy and offspring's development and partially protected rats against early life stress-induced effects. Behav Brain Res 2023; 445:114362. [PMID: 36889464 DOI: 10.1016/j.bbr.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Promising evidence points to gestational physical exercise as the key to preventing various disorders that affect the offspring neurodevelopment, but there are no studies showing the impact of resistance exercise on offspring health. Thus, the aim of this study was to investigate whether resistance exercise during pregnancy is able to prevent or to alleviate the possible deleterious effects on offspring, caused by early life-stress (ELS). Pregnant rats performed resistance exercise throughout the gestational period:they climbed a sloping ladder with a weight attached to their tail, 3 times a week. Male and female pups, on the day of birth (P0), were divided into 4 experimental groups: 1) rats of sedentary mothers (SED group); 2) rats of exercised mothers (EXE group); 3) rats of sedentary mothers and submitted to maternal separation (ELS group) and 4) rats of exercised mothers and submitted to MS (EXE + ELS group). From P1 to P10, pups from groups 3 and 4 were separated from their mothers for 3 h/day. Maternal behavior was assessed. From P30, behavioral tests were performed and on P38 the animals were euthanized and prefrontal cortex samples were collected. Oxidative stress and tissue damage analysis by Nissl staining were performed. Our results demonstrate that male rats are more susceptible to ELS than females, showing impulsive and hyperactive behavior similar to that seen in children with ADHD. This behavior was attenuated by the gestational resistance exercise. Our results demonstrate, for the first time, that resistance exercise performed during pregnancy seems to be safe for the pregnancy and offspring's neurodevelopment and are effective in preventing ELS-induced damage only in male rats. Interestingly, resistance exercise during pregnancy improved maternal care and it is reasonable to propose that this finding may be related to the protective role on the animals neurodevelopment, observed in our study.
Collapse
Affiliation(s)
- Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Martins Faustino
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Loise Peres Bronauth
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Silva Ferreira
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Halladay LR, Herron SM. Lasting impact of postnatal maternal separation on the developing BNST: Lifelong socioemotional consequences. Neuropharmacology 2023; 225:109404. [PMID: 36572178 PMCID: PMC9926961 DOI: 10.1016/j.neuropharm.2022.109404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Nearly one percent of children in the US experience childhood neglect or abuse, which can incite lifelong emotional and behavioral disorders. Many studies investigating the neural underpinnings of maleffects inflicted by early life stress have largely focused on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Newer veins of evidence suggest that exposure to early life stressors can interrupt neural development in extrahypothalamic areas as well, including the bed nucleus of the stria terminalis (BNST). One widely used approach in this area is rodent maternal separation (MS), which typically consists of separating pups from the dam for extended periods of time, over several days during the first weeks of postnatal life - a time when pups are highly dependent on maternal care for survival. MS has been shown to incite myriad lasting effects not limited to increased anxiety-like behavior, hyper-responsiveness to stressors, and social behavior deficits. The behavioral effects of MS are widespread and thus unlikely to be limited to hypothalamic mechanisms. Recent work has highlighted the BNST as a critical arbiter of some of the consequences of MS, especially socioemotional behavioral deficits. The BNST is a well-documented modulator of anxiety, reward, and social behavior by way of its connections with hypothalamic and extra-hypothalamic systems. Moreover, during the postnatal period when MS is typically administered, the BNST undergoes critical neural developmental events. This review highlights evidence that MS interferes with neural development to permanently alter BNST circuitry, which may account for a variety of behavioral deficits seen following early life stress. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| | - Steven M Herron
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| |
Collapse
|
32
|
Tang C, Wang Q, Shen J, Wang C, Ding H, Wen S, Yang F, Jiao R, Wu X, Li J, Kong L. Neuron stem cell NLRP6 sustains hippocampal neurogenesis to resist stress-induced depression. Acta Pharm Sin B 2023; 13:2017-2038. [DOI: 10.1016/j.apsb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
|
33
|
The lifetime impact of stress on fear regulation and cortical function. Neuropharmacology 2023; 224:109367. [PMID: 36464208 DOI: 10.1016/j.neuropharm.2022.109367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
A variety of stressful experiences can influence the ability to form and subsequently inhibit fear memory. While nonsocial stress can impact fear learning and memory throughout the lifespan, psychosocial stressors that involve negative social experiences or changes to the social environment have a disproportionately high impact during adolescence. Here, we review converging lines of evidence that suggest that development of prefrontal cortical circuitry necessary for both social experiences and fear learning is altered by stress exposure in a way that impacts both social and fear behaviors throughout the lifespan. Further, we suggest that psychosocial stress, through its impact on the prefrontal cortex, may be especially detrimental during early developmental periods characterized by higher sociability. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
|
34
|
Hulme PA, Wegehaupt M, Kupzyk KA, French JA. An approach for studying the contributions of childhood sexual abuse and HPA axis dysregulation to substance use disorders. Arch Psychiatr Nurs 2023; 42:9-17. [PMID: 36842834 DOI: 10.1016/j.apnu.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
An environmental risk factor for substance abuse and dependence is childhood sexual abuse (CSA). We piloted an approach we developed to test the hypothesis that hypothalamic-pituitary-adrenal (HPA) axis dysregulation from the stress of CSA is a biological mediator. We based our hypothesis on the allostasis model. New admissions to residential treatment for substance use disorders (N = 41) were evaluated for CSA history and two HPA axis regulation measures at baseline, one month, and two months. The two HPA axis regulation measures were morning cortisol level and the dexamethasone suppression test. Five potential covariates were also measured to increase reliability of the findings. Feasibility outcomes were mostly favorable, and included rates of participation (57 %), attrition (46 % at one month and 71 % at two months), and compliance with data collection procedures (87 % for morning cortisol level and 84 % for the dexamethasone suppression test). High attrition rates at one and two months were entirely attributable to high rates of leaving treatment, an important consideration for future studies. Baseline correlations among variables showed a significant negative correlation between dexamethasone suppression and perceived stress, a potential covariate (rho = -0.458). This finding suggests that individuals with lower stress levels have better negative feedback regulation of the HPA axis, which results in the benefit of lower cortisol exposure-a finding congruent with the allostasis model.
Collapse
Affiliation(s)
- Polly A Hulme
- College of Nursing, South Dakota State University, 1060 Campanile Ave, Brookings, SD 57007, United States of America.
| | | | - Kevin A Kupzyk
- College of Nursing, University of Nebraska Medical Center, 4111 Dewey Ave., Omaha, NE 68198-5330, United States of America.
| | - Jeffrey A French
- Department of Psychology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE 68182, United States of America.
| |
Collapse
|
35
|
Zaccarelli-Magalhães J, Abreu GR, Fukushima AR, Pantaleon LP, Ribeiro BB, Munhoz C, Manes M, de Lima MA, Miglioli J, Flório JC, Lebrun I, Waziry PAF, Fonseca TL, Bocco BMLC, Bianco AC, Ricci EL, Spinosa HS. Postpartum depression in rats causes poor maternal care and neurochemical alterations on dams and long-lasting impairment in sociability on the offspring. Behav Brain Res 2023; 436:114082. [PMID: 36041571 PMCID: PMC10823501 DOI: 10.1016/j.bbr.2022.114082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
Abstract
Postpartum depression is a mentally disabling disease with multifactorial etiology that affects women worldwide. It can also influence child development and lead to behavioral and cognitive alterations. Despite the high prevalence, the disease is underdiagnosed and poorly studied. To study the postpartum depression caused by maternal separation model in rats, dams were separated from their litter for 3 h daily starting from lactating day (LD) 2 through LD12. Maternal studies were conducted from LD5 to LD21 and the offspring studies from postnatal day (PND) 2 through PND90. The stress caused by the dam-offspring separation led to poor maternal care and a transient increase in anxiety in the offspring detected during infancy. The female offspring also exhibited a permanent impairment in sociability during adult life. These changes were associated with neurochemical alterations in the prefrontal cortex and hippocampus, and low TSH concentrations in the dams, and in the hypothalamus, hippocampus and striatum of the offspring. These results indicate that the postpartum depression resulted in a depressive phenotype, changes in the brain neurochemistry and in thyroid economy that remained until the end of lactation. Changes observed in the offspring were long-lasting and resemble what is observed in children of depressant mothers.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Gabriel R Abreu
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - André R Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil; School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Lorena P Pantaleon
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Beatriz B Ribeiro
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Camila Munhoz
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Marianna Manes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Mayara A de Lima
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Júlia Miglioli
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Jorge C Flório
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | - Paula A F Waziry
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Bárbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Antônio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Esther L Ricci
- School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Helenice S Spinosa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| |
Collapse
|
36
|
Talani G, Biggio F, Gorule AA, Licheri V, Saolini E, Colombo D, Sarigu G, Petrella M, Vedele F, Biggio G, Sanna E. Sex-dependent changes of hippocampal synaptic plasticity and cognitive performance in C57BL/6J mice exposed to neonatal repeated maternal separation. Neuropharmacology 2023; 222:109301. [PMID: 36336069 DOI: 10.1016/j.neuropharm.2022.109301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
The repeated maternal separation (RMS) is a useful experimental model useful in rodents to study the long-term influence of early-life stress on brain neurophysiology. We here investigated the influence of RMS exposure on hippocampal inhibitory and excitatory synaptic transmission, long-term synaptic plasticity and the related potential alterations in learning and memory performance in adult male and female C57Bl/6J mice. Mice were separated daily from their dam for 360 min, from postnatal day 2 (PND2) to PND17, and experiments were performed at PND 60. Patch-clamp recordings in hippocampal CA1 pyramidal neurons revealed a significant enhancement of GABAergic miniature IPSC (mIPSC) frequency, and a decrease in the amplitude of glutamatergic mEPSCs in male mice exposed to RMS. Only a slight but significant reduction in the amplitude of GABAergic mIPSCs was observed in females exposed to RMS compared to the relative controls. A marked increase in long-term depression (LTD) at CA3-CA1 glutamatergic synapses and in the response to the CB1r agonist win55,212 were detected in RMS male, but not female mice. An impaired spatial memory and a reduced preference for novelty was observed in males exposed to RMS but not in females. A single injection of β-ethynyl estradiol at PND2, prevented the changes observed in RMS male mice, suggesting that estrogens may play a protective role early in life against the exposure to stressful conditions. Our findings strengthen the idea of a sex-dependent influence of RMS on long-lasting modifications in synaptic transmission, effects that may be relevant for cognitive performance.
Collapse
Affiliation(s)
- Giuseppe Talani
- CNR Institute of Neuroscience, National Research Council, Monserrato, Italy.
| | - Francesca Biggio
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Ashish Avinash Gorule
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Valentina Licheri
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Eleonora Saolini
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Daniele Colombo
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Gabriele Sarigu
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Michele Petrella
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Francescangelo Vedele
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Giovanni Biggio
- CNR Institute of Neuroscience, National Research Council, Monserrato, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Enrico Sanna
- CNR Institute of Neuroscience, National Research Council, Monserrato, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| |
Collapse
|
37
|
Sex differences in addiction-relevant behavioral outcomes in rodents following early life stress. ADDICTION NEUROSCIENCE 2023; 6. [PMID: 37101684 PMCID: PMC10124992 DOI: 10.1016/j.addicn.2023.100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In humans, exposure to early life stress (ELS) is an established risk factor for the development of substance use disorders (SUDs) during later life. Similarly, rodents exposed to ELS involving disrupted mother-infant interactions, such as maternal separation (MS) or adverse caregiving due to scarcity-adversity induced by limited bedding and nesting (LBN) conditions, also exhibit long-term alterations in alcohol and drug consumption. In both humans and rodents, there is a range of addiction-related behaviors that are associated with drug use and even predictive of subsequent SUDs. In rodents, these include increased anxiety-like behavior, impulsivity, and novelty-seeking, altered alcohol and drug intake patterns, as well as disrupted reward-related processes involving consummatory and social behaviors. Importantly, the expression of these behaviors often varies throughout the lifespan. Moreover, preclinical studies suggest that sex differences play a role in how exposure to ELS impacts reward and addiction-related phenotypes as well as underlying brain reward circuitry. Here, addiction-relevant behavioral outcomes and mesolimbic dopamine (DA) dysfunction resulting from ELS in the form of MS and LBN are discussed with a focus on age- and sex-dependent effects. Overall, these findings suggest that ELS may increase susceptibility for later life drug use and SUDs by interfering with the normal maturation of reward-related brain and behavioral function.
Collapse
|
38
|
Boone G, Romaniuk AC, Barnard S, Shreyer T, Croney C. The Effect of Early Neurological Stimulation on Puppy Welfare in Commercial Breeding Kennels. Animals (Basel) 2022; 13:ani13010071. [PMID: 36611681 PMCID: PMC9818019 DOI: 10.3390/ani13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Throughout their lives, dogs may experience various stressful events. Early neurological stimulation (ENS), which was shown to alter stress responses beneficially in some animals, has not been fully explored in dogs. Seventy-six small-breed puppies from one commercial breeding kennel were divided into three treatment groups: ENS, held, and control. Puppies in the ENS group received 30 s of handling exercises for 21 days after birth; puppies in the held group were simply held for the same amount of time. Puppies in the control group were managed as per normal breeder practices (i.e., routine husbandry and physical health checks). Physical health was assessed weekly, and puppies were generally healthy and clean. Behavioral responses to stranger approach and isolation tests were evaluated pre- and post-ground-transportation to a distributor. Puppies were more affiliative toward a stranger post-isolation than pre-isolation (p < 0.001), and post-transport than pre-transport (p < 0.001). At the distributor, puppies in the isolation test spent less time in exploratory locomotion (p < 0.001) and vocalized more than at the breeder’s kennel (p = 0.011). Treatment did not affect these results. Overall, the results suggest that the type of ENS used in this study may not provide the purported benefits to puppies’ stress responses in commercial breeding populations.
Collapse
|
39
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. A comprehensive approach to modeling maternal immune activation in rodents. Front Neurosci 2022; 16:1071976. [PMID: 36590294 PMCID: PMC9800799 DOI: 10.3389/fnins.2022.1071976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Prenatal brain development is a highly orchestrated process, making it a very vulnerable window to perturbations. Maternal stress and subsequent inflammation during pregnancy leads to a state referred to as, maternal immune activation (MIA). If persistent, MIA can pose as a significant risk factor for the manifestation of neurodevelopmental disorders (NDDs) such as autism spectrum disorder and schizophrenia. To further elucidate this association between MIA and NDD risk, rodent models have been used extensively across laboratories for many years. However, there are few uniform approaches for rodent MIA models which make not only comparisons between studies difficult, but some established approaches come with limitations that can affect experimental outcomes. Here, we provide researchers with a comprehensive review of common experimental variables and potential limitations that should be considered when designing an MIA study based in a rodent model. Experimental variables discussed include: innate immune stimulation using poly I:C and LPS, environmental gestational stress paradigms, rodent diet composition and sterilization, rodent strain, neonatal handling, and the inclusion of sex-specific MIA offspring analyses. We discuss how some aspects of these variables have potential to make a profound impact on MIA data interpretation and reproducibility.
Collapse
Affiliation(s)
- Morgan C. Bucknor
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anand Gururajan
- The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Russell C. Dale
- The Children’s Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
Nakata R, Tanaka F, Sugawara N, Kojima Y, Takeuchi T, Shiba M, Higuchi K, Fujiwara Y. Analysis of autonomic function during natural defecation in patients with irritable bowel syndrome using real-time recording with a wearable device. PLoS One 2022; 17:e0278922. [PMID: 36490298 PMCID: PMC9733845 DOI: 10.1371/journal.pone.0278922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autonomic dysfunction is a factor in irritable bowel syndrome (IBS). However, there are no reports of autonomic nervous system (ANS) activity during natural defecation in patients with IBS. We aimed to clarify the relationship between ANS activity and life events, such as defecation and abdominal symptoms, using real-time recording. METHODS Six patients with IBS and 14 healthy controls were enrolled in this prospective multicenter study. ANS activity was recorded for 24 h using a T-shirt wearable device, and life events were recorded simultaneously in real time using a smartphone application software. Low frequency/high frequency (LF/HF) and HF calculated by power spectrum analysis were defined as activity indicators of the sympathetic and parasympathetic nerves, respectively. RESULTS The means of LF/HF and HF in the period with positive symptoms were comparable between the groups; however, the sum of LF/HF, sum of ΔLF/HF, and the maximum variation in ΔLF/HF were significantly higher in the IBS group. In the IBS group, the sum of ΔLF/HF and LF/HF increased significantly from 2 min before defecation, and the sum of LF/HF remained significantly higher until 9 min after defecation. The sum of ΔLF/HF at 2 min before defecation was significantly positively correlated with the intensity of abdominal pain and diarrhea and constipation scores. In contrast, it was significantly negatively correlated with defecation satisfaction and health-related quality of life. CONCLUSIONS In patients with IBS, sympathetic nerve activity was activated 2 min before defecation, which was correlated with abdominal symptoms and lower QOL.
Collapse
Affiliation(s)
- Rieko Nakata
- Department of Gastroenterology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Fumio Tanaka
- Department of Gastroenterology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Noriaki Sugawara
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yuichi Kojima
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Toshihisa Takeuchi
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Masatsugu Shiba
- Department of Gastroenterology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kazuhide Higuchi
- Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
41
|
López-Taboada I, Sal-Sarria S, Vallejo G, Coto-Montes A, Conejo NM, González-Pardo H. Sexual dimorphism in spatial learning and brain metabolism after exposure to a western diet and early life stress in rats. Physiol Behav 2022; 257:113969. [PMID: 36181786 DOI: 10.1016/j.physbeh.2022.113969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023]
Abstract
Prolonged daily intake of Western-type diet rich in saturated fats and sugars, and exposure to early life stress have been independently linked to impaired neurodevelopment and behaviour in animal models. However, sex-specific effects of both environmental factors combined on spatial learning and memory, behavioural flexibility, and brain oxidative capacity have still not been addressed. The current study aimed to evaluate the impact of maternal and postnatal exposure to a high-fat and high-sugar diet (HFS), and exposure to early life stress by maternal separation in adult male and female Wistar rats. For this purpose, spatial learning and memory and behavioural flexibility were evaluated in the Morris water maze, and regional brain oxidative capacity and oxidative stress levels were measured in the hippocampus and medial prefrontal cortex. Spatial memory, regional brain oxidative metabolism, and levels of oxidative stress differed between females and males, suggesting sexual dimorphism in the effects of a HFS diet and early life stress. Males fed the HFS diet performed better than all other experimental groups independently of early life stress exposure. However, behavioural flexibility evaluated in the spatial reversal leaning task was impaired in males fed the HFS diet. In addition, exposure to maternal separation or the HFS diet increased the metabolic capacity of the prefrontal cortex and dorsal hippocampus in males and females. Levels of oxidative stress measured in the latter brain regions were also increased in groups fed the HFS diet, but maternal separation seemed to dampen regional brain oxidative stress levels. Therefore, these results suggest a compensatory effect resulting from the interaction between prolonged exposure to a HFS diet and early life stress.
Collapse
Affiliation(s)
- Isabel López-Taboada
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Saúl Sal-Sarria
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Guillermo Vallejo
- Methodology area, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain
| | - Ana Coto-Montes
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain; Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
42
|
Stolzlechner L, Bonorand A, Riemer S. Optimising Puppy Socialisation-Short- and Long-Term Effects of a Training Programme during the Early Socialisation Period. Animals (Basel) 2022; 12:ani12223067. [PMID: 36428295 PMCID: PMC9687081 DOI: 10.3390/ani12223067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The socialisation period in dog puppies is one of the most important periods determining behavioural development in dogs. Here, we aimed to test the effect of providing stimulation (beyond mere exposure) early during the socialisation period (approx. 3-6 weeks) on puppies' behaviour. Each of 12 litters (83 puppies) of various breeds was divided into a treatment and a control group. Between 3-6 weeks, the treatment group received age-appropriate "challenge" exercises (carefully graded noise exposure, novel objects, and problem-solving tasks) four times per week (total 12 times). The control group spent the same time with the trainer, who cuddled or played with the puppies. In a behaviour test at 6-7 weeks, two of four principal components, "social-startle" and "response to novelty", differed significantly between the groups. Treatment puppies were bolder towards the novel object, showed a reduced startle reaction, and recovered more quickly after a loud noise. Furthermore, they accomplished the problem-solving task faster and were more persistent during problem-solving than the control group. The control group showed a higher interest in a friendly stranger. It is a possibility that increased handling experienced by the control group had beneficial effects on their sociability. No long-term effects of the treatment were found, as determined by a validated dog personality questionnaire, available for 67 dogs at the age of six months. Likely, a continuation of the treatment over a longer time period would be necessary to obtain lasting effects, since the training took place only during the first third of the socialisation period.
Collapse
Affiliation(s)
- Lisa Stolzlechner
- Department of Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Alina Bonorand
- Division of Animal Welfare, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
| | - Stefanie Riemer
- Division of Animal Welfare, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
43
|
Sex-specific effects of neonatal paternal deprivation on microglial cell density in adult California mouse (Peromyscus californicus) dentate gyrus. Brain Behav Immun 2022; 106:1-10. [PMID: 35908654 DOI: 10.1016/j.bbi.2022.07.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Adverse early-life experiences are risk factors for psychiatric disease development, resulting in stress-related neuronal modeling and neurobehavioral changes. Stressful experiences modulate the immune system, contributing to neuronal damage in higher cortical regions, like the hippocampus. Moreover, early-life stressors dysregulate the function of microglia, the resident immune cells of the brain, in the developing hippocampus. Paternal deprivation, an early-life stressor in many biparental species, facilitates sex-dependent inhibitions in hippocampal plasticity, but parental contributors to these sex-specific outcomes are unknown. Also, neurobiological mechanisms contributing to impairments in hippocampal neuroplasticity are less known. Thus, our goals were to 1) determine whether parental behavior is altered in maternal females following removal of the paternal male, 2) assess the effects of paternal deprivation on dentate gyrus (DG) volume and microglia proliferation, and 3) determine if early-life experimental handling mitigates sex-specific reductions in DG cell survival. California mice were born to multiparous breeders and reared by both parents (biparental care) or by their mother alone (i.e., father removed on postnatal day 1; paternal deprivation). One cohort of offspring underwent offspring retrieval tests for eight days beginning on postnatal day 2. On PND 68, these offspring (and a second cohort of mice without behavioral testing) were euthanized and brains visualized for bromodeoxyuridine (BrdU) and neuron-specific class III beta-tubulin (TuJ-1) or ionized calcium binding adaptor molecule 1 (Iba1). While mate absence did not impair maternal retrieval, paternal deprivation reduced DG volume, but Iba1+ cell density was only higher in paternally-deprived females. Neither sex or paternal deprivation significantly altered the number of BrdU+ or Tuj1+ cells in the DG - an absence of a reduction in cell survival may be related to daily handing during early offspring retrieval tests. Together, these data suggest that paternal deprivation impairs hippocampal plasticity; however, sex and early environment may influence the magnitude of these outcomes.
Collapse
|
44
|
Alizadeh-Ezdini Z, Vatanparast J. Differential impact of two paradigms of early-life adversity on behavioural responses to social defeat in young adult rats and morphology of CA3 pyramidal neurons. Behav Brain Res 2022; 435:114048. [PMID: 35952779 DOI: 10.1016/j.bbr.2022.114048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 01/06/2023]
Abstract
Early life stress (ELS) is an important factor in programing the brain for future response to stress, and resilience or vulnerability to stress-induced emotional disorders. The hippocampal formation, with essential roles in both regulating the stress circuitry and emotionality, contributes to this adaptive programing. Here, we examined the effects of early handling (EH) and maternal deprivation (MD) as mild and intense postnatal stressors, respectively, on the behavioural responses to social defeat stress in young adulthood. We also evaluated the interaction of mild and intense ELS with later social defeat (SD) stress on the morphology and dendritic spine density of Golgi-cox-stained CA3 hippocampal neurons. SD stress in adult rats, as expected, increased anxiety and depressive-like behaviours in the open field, elevated plus-maze and forced swimming test. These effects were associated with reduction of dendritic spines and soma size of CA3 neurons. Both behavioural and structural alterations were significantly ameliorated in socially defeated rats that experienced early handling (EH-SD). Basal dendrites of CA3 neurons in EH-SD rats also showed longer dendrites and more intersections with Sholl circles in the distal portion, compared to both control and SD rats. On the other hand, in socially defeated rats with maternal deprivation experience (MD-SD) the stress-induced behavioural and structural alterations were generally intensified compared to SD rats. In MD-SD rats, apical dendrites of CA3 neurons demonstrated remarkable retraction; an effect that was not detected in SD rats. The reduction of dendritic spines density on the apical dendrites of CA3 neurons was also more pronounced in MD-SD rats compared to SD rats. Dendritic arbors and spines comprise the major neuronal substrate for the circuit connectivity, and cell region-specific alterations of dendrites and spines in CA3 neurons reveal plausible mechanisms that can underlie the impact of different ELSs on risk for affective disorders in response to social stress in adulthood.
Collapse
Affiliation(s)
| | - Jafar Vatanparast
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran.
| |
Collapse
|
45
|
Marcolongo-Pereira C, Castro FCDAQ, Barcelos RM, Chiepe KCMB, Rossoni Junior JV, Ambrosio RP, Chiarelli-Neto O, Pesarico AP. Neurobiological mechanisms of mood disorders: Stress vulnerability and resilience. Front Behav Neurosci 2022; 16:1006836. [PMID: 36386785 PMCID: PMC9650072 DOI: 10.3389/fnbeh.2022.1006836] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 09/05/2023] Open
Abstract
Stress is an important factor in the development of several human pathologies. The response of rodents and humans to stress depends on many factors; some people and rodents develop stress-related mood disorders, such as depression and anxiety in humans, depression-like and anxiety-like behavior in mice and rats, while others report no new psychological symptoms in response to chronic or acute stress, and are considered susceptible and resilient to stress, respectively. Resilience is defined as the ability to thrive in the face of adversity and is a learned process that can help protect against occupational stressors and mental illnesses. There is growing interest in the underlying mechanisms involved in resilience and vulnerability to depression caused by stress, and some studies have demonstrated that individual variability in the way animals and humans respond to stress depends on several mechanisms, such as oxidative stress, neuronal plasticity, immunology and genetic factors, among others not discussed in this review, this review provides a general overview about this mechanism.
Collapse
Affiliation(s)
- Clairton Marcolongo-Pereira
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | | | - Rafael Mazioli Barcelos
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | | | - Joamyr Victor Rossoni Junior
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Roberta Passamani Ambrosio
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Orlando Chiarelli-Neto
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Ana Paula Pesarico
- Curso de Medicina, Universidade Federal do Pampa (Unipampa), Bagé, Brazil
| |
Collapse
|
46
|
Granata L, Parakoyi A, Brenhouse HC. Age- and sex-specific effects of maternal separation on the acoustic startle reflex in rats: early baseline enhancement in females and blunted response to ambiguous threat. Front Behav Neurosci 2022; 16:1023513. [PMID: 36386786 PMCID: PMC9643533 DOI: 10.3389/fnbeh.2022.1023513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Early life adversity (ELA) increases the incidence of later-life anxiety disorders. Dysregulated threat processing, including responsivity to ambiguous threats, is an indicator of anxiety disorders and can be influenced by childhood experiences. The acoustic startle response is a defensive reflex displayed by mammals when exposed to sudden intense stimuli reflecting individual variations in vigilance. These measures can be altered by previous experience and experimental modifications, including the introduction of unconditioned aversive stimuli. Rats emit ultrasonic vocalizations (USVs) in the 22 KHz range in negative contexts. As such, 22 KHz USVs are an ethologically relevant social cue of environmental threat shown to induce anxiety-like behavior in recipient rats. Because the timing of symptom manifestation after early life adversity can differ between sexes, the current study sought to identify the age- and sex-specific effects of daily maternal separation (MS) on responsivity to ambiguous threat in rats. In Experiment 1, rat pups underwent MS or control rearing from postnatal day (P) 2–20, then underwent behavioral testing beginning on P24, 34, or 54 to determine whether MS modified the baseline startle response or the modulation of startle by 22 KHz USVs. In Experiment 2, rats were tested in a light-enhanced startle paradigm at P54 after MS or control rearing to determine whether MS influenced light-enhanced startle. Results show an enhancement of the baseline startle magnitude by MS in females at P34. At P54, MS reduced the modulation of the startle response by 22 KHz USVs and prevented light-enhanced startle, indicating an MS-induced deficit in defensive responsivity when exposed to potential threat.
Collapse
|
47
|
Effects of neonatal rearing by different types of foster mother on the distribution of corticotropin-releasing factor neurons in the central amygdaloid nucleus in rats. Exp Brain Res 2022; 240:2981-2988. [PMID: 36181544 DOI: 10.1007/s00221-022-06468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
Abstract
The mother-child relationship of newborns plays an essential role in the development of the central nervous system, and an inadequate relationship, such as mother-child separation, can cause deficits of mental function in adulthood. However, insufficient research has examined the effects of foster mothers. We assigned some neonatal rats to one of two foster mothers: one that was lactating and feeding her first litter (FL group) and one that had one previous experience of childbirth and feeding but no current litter (FE group). Other pups were raised by their own mother (OM group) or subjected to maternal separation (MS group). Pups were placed with the foster mother (FL and FE groups) or separated from their mother (MS group) for 3 h/day on postnatal days 1-20. At age 6 weeks, each group was divided into two subgroups, one with 30 min of acute restraint stress loading (FL-R, FE-R, OM-R, and MS-R) and one without it (FL, FE, OM, and MS). Then, we compared the density of corticotropin-releasing factor-immunoreactive (CRF-ir) neurons in the central amygdaloid nucleus (CeA). The density of CRF-ir neurons in the CeA was significantly lower in the FL-R and MS-R subgroups than in the FL and MS subgroups, respectively. The results suggest that differences in care received during the neonatal period affect maturation of CRF neurons in the CeA and may have negative effects on the synthesis and release of CRF.
Collapse
|
48
|
Early life adversity shapes neural circuit function during sensitive postnatal developmental periods. Transl Psychiatry 2022; 12:306. [PMID: 35915071 PMCID: PMC9343623 DOI: 10.1038/s41398-022-02092-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Early life adversity (ELA) is a major risk factor for mental illness, but the neurobiological mechanisms by which ELA increases the risk for future psychopathology are still poorly understood. Brain development is particularly malleable during prenatal and early postnatal life, when complex neural circuits are being formed and refined through an interplay of excitatory and inhibitory neural input, synaptogenesis, synaptic pruning, myelination, and neurogenesis. Adversity that influences these processes during sensitive periods of development can thus have long-lasting and pervasive effects on neural circuit maturation. In this review, we will discuss clinical and preclinical evidence for the impact of ELA on neural circuit formation with a focus on the early postnatal period, and how long-lasting impairments in these circuits can affect future behavior. We provide converging evidence from human and animal studies on how ELA alters the functional development of brain regions, neural circuits, and neurotransmitter systems that are crucial for cognition and affective behavior, including the hippocampus, the hypothalamus-pituitary-adrenal (HPA) axis, neural networks of fear responses and cognition, and the serotonin (5-HT) system. We also discuss how gene-by-environment (GxE) interactions can determine individual differences in susceptibility and resilience to ELA, as well as molecular pathways by which ELA regulates neural circuit development, for which we emphasize epigenetic mechanisms. Understanding the molecular and neurobiological mechanisms underlying ELA effects on brain function and psychopathology during early postnatal sensitive periods may have great potential to advance strategies to better treat or prevent psychiatric disorders that have their origin early in life.
Collapse
|
49
|
Barroca NCB, Della Santa G, Suchecki D, García-Cairasco N, Umeoka EHDL. Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neurosci Biobehav Rev 2022; 140:104771. [PMID: 35817171 DOI: 10.1016/j.neubiorev.2022.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
The neurobiology and development of treatments for stress-related neuropsychiatric disorders rely heavily on animal models. However, the complexity of these disorders makes it difficult to model them entirely, so only specific features of human psychopathology are emulated and these models should be used with great caution. Importantly, the effects of stress depend on multiple factors, like duration, context of exposure, and individual variability. Here we present a review on pre-clinical studies of stress-related disorders, especially those developed to model posttraumatic stress disorder, major depression, and anxiety. Animal models provide relevant evidence of the underpinnings of these disorders, as long as face, construct, and predictive validities are fulfilled. The translational challenges faced by scholars include reductionism and anthropomorphic/anthropocentric interpretation of the results instead of a more naturalistic and evolutionary understanding of animal behavior that must be overcome to offer a meaningful model. Other limitations are low statistical power of analysis, poor evaluation of individual variability, sex differences, and possible conflicting effects of stressors depending on specific windows in the lifespan.
Collapse
Affiliation(s)
- Nayara Cobra Barreiro Barroca
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Giovanna Della Santa
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Norberto García-Cairasco
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; School of Medicine, University Center UniCerrado, Goiatuba, GO, Brazil
| |
Collapse
|
50
|
Baracz SJ, Robinson KJ, Wright AL, Turner AJ, McGregor IS, Cornish JL, Everett NA. Oxytocin as an adolescent treatment for methamphetamine addiction after early life stress in male and female rats. Neuropsychopharmacology 2022; 47:1561-1573. [PMID: 35581382 PMCID: PMC9206013 DOI: 10.1038/s41386-022-01336-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/02/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022]
Abstract
Early life stress (ELS) is associated with perturbed neural development and augmented vulnerability to mental health disorders, including addiction. How ELS changes the brain to increase addiction risk is poorly understood, and there are no therapies which target this ELS-induced vulnerability. ELS disrupts the oxytocin system, which can modulate addiction susceptibility, suggesting that targeting the oxytocin system may be therapeutic in this ELS-addiction comorbidity. Therefore, we determined whether adolescent oxytocin treatment after ELS could: (1) reduce vulnerability to anxiety, social deficits, and methamphetamine-taking and reinstatement; and (2) restore hypothalamic oxytocin and corticotropin-releasing factor expressing neurons and peripheral oxytocin and corticosterone levels. Long Evans pups underwent maternal separation (MS) for either 15 min or 360 min on postnatal days (PND) 1-21. During adolescence (PNDs 28-42), rats received a daily injection of either oxytocin or saline. In Experiment 1, adult rats were assessed using the elevated plus-maze, social interaction procedure, and methamphetamine self-administration procedure, including extinction, and cue-, methamphetamine- and yohimbine-induced reinstatement. In Experiment 2, plasma for enzyme immunoassays and brain tissue for immunofluorescence were collected from adult rats after acute stress exposure. Adolescent oxytocin treatment ameliorated ELS-induced anxiety and reduced methamphetamine- and yohimbine-induced reinstatement in both sexes, and suppressed methamphetamine intake and facilitated extinction in males only. Additionally, adolescent oxytocin treatment after ELS restored oxytocin-immunoreactive cells and stress-induced oxytocin levels in males, and attenuated stress-induced corticosterone levels in both sexes. Adolescent oxytocin treatment reverses some of the ELS effects on later-life psychopathology and vulnerability to addiction.
Collapse
Affiliation(s)
- Sarah J Baracz
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
- School of Psychology, University of Sydney, Camperdown, NSW, 2006, Australia.
- Centre for Emotional Health, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Katherine J Robinson
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Amanda L Wright
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Anita J Turner
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Iain S McGregor
- School of Psychology, University of Sydney, Camperdown, NSW, 2006, Australia
- Lambert Initiative of Cannabinoid Therapeutics, Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jennifer L Cornish
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Centre for Emotional Health, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Nicholas A Everett
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- School of Psychology, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|