1
|
Hersey M, Tanda G. Modafinil, an atypical CNS stimulant? ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:287-326. [PMID: 38467484 DOI: 10.1016/bs.apha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 03/13/2024]
Abstract
Modafinil is a central nervous system stimulant approved for the treatment of narcolepsy and sleep disorders. Due to its wide range of biochemical actions, modafinil has been explored for other potential therapeutic uses. Indeed, it has shown promise as a therapy for cognitive disfunction resulting from neurologic disorders like ADHD, and as a smart drug in non-medical settings. The mechanism(s) of actions underlying the therapeutic efficacy of this agent remains largely elusive. Modafinil is known to inhibit the dopamine transporter, thus decreasing dopamine reuptake following neuronal release, an effect shared by addictive psychostimulants. However, modafinil is unique in that only a few cases of dependence on this drug have been reported, as compared to other psychostimulants. Moreover, modafinil has been tested, with some success, as a potential therapeutic agent to combat psychostimulant and other substance use disorders. Modafinil has additional, but less understood, actions on other neurotransmitter systems (GABA, glutamate, serotonin, norepinephrine, etc.). These interactions, together with its ability to activate selected brain regions, are likely one of the keys to understand its unique pharmacology and therapeutic activity as a CNS stimulant. In this chapter, we outline the pharmacokinetics and pharmacodynamics of modafinil that suggest it has an "atypical" CNS stimulant profile. We also highlight the current approved and off label uses of modafinil, including its beneficial effects as a treatment for sleep disorders, cognitive functions, and substance use disorders.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, NIDA-IRP, NIH, Baltimore, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, NIDA-IRP, NIH, Baltimore, MD, United States.
| |
Collapse
|
2
|
Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G. Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap? Front Neurosci 2021; 15:656475. [PMID: 34121988 PMCID: PMC8187604 DOI: 10.3389/fnins.2021.656475] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The number of individuals affected by psychostimulant use disorder (PSUD) has increased rapidly over the last few decades resulting in economic, emotional, and physical burdens on our society. Further compounding this issue is the current lack of clinically approved medications to treat this disorder. The dopamine transporter (DAT) is a common target of psychostimulant actions related to their use and dependence, and the recent availability of atypical DAT inhibitors as a potential therapeutic option has garnered popularity in this research field. Modafinil (MOD), which is approved for clinical use for the treatment of narcolepsy and sleep disorders, blocks DAT just like commonly abused psychostimulants. However, preclinical and clinical studies have shown that it lacks the addictive properties (in both behavioral and neurochemical studies) associated with other abused DAT inhibitors. Clinical availability of MOD has facilitated its off-label use for several psychiatric disorders related to alteration of brain dopamine (DA) systems, including PSUD. In this review, we highlight clinical and preclinical research on MOD and its R-enantiomer, R-MOD, as potential medications for PSUD. Given the complexity of PSUD, we have also reported the effects of MOD on psychostimulant-induced appearance of several symptoms that could intensify the severity of the disease (i.e., sleep disorders and impairment of cognitive functions), besides the potential therapeutic effects of MOD on PSUD.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amanda K. Bacon
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lydia G. Bailey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Mark A. Coggiano
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amy H. Newman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- Clinical Psychoneuroendo- crinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
3
|
Garofalo S, Picard K, Limatola C, Nadjar A, Pascual O, Tremblay MÈ. Role of Glia in the Regulation of Sleep in Health and Disease. Compr Physiol 2020; 10:687-712. [PMID: 32163207 DOI: 10.1002/cphy.c190022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Sleep is a naturally occurring physiological state that is required to sustain physical and mental health. Traditionally viewed as strictly regulated by top-down control mechanisms, sleep is now known to also originate locally. Glial cells are emerging as important contributors to the regulation of sleep-wake cycles, locally and among dedicated neural circuits. A few pioneering studies revealed that astrocytes and microglia may influence sleep pressure, duration as well as intensity, but the precise involvement of these two glial cells in the regulation of sleep remains to be fully addressed, across contexts of health and disease. In this overview article, we will first summarize the literature pertaining to the role of astrocytes and microglia in the regulation of sleep under normal physiological conditions. Afterward, we will discuss the beneficial and deleterious consequences of glia-mediated neuroinflammation, whether it is acute, or chronic and associated with brain diseases, on the regulation of sleep. Sleep disturbances are a main comorbidity in neurodegenerative diseases, and in several brain diseases that include pain, epilepsy, and cancer. Identifying the relationships between glia-mediated neuroinflammation, sleep-wake rhythm disruption and brain diseases may have important implications for the treatment of several disorders. © 2020 American Physiological Society. Compr Physiol 10:687-712, 2020.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Katherine Picard
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France
| | - Olivier Pascual
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Université Claude Bernard Lyon, Lyon, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Départment de médecine moleculaire, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
4
|
Kampman KM. The treatment of cocaine use disorder. SCIENCE ADVANCES 2019; 5:eaax1532. [PMID: 31663022 PMCID: PMC6795516 DOI: 10.1126/sciadv.aax1532] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/26/2019] [Accepted: 09/25/2019] [Indexed: 06/01/2023]
Abstract
Cocaine use continues to be a serious worldwide public health problem. Cocaine abuse is associated with substantial morbidity and mortality. Cocaine overdose deaths are increasing in the United States and, in certain populations, outnumber heroin and opiate overdose deaths. Psychosocial treatments remain the treatments of choice for cocaine use disorder (CUD), with standard approaches including contingency management and cognitive behavioral therapy. However, the effect sizes of these treatments are not large, and they are not effective for most patients. Consequently, investigators have sought to develop pharmacological agents to augment the efficacy of psychosocial treatments. Despite these efforts, no medications have yet been proven to be safe and effective for the treatment of CUD. The most promising pharmacological strategies for CUD treatment thus far include the use of dopamine agonists, such as long-acting amphetamine and modafinil or glutamatergic and GABAergic agents such as topiramate. Combination drugs may be especially promising.
Collapse
Affiliation(s)
- Kyle M Kampman
- Department of Psychiatry, Perelman School of Medicine, Center for Studies of Addiction, University of Pennsylvania, 3535 Market Street, Suite 500, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Trace amine-associated receptor 1 agonism promotes wakefulness without impairment of cognition in Cynomolgus macaques. Neuropsychopharmacology 2019; 44:1485-1493. [PMID: 30954024 PMCID: PMC6784974 DOI: 10.1038/s41386-019-0386-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/26/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 11/08/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G-protein coupled receptor with affinity for the trace amines. TAAR1 agonists have pro-cognitive, antidepressant-, and antipsychotic-like properties in both rodents and non-human primates (NHPs). TAAR1 agonism also increases wakefulness and suppresses rapid-eye movement (REM) sleep in mice and rats and reduces cataplexy in two mouse models of narcolepsy. We investigated the effects of TAAR1 agonism in Cynomolgus macaques, a diurnal species that exhibits consolidated night-time sleep, and evaluated the effects of TAAR1 agonists on cognition using a working memory (WM) paradigm in this species. Adult male Cynomolgus macaques (n = 6) were surgically implanted to record the electroencephalogram (EEG), electromyogram, and locomotor activity (LMA) and the efficacy of the TAAR1 partial agonist RO5263397 (0.1,1,10 mg/kg, p.o.) on sleep/wake, EEG spectra, and LMA was determined. In a second experiment, the acute effects of RO5263397 (0.1,1,10 mg/kg, p.o.) were assessed on a delayed-match-to-sample test of WM in adult male macaques (n = 7). RO5263397 (10 mg/kg) administered at lights off, when sleep pressure was high, promoted wakefulness and reduced both REM and non-REM sleep without inducing hyperlocomotion. RO5263397 (10 mg/kg) also increased delta/theta activity during all vigilance states. RO5263397 had no effect on WM at either short (2 sec) or long (10 sec) delay intervals. The wake-enhancing and REM-suppressing effects of R05263397 shown here in a diurnal primate are consistent with previous results in nocturnal rodents. These effects and the associated alterations in EEG spectra occurred without inducing hyperlocomotion or affecting WM, encouraging further study of TAAR1 agonists as potential narcolepsy therapeutics.
Collapse
|
6
|
Lin JS, Roussel B, Gaspar A, Zhao Y, Hou Y, Schmidt M, Jouvet A, Jouvet M. The unfinished journey with modafinil and discovery of a novel population of modafinil-immunoreactive neurons. Sleep Med 2018; 49:40-52. [DOI: 10.1016/j.sleep.2018.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
7
|
Murillo-Rodríguez E, Barciela Veras A, Barbosa Rocha N, Budde H, Machado S. An Overview of the Clinical Uses, Pharmacology, and Safety of Modafinil. ACS Chem Neurosci 2018; 9:151-158. [PMID: 29115823 DOI: 10.1021/acschemneuro.7b00374] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Modafinil (MOD) is a wakefulness-inducing compound prescribed for treatment of excessive daytime sleepiness as a consequence of sleep disturbances such as shift work sleep disorder, obstructive sleep apnea, restless leg syndrome, or narcolepsy. While providing effective results in patients with sleepiness, MOD also produces positive outcomes in the management of fatigue associated with different conditions including depression, cancer, or tiredness in military personnel. Although there is clear evidence of the stimulant effects of MOD, current data also show that administration of this drug apparently induces positive neurobiological effects, such as improvement in memory. However, serious concerns have been raised since some reports have suggested MOD dependence. Taken together, these findings highlight the need to characterize the changes induced by MOD which have been observed in several neurobiological functions. Moreover, further work should follow up on the likely long-term effects of this drug if used for treatment of drowsiness and tiredness. Here, we review and summarize recent findings of the medical uses of MOD in the management of sleepiness and fatigue associated with depression or cancer as well as exhaustion in military personnel. We also discuss the available literature related with the cognitive enhancing properties of this stimulant, as well as what is known and unknown about MOD addiction.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio
de Neurociencias Moleculares e Integrativas, Escuela de Medicina División
Ciencias de la Salud, Universidad Anáhuac Mayab, 97310 Mérida, Yucatán, México
- Grupo
de Investigación en Envejecimiento, División Ciencias
de la Salud, Universidad Anáhuac Mayab, 97310 Mérida, Yucatán, México
- Intercontinental Neuroscience Research Group, Yucatán, México
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group, Yucatán, México
- Grupo de Pesquisa Translacional em
Saúde Mental, Universidade Católica Dom Bosco, Campo
Grande, Mato Grosso del Sur 79117-900, Brazil
- Panic
and Respiration Laboratory, Institute of Psychiatry Federal, University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group, Yucatán, México
- Health School, Polytechnic Institute of Porto, 4200-465 Porto, Portugal
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Yucatán, México
- Faculty
of Human Sciences, Medical School Hamburg, 20457 Hamburg, Germany
- Physical
Activity, Physical Education, Health and Sport Research Centre (PAPESH),
Sports Science Department, School of Science and Engineering, Reykjavik University, 101 Reykjavik, Iceland
- Lithuanian Sports University, Kaunas 44221, Lithuania
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Yucatán, México
- Panic
and Respiration Laboratory, Institute of Psychiatry Federal, University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Physical
Activity Neuroscience Laboratory, Physical Activity Sciences Postgraduate
Program-Salgado de Oliveira University, Salgado de Oliveira University, Niterói 24030-060, Brazil
| |
Collapse
|
8
|
Schwartz MD, Palmerston JB, Lee DL, Hoener MC, Kilduff TS. Deletion of Trace Amine-Associated Receptor 1 Attenuates Behavioral Responses to Caffeine. Front Pharmacol 2018; 9:35. [PMID: 29456505 PMCID: PMC5801540 DOI: 10.3389/fphar.2018.00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 12/18/2022] Open
Abstract
Trace amines (TAs), endogenous amino acid metabolites that are structurally similar to the biogenic amines, are endogenous ligands for trace amine-associated receptor 1 (TAAR1), a GPCR that modulates dopaminergic, serotonergic, and glutamatergic activity. Selective TAAR1 full and partial agonists exhibit similar pro-cognitive, antidepressant- and antipsychotic-like properties in rodents and non-human primates, suggesting TAAR1 as a novel target for the treatment of neurological and psychiatric disorders. We previously reported that TAAR1 partial agonists are wake-promoting in rats and mice, and that TAAR1 knockout (KO) and overexpressing mice exhibit altered sleep-wake and EEG spectral composition. Here, we report that locomotor and EEG spectral responses to the psychostimulants modafinil and caffeine are attenuated in TAAR1 KO mice. TAAR1 KO mice and WT littermates were instrumented for EEG and EMG recording and implanted with telemetry transmitters for monitoring locomotor activity (LMA) and core body temperature (Tb). Following recovery, mice were administered modafinil (25, 50, 100 mg/kg), caffeine (2.5, 10, 20 mg/kg) or vehicle p.o. at ZT6 in balanced order. In WT mice, both modafinil and caffeine dose-dependently increased LMA for up to 6 h following dosing, whereas only the highest dose of each drug increased LMA in KO mice, and did so for less time after dosing. This effect was particularly pronounced following caffeine, such that total LMA response was significantly attenuated in KO mice compared to WT at all doses of caffeine and did not differ from Vehicle treatment. Tb increased comparably in both genotypes in a dose-dependent manner. TAAR1 deletion was associated with reduced wake consolidation following both drugs, but total time in wakefulness did not differ between KO and WT mice. Furthermore, gamma band EEG activity following both modafinil and caffeine treatment was attenuated in TAAR1 KO compared to WT mice. Our results show that TAAR1 is a critical component of the behavioral and cortical arousal associated with two widely used psychostimulants with very different mechanisms of action. Together with our previous findings, these data suggest that TAAR1 is a previously unrecognized component of an endogenous wake-modulating system.
Collapse
Affiliation(s)
- Michael D Schwartz
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Jeremiah B Palmerston
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Diana L Lee
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Marius C Hoener
- Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| |
Collapse
|
9
|
Carter GT, Weiss MD, Lou JS, Jensen MP, Abresch RT, Martin TK, Hecht TW, Han JJ, Weydt P, Kraft GH. Modafinil to treat fatigue in amyotrophic lateral sclerosis: An open label pilot study. Am J Hosp Palliat Care 2016; 22:55-9. [PMID: 15736608 DOI: 10.1177/104990910502200112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
An open label trial of modafinil was conducted to determine whether it would be tolerated and effective in treating fatigue for people with amyotrophic lateral sclerosis (ALS). Fifteen patients with ALS were treated for two weeks with either 200 mg or 400 mg of modafinil. Reported side effects of the medication were mild and included diarrhea, headache, nervousness, and insomnia. Side effects did not result in any study dropouts. Following treatment, mean scores on the Fatigue Severity Scale (FSS) decreased from 51.3 (SD 9.2) to 42.8 (SD 10.2). On the Epworth Sleepiness Scale (ESS), mean scores decreased from 8.2 (SD 2.0) to 4.5 (SD 2.4). Reductions in both the FSS and the ESS were significant at p < 0.001. Mean scores on the self-report version of the Functional Independence Measure (FIM-SR) increased from 115.2 (SD 5.6) to 118.1 (SD 5.4), with p < 0.01. This pilot study suggests that modafinil is well-tolerated and may reduce symptoms of fatigue in ALS. Further blinded, controlled studies of modafinil in larger numbers of ALS patients are warranted.
Collapse
Affiliation(s)
- Gregory T Carter
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kampman KM, Lynch KG, Pettinati HM, Spratt K, Wierzbicki MR, Dackis C, O'Brien CP. A double blind, placebo controlled trial of modafinil for the treatment of cocaine dependence without co-morbid alcohol dependence. Drug Alcohol Depend 2015; 155:105-10. [PMID: 26320827 PMCID: PMC4582003 DOI: 10.1016/j.drugalcdep.2015.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/12/2015] [Revised: 08/08/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Modafinil is a medication approved for narcolepsy and shift work sleep disorder. It has both dopaminergic and glutamatergic activity that could be useful for the treatment of cocaine dependence. Modafinil has reduced cocaine subjective effects and cocaine self-administration in human laboratory trials and has reduced cocaine use in cocaine dependent patients in some clinical trials. METHODS This was an 8-week, double blind, placebo controlled clinical trial involving 94 cocaine dependent subjects. Subjects received 300mg of modafinil or identical placebo daily along with weekly individual therapy. The primary outcome measure was cocaine use measured by self-report, and confirmed by twice weekly urine benzoylecgonine tests (UBT). Additional outcome measures included cocaine craving measured by the Brief Substance Craving Scale and global improvement measured by the Clinical Global Impression Scale (CGI). RESULTS The odds ratio (OR) in favor of abstinence for modafinil vs. placebo was 2.54 (p=. 03) and modafinil-treated subjects were significantly more likely than placebo-treated subjects to be abstinent from cocaine during the last 3 weeks of the trial, 23% vs. 9%, χ(2)=3.9, p<.05. Modafinil treated subjects were more likely to report very low levels of cocaine craving intensity and duration on the Brief Substance Craving Scale (OR=2.04, p=.03 and OR 1.06, p=.03 respectively). Modafinil-treated subjects were also more likely than placebo-treated subjects to rate themselves as "very much improved" on the CGI (OR=2.69, p=.03). CONCLUSION Modafinil may be an efficacious treatment for cocaine dependence.
Collapse
Affiliation(s)
- Kyle M. Kampman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA, USA, 19104
| | - Kevin G. Lynch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA, USA, 19104
| | - Helen M. Pettinati
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA, USA, 19104
| | - Kelly Spratt
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA, 19104
| | - Michael R. Wierzbicki
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA, 19104
| | - Charles Dackis
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA, USA, 19104
| | - Charles P. O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA, USA, 19104
| |
Collapse
|
11
|
Huot P, Fox SH, Brotchie JM. Monoamine reuptake inhibitors in Parkinson's disease. PARKINSON'S DISEASE 2015; 2015:609428. [PMID: 25810948 PMCID: PMC4355567 DOI: 10.1155/2015/609428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/19/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022]
Abstract
The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Department of Pharmacology and Division of Neurology, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Susan H. Fox
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | - Jonathan M. Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| |
Collapse
|
12
|
Schmaal L, Goudriaan AE, Joos L, Dom G, Pattij T, van den Brink W, Veltman DJ. Neural substrates of impulsive decision making modulated by modafinil in alcohol-dependent patients. Psychol Med 2014; 44:2787-2798. [PMID: 25066449 DOI: 10.1017/s0033291714000312] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Impulsive decision making is a hallmark of frequently occurring addiction disorders including alcohol dependence (AD). Therefore, ameliorating impulsive decision making is a promising target for the treatment of AD. Previous studies have shown that modafinil enhances cognitive control functions in various psychiatric disorders. However, the effects of modafinil on delay discounting and its underlying neural correlates have not been investigated as yet. The aim of the current study was to investigate the effects of modafinil on neural correlates of impulsive decision making in abstinent AD patients and healthy control (HC) subjects. METHOD A randomized, double-blind, placebo-controlled, within-subjects cross-over study using functional magnetic resonance imaging (fMRI) was conducted in 14 AD patients and 16 HC subjects. All subjects participated in two fMRI sessions in which they either received a single dose of placebo or 200 mg of modafinil 2 h before the session. During fMRI, subjects completed a delay-discounting task to measure impulsive decision making. RESULTS Modafinil improved impulsive decision making in AD pateints, which was accompanied by enhanced recruitment of frontoparietal regions and reduced activation of the ventromedial prefrontal cortex. Moreover, modafinil-induced enhancement of functional connectivity between the superior frontal gyrus and ventral striatum was specifically associated with improvement in impulsive decision making. CONCLUSIONS These findings indicate that modafinil can improve impulsive decision making in AD patients through an enhanced coupling of prefrontal control regions and brain regions coding the subjective value of rewards. Therefore, the current study supports the implementation of modafinil in future clinical trials for AD.
Collapse
Affiliation(s)
- L Schmaal
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center,University of Amsterdam,Amsterdam,The Netherlands
| | - A E Goudriaan
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center,University of Amsterdam,Amsterdam,The Netherlands
| | - L Joos
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Psychiatry,University of Antwerp,Antwerp,Belgium
| | - G Dom
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Psychiatry,University of Antwerp,Antwerp,Belgium
| | - T Pattij
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam,VU University Medical Center,Amsterdam,The Netherlands
| | - W van den Brink
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center,University of Amsterdam,Amsterdam,The Netherlands
| | - D J Veltman
- Department of Psychiatry,VU University Medical Center,Amsterdam,The Netherlands
| |
Collapse
|
13
|
Mereu M, Bonci A, Newman AH, Tanda G. The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology (Berl) 2013; 229:415-34. [PMID: 23934211 PMCID: PMC3800148 DOI: 10.1007/s00213-013-3232-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/17/2013] [Accepted: 07/28/2013] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVES Modafinil (MOD) and its R-enantiomer (R-MOD) are approved medications for narcolepsy and other sleep disorders. They have also been used, off-label, as cognitive enhancers in populations of patients with mental disorders, including substance abusers that demonstrate impaired cognitive function. A debated nonmedical use of MOD in healthy individuals to improve intellectual performance is raising questions about its potential abuse liability in this population. RESULTS AND CONCLUSIONS MOD has low micromolar affinity for the dopamine transporter (DAT). Inhibition of dopamine (DA) reuptake via the DAT explains the enhancement of DA levels in several brain areas, an effect shared with psychostimulants like cocaine, methylphenidate, and the amphetamines. However, its neurochemical effects and anatomical pattern of brain area activation differ from typical psychostimulants and are consistent with its beneficial effects on cognitive performance processes such as attention, learning, and memory. At variance with typical psychostimulants, MOD shows very low, if any, abuse liability, in spite of its use as a cognitive enhancer by otherwise healthy individuals. Finally, recent clinical studies have focused on the potential use of MOD as a medication for treatment of drug abuse, but have not shown consistent outcomes. However, positive trends in several result measures suggest that medications that improve cognitive function, like MOD or R-MOD, may be beneficial for the treatment of substance use disorders in certain patient populations.
Collapse
Affiliation(s)
- Maddalena Mereu
- Molecular Targets & Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Antonello Bonci
- Synaptic Plasticity Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Amy Hauck Newman
- Molecular Targets & Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Gianluigi Tanda
- Molecular Targets & Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| |
Collapse
|
14
|
Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants. Prog Neurobiol 2012; 100:60-80. [PMID: 23085425 DOI: 10.1016/j.pneurobio.2012.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023]
Abstract
The psychostimulants methylphenidate (Ritalin, Concerta), amphetamine (Adderall), and modafinil (Provigil) are widely used in the treatment of medical conditions such as attention-deficit hyperactivity disorder and narcolepsy and, increasingly, as "cognitive enhancers" by healthy people. The long-term neuronal effects of these drugs, however, are poorly understood. A substantial amount of research over the past two decades has investigated the effects of psychostimulants such as cocaine and amphetamines on gene regulation in the brain because these molecular changes are considered critical for psychostimulant addiction. This work has determined in some detail the neurochemical and cellular mechanisms that mediate psychostimulant-induced gene regulation and has also identified the neuronal systems altered by these drugs. Among the most affected brain systems are corticostriatal circuits, which are part of cortico-basal ganglia-cortical loops that mediate motivated behavior. The neurotransmitters critical for such gene regulation are dopamine in interaction with glutamate, while other neurotransmitters (e.g., serotonin) play modulatory roles. This review presents (1) an overview of the main findings on cocaine- and amphetamine-induced gene regulation in corticostriatal circuits in an effort to provide a cellular framework for (2) an assessment of the molecular changes produced by methylphenidate, medical amphetamine (Adderall), and modafinil. The findings lead to the conclusion that protracted exposure to these cognitive enhancers can induce gene regulation effects in corticostriatal circuits that are qualitatively similar to those of cocaine and other amphetamines. These neuronal changes may contribute to the addiction liability of the psychostimulant cognitive enhancers.
Collapse
|
15
|
Scoriels L, Jones PB, Sahakian BJ. Modafinil effects on cognition and emotion in schizophrenia and its neurochemical modulation in the brain. Neuropharmacology 2012; 64:168-84. [PMID: 22820555 DOI: 10.1016/j.neuropharm.2012.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 02/04/2023]
Abstract
Modafinil is a central nervous system wake promoting agent used for the treatment of excessive daytime sleeping. Its vigilance promoting properties and low abuse potential has intrigued the scientific community and has led to use it as a cognitive enhancer, before its neural functions were understood. Here, we review the effects of modafinil in human cognition and emotion and its specific actions on symptoms in patients with schizophrenia and whether these are consistently effective throughout the literature. We also performed a systematic review on the effects of modafinil on neurotransmitter signalling in different areas of the brain in order to better understand the neuromechanisms of its cognitive and emotional enhancing properties. A review of its effects in schizophrenia suggests that modafinil facilitates cognitive functions, with pro-mnemonic effects and problem solving improvements. Emotional processing also appears to be enhanced by the drug, although to date there are only a limited number of studies. The systematic review on the neurochemical modulation of the modafinil suggests that its mnemonic enhancing properties might be the result of glutamatergic and dopaminergic increased neuronal activation in the hippocampus and in the prefrontal cortex respectively. Other neurotransmitters were also activated by modafinil in various limbic brain areas, suggesting that the drug acts on these brain regions to influence emotional responses. These reviews seek to delineate the neuronal mechanisms by which modafinil affects cognitive and emotional function. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
|
16
|
Abstract
Cocaine dependence continues to be a significant public health problem in the United States. The number of regular cocaine users has not declined significantly in the United States since 1992. Although counseling remains the treatment of choice for cocaine dependence, many cocaine-dependent patients do not respond completely to standard drug counseling. Therefore, the development of new and more effective treatments for cocaine dependence is a research priority. Progress in the understanding of the neurobiology of cocaine dependence has led to the discovery of several promising medications that have already shown encouraging results in controlled clinical trials. Other promising compounds are just becoming available for clinical trials. The use of novel psychosocial techniques such as contingency management seems to increase the efficacy of several medications used to treat cocaine dependence. New medications and new psychosocial techniques are leading to significant improvements in the treatment of cocaine dependence.
Collapse
Affiliation(s)
- Kyle M Kampman
- Department of Psychiatry, University of Pennsylvania School of Medicine, University of Pennsylvania Treatment Research Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Lou JS, Weiss MD, Carter GT. Assessment and management of fatigue in neuromuscular disease. Am J Hosp Palliat Care 2010; 27:145-57. [PMID: 20190203 DOI: 10.1177/1049909109358420] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Fatigue is a common and potentially debilitating symptom of neuromuscular disease (NMD). Studies show that patients with NMD subjectively report increased levels of fatigue. Laboratory testing has demonstrated that patients with NMD show objective physiological signs of increased fatigue, with both central and peripheral components. To date, no treatment has been proven to be truly effective through evidence-based medicine. Thus, the clinician must use a multimodality approach to treating fatigue in patients with NMD. Management interventions are generally based on a sequential approach including treatment of comorbid factors, with the goal of maximizing physical and psychological functioning. This might include low-intensity exercise training, cognitive therapy, treatment of associated depression, correction of risk factors such as obesity, poor nutrition, and inactivity (deconditioning). Optimizing cardiopulmonary function is also critical and measures such as noninvasive, positive pressure ventilation may reduce fatigue in patients with NMD. Novel medications such as modafinil, a nonamphetamine stimulant, may be a helpful pharmacological treatment. Nutraceutical agents, such as creatine monohydrate, coenzyme Q10 (CoQ10), and alpha-lipoic acid, may also improve neuromuscular function and reduce fatigue.
Collapse
Affiliation(s)
- Jau-Shin Lou
- Oregon Health and Science University, Portland, USA
| | | | | |
Collapse
|
18
|
Rao RN, Shinde DD, Talluri MK, Agawane SB. LC–ESI-MS determination and pharmacokinetics of adrafinil in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 873:119-23. [DOI: 10.1016/j.jchromb.2008.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2008] [Revised: 07/11/2008] [Accepted: 07/18/2008] [Indexed: 11/25/2022]
|
19
|
Abstract
Modafinil (2-[(Diphenylmethyl) sulfinyl] acetamide, Provigil) is an FDA-approved medication with wake-promoting properties. Pre-clinical studies of modafinil suggest a complex profile of neurochemical and behavioral effects, distinct from those of amphetamine. In addition, modafinil shows initial promise for a variety of off-label indications in psychiatry, including treatment-resistant depression, attention-deficit/hyperactivity disorder, and schizophrenia. Cognitive dysfunction may be a particularly important emerging treatment target for modafinil, across these and other neuropsychiatric disorders. We aimed to comprehensively review the empirical literature on neurochemical actions of modafinil, and effects on cognition in animal models, healthy adult humans, and clinical populations. We searched PubMed with the search term 'modafinil' and reviewed all English-language articles for neurochemical, neurophysiological, cognitive, or information-processing experimental measures. We additionally summarized the pharmacokinetic profile of modafinil and clinical efficacy in psychiatric patients. Modafinil exhibits robust effects on catecholamines, serotonin, glutamate, gamma amino-butyric acid, orexin, and histamine systems in the brain. Many of these effects may be secondary to catecholamine effects, with some selectivity for cortical over subcortical sites of action. In addition, modafinil (at well-tolerated doses) improves function in several cognitive domains, including working memory and episodic memory, and other processes dependent on prefrontal cortex and cognitive control. These effects are observed in rodents, healthy adults, and across several psychiatric disorders. Furthermore, modafinil appears to be well-tolerated, with a low rate of adverse events and a low liability to abuse. Modafinil has a number of neurochemical actions in the brain, which may be related to primary effects on catecholaminergic systems. These effects are in general advantageous for cognitive processes. Overall, modafinil is an excellent candidate agent for remediation of cognitive dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael J Minzenberg
- Imaging Research Center, Davis School of Medicine, UC-Davis Health System, University of California, Sacramento, CA 95817, USA.
| | | |
Collapse
|
20
|
Howell LL, Kimmel HL. Monoamine transporters and psychostimulant addiction. Biochem Pharmacol 2007; 75:196-217. [PMID: 17825265 DOI: 10.1016/j.bcp.2007.08.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2007] [Revised: 07/25/2007] [Accepted: 08/02/2007] [Indexed: 12/27/2022]
Abstract
Psychostimulants are a broadly defined class of drugs that stimulate the central and peripheral nervous systems as their primary pharmacological effect. The abuse liability of psychostimulants is well established and represents a significant public health concern. An extensive literature documents the critical importance of monoamines (dopamine, serotonin and norepinephrine) in the behavioral pharmacology and addictive properties of psychostimulants. In particular, the dopamine transporter plays a primary role in the reinforcing and behavioral-stimulant effects of psychostimulants in animals and humans. Moreover, both serotonin and norepinephrine systems can reliably modulate the neurochemical and behavioral effects of psychostimulants. However, there is a growing body of evidence that highlights complex interactions among additional neurotransmitter systems. Cortical glutamatergic systems provide important regulation of dopamine function, and inhibitory amino acid gamma-aminobutyric acid (GABA) systems can modulate basal dopamine and glutamate release. Repeated exposure to psychostimulants can lead to robust and enduring changes in neurobiological substrates, including monoamines, and corresponding changes in sensitivity to acute drug effects on neurochemistry and behavior. Significant advances in the understanding of neurobiological mechanisms underlying psychostimulant abuse and dependence have guided pharmacological treatment strategies to improve clinical outcome. In particular, functional agonist treatments may be used effectively to stabilize monoamine neurochemistry, influence behavior and lead to long-term abstinence. However, additional clinical studies are required in order to identify safe and efficacious pharmacotherapies.
Collapse
Affiliation(s)
- Leonard L Howell
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| | | |
Collapse
|
21
|
Carter GT, Han JJ, Mayadev A, Weiss MD. Modafinil reduces fatigue in Charcot-Marie-Tooth disease type 1A: a case series. Am J Hosp Palliat Care 2007; 23:412-6. [PMID: 17060310 DOI: 10.1177/1049909106292169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Charcot-Marie-Tooth disease, the most common hereditary motor and sensory neuropathy, is a slowly progressive disorder characterized by diffuse muscle weakness and prominent distal atrophy that predominantly involves the intrinsic muscles of the feet and the peroneal muscles. It results in marked reduction in functional aerobic capacity during exercise and fatigue is commonly reported. To date, no pharmacologic treatment has been shown to be effective for treating fatigue in Charcot-Marie-Tooth. Modafinil is used to treat the symptoms of fatigue and excessive daytime sleepiness in narcolepsy. However, fatigue and subsequent excessive daytime sleepiness secondary to fatigue are common symptoms in many neurologic disorders. Prior reports on patients with myotonic muscular dystrophy, multiple sclerosis, Parkinson's disease, and amyotrophic lateral sclerosis, have shown beneficial effects of modafinil in treating fatigue. We report 4 patients with genetically confirmed Charcot-Marie-Tooth disease who had significant fatigue that was almost completely relieved by modafinil.
Collapse
Affiliation(s)
- Gregory T Carter
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
22
|
van Vliet SAM, Vanwersch RAP, Jongsma MJ, van der Gugten J, Olivier B, Philippens IHCHM. Neuroprotective effects of modafinil in a marmoset Parkinson model: behavioral and neurochemical aspects. Behav Pharmacol 2006; 17:453-62. [PMID: 16940766 DOI: 10.1097/00008877-200609000-00011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
The vigilance-enhancing agent modafinil has neuroprotective properties: it prevents striatal ischemic injury, nigrostriatal pathway deterioration after partial transsection and intoxication with 1-methyl-1,2,3,6-tetrahydropyridine. The present study determines the protective effects of modafinil in the marmoset 1-methyl-1,2,3,6-tetrahydropyridine Parkinson model on behavior and on monoamine levels. Twelve marmoset monkeys were treated with a total dose of 6 mg/kg 1-methyl-1,2,3,6-tetrahydropyridine. Simultaneously, six animals received a daily oral dose of modafinil (100 mg/kg) and six animals received vehicle for 27 days. Behavior was observed daily and the locomotor activity, hand-eye coordination, small fast movements, anxiety-related behavior and startle response of the animals were tested twice a week for 3 weeks. Modafinil largely prevented the 1-methyl-1,2,3,6-tetrahydropyridine-induced change in observed behavior, locomotor activity, hand-eye coordination and small fast movements, whereas the vehicle could not prevent the devastating effects of 1-methyl-1,2,3,6-tetrahydropyridine. Dopamine levels in the striatum of the vehicle+1-methyl-1,2,3,6-tetrahydropyridine-treated animals were reduced to 5% of control levels, whereas the dopamine levels of the modafinil+1-methyl-1,2,3,6-tetrahydropyridine-treated animals were reduced to 41% of control levels. The present data suggest that modafinil prevents decrease of movement-related behavior and dopamine levels after 1-methyl-1,2,3,6-tetrahydropyridine intoxication and can be an efficaceous pharmacological intervention in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Sanneke A M van Vliet
- Department of Diagnosis and Therapy, TNO Defence, Security and Safety, Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Dahl JP, Kampman KM, Oslin DW, Weller AE, Lohoff FW, Ferraro TN, O'Brien CP, Berrettini WH. Association of a polymorphism in the Homer1 gene with cocaine dependence in an African American population. Psychiatr Genet 2005; 15:277-83. [PMID: 16314758 DOI: 10.1097/00041444-200512000-00010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE While twin and adoption studies have demonstrated that up to 70% of the risk for becoming addicted to cocaine is due to genetic factors, identifying specific genes involved in the development or progression of cocaine dependence has been difficult. The purpose of this study is to determine whether single-nucleotide polymorphisms in the Homer1 and Homer2 genes associate with the cocaine-dependent phenotype in an African American population. METHODS This study utilized a case-control design in which the genotype and allele frequencies for four single-nucleotide polymorphisms in the Homer1 gene and three single-nucleotide polymorphisms in the Homer2 gene were compared between African American individuals with a diagnosis of cocaine dependence (n=170) and African American individuals with no history of substance abuse (n=90). RESULTS The data indicate that one single-nucleotide polymorphism, rs6871510, located in intron 1 of the Homer1 gene significantly (P=0.029) associates with cocaine dependence at the genotype level, and trends toward a significant association at the allele frequency level (chi=2.62, df=1, P=0.106, OR=1.71). None of the single-nucleotide polymorphisms analyzed in the Homer2 gene associates with cocaine dependence. CONCLUSIONS The results of this study suggest that a polymorphism in the Homer1 gene, rs6871510, is a potential risk factor for the development of cocaine dependence in an African American population, whereas polymorphisms in the Homer2 gene are not.
Collapse
Affiliation(s)
- John P Dahl
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Clinical Research Building, Philadelphia, 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Della Marca G, Restuccia D, Rubino M, Maiese T, Tonali P. Influence of modafinil on somatosensory input processing in the human brain-stem. Clin Neurophysiol 2004; 115:919-26. [PMID: 15003774 DOI: 10.1016/j.clinph.2003.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 11/04/2003] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Since high frequency oscillations (HFOs) evoked by upper limb stimulation are susceptible to arousal fluctuation, we verified whether administration of modafinil, a vigilance promoting drug, modifies such responses at different levels of the somatosensory system. METHODS HFOs were obtained in 6 healthy volunteers by 500-700 Hz filtering of right median nerve somatosensory evoked potentials, before and 2 hours after the administration of 100 mg modafinil. Raw data were further submitted to brain electrical source analysis. RESULTS Modafinil significantly increased subcortical HFOs, as well as the strength of a dipolar source at the base of the skull. CONCLUSIONS Our data suggest that modafinil exerts its action also at the level of the brain-stem, where it interferes with the processing of somatosensory ascending inputs.
Collapse
Affiliation(s)
- Giacomo Della Marca
- Department of Neurosciences, Cathodic University, L. go A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Effective medications for cocaine dependence are needed to improve outcome in this chronic, relapsing disorder. Medications affecting glutamate function are reasonable candidates for investigation, given the involvement of glutamate circuits in reward-related brain regions and evidence of cocaine-induced glutamatergic dysregulation. In addition, it is increasingly apparent that glutamatergic mechanisms underlie several clinical aspects of cocaine dependence, including euphoria, withdrawal, craving, and hedonic dysfunction. Even denial, traditionally viewed as purely psychological, may result, in part, from dysfunctional glutamate-rich cortical regions. We review the involvement of glutamate in reward-related circuits, the acute and chronic effects of cocaine on these pathways, and glutamatergic mechanisms that contribute to the neurobiology of cocaine dependence. We also present preliminary data from our research of modafinil, a glutamate-enhancing agent with promise in the treatment of cocaine-addicted individuals.
Collapse
Affiliation(s)
- Charles Dackis
- Treatment Research Center, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
27
|
Abstract
After an initial patient with cerebral palsy had an apparent dramatic reduction in spasticity when placed on modafinil, a pilot study was undertaken in 10 pediatric patients to confirm or refute the benefit of modafinil in cerebral palsy. Nine of 10 patients completed the 1-month treatment period. The study patients were treated with 50 or 100 mg of modafinil once daily in the morning. An assessment was made at baseline and at 1 month on treatment. All patients had a clinical examination, Modified Ashworth Scale scores (spasticity) determined by a physical therapist, and videotaping of ambulation. In comparing visit 1 (baseline) and visit 2 (on treatment), statistically significant improvement in the modified Ashworth Scale scores was noted in seven of the nine patients completing the study (P = .0080). A blinded review of the videotapes did not show statistically significant differences in ambulation, but the speed (ft/sec) of gait improved in six of the nine patients (P = .0192). In this study, modafinil, a newly released central stimulant for narcolepsy, showed benefit in treating spasticity in patients with cerebral palsy. A second larger, placebo-controlled, double-blinded trial is planned to confirm these initial results and observations. Modafinil appears to benefit spastic cerebral palsy by a yet to be determined mechanism; however, a primary effect of modafinil on brainstem structures is hypothesized to reduce spasticity of central origin.
Collapse
Affiliation(s)
- Daniel L Hurst
- Department of Neuropsychiatry and Behavioral Science, Texas Tech University Health Sciences Center, Lubbock 79430, USA.
| | | |
Collapse
|
28
|
de Saint Hilaire Z, Orosco M, Rouch C, Blanc G, Nicolaidis S. Variations in extracellular monoamines in the prefrontal cortex and medial hypothalamus after modafinil administration: a microdialysis study in rats. Neuroreport 2001; 12:3533-7. [PMID: 11733706 DOI: 10.1097/00001756-200111160-00032] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
The role of brain amines in mediating the effects of the wake-promoting agent modafinil, used in the treatment of sleepiness associated with narcolepsy is still uncertain. Therefore we studied the effects of modafinil on extracellular serotonin (5-HT), dopamine (DA) and noradrenaline (NA), in rat prefrontal cortex and in the medial hypothalamus area. Modafinil (128 mg/kg i.p.) significantly increased waking in the first 4 h of EEG sleep recording. This cortical and behavioral activation was associated with an initial increase in extracellular 5-HT, DA and NA during the first 60 min following modafinil administration. In the prefrontal cortex, 5-HT release remained high for 3 h after modafinil administration. In contrast, in the hypothalamus, only NA release was enhanced while DA and 5-HT levels remained low. In a first step, modafinil may generate waking partly via cortical monoamine release, particularly DA and 5-HT, and also hypothalamic NA. In a second step, maintenance of waking might depend on hypothalamic NA.
Collapse
Affiliation(s)
- Z de Saint Hilaire
- Division of Adult Psychiatry, Sleep Laboratory, University Hospital of Geneva (HUG), 2 Chemin du Petit Bel Air, CH-1225 Chêne-Bourg, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Siwak CT, Gruet P, Woehrlé F, Muggenburg BA, Murphey HL, Milgram NW. Comparison of the effects of adrafinil, propentofylline, and nicergoline on behavior in aged dogs. Am J Vet Res 2000; 61:1410-4. [PMID: 11108188 DOI: 10.2460/ajvr.2000.61.1410] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the efficacy of adrafinil, propentofylline, and nicergoline for enhancing behavior of aged dogs. ANIMALS 36 Beagles between 9 and 16 years old. PROCEDURE Dogs were randomly assigned to receive adrafinil (20 mg/kg of body weight, PO, q 24 h; n = 12), propentofylline (5 mg/kg, PO, q 12 h; 12), or nicergoline (0.5 mg/kg, PO, q 24 h; 12) for 33 days. Baseline behaviors in an open field and in kennels (home cage) were recorded before treatment. After treatment, behaviors in the open field were recorded 2 hours after drug administration on days 2, 15, and 28, and 10 hours after administration on days 7, 20, and 33. Behaviors in the home cage were recorded 2 and 7 hours after drug administration on days 4, 17, and 30. RESULTS Treatment with adrafinil resulted in a significant increase in locomotion in each of the open-field tests and an increase in locomotion in the home cage. This latter increase was smaller and more variable than that in the open field. Locomotion was not affected by treatment with propentofylline or nicergoline. In the open field, sniffing decreased over time in all 3 groups, but the largest decline was observed in the propentofylline group. CONCLUSIONS AND CLINICAL RELEVANCE Treatment with adrafinil may improve the quality of life of aged dogs by increasing exploratory behavior and alertness.
Collapse
Affiliation(s)
- C T Siwak
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Scarborough, ON, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
1. Adrafmil is a novel vigilance promoting agent developed in France by Louis Lafon Laboratories. 2. Adrafinil causes increased locomotion without producing stereotypical activity in canines tested in an open field. 3. The effectiveness of a single treatment is long-lasting, and the effectiveness persists over repeated treatments. 4. Acquisition of a size discrimination problem is enhanced by adrafinil. This may be linked to performance motivation. 5. Adrafinil causes a long-lasting increase in high frequency electroencephalographic activity recorded from cortical electrodes. 6. These results indicate that adrafinil is novel behavioral stimulant with cognitive enhancing potential. The underlying mechanisms of action are still unknown.
Collapse
Affiliation(s)
- C T Siwak
- Institute of Medical Science, University of Toronto, Canada
| | | | | |
Collapse
|
31
|
Siwak CT, Gruet P, Woehrlé F, Schneider M, Muggenburg BA, Murphey HL, Callahan H, Milgram NW. Behavioral activating effects of adrafinil in aged canines. Pharmacol Biochem Behav 2000; 66:293-300. [PMID: 10880681 DOI: 10.1016/s0091-3057(00)00188-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Adrafinil, a vigilance enhancing pharmaceutical, was administered to aged dogs for 14 consecutive days at doses of 10, 20, 30, or 40 mg/kg using a crossover design. The effects on spontaneous behavior in a 10-min canine open-field test were systematically recorded every fourth day, starting with day 1 of treatment. The open field tests were given 2 or 10 h following oral administration of capsules containing either adrafinil or lactose, the placebo control. Adrafinil caused an increase in locomotor activity at the three highest doses at both the 2- and 10-h intervals and during both the first (days 1 and 5) and second treatment week (days 9 and 13). Adrafinil also caused a transient increase in directed sniffing. At the highest dose level, adrafinil caused a decrease in urination frequency. The increased locomotion was generally unaccompanied by stereotypical behavior in the test session. There was some variability; a subpopulation of animals showed either no effect, or decreased locomotion. The individual differences were correlated with changes in serum levels of adrafinil 10 h following treatment.
Collapse
Affiliation(s)
- C T Siwak
- Division of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Ontario, M1C 1A4, Scarborough, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Touret M, Sallanon-Moulin M, Jouvet M. Awakening properties of modafinil without paradoxical sleep rebound: comparative study with amphetamine in the rat. Neurosci Lett 1995; 189:43-6. [PMID: 7603622 DOI: 10.1016/0304-3940(95)11448-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
We have studied the effect of modafinil and amphetamine, two waking drugs, on the sleep-wake cycle of Sprague-Dawley rat. Both modafinil (64 or 128 mg/kg) and amphetamine (2.5 or 5 mg/kg) cause a dose dependent increase in wakefulness. However, amphetamine wakefulness is followed by a paradoxical sleep rebound on the injection day, whereas modafinil does not produce this effect. In modafinil-treated rats, the sleep pattern on the post-injection day is similar to that of controls, while that of amphetamine-treated rats is modified.
Collapse
Affiliation(s)
- M Touret
- Department of Experimental Medicine, Claude Bernard University, Lyon, France
| | | | | |
Collapse
|
33
|
Abstract
We have recently demonstrated that c-fos expression is strongly induced by both spontaneous and forced wakefulness in many brain regions. c-Fos expression was considerably increased in regions involved in the regulation of arousal states, such as the locus coeruleus (noradrenergic neurons) and the medial preoptic area (non-GABAergic neurons). With c-fos antisense injection in the medial preoptic area, we demonstrated that c-fos expression in this region is causally involved in sleep regulation. c-Fos expression in other areas, such as the cerebral cortex and the hippocampus, may be related to the functional consequences of prolonged wakefulness and to the need of sleep. Further work should explore the mechanisms leading to changes in the expression of c-fos, and possibly of its target genes, during the sleep-wake cycle.
Collapse
Affiliation(s)
- M Pompeiano
- Istituto di Chimica Biologica, Universita di Pisa, Italy
| | | | | | | |
Collapse
|