1
|
Tamburello M, Altieri B, Sbiera I, Sigala S, Berruti A, Fassnacht M, Sbiera S. FGF/FGFR signaling in adrenocortical development and tumorigenesis: novel potential therapeutic targets in adrenocortical carcinoma. Endocrine 2022; 77:411-418. [PMID: 35583844 PMCID: PMC9385797 DOI: 10.1007/s12020-022-03074-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022]
Abstract
FGF/FGFR signaling regulates embryogenesis, angiogenesis, tissue homeostasis and wound repair by modulating proliferation, differentiation, survival, migration and metabolism of target cells. Understandably, compelling evidence for deregulated FGF signaling in the development and progression of different types of tumors continue to emerge and FGFR inhibitors arise as potential targeted therapeutic agents, particularly in tumors harboring aberrant FGFR signaling. There is first evidence of a dual role of the FGF/FGFR system in both organogenesis and tumorigenesis, of which this review aims to provide an overview. FGF-1 and FGF-2 are expressed in the adrenal cortex and are the most powerful mitogens for adrenocortical cells. Physiologically, they are involved in development and maintenance of the adrenal gland and bind to a family of four tyrosine kinase receptors, among which FGFR1 and FGFR4 are the most strongly expressed in the adrenal cortex. The repeatedly proven overexpression of these two FGFRs also in adrenocortical cancer is thus likely a sign of their participation in proliferation and vascularization, though the exact downstream mechanisms are not yet elucidated. Thus, FGFRs potentially offer novel therapeutic targets also for adrenocortical carcinoma, a type of cancer resistant to conventional antimitotic agents.
Collapse
Affiliation(s)
- Mariangela Tamburello
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Barbara Altieri
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Iuliu Sbiera
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Martin Fassnacht
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- Comprehenssive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Silviu Sbiera
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Häfner R, Bohnenpoll T, Rudat C, Schultheiss TM, Kispert A. Fgfr2 is required for the expansion of the early adrenocortical primordium. Mol Cell Endocrinol 2015; 413:168-77. [PMID: 26141512 DOI: 10.1016/j.mce.2015.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 01/10/2023]
Abstract
The adrenal cortex is a critical steroidogenic endocrine tissue, generated at least in part from intermediate mesoderm of the anterior urogenital ridge. Previous work has pinpointed a minor role of the FGFR2IIIb isoform in expansion and differentiation of the fetal adrenal cortex in mice but did not address the complete role of FGFR2 and FGFR1 signaling in adrenocortical development. Here, we show that a Tbx18(cre) line mediates specific recombination in the coelomic epithelium of the anterior urogenital ridge which gives rise by a delamination process to the adrenocortical primordium. Mice with conditional (Tbx18(cre)-mediated) deletion of all isoforms of Fgfr2 exhibited severely hypoplastic adrenal glands around birth. Cortical cells were dramatically reduced in number but showed steroidogenic differentiation and zonation. Neuroendocrine chromaffin cells were also reduced and formed a cell cluster adjacent to but not encapsulated by steroidogenic cells. Analysis of earlier time points revealed that the adrenocortical primordium was established in the intermediate mesoderm at E10.5 but that it failed to expand at subsequent stages. Our further experiments show that FGFR2 signaling acts as early as E11.5 to prevent apoptosis and enhance proliferation in adrenocortical progenitor cells. FGFR1 signaling does not contribute to early adrenocortical development. Our work suggests that FGFR2IIIb and IIIc isoforms largely act redundantly to promote expansion of the adrenocortical primordium.
Collapse
Affiliation(s)
- Regine Häfner
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Tobias Bohnenpoll
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport-Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
3
|
NGF-induced cell differentiation and gene activation is mediated by integrative nuclear FGFR1 signaling (INFS). PLoS One 2013; 8:e68931. [PMID: 23874817 PMCID: PMC3707895 DOI: 10.1371/journal.pone.0068931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
Nerve growth factor (NGF) is the founding member of the polypeptide neurotrophin family responsible for neuronal differentiation. To determine whether the effects of NGF rely upon novel Integrative Nuclear FGF Receptor-1 (FGFR1) Signaling (INFS) we utilized the PC12 clonal cell line, a long-standing benchmark model of sympathetic neuronal differentiation. We demonstrate that NGF increases expression of the fgfr1 gene and promotes trafficking of FGFR1 protein from cytoplasm to nucleus by inhibiting FGFR1 nuclear export. Nuclear-targeted dominant negative FGFR1 antagonizes NGF-induced neurite outgrowth, doublecortin (dcx) expression and activation of the tyrosine hydroxylase (th) gene promoter, while active constitutive nuclear FGFR1 mimics the effects of NGF. NGF increases the expression of dcx, th, βIII tubulin, nurr1 and nur77, fgfr1and fibroblast growth factor-2 (fgf-2) genes, while enhancing binding of FGFR1and Nur77/Nurr1 to those genes. NGF activates transcription from isolated NurRE and NBRE motifs. Nuclear FGFR1 transduces NGF activation of the Nur dimer and raises basal activity of the Nur monomer. Cooperation of nuclear FGFR1 with Nur77/Nurr1 in NGF signaling expands the integrative functions of INFS to include NGF, the first discovered pluripotent neurotrophic factor.
Collapse
|
4
|
Grothe C, Jungnickel J, Haastert K. Physiological role of basic FGF in peripheral nerve development and regeneration: potential for reconstruction approaches. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.5.605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
According to expression studies and functional analyses in mutant mice and in rats, FGF-2 appears to be specifically involved during development of peripheral nerves and in de-/re-generating processes at the lesion site and in spinal ganglia. In the absence of FGF receptor (FGFR)3, axonal and myelin diameters of peripheral nerves are significantly reduced, suggesting that FGFR3 physiologically regulates axonal development. The normally occurring neuronal cell death in spinal ganglia after peripheral nerve axotomy does not take place in FGF-2 and FGFR3-deleted mice, respectively, suggesting that injury-induced apoptosis is mediated via FGF-2 binding to FGFR3. According to a bimodal function of FGF-2, lesion-induced neuron death in rat spinal ganglia can be prevented by application of FGF-2 to the proximal nerve stump, which could be mediated via FGFR1/2. At the lesion site, FGF-2 appears to be involved in stimulating Schwann cell proliferation, promoting neurite outgrowth, especially of sensory nerve fibers, and regulating remyelination.
Collapse
Affiliation(s)
- Claudia Grothe
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| | - Julia Jungnickel
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| | - Kirsten Haastert
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| |
Collapse
|
5
|
Morsink MC, Joëls M, Sarabdjitsingh RA, Meijer OC, De Kloet ER, Datson NA. The dynamic pattern of glucocorticoid receptor-mediated transcriptional responses in neuronal PC12 cells. J Neurochem 2006; 99:1282-98. [PMID: 17026526 DOI: 10.1111/j.1471-4159.2006.04187.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of the current study was (i) to examine the overlap in the pattern of glucocorticoid receptor (GR)-mediated transcriptional responses between different neuronal substrates and (ii) to assess the nature of these responses by differentiating between primary and downstream GR-responsive genes. For this purpose, nerve growth factor-differentiated catecholaminergic PC12 cells were used in which endogenous GRs were activated briefly with a high dose of corticosterone followed by gene expression profiling 1 and 3 h afterwards using Affymetrix GeneChips. The results revealed a strikingly similar temporal pattern to that which was reported previously in hippocampus, with only down-regulated genes 1 h after GR activation and the majority of genes up-regulated 3 h after GR activation. Real-time quantatitive PCR of transcripts in cycloheximide-treated cells showed that all five GR-responsive genes selected from the 1-h time point were primary responsive, whereas all four GR-responsive genes selected from the 3-h time point were downstream responsive. At the level of individual genes, the overlap with the previously generated hippocampal data sets was small, illustrating the cell-type specifity of GR-mediated genomic responses. Finally, we identified a number of interesting genes, such as SWI/SNF, synaptosomal-associated protein 25 and certain Rab proteins which may play a role in the effects of glucocorticoids on catecholaminergic neuronal functioning.
Collapse
Affiliation(s)
- M C Morsink
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
6
|
Ardiles AO, Maripillán J, Lagos VL, Toro R, Mora IG, Villarroel L, Alés E, Borges R, Cárdenas AM. A rapid exocytosis mode in chromaffin cells with a neuronal phenotype. J Neurochem 2006; 99:29-41. [PMID: 16889641 DOI: 10.1111/j.1471-4159.2006.04080.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have used astrocyte-conditioned medium (ACM) to promote the transdifferentiation of bovine chromaffin cells and study modifications in the exocytotic process when these cells acquire a neuronal phenotype. In the ACM-promoted neuronal phenotype, secretory vesicles and intracellular Ca2+ rise were preferentially distributed in the neurite terminals. Using amperometry, we observed that the exocytotic events also occurred mainly in the neurite terminals, wherein the individual exocytotic events had smaller quantal size than in undifferentiated cells. Additionally, duration of pre-spike current was significantly shorter, suggesting that ACM also modifies the fusion pore stability. After long exposure (7-9 days) to ACM, the kinetics of catecholamine release from individual vesicles was markedly accelerated. The morphometric analysis of vesicle diameters suggests that the rapid exocytotic events observed in neurites of ACM-treated cells correspond to the exocytosis of large dense-core vesicles (LDCV). On the other hand, experiments performed in EGTA-loaded cells suggest that ACM treatment promotes a better coupling between voltage-gated calcium channels (VGCC) and LDCV. Thus, our findings reveal that ACM promotes a neuronal phenotype in chromaffin cells, wherein the exocytotic kinetics is accelerated. Such rapid exocytosis mode could be caused at least in part by a better coupling between secretory vesicles and VGCC.
Collapse
Affiliation(s)
- Alvaro O Ardiles
- Centro de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Murata T, Hikita K, Tsuboi M, Niwa K, Suzuki M, Kaneda N. Temperature-dependent, neurotrophic factor-elicited, neuronal differentiation in adrenal chromaffin cell line immortalized with temperature-sensitive SV40 T-antigen. J Neurochem 2003; 85:1126-38. [PMID: 12753072 DOI: 10.1046/j.1471-4159.2003.01765.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We established adrenal medullary cell lines from transgenic mice expressing an oncogene, the temperature-sensitive simian virus 40 large T-antigen, under the control of the tyrosine hydroxylase promoter. A clonal cell line, named tsAM5D, conditionally grew at a permissive temperature of 33 degrees C and exhibited the dopaminergic chromaffin cell phenotype as exemplified by the expression pattern of mRNA for catecholamine-synthesizing enzymes and secretory vesicle-associated proteins. tsAM5D cells proliferated at the permissive temperature in response to basic fibroblast growth factor (bFGF) and ciliary neurotrophic factor (CNTF). At a non-permissive temperature of 39 degrees C, bFGF and CNTF acted synergistically to differentiate tsAM5D cells into neuron-like cells. In addition, tsAM5D cells caused to differentiate by bFGF plus CNTF at 39 degrees C became dependent solely on nerve growth factor for their survival and showed markedly enhanced neurite outgrowth. In the presence of bFGF and CNTF, the morphological change induced by the temperature shift was associated with up-regulated expression of neuronal marker genes including neuron-specific enolase, growth-associated protein-43, microtubule-associated protein 2, neurofilament, and p75 neurotrophin receptor, indicating that the cells underwent neuronal differentiation. Thus, we demonstrated that tsAM5D cells could proliferate at permissive 33 degrees C, and also had the capacity to terminally differentiate into neuron-like cells in response to bFGF and CNTF when the oncogene was inactivated by shifting the temperature to non-permissive 39 degrees C. These results suggest that tsAM5D cells should be a good tool to allow a detailed study of mechanisms regulating neuronal differentiation.
Collapse
Affiliation(s)
- Tomiyasu Murata
- Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Stachowiak EK, Fang X, Myers J, Dunham S, Stachowiak MK. cAMP-induced differentiation of human neuronal progenitor cells is mediated by nuclear fibroblast growth factor receptor-1 (FGFR1). J Neurochem 2003; 84:1296-312. [PMID: 12614330 DOI: 10.1046/j.1471-4159.2003.01624.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of cAMP signaling pathway and its transcriptional factor cyclic AMP response element binding protein (CREB) and coactivator are key determinants of neuronal differentiation and plasticity. We show that nuclear fibroblast growth factor receptor-1 (FGFR1) mediates cAMP-induced neuronal differentiation and regulates CREB and CREB binding protein (CBP) function in alpha-internexin-expressing human neuronal progenitor cells (HNPC). In proliferating HNPC, FGFR1 was associated with the cytoplasm and plasma membrane. Treatment with dB-cAMP induced nuclear accumulation of FGFR1 and caused neuronal differentiation, accompanied by outgrowth of neurites expressing MAP2 and neuron-specific neurofilament-L protein and enolase. HNPC transfected with nuclear/cytoplasmic FGFR1 or non-membrane FGFR1(SP-/NLS), engineered to accumulate exclusively in the cell nucleus, underwent neuronal differentiation in the absence of cAMP stimulation. In contrast, FGFR1/R4, with highly hydrophobic transmembrane domain of FGFR4, was membrane associated, did not enter the nucleus and failed to induce neuronal differentiation. Transfection of tyrosine kinase-deleted dominant negative receptor mutants, cytoplasmic/nuclear FGFR1(TK-) or nuclear FGFR1(SP-/NLS)(TK-), prevented cAMP-induced neurite outgrowth. Nuclear FGFR1 localized in speckle-like domains rich in phosphorylated histone 3 and splicing factors, regions known for active RNA transcription and processing, and activated the neurofilament-L gene promoter. FGFR1(SP-/NLS) transactivated CRE, up-regulated phosphorylation and transcriptional activity of CREB and stimulated the activity of CBP several-fold. Thus, cAMP-induced nuclear accumulation of FGFR1 provides a signal that triggers molecular events leading to neuronal differentiation.
Collapse
Affiliation(s)
- E K Stachowiak
- Molecular and Structural Neurobiology and Gene Therapy Program, Department Pathology and Anatomical Sciences, State University of New York, Buffalo 14214, USA
| | | | | | | | | |
Collapse
|
9
|
Iwami M, Tooyama I, Kinoshita A, Matsuo A, Oomura Y, Sasaki K, Kimura H. Demonstration of Fibroblast Growth Factor Receptor-1 in Rat Adrenal Gland as Revealed by Reverse Transcription-polymerase Chain Reaction and Immunohistochemistry. Acta Histochem Cytochem 2003. [DOI: 10.1267/ahc.36.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mika Iwami
- Molecular Neuroscience Research Center, Shiga University of Medical Science
- Department of Pediatric Medicine, Shiga University of Medical Science
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| | - Ayae Kinoshita
- Molecular Neuroscience Research Center, Shiga University of Medical Science
- Harvard Medical School, Alzheimer Research Unit, Massachusetts General Hospital
| | - Akinori Matsuo
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| | - Yutaka Oomura
- Institute of Bio-Active Science, Nippon Zoki Pharmaceutical Co. Ltd
| | - Kazuo Sasaki
- Division of Bio-Information Engineering, Faculty of Engineering, Toyama University
| | - Hiroshi Kimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| |
Collapse
|
10
|
Matsuoka Y, Aimi Y, Kimura H, Taniguchi T, Oomura Y, Sasaki K, Tooyama I. Demonstration of Acidic Fibroblast Growth Factor(FGF-1) in Rat Adrenal Gland. Acta Histochem Cytochem 2001. [DOI: 10.1267/ahc.34.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yasuji Matsuoka
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| | - Yoshinari Aimi
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| | - Hiroshi Kimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| | | | - Yutaka Oomura
- Institute of Bio-Active Science, Nippon Zoki Pharmaceutical Co. Ltd.,
| | - Kazuo Sasaki
- Division of Bio-Information Engineering, Faculty of Engineering, Toyama University
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| |
Collapse
|
11
|
Müller-Ostermeyer F, Claus P, Grothe C. Distinctive effects of rat fibroblast growth factor-2 isoforms on PC12 and Schwann cells. Growth Factors 2001; 19:175-91. [PMID: 11811791 DOI: 10.3109/08977190109001085] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fibroblast growth factor-2 (FGF-2) is an important modulator of cell growth and differentiation and stimulates cell survival of various cells including neurons. Rat FGF-2 occurs in three isoforms, a low molecular weight 18 kD and two high molecular weight forms (21, 23 kD), representing alternative translation products from a single mRNA. The 18 kD isoform shows mainly cytoplasmatic localization, whereas the 21/23 kD FGF-2 are localized in the nucleus. In addition, the FGF-2 isoforms are differentially regulated in the sensory ganglia and peripheral nerve following nerve injury and in the adrenal medulla during post-natal development and after hormonal stimuli. The distinct intracellular distribution and differential regulation of the different FGF-2 isoforms indicate that they have unique biological roles, however, little is known about the biological effects of the high molecular weight FGF-2 isoforms. Immortalized Schwann cells and PC12 cells, which stably overexpress the different FGF-2 isoforms, showed that the different endogenous-overexpressed FGF-2 isoforms lead to dramatic modifications in cell proliferation and survival, when tested in serum-free and serum-containing medium. In contrast, application of recombinant FGF-2 isoforms on normal PC12 and immortalized Schwann cells results in similar biological effects on the proliferation and survival of the cells. Furthermore, we investigated the potential regulatory effects of endogenous-overexpressed and exogenous-applied FGF-2 isoforms on the mRNA level of the FGF-2 receptors and, additionally, on the tyrosin hydroxylase mRNA expression in PC12 cells.
Collapse
|
12
|
Grothe C, Heese K, Meisinger C, Wewetzer K, Kunz D, Cattini P, Otten U. Expression of interleukin-6 and its receptor in the sciatic nerve and cultured Schwann cells: relation to 18-kD fibroblast growth factor-2. Brain Res 2000; 885:172-81. [PMID: 11102571 DOI: 10.1016/s0006-8993(00)02911-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Expression of interleukin-6 (IL-6) and fibroblast growth factor-2 (FGF-2) in Schwann cells is modulated by external stimuli. To study possible interactions of both factors we have analyzed mutual effects of exogenous IL-6 and FGF-2 on the expression of each other and the corresponding receptor (R) molecules IL-6R and FGFR1 after peripheral nerve lesion in vivo and in vitro using cultured Schwann cells. Using rat Schwann cells we found that IL-6 did not exert any effects on the expression of FGF-2 and FGF receptor type 1 (R1) whereas exogenously applied 18-kD FGF-2 strongly increased the expression of the mRNAs of IL-6 and its receptor. In addition, immortalized Schwann cells over-expressing the 18-kD FGF-2 isoform showed elevated levels of IL-6 and IL-6R whereas immortalized Schwann cells over-expressing the high-molecular-weight isoforms (21 kD and 23 kD) displayed unaltered IL-6 and IL-6R expression levels. According to in situ hybridization studies of intact and crushed sciatic nerves in vivo, Schwann cells seems to be the main source of IL-6 and IL-6R. Following sciatic nerve crush, the FGF-2 and the IL-6 system are upregulated after the first hours. Furthermore, we showed that the early increase of the FGF-2 protein is mainly confined to the 18-kD isoform. These results are consistent with the idea of a functional coupling of FGF-2 and the IL-6 system in the early reaction of Schwann cells to nerve injury.
Collapse
Affiliation(s)
- C Grothe
- Hannover Medical School, Center of Anatomy, OE 4140, D-30623 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Blottner D. Nitric oxide and target-organ control in the autonomic nervous system: Anatomical distribution, spatiotemporal signaling, and neuroeffector maintenance. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991001)58:1<139::aid-jnr14>3.0.co;2-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Klimaschewski L, Meisinger C, Grothe C. Localization and regulation of basic fibroblast growth factor (FGF-2) and FGF receptor-1 in rat superior cervical ganglion after axotomy. JOURNAL OF NEUROBIOLOGY 1999; 38:499-506. [PMID: 10084685 DOI: 10.1002/(sici)1097-4695(199903)38:4<499::aid-neu6>3.0.co;2-o] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In response to peripheral nerve lesion, synthesis of basic fibroblast growth factor (FGF-2) increases in sensory ganglia and motoneurons. Here, we investigated the axotomy-induced regulation of FGF-2 and FGF receptor-1 (FGFR-1) expression in the autonomic nervous system using the sympathetic superior cervical ganglion of the adult rat as a model. Transcripts for both proteins were detected by ribonuclease protection assay. Western blotting indicated the presence of all three FGF-2 isoforms (18, 21, and 23 kD) in the superior cervical ganglion. Immunohistochemical analysis revealed FGF-2 localization in nuclei of satellite cells surrounding postganglionic perikarya. After transection of the carotid nerves, the number of FGF-2-immunoreactive glial cells increased. FGF-2 mRNA was up-regulated within 6 h and remained elevated for 3 weeks. The 18-, 21-, and 23-kD isoforms were all increased 7 days after axotomy. FGFR-1 immunoreactivity was observed in neuronal and nonneuronal nuclei in the normal rat superior cervical ganglion. In contrast to FGF-2, expression of FGFR-1 was unchanged in ganglia after axotomy. Taken together, the present results suggest that FGF-2 participates in neuron-glial interactions of sympathetic ganglia and may be involved in sympathetic neuron survival or nerve regeneration after nerve lesion.
Collapse
Affiliation(s)
- L Klimaschewski
- Institute of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | |
Collapse
|
15
|
Szebenyi G, Fallon JF. Fibroblast growth factors as multifunctional signaling factors. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 185:45-106. [PMID: 9750265 DOI: 10.1016/s0074-7696(08)60149-7] [Citation(s) in RCA: 356] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fibroblast growth factor (FGF) family consists of at least 15 structurally related polypeptide growth factors. Their expression is controlled at the levels of transcription, mRNA stability, and translation. The bioavailability of FGFs is further modulated by posttranslational processing and regulated protein trafficking. FGFs bind to receptor tyrosine kinases (FGFRs), heparan sulfate proteoglycans (HSPG), and a cysteine-rich FGF receptor (CFR). FGFRs are required for most biological activities of FGFs. HSPGs alter FGF-FGFR interactions and CFR participates in FGF intracellular transport. FGF signaling pathways are intricate and are intertwined with insulin-like growth factor, transforming growth factor-beta, bone morphogenetic protein, and vertebrate homologs of Drosophila wingless activated pathways. FGFs are major regulators of embryonic development: They influence the formation of the primary body axis, neural axis, limbs, and other structures. The activities of FGFs depend on their coordination of fundamental cellular functions, such as survival, replication, differentiation, adhesion, and motility, through effects on gene expression and the cytoskeleton.
Collapse
Affiliation(s)
- G Szebenyi
- Anatomy Department, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
16
|
Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev 1998; 19:101-43. [PMID: 9570034 DOI: 10.1210/edrv.19.2.0326] [Citation(s) in RCA: 312] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Huber K, Meisinger C, Grothe C. Expression of fibroblast growth factor‐2 in hypoglossal motoneurons is stimulated by peripheral nerve injury. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970602)382:2<189::aid-cne4>3.0.co;2-#] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Klaudia Huber
- Institute of Anatomy, University of Freiburg, D‐79104 Freiburg, Germany
| | | | - Claudia Grothe
- Institute of Anatomy, University of Freiburg, D‐79104 Freiburg, Germany
| |
Collapse
|
18
|
Meisinger C, Grothe C. Differential expression of FGF-2 isoforms in the rat adrenal medulla during postnatal development in vivo. Brain Res 1997; 757:291-4. [PMID: 9200760 DOI: 10.1016/s0006-8993(97)00341-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Basic fibroblast growth factor (FGF-2) isoforms of the adrenal medulla are differentially expressed during rat postnatal development. While the 18 and 23 kDa isoforms continuously rise towards the adult expression level, the 21 kDa isoform displays a peak expression at postnatal day 28. The peak expression of the 21 kDa isoform correlates with the peak of the corticosterone concentration during postnatal development. Together with the previously demonstrated increase of the 21 kDa isoform in the adrenal medulla in vivo after glucocorticoid administration these results suggest that the differential regulation of the FGF-2 isoforms could be a physiologically occurring mechanism.
Collapse
Affiliation(s)
- C Meisinger
- Institute of Anatomy II, University of Freiburg, Germany
| | | |
Collapse
|
19
|
Blottner D. Nitric oxide and fibroblast growth factor in autonomic nervous system: short- and long-term messengers in autonomic pathway and target-organ control. Prog Neurobiol 1997; 51:423-38. [PMID: 9106900 DOI: 10.1016/s0301-0082(96)00062-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The freely diffusible messenger nitric oxide (NO), generated by NO synthase (NOS)-containing "nitroxergic" (NO-ergic) neurons, is unique among classical synaptic chemical transmitters because of its "non-specificity", molecular "NO-receptors" (e.g. guanylyl cyclase, iron complexes, nitrosylated proteins or DNA) in target cells, intracellular targeting, regulated biosynthesis, and growth factor/cytokine-dependence. In the nervous system, expression of NOS is particularly intriguing in central and peripheral autonomic pathways and their targets. Here, anatomical and functional links appear to exist between NOS, its associated catalytic NADPH-diaphorase enzyme activity (NOSaD) and fibroblast growth factor-2 (FGF-2), a pleiotropic cytokine with mitogenic actions, suggesting mutual "short- and long-term" actions. Several recent studies performed in the rat sympathoadrenal system, an anatomically and neurochemically well-defined autonomic pathway with target-specific functional units of sympathetic preganglionic neurons (SPNs) in the spinal cord, provide evidence for this hypothesis. The NO and cytokine signals may interact at the level of gene expression, transcription factors, post-transcriptional control or second messenger cross-talk. Thus, unique biological roles of FGF-2 and the NO system are likely to exist in neuroendocrine actions, vasomotory perfusion control as well as in neurotrophic actions in sympathetic innervation of the adrenal gland. In view of their anatomical co-existence, functional interplay and synchronizing effects on neuronal networks, multiple roles are suggested for both "short- and long-term" signalling molecules in neuroendocrine functions and integrated autonomic target organ control.
Collapse
Affiliation(s)
- D Blottner
- Department of Anatomy, Freie Universität Berlin, Germany.
| |
Collapse
|
20
|
Blottner D, Stapf C, Meisinger C, Grothe C. Localization, differential expression and retrograde axonal transport suggest physiological role of FGF-2 in spinal autonomic neurons of the rat. Eur J Neurosci 1997; 9:368-77. [PMID: 9058056 DOI: 10.1111/j.1460-9568.1997.tb01406.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fibroblast growth factor-2 (FGF-2) has marked pharmacological neurotrophic effects on lesioned spinal autonomic neurons following target removal of the adrenal medulla, yet expression and axonal transport in autonomic neurons remain to be shown. We show here FGF-2 and FGF receptor type 1 (FGFR1) protein and mRNA expression in preganglionic intermediolateral neurons of the rat thoracic spinal cord. While immunoreactivity of both FGF-2 and FGFR1 co-localize to intermediolateral neurons, mRNA transcripts of FGFR1, but not of FGF-2, are detectable in intermediolateral preparations by RNase protection analysis, suggesting protein translocation in vivo. Unilateral microinjection of 125iodinated FGF-2 into the adrenal medulla (a major target of intermediolateral neurons) results in significant accumulation of specific radioactivity in thoracic spinal cord tissue, including the intermediolateral neurons, and the ipsilateral splanchnic nerve. Emulsion autoradiography demonstrated labelling over ipsilateral intermediolateral neurons only. Neuronal co-localization of FGF-2/FGFR1 protein, differential mRNA expression, specific retrograde axonal transport and the known neurotrophic actions in vivo, strongly suggest unique physiological roles of FGF-2 in the autonomic nervous system.
Collapse
Affiliation(s)
- D Blottner
- Institute for Anatomy, University Clinics Benjamin Franklin, Freie Universität Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Grothe C, Meisinger C, Hertenstein A, Kurz H, Wewetzer K. Expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 messenger RNAs in spinal ganglia and sciatic nerve: regulation after peripheral nerve lesion. Neuroscience 1997; 76:123-35. [PMID: 8971765 DOI: 10.1016/s0306-4522(96)00355-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to determine functional roles of basic fibroblast growth factor (FGF-2) in the peripheral nervous system we have analysed the expression of FGF-2 and FGF receptor 1 (FGFR1) in spinal ganglia and the sciatic nerve under normal conditions and after nerve crush using RNAse protection assay and in situ hybridization. In intact spinal ganglia, both FGF-2 and FGFR1 messenger RNAs are expressed, albeit at different levels. In situ hybridization identifies satellite cells as the source of FGF-2 and sensory neurons as the source of FGFR1 suggesting a paracrine mode of action of FGF-2 on sensory neurons. One day after crush lesion FGF-2 is significantly up-regulated in sensory ganglia L4-L6. Highest levels are found at day 7; control levels are approached after 28 days. FGFR1 messenger RNA, which is strongly expressed in intact spinal ganglia, displays no significant change after lesion. In the intact sciatic nerve, FGFR1 messenger RNA is detected at higher levels than FGF-2 messenger RNA. After injury, both transcripts display a time-dependent up-regulation in both the proximal and distal nerve stump. Schwann cells, as a putative source of the sciatic nerve-derived FGF-2, express both FGF-2 and FGFR1 messenger RNAs in vitro. The FGFR1 transcript level is increased in the presence of forskolin. FGF-2 does not affect expression of FGFR1 messenger RNA but stimulates its own expression. These results show that during peripheral nerve regeneration FGF-2 is up-regulated in both the crushed nerve and the respective spinal ganglia suggesting a possible physiological function of FGF-2 during the regeneration process.
Collapse
Affiliation(s)
- C Grothe
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Meisinger C, Zeschnigk C, Grothe C. In vivo and in vitro effect of glucocorticoids on fibroblast growth factor (FGF)-2 and FGF receptor 1 expression. J Biol Chem 1996; 271:16520-5. [PMID: 8663254 DOI: 10.1074/jbc.271.28.16520] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In order to clarify the physiological function of fibroblast growth factor (FGF-2) in the adrenal medulla the regulation of FGF-2 and FGF receptor 1 (FGFR1) was studied in vitro and in vivo in response to glucocorticoids. To assess the effects of glucocorticoids, in vivo extracts of adrenal medulla and adrenal cortex were analyzed by RNase protection assay and Western blot analysis. PC12 cells were chosen as a model system to study the effects of glucocorticoids in vitro. In PC12 cells, dexamethasone (DEX) was found to stimulate dramatically the expression of both FGF-2 mRNA and protein. Western blot analysis revealed that exclusively the 21-kDa FGF-2 isoform was enhanced. In contrast to the FGF-2 mRNA level FGFR1 was not affected by treatment with glucocorticoids. In vivo FGF-2 mRNA level and 21-kDa FGF-2 isoform level are significantly enhanced in the adrenal medulla 24 h after DEX injection. In vivo application of DEX leads to an increase of the medullary and cortical FGFR1 transcript levels. Glucocorticoid effects on FGF-2 expression were not found in adrenal cortex, heart, skeletal muscle, and kidney, respectively, in vivo and in L6 rat myoblasts in vitro. In addition to adrenal medullary cells glucocorticoids elevated the FGF-2 mRNA and protein level also in vivo in the brain and in vitro in immortalized Schwann cells. The present results suggest that the 21-kDa FGF-2 isoform mediates a physiological function specific for neuronal tissue which is modulated by glucocorticoids.
Collapse
Affiliation(s)
- C Meisinger
- Institute of Anatomy, University of Freiburg, D-79104 Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|