1
|
Hanifa M, Suri M, Singh H, Gagnani R, Jaggi AS, Bali A. Dual Role of TRPV1 Channels in Cerebral Stroke: An Exploration from a Mechanistic and Therapeutic Perspective. Mol Neurobiol 2024:10.1007/s12035-024-04221-5. [PMID: 38760620 DOI: 10.1007/s12035-024-04221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Transient receptor potential vanilloid subfamily member 1 (TRPV1) has been strongly implicated in the pathophysiology of cerebral stroke. However, the exact role and mechanism remain elusive. TPRV1 channels are exclusively present in the neurovascular system and involve many neuronal processes. Numerous experimental investigations have demonstrated that TRPV1 channel blockers or the lack of TRPV1 channels may prevent harmful inflammatory responses during ischemia-reperfusion injury, hence conferring neuroprotection. However, TRPV1 agonists such as capsaicin and some other non-specific TRPV1 activators may induce transient/slight degree of TRPV1 channel activation to confer neuroprotection through a variety of mechanisms, including hypothermia induction, improving vascular functions, inducing autophagy, preventing neuronal death, improving memory deficits, and inhibiting inflammation. Another factor in capsaicin-mediated neuroprotection could be the desensitization of TRPV1 channels. Based on the summarized evidence, it may be plausible to suggest that TPRV1 channels have a dual role in ischemia-reperfusion-induced cerebral injury, and thus, both agonists and antagonists may produce neuroprotection depending upon the dose and duration. The current review summarizes the dual function of TRPV1 in ischemia-reperfusion-induced cerebral injury models, explains its mechanism, and predicts the future.
Collapse
Affiliation(s)
- Mohd Hanifa
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Manisha Suri
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Harshita Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Riya Gagnani
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | | | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
2
|
Wang J, Zhu H, Gan J, Liang G, Li L, Zhao Y. Engineered mRNA Delivery Systems for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308029. [PMID: 37805865 DOI: 10.1002/adma.202308029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Messenger RNA (mRNA)-based therapeutic strategies have shown remarkable promise in preventing and treating a staggering range of diseases. Optimizing the structure and delivery system of engineered mRNA has greatly improved its stability, immunogenicity, and protein expression levels, which has led to a wider range of uses for mRNA therapeutics. Herein, a thorough analysis of the optimization strategies used in the structure of mRNA is first provided and delivery systems are described in great detail. Furthermore, the latest advancements in biomedical engineering for mRNA technology, including its applications in combatting infectious diseases, treating cancer, providing protein replacement therapy, conducting gene editing, and more, are summarized. Lastly, a perspective on forthcoming challenges and prospects concerning the advancement of mRNA therapeutics is offered. Despite these challenges, mRNA-based therapeutics remain promising, with the potential to revolutionize disease treatment and contribute to significant advancements in the biomedical field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haofang Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaofeng Liang
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| |
Collapse
|
3
|
Treble-Barna A, Petersen BA, Stec Z, Conley YP, Fink EL, Kochanek PM. Brain-Derived Neurotrophic Factor in Pediatric Acquired Brain Injury and Recovery. Biomolecules 2024; 14:191. [PMID: 38397427 PMCID: PMC10886547 DOI: 10.3390/biom14020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
We review emerging preclinical and clinical evidence regarding brain-derived neurotrophic factor (BDNF) protein, genotype, and DNA methylation (DNAm) as biomarkers of outcomes in three important etiologies of pediatric acquired brain injury (ABI), traumatic brain injury, global cerebral ischemia, and stroke. We also summarize evidence suggesting that BDNF is (1) involved in the biological embedding of the psychosocial environment, (2) responsive to rehabilitative therapies, and (3) potentially modifiable. BDNF's unique potential as a biomarker of neuroplasticity and neural repair that is reflective of and responsive to both pre- and post-injury environmental influences separates it from traditional protein biomarkers of structural brain injury with exciting potential to advance pediatric ABI management by increasing the accuracy of prognostic tools and informing clinical decision making through the monitoring of therapeutic effects.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
| | - Bailey A. Petersen
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
| | - Zachary Stec
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
| | - Yvette P. Conley
- Department of Health Promotion & Development, University of Pittsburgh School of Nursing, Pittsburgh, PA 15213, USA;
| | - Ericka L. Fink
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Rahman MH, Bajgai J, Sharma S, Jeong ES, Goh SH, Jang YG, Kim CS, Lee KJ. Effects of Hydrogen Gas Inhalation on Community-Dwelling Adults of Various Ages: A Single-Arm, Open-Label, Prospective Clinical Trial. Antioxidants (Basel) 2023; 12:1241. [PMID: 37371971 DOI: 10.3390/antiox12061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Molecular hydrogen (H2) is a versatile therapeutic agent. H2 gas inhalation is reportedly safe and has a positive impact on a range of illnesses, including Alzheimer's disease (AD). Herein, we investigated the effects of 4 weeks of H2 gas inhalation on community-dwelling adults of various ages. Fifty-four participants, including those who dropped out (5%), were screened and enrolled. The selected participants were treated as a single group without randomization. We evaluated the association between total and differential white blood cell (WBC) counts and AD risk at individual levels after 4 weeks of H2 gas inhalation treatment. The total and differential WBC counts were not adversely affected after H2 gas inhalation, indicating that it was safe and well tolerated. Investigation of oxidative stress markers such as reactive oxygen species and nitric oxide showed that their levels decreased post-treatment. Furthermore, evaluation of dementia-related biomarkers, such as beta-site APP cleaving enzyme 1 (BACE-1), amyloid beta (Aβ), brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor A (VEGF-A), T-tau, monocyte chemotactic protein-1 (MCP-1), and inflammatory cytokines (interleukin-6), showed that their cognitive condition significantly improved after treatment, in most cases. Collectively, our results indicate that H2 gas inhalation may be a good candidate for improving AD with cognitive dysfunction in community-dwelling adults of different ages.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Johny Bajgai
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Subham Sharma
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Eun-Sook Jeong
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Seong Hoon Goh
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Yeon-Gyu Jang
- Department of Neurosurgery, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Gangwon-do, Republic of Korea
| | - Cheol-Su Kim
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| | - Kyu-Jae Lee
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Republic of Korea
| |
Collapse
|
5
|
Wu X, You J, Chen X, Zhou M, Ma H, Zhang T, Huang C. An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis 2023; 38:855-872. [PMID: 36729260 PMCID: PMC10106353 DOI: 10.1007/s11011-023-01165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Ischemic stroke (IS) has become the second leading cause of morbidity and mortality worldwide, and the prevention of IS should be given high priority. Recent studies have indicated that hyperbaric oxygen preconditioning (HBO-PC) may be a protective nonpharmacological method, but its underlying mechanisms remain poorly defined. This study comprehensively reviewed the pathophysiology of IS and revealed the underlying mechanism of HBO-PC in protection against IS. The preventive effects of HBO-PC against IS may include inducing antioxidant, anti-inflammation, and anti-apoptosis capacity; activating autophagy and immune responses; upregulating heat shock proteins, hypoxia-inducible factor-1, and erythropoietin; and exerting protective effects upon the blood-brain barrier. In addition, HBO-PC may be considered a safe and effective method to prevent IS in combination with stem cell therapy. Although the benefits of HBO-PC on IS have been widely observed in recent research, the implementation of this technique is still controversial due to regimen differences. Transferring the results to clinical application needs to be taken carefully, and screening for the optimal regimen would be a daunting task. In addition, whether we should prescribe an individualized preconditioning regimen to each stroke patient needs further exploration.
Collapse
Affiliation(s)
- Xuyi Wu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong You
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Chen
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Mei Zhou
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hui Ma
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tianle Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Huang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Serra MP, Boi M, Carta A, Murru E, Carta G, Banni S, Quartu M. Anti-Inflammatory Effect of Beta-Caryophyllene Mediated by the Involvement of TRPV1, BDNF and trkB in the Rat Cerebral Cortex after Hypoperfusion/Reperfusion. Int J Mol Sci 2022; 23:3633. [PMID: 35408995 PMCID: PMC8998979 DOI: 10.3390/ijms23073633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
We have previously shown that bilateral common carotid artery occlusion followed by reperfusion (BCCAO/R) is a model to study early hypoperfusion/reperfusion-induced changes in biomarkers of the tissue physiological response to oxidative stress and inflammation. Thus in this study, we investigate with immunochemical assays if a single dose of beta-caryophyllene (BCP), administered before the BCCAO/R, can modulate the TRPV1, BDNF, and trkB receptor in the brain cortex; the glial markers GFAP and Iba1 were also examined. Frontal and temporal-occipital cortical regions were analyzed in two groups of male rats, sham-operated and submitted to BCCAO/R. Six hours before surgery, one group was gavage fed a dose of BCP (40 mg/per rat in 300 μL of sunflower oil), the other was pre-treated with the vehicle alone. Western blot analysis showed that, in the frontal cortex of vehicle-treated rats, the BCCAO/R caused a TRPV1 decrease, an increment of trkB and GFAP, no change in BDNF and Iba1. The BCP treatment caused a decrease of BDNF and an increase of trkB levels in both sham and BCCAO/R conditions while inducing opposite changes in the case of TRPV1, whose levels became higher in BCCAO/R and lower in sham conditions. Present results highlight the role of BCP in modulating early events of the cerebral inflammation triggered by the BCCAO/R through the regulation of TRPV1 and the BDNF-trkB system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (M.P.S.); (M.B.); (A.C.); (E.M.); (G.C.); (S.B.)
| |
Collapse
|
7
|
Pla L, Illa M, Loreiro C, Lopez MC, Vázquez-Aristizabal P, Kühne BA, Barenys M, Eixarch E, Gratacós E. Structural Brain Changes during the Neonatal Period in a Rabbit Model of Intrauterine Growth Restriction. Dev Neurosci 2021; 42:217-229. [PMID: 33677448 DOI: 10.1159/000512948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is associated with abnormal neurodevelopment, but the associated structural brain changes are poorly documented. The aim of this study was to describe in an animal model the brain changes at the cellular level in the gray and white matter induced by IUGR during the neonatal period. METHODS The IUGR model was surgically induced in pregnant rabbits by ligating 40-50% of the uteroplacental vessels in 1 horn, whereas the uteroplacental vessels of the contralateral horn were not ligated. After 5 days, IUGR animals from the ligated horn and controls from the nonligated were delivered. On the day of delivery, perinatal data and placentas were collected. On postnatal day 1, functional changes were first evaluated, and thereafter, neuronal arborization in the frontal cortex and density of pre-oligodendrocytes, astrocytes, and microglia in the corpus callosum were evaluated. RESULTS Higher stillbirth in IUGR fetuses together with a reduced birth weight as compared to controls was evidenced. IUGR animals showed poorer functional results, an altered neuronal arborization pattern, and a decrease in the pre-oligodendrocytes, with no differences in microglia and astrocyte densities. CONCLUSIONS Overall, in the rabbit model used, IUGR is related to functional and brain changes evidenced already at birth, including changes in the neuronal arborization and abnormal oligodendrocyte maturation.
Collapse
Affiliation(s)
- Laura Pla
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Illa
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain, .,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain,
| | - Carla Loreiro
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mari Carmen Lopez
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Paula Vázquez-Aristizabal
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Britta Anna Kühne
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Marta Barenys
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Elisenda Eixarch
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| |
Collapse
|
8
|
Fukushima Y, Uchida S, Imai H, Nakatomi H, Kataoka K, Saito N, Itaka K. Treatment of ischemic neuronal death by introducing brain-derived neurotrophic factor mRNA using polyplex nanomicelle. Biomaterials 2021; 270:120681. [PMID: 33517206 DOI: 10.1016/j.biomaterials.2021.120681] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Abstract
Ischemic neuronal death causes serious lifelong neurological deficits; however, there is no proven effective treatment that can prevent neuronal death after the ischemia. We investigated the feasibility of mRNA therapeutics for preventing the neuronal death in a rat model of transient global ischemia (TGI). By intraventricular administration of mRNA encoding brain-derived neurotrophic factor (BDNF) using a polymer-based carrier, polyplex nanomicelle, the mRNA significantly increased the survival rate of hippocampal neurons after TGI, with a rapid rise of BDNF in the hippocampus. Interestingly, mRNA administration on Day 2 after TGI provided significantly better survival rate than the administration immediately after TGI. Eventually, dosing twice on Day 2 and 5 exerted long-term therapeutic effects, which were confirmed by a Y-maze behavioral test demonstrating improved spatial memory compared with untreated rats on Day 20. Immunohistochemical analysis showed that astrocytes were chief targets of the BDNF mRNA-loaded nanomicelles, suggesting that the augmented BDNF secretion from astrocytes creates a supportive microenvironment for the neurons to tolerate changes caused by ischemic stresses, and terminate the process of progressive neuronal death after the ischemic attack. Overall, the unique mechanism of action of mRNA therapeutics provide a promising approach for preventing ischemic neuronal death.
Collapse
Affiliation(s)
- Yuta Fukushima
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 1010062, Tokyo, Japan; Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 1138655, Tokyo, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 2100821, Kawasaki, Kanagawa, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 2100821, Kawasaki, Kanagawa, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 1138656, Tokyo, Japan
| | - Hideaki Imai
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 1138655, Tokyo, Japan
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 1138655, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 2100821, Kawasaki, Kanagawa, Japan; Institute for Future Initiatives, The University of Tokyo, 1130033, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 1138655, Tokyo, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 1010062, Tokyo, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 2100821, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
9
|
Resveratrol Regulates BDNF, trkB, PSA-NCAM, and Arc Expression in the Rat Cerebral Cortex after Bilateral Common Carotid Artery Occlusion and Reperfusion. Nutrients 2019; 11:nu11051000. [PMID: 31052460 PMCID: PMC6567029 DOI: 10.3390/nu11051000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
The polyphenol resveratrol (RVT) may drive protective mechanisms of cerebral homeostasis during the hypoperfusion/reperfusion triggered by the transient bilateral common carotid artery occlusion followed by reperfusion (BCCAO/R). This immunochemical study investigates if a single dose of RVT modulates the plasticity-related markers brain-derived neurotrophic factor (BDNF), the tyrosine kinase trkB receptor, Polysialylated-Neural Cell Adhesion Molecule (PSA-NCAM), and Activity-regulated cytoskeleton-associated (Arc) protein in the brain cortex after BCCAO/R. Frontal and temporal-occipital cortical regions were examined in male Wistar rats randomly subdivided in two groups, sham-operated and submitted to BCCAO/R. Six hours prior to surgery, half the rats were gavage fed a dose of RVT (180 mg·kg−1 in 300 µL of sunflower oil as the vehicle), while the second half was given the vehicle alone. In the frontal cortex of BCCAO/R vehicle-treated rats, BDNF and PSA-NCAM decreased, while trkB increased. RVT pre-treatment elicited an increment of all examined markers in both sham- and BCCAO/R rats. No variations occurred in the temporal-occipital cortex. The results highlight a role for RVT in modulating neuronal plasticity through the BDNF-trkB system and upregulation of PSA-NCAM and Arc, which may provide both trophic and structural local support in the dynamic changes occurring during the BCCAO/R, and further suggest that dietary supplements such as RVT are effective in preserving the tissue potential to engage plasticity-related events and control the functional response to the hypoperfusion/reperfusion challenge.
Collapse
|
10
|
Sachana M, Rolaki A, Bal-Price A. Development of the Adverse Outcome Pathway (AOP): Chronic binding of antagonist to N-methyl-d-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities of children. Toxicol Appl Pharmacol 2018; 354:153-175. [PMID: 29524501 PMCID: PMC6095943 DOI: 10.1016/j.taap.2018.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/06/2023]
Abstract
The Adverse Outcome Pathways (AOPs) are designed to provide mechanistic understanding of complex biological systems and pathways of toxicity that result in adverse outcomes (AOs) relevant to regulatory endpoints. AOP concept captures in a structured way the causal relationships resulting from initial chemical interaction with biological target(s) (molecular initiating event) to an AO manifested in individual organisms and/or populations through a sequential series of key events (KEs), which are cellular, anatomical and/or functional changes in biological processes. An AOP provides the mechanistic detail required to support chemical safety assessment, the development of alternative methods and the implementation of an integrated testing strategy. An example of the AOP relevant to developmental neurotoxicity (DNT) is described here following the requirements of information defined by the OECD Users' Handbook Supplement to the Guidance Document for developing and assessing AOPs. In this AOP, the binding of an antagonist to glutamate receptor N-methyl-d-aspartate (NMDAR) receptor is defined as MIE. This MIE triggers a cascade of cellular KEs including reduction of intracellular calcium levels, reduction of brain derived neurotrophic factor release, neuronal cell death, decreased glutamate presynaptic release and aberrant dendritic morphology. At organ level, the above mentioned KEs lead to decreased synaptogenesis and decreased neuronal network formation and function causing learning and memory deficit at organism level, which is defined as the AO. There are in vitro, in vivo and epidemiological data that support the described KEs and their causative relationships rendering this AOP relevant to DNT evaluation in the context of regulatory purposes.
Collapse
Affiliation(s)
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre, Ispra, Italy.
| |
Collapse
|
11
|
Tecuatl C, Herrrera-López G, Martín-Ávila A, Yin B, Weber S, Barrionuevo G, Galván EJ. TrkB-mediated activation of the phosphatidylinositol-3-kinase/Akt cascade reduces the damage inflicted by oxygen-glucose deprivation in area CA3 of the rat hippocampus. Eur J Neurosci 2018; 47:1096-1109. [PMID: 29480936 PMCID: PMC5938095 DOI: 10.1111/ejn.13880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
The selective vulnerability of hippocampal area CA1 to ischemia-induced injury is a well-known phenomenon. However, the cellular mechanisms that confer resistance to area CA3 against ischemic damage remain elusive. Here, we show that oxygen-glucose deprivation-reperfusion (OGD-RP), an in vitro model that mimic the pathological conditions of the ischemic stroke, increases the phosphorylation level of tropomyosin receptor kinase B (TrkB) in area CA3. Slices preincubated with brain-derived neurotrophic factor (BDNF) or 7,8-dihydroxyflavone (7,8-DHF) exhibited reduced depression of the electrical activity triggered by OGD-RP. Consistently, blockade of TrkB suppressed the resistance of area CA3 to OGD-RP. The protective effect of TrkB activation was limited to area CA3, as OGD-RP caused permanent suppression of CA1 responses. At the cellular level, TrkB activation leads to phosphorylation of the accessory proteins SHC and Gab as well as the serine/threonine kinase Akt, members of the phosphoinositide 3-kinase/Akt (PI-3-K/Akt) pathway, a cascade involved in cell survival. Hence, acute slices pretreated with the Akt antagonist MK2206 in combination with BDNF lost the capability to resist the damage inflicted with OGD-RP. Consistently, with these results, CA3 pyramidal cells exhibited reduced propidium iodide uptake and caspase-3 activity in slices pretreated with BDNF and exposed to OGD-RP. We propose that PI-3-K/Akt downstream activation mediated by TrkB represents an endogenous mechanism responsible for the resistance of area CA3 to ischemic damage.
Collapse
Affiliation(s)
- Carolina Tecuatl
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Gabriel Herrrera-López
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Alejandro Martín-Ávila
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Bocheng Yin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Germán Barrionuevo
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Emilio J. Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| |
Collapse
|
12
|
Tezcan B, Hacıoğlu G, Abidin SA, Abidin İ. Apoptotic Effects of Reduced Brain Derived Neurotrophic Factor (BDNF) on Mouse Liver and Kidney. DICLE MEDICAL JOURNAL 2017. [DOI: 10.5798/dicletip.362276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
de la Tremblaye PB, Benoit SM, Schock S, Plamondon H. CRHR1 exacerbates the glial inflammatory response and alters BDNF/TrkB/pCREB signaling in a rat model of global cerebral ischemia: implications for neuroprotection and cognitive recovery. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28647536 DOI: 10.1016/j.pnpbp.2017.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study examined the impact of corticotropin-releasing hormone type 1 receptor (CRHR1) blockade using Antalarmin (ANT) on the expression of markers of neuroplasticity and inflammation, as well as neuroprotection and behavioral recovery following global cerebral ischemia. Male Wistar rats (N=50) were treated with ANT (2μg/2μl; icv) or a vehicle solution prior to a sham or four vessel (4VO) occlusion. Seven days post ischemia, anxiety was assessed in the Elevated Plus Maze and Open Field tests, and fear and spatial learning in a Y-Maze Passive Avoidance Task and the Barnes Maze. Thirty days post ischemia, brain derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptor expression, hippocampal neuronal death and inflammation were determined by analyzing immunoreactivity (ir) of neuron-specific nuclear protein (NeuN), microglia (IBA1, ionized calcium binding adaptor molecule 1), astrocytes (GFAP, glial fibrillary acidic protein) and TNFα (tumor necrosis factor alpha) a pro-inflammatory cytokine. Our findings revealed that ANT improved behavioral impairments, while conferring neuroprotection and blunting neuroinflammation in all hippocampal sub-regions post ischemia. We also observed reduced BDNF and TrkB mRNA and protein levels at the hippocampus, and increased expression at the hypothalamus and amygdala post ischemia, site-specific alterations which were regularized by pre-ischemic CRHR1 blockade. These findings support that CRHR1 actively contributes to altered brain plasticity, neuronal inflammation and injury and recovery of function following ischemic brain insults.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada
| | - Simon M Benoit
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada
| | - Sarah Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8N5, Canada
| | - Hélène Plamondon
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
14
|
Yasuhara T, Matsukawa N, Yu G, Xu L, Mays RW, Kovach J, Deans RJ, Hess DC, Carroll JE, Borlongan CV. Behavioral and Histological Characterization of Intrahippocampal Grafts of Human Bone Marrow-Derived Multipotent Progenitor Cells in Neonatal Rats with Hypoxic-Ischemic Injury. Cell Transplant 2017; 15:231-8. [PMID: 16719058 DOI: 10.3727/000000006783982034] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Children born with hypoxic-ischemic (HI) brain injury account for a significant number of live births wherein no clinical treatment is available. Limited clinical trials of stem cell therapy have been initiated in a number of neurological disorders, but the preclinical evidence of a cell-based therapy for neonatal HI injury remains in its infancy. One major postulated mechanism underlying therapeutic benefits of stem cell therapy involves stimulation of endogenous neurogenesis via transplantation of exogenous stem cells. To this end, transplantation has targeted neurogenic sites, such as the hippocampus, for brain protection and repair. The hippocampus has been shown to secrete growth factors, especially during the postnatal period, suggesting that this brain region presents as highly conducive microenvironment for cell survival. Based on its neurogenic and neurotrophic factor-secreting features, the hippocampus stands as an appealing target for stem cell therapy. Here, we investigated the efficacy of intrahippocampal transplantation of multipotent progenitor cells (MPCs), which are pluripotent progenitor cells with the ability to differentiate into a neuronal lineage. Seven-day-old Sprague-Dawley rats were initially subjected to unilateral HI injury, which involved permanent ligation of the right common carotid artery and subsequent exposure to hypoxic environment. At day 7 after HI injury, animals received stereotaxic hippocampal injections of vehicle or cryopreserved MPCs (thawed just prior to transplantation) derived either from Sprague-Dawley rats (syngeneic) or Fisher rats (allogeneic). All animals were treated with daily immunosuppression throughout the survival period. Behavioral tests were conducted on posttransplantation days 7 and 14 using the elevated body swing test and the rotarod to reveal general and coordinated motor functions. MPC transplanted animals exhibited reduced motor asymmetry and longer time spent on the rotarod than those that received the vehicle infusion. Both syngeneic and allogeneic MPC transplanted injured animals did not significantly differ in their behavioral improvements at both test periods. Immunohistochemical evaluations of graft survival after behavioral testing at day 14 posttransplantation revealed that syngeneic and allogeneic transplanted MPCs survived in the hippocampal region. These results demonstrate for the first time that transplantation of MPCs ameliorated motor deficits associated with HI injury. In view of comparable behavioral recovery produced by syngeneic and allogeneic MPC grafts, allogeneic transplantation poses as a feasible and efficacious cell replacement strategy with direct clinical application. An equally major finding is the observation lending support to the hippocampus as an excellent target brain region for stem cell therapy in treating HI injury.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Duan S, Wang T, Zhang J, Li M, Lu C, Wang L, Zou Y, Fu F. Huatuo Zaizao pill promotes functional recovery and neurogenesis after cerebral ischemia-reperfusion in rats. Altern Ther Health Med 2017; 17:19. [PMID: 28056920 PMCID: PMC5217263 DOI: 10.1186/s12906-016-1516-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 12/14/2016] [Indexed: 05/29/2023]
Abstract
Background Ischemic stroke is the third leading cause of death in adults worldwide and is the first leading cause of long-term disability. Neurogenesis plays an important role in promoting behavioral recovery after stroke. Huatuo Zaizao pill (HT), a traditional Chinese medicine, has been used clinically in China to promote the rehabilitation after stroke, but the underlying mechanism of action was still unclear. This study is to investigate the effects of HT on the functional recovery in a rat model of cerebral ischemia-reperfusion (I/R) injury, and the potential molecular mechanisms. Methods Rats were randomly divided into sham, model with cerebral I/R injury, or HT-treated groups, then administered orally with vehicle (for the sham and model group) or HT (0.5, 1.0, or 2.0 mg/kg) respectively, for 3 or 7 days. Functional recovery was assessed by cylinder test, beam walking test, and adhesive test. Neurogenesis was investigated by double immunofluorescence staining for 5-ethynyl-2-deoxyuridine (EdU) and neuronal nuclear protein (NeuN). The proteins of kinase A (PKA), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) were assayed by western blotting. The level of BDNF mRNA was evaluated by RT-PCR. Results Compared with the model group, treatment with HT significantly promoted functional recovery in I/R injured rats (p < 0.05 or p < 0.01). The generation of new neurons was increased in the HT groups. HT treatment for 3 days increased the level of BDNF mRNA in I/R injured rats. Expression of PKA, phosphorylated CREB, and BDNF were significantly (p < 0.05) increased with the 7-day HT treatment. Conclusions These results indicated that HT treatment could promote functional recovery after stroke. HT enhanced the expression of BDNF and increased the level of neurogenesis in cerebral I/R animal, which might be associated with the functional recovery.
Collapse
|
16
|
Mogi K, Ishida Y, Nagasawa M, Kikusui T. Early weaning impairs fear extinction and decreases brain-derived neurotrophic factor expression in the prefrontal cortex of adult male C57BL/6 mice. Dev Psychobiol 2016; 58:1034-1042. [DOI: 10.1002/dev.21437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Kazutaka Mogi
- Department of Animal Science and Biotechnology; Azabu University; Sagamihara Kanagawa Japan
| | - Yuiko Ishida
- Department of Animal Science and Biotechnology; Azabu University; Sagamihara Kanagawa Japan
| | - Miho Nagasawa
- Department of Animal Science and Biotechnology; Azabu University; Sagamihara Kanagawa Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology; Azabu University; Sagamihara Kanagawa Japan
| |
Collapse
|
17
|
Du SQ, Wang XR, Xiao LY, Tu JF, Zhu W, He T, Liu CZ. Molecular Mechanisms of Vascular Dementia: What Can Be Learned from Animal Models of Chronic Cerebral Hypoperfusion? Mol Neurobiol 2016; 54:3670-3682. [PMID: 27206432 DOI: 10.1007/s12035-016-9915-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
Abstract
Vascular dementia (VD) is defined as a progressive neurodegenerative disease of cognitive decline, attributable to cerebrovascular factors. Numerous studies have demonstrated that chronic cerebral hypoperfusion (CCH) is associated with the initiation and progression of VD and Alzheimer's disease (AD). Suitable animal models were established to replicate such pathological condition in experimental research, which contributes largely to comprehending causal relationships between CCH and cognitive impairment. The most widely used experimental model of VD and CCH is permanent bilateral common carotid artery occlusion in rats. In CCH models, changes of learning and memory, cerebral blood flow (CBF), energy metabolism, and neuropathology initiated by ischemia were revealed. However, in order to achieve potential therapeutic targets, particular mechanisms in cognitive and neuropathological changes from CCH to dementia should be investigated. Recent studies have shown that hypoperfusion resulted in a chain of disruption of homeostatic interactions, including oxidative stress, neuroinflammation, neurotransmitter system dysfunction, mitochondrial dysfunction, disturbance of lipid metabolism, and alterations of growth factors. Evidence from experimental studies that elucidate the damaging effects of such imbalances suggests their critical roles in the pathogenesis of VD. The present review provides a summary of the achievements in mechanisms made with the CCH models, permits an understanding of the causative role played by CCH in VD, and highlights preventative and therapeutic prospects.
Collapse
Affiliation(s)
- Si-Qi Du
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Ling-Yong Xiao
- Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jian-Feng Tu
- Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Wen Zhu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Tian He
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Cun-Zhi Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China.
| |
Collapse
|
18
|
MENSHANOV PN, LANSHAKOV DA, DYGALO NN. proBDNF Is a Major Product of bdnf Gene Expressed in the Perinatal Rat Cortex. Physiol Res 2015; 64:925-34. [DOI: 10.33549/physiolres.932996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the developing brain, mature brain derived neurotrophic factor (mBDNF) and its precursor (proBDNF) exhibit prosurvival and proapoptotic functions, respectively. However, it is still unknown whether mBDNF or proBDNF is a major form of neurotrophin expressed in the immature brain, as well as if the level of active caspase-3 correlates with the levels of BDNF forms during normal brain development. Here we found that both proBDNF and mBDNF were expressed abundantly in the rat brainstem, hippocampus and cerebellum between embryonic day 20 and postnatal day 8. The levels of mature neurotrophin as well as mBDNF to proBDNF ratios negatively correlated with the expression of active caspase-3 across brain regions. The immature cortex was the only structure, in which proBDNF was the major product of bdnf gene, especially in the cortical layers 2-3. And only in the cortex, the expression of BDNF precursor positively correlated with the levels of active caspase-3. These findings suggest that proBDNF alone may play an important role in the regulation of naturally occurring cell death during cortical development.
Collapse
Affiliation(s)
- P. N. MENSHANOV
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | | | | |
Collapse
|
19
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
20
|
Kim JH, Choi KH, Jang YJ, Kim HN, Bae SS, Choi BT, Shin HK. Electroacupuncture preconditioning reduces cerebral ischemic injury via BDNF and SDF-1α in mice. Altern Ther Health Med 2013; 13:22. [PMID: 23356671 PMCID: PMC3562247 DOI: 10.1186/1472-6882-13-22] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/25/2013] [Indexed: 11/17/2022]
Abstract
Background This study was designed to determine if electroacupuncture (EA) preconditioning improves tissue outcome and functional outcome following experimentally induced cerebral ischemia in mice. In addition, we investigated whether the expression of brain-derived neurotrophic factor (BDNF) and stromal cell derived factor-1α (SDF-1α) and infarct volume were related with improvement in neurological and motor function by interventions in this study. Methods After treatment with EA at the acupoints ‘Baihui (GV20)’ and ‘Dazhui (GV14)’ for 20 min, BDNF was assessed in the cortical tissues based on Western blot and the SDF-1α and vascular endothelial growth factor (VEGF) levels in the plasma determined by ELISA. To assess the protective effects of EA against ischemic injury, the mice received once a day 20 min EA preconditioning for three days prior to the ischemic event. Focal cerebral ischemia was then induced by photothrombotic cortical ischemia. Infarct volumes, neurobehavioral deficit and motor deficit were evaluated 24 h after focal cerebral ischemia. Results The expression of BDNF protein increased significantly from 6 h, reaching a plateau at 12 h after the end of EA treatment in the cerebral cortex. Furthermore, SDF-1α, not VEGF, increased singnificantly from 12 h to 48 h after EA stimulation in the plasma. Moreover, EA preconditioning reduced the infarct volume by 43.5% when compared to control mice at 24 h after photothrombotic cortical ischemia. Consistent with a smaller infarct size, EA preconditioning showed prominent improvement of neurological function and motor function such as vestibule-motor function, sensori-motor function and asymmetric forelimb use. The expression of BDNF colocalized within neurons and SDF-1α colocalized within the cerebral vascular endothelium was observed throughout the ischemic cortex by EA. Conclusions Pretreatment with EA increased the production of BDNF and SDF-1α, which elicited protective effects against focal cerebral ischemia. These results suggest a novel mechanism of EA pretreatment-induced tolerance against cerebral ischemic injury.
Collapse
|
21
|
Awad BI, Carmody MA, Steinmetz MP. Potential role of growth factors in the management of spinal cord injury. World Neurosurg 2013; 83:120-31. [PMID: 23334003 DOI: 10.1016/j.wneu.2013.01.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/06/2013] [Accepted: 01/11/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To review central nervous system growth factors and their therapeutic potential and clinical translation into spinal cord injury (SCI), as well as the challenges that have been encountered during clinical development. METHODS A systemic review of the available current and historical literature regarding central nervous system growth factors and clinical trials regarding their use in spinal cord injury was conducted. RESULTS The effectiveness of administering growth factors as a potential therapeutic strategy for SCI has been tested with the use of brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, neurotrophin 3, and neurotrophin-4/5. Delivery of growth factors to injured SC has been tested by numerous methods. Unfortunately, most of clinical trials at this time are uncontrolled and have questionable results because of lack of efficacy and/or unacceptable side effects. CONCLUSIONS There is promise in the use of specific growth factors therapeutically for SCI. However, more studies involving neuronal regeneration and functional recovery are needed, as well the development of delivery methods that allow sufficient quantity of growth factors while restricting their distribution to target sites.
Collapse
Affiliation(s)
- Basem I Awad
- Department of Neurosurgery, Mansoura University School of Medicine, Mansoura, Egypt; Department of Neurosciences, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Margaret A Carmody
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael P Steinmetz
- Department of Neurosciences, MetroHealth Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
22
|
Abstract
The glial cell line-derived neurotrophic factor (GDNF) was first identified as a survival factor for midbrain dopaminergic neurons, but additional studies provided evidences for a role as a trophic factor for other neurons of the central and peripheral nervous systems. GDNF regulates cellular activity through interaction with glycosyl-phosphatidylinositol-anchored cell surface receptors, GDNF family receptor-α1, which might signal through the transmembrane Ret tyrosine receptors or the neural cell adhesion molecule, to promote cell survival, neurite outgrowth, and synaptogenesis. The neuroprotective effect of exogenous GDNF has been shown in different experimental models of focal and global brain ischemia, by local administration of the trophic factor, using viral vectors carrying the GDNF gene and by transplantation of GDNF-expressing cells. These different strategies and the mechanisms contributing to neuroprotection by GDNF are discussed in this review. Importantly, neuroprotection by GDNF was observed even when administered after the ischemic injury.
Collapse
Affiliation(s)
- Emília P Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | | | | | | |
Collapse
|
23
|
van Donkelaar EL, Blokland A, Ferrington L, Kelly PAT, Steinbusch HWM, Prickaerts J. Mechanism of acute tryptophan depletion: is it only serotonin? Mol Psychiatry 2011; 16:695-713. [PMID: 21339754 DOI: 10.1038/mp.2011.9] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The method of acute tryptophan depletion (ATD), which reduces the availability of the essential amino acid tryptophan (TRP), the dietary serotonin (5-hydroxytryptamine (5-HT)) precursor, has been applied in many experimental studies. ATD application leads to decreased availability of TRP in the brain and its synthesis into 5-HT. It is therefore assumed that a decrease in 5-HT release and subsequent blunted neurotransmission is the underlying mechanism for the behavioural effects of ATD. However, direct evidence that ATD decreases extracellular 5-HT concentrations is lacking. Furthermore, several studies provide support for alternative underlying mechanisms of ATD. This may question the utility of the method as a selective serotonergic challenge tool. As ATD is extensively used for investigating the role of 5-HT in cognitive functions and psychiatric disorders, the potential of alternative mechanisms and possible confounding factors should be taken into account. It is suggested that caution is required when interpreting ATD effects in terms of a selective serotonergic effect.
Collapse
Affiliation(s)
- E L van Donkelaar
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Yang L, Zhang Z, Sun D, Xu Z, Yuan Y, Zhang X, Li L. Low serum BDNF may indicate the development of PSD in patients with acute ischemic stroke. Int J Geriatr Psychiatry 2011; 26:495-502. [PMID: 20845405 DOI: 10.1002/gps.2552] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 04/16/2010] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study was to test whether serum BDNF or tissue plasminogen activator (tPA) is correlated with the development of depression at the acute stage of stroke. METHODS Hundred ischemic stroke patients admitted to the hospital within the first 24 h of stroke onset were consecutively recruited and followed up for 14 days. The 17-item HDRS and MADRS were used to assess the severity of major depressive symptoms on day 3, day 7, and day 14 after admission. The diagnoses of depression were made in accordance with DSM-IV criteria for post-stroke depression (PSD). Serum BDNF and tPA of all the patients were determined by ELISA both on day 1 and day 7 after admission. Meanwhile, 50 healthy control subjects were also recruited and underwent measurement of serum BDNF and tPA once. RESULTS We found that 37 patients (37.0%) were diagnosed of major depression at the end of the follow-up. Serum BDNF on day 1 was significantly higher in non-PSD stroke patients than in normal controls, while PSD patients had significantly lower BDNF than non-PSD patients. There was a significant negative correlation between serum BDNF and tPA on day 1 only in PSD patients (r = -0.440, p = 0.006). Serum BDNF < 5.86 ng/ml on day 1 was independently associated with incident PSD at the acute stage of stroke (OR = 28.992; 95% CI, 8.014-104.891; p < 0.001 after adjustment). CONCLUSION There was a significant elevation of BDNF early after ischemic stroke. Serum BDNF on day 1 after admission may predict the risk of subsequent PSD. Moreover, tPA may be involved in the change of BDNF.
Collapse
Affiliation(s)
- Lingli Yang
- Medical College, Southeast University, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Noble EE, Billington CJ, Kotz CM, Wang C. The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1053-69. [PMID: 21346243 DOI: 10.1152/ajpregu.00776.2010] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) mediates energy metabolism and feeding behavior. As a neurotrophin, BDNF promotes neuronal differentiation, survival during early development, adult neurogenesis, and neural plasticity; thus, there is the potential that BDNF could modify circuits important to eating behavior and energy expenditure. The possibility that "faulty" circuits could be remodeled by BDNF is an exciting concept for new therapies for obesity and eating disorders. In the hypothalamus, BDNF and its receptor, tropomyosin-related kinase B (TrkB), are extensively expressed in areas associated with feeding and metabolism. Hypothalamic BDNF and TrkB appear to inhibit food intake and increase energy expenditure, leading to negative energy balance. In the hippocampus, the involvement of BDNF in neural plasticity and neurogenesis is important to learning and memory, but less is known about how BDNF participates in energy homeostasis. We review current research about BDNF in specific brain locations related to energy balance, environmental, and behavioral influences on BDNF expression and the possibility that BDNF may influence energy homeostasis via its role in neurogenesis and neural plasticity.
Collapse
Affiliation(s)
- Emily E Noble
- Veterans Affairs Medical Center, GRECC 11G, One Veterans Drive, Minneapolis, MN, USA.
| | | | | | | |
Collapse
|
26
|
Stem cell-based neuroprotective and neurorestorative strategies. Int J Mol Sci 2010; 11:2039-55. [PMID: 20559500 PMCID: PMC2885092 DOI: 10.3390/ijms11052039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/08/2010] [Accepted: 04/18/2010] [Indexed: 01/11/2023] Open
Abstract
Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs) derived from the adult hippocampal and subventricular regions possess the utilizing potential to develop the transplantation strategies and to screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. In this article, we review the roles of NSCs and other stem cells in neuroprotective and neurorestorative therapies for neurological and psychiatric diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis of several neurodegenerative disorders, including depression, stroke and Parkinson’s disease. Moreover, the potential and possible utilities of induced pluripotent stem cells (iPS), reprogramming from adult fibroblasts with ectopic expression of four embryonic genes, are also reviewed and further discussed. An understanding of the biophysiology of stem cells could help us elucidate the pathogenicity and develop new treatments for neurodegenerative disorders. In contrast to cell transplantation therapies, the application of stem cells can further provide a platform for drug discovery and small molecular testing, including Chinese herbal medicines. In addition, the high-throughput stem cell-based systems can be used to elucidate the mechanisms of neuroprotective candidates in translation medical research for neurodegenerative diseases.
Collapse
|
27
|
Andresen JH, Løberg EM, Wright M, Goverud IL, Stray-Pedersen B, Saugstad OD. Nicotine affects the expression of brain-derived neurotrophic factor mRNA and protein in the hippocampus of hypoxic newborn piglets. J Perinat Med 2010; 37:553-60. [PMID: 19492919 DOI: 10.1515/jpm.2009.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is highly expressed in the developing brain. It has anti-apoptotic abilities, and protects the neonatal brain. In experimental settings in adult animals, pre-treatment with nicotine has shown increased BDNF levels, indicating a possible contribution to nicotine's anti-apoptotic effect. Apoptosis contributes to the development of brain damage in perinatal asphyxia. We examined the effects of nicotine on apoptosis-inducing factor (AIF), caspase-3 and BDNF in the hippocampus of a neonatal piglet model of global hypoxia. Forty-one anesthetized newborn piglets were randomized to one of four groups receiving different infusions after hypoxia (1) nicotine 130 microg/kg/h, 2) 260 microg/kg/h, 3) adrenaline, and 4) saline, all 2.6 mL/kg/h. Four hours after hypoxia they were euthanized. The left hemisphere/hippocampus was examined by histopathology and immunohistochemistry; the right hippocampus was analyzed using real time PCR. There was a significantly higher expression of BDNF mRNA and protein in the animals treated with nicotine 130 microg/kg/h vs. the saline treated group (mRNA P=0.038; protein P=0.009). There were no differences regarding AIF or caspase-3. We conclude that nicotine (130 microg/kg/h), infused over 1 h after global hypoxia in neonatal piglets, increases levels of both BDNF mRNA and protein in the hippocampus. This might imply neuroprotective effects of nicotine in asphyxiated neonates.
Collapse
Affiliation(s)
- Jannicke Hanne Andresen
- Department of Pediatric Research, Institute of Surgical Research, Medical Faculty, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
28
|
Lee JG, Shin BS, You YS, Kim JE, Yoon SW, Jeon DW, Baek JH, Park SW, Kim YH. Decreased serum brain-derived neurotrophic factor levels in elderly korean with dementia. Psychiatry Investig 2009; 6:299-305. [PMID: 20140129 PMCID: PMC2808800 DOI: 10.4306/pi.2009.6.4.299] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/15/2009] [Accepted: 10/29/2009] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE The primary purpose of this study was to investigate the differences in the serum brain-derived neurotrophic factor (BDNF) level between elderly Korean people over 65 years with and without dementia. METHODS 171 individuals over 65 years were enrolled in this study. Screening for cognitive impairments was carried out using the Mini-Mental Status Examination-Korean version (MMSE-KC). One hundred thirty-two subjects scored below 1.5 standard deviations (SD) of the mean MMSE-KC score, and these were evaluated using the Consortium to Establish a Registry for Alzheimer's Disease, Korean version (CERAD-K) and the Geriatric Depression Scale (GDS). The Clinical Dementia Rating Scale (CDRS) and the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) diagnostic criteria were used for further evaluation. Subjects with a CDRS score of 1 or higher were classified as having Alzheimer's disease (AD), and subjects with a CDRS score of 0.5 were classified as having a mild cognitive impairment (MCI). Subjects with a CDRS score of 0 were classified as having aging-associated cognitive decline (AACD). Serum BDNF levels were analyzed using the enzyme-linked immunosorbent assay (ELISA) method. RESULTS The serum BDNF levels were significantly lower in the subjects with MCI and AD compared with the healthy controls (p<0.01). A significant correlation was found between the total MMSE-KC score and serum BDNF level (r=0.295; p<0.01). However, no significant correlation was observed between the severity of MMSE-KC and the total GDS score. A significant difference was found in the total score of GDS between the AACD group and subjects with AD (p<0.05). CONCLUSION This study suggested that BDNF might be involved in the pathophysiology of cognitive decline in elderly people.
Collapse
Affiliation(s)
- Jung Goo Lee
- Department of Psychiatry, Dong Suh Mental Hospital and Paik Institute for Clinical Research, Inje University, Busan, Korea
| | - Bae Sub Shin
- Department of Psychiatry, Guduk Hospital, Busan, Korea
| | - Young Sun You
- Department of Psychiatry, Dong Nam Hospital, Gimhae, Korea
| | - Ji Eun Kim
- Department of Psychiatry, Dong Suh Mental Hospital, Masan, Korea
| | - Sung Wook Yoon
- Department of Psychiatry, Busan Paik Hospital, Inje Medical College, Busan, Korea
| | - Dong Wook Jeon
- Department of Psychiatry, Busan Paik Hospital, Inje Medical College, Busan, Korea
| | - Jun Hyung Baek
- Department of Psychiatry, Busan Paik Hospital, Inje Medical College, Busan, Korea
| | - Sung Woo Park
- Department of Psychiatry, School of Medicine and Paik Institute for Clinical Research, Inje University, Busan, Korea
| | - Young Hoon Kim
- Department of Psychiatry, School of Medicine and Paik Institute for Clinical Research, Inje University, Busan, Korea
| |
Collapse
|
29
|
Peng CH, Chiou SH, Chen SJ, Chou YC, Ku HH, Cheng CK, Yen CJ, Tsai TH, Chang YL, Kao CL. Neuroprotection by Imipramine against lipopolysaccharide-induced apoptosis in hippocampus-derived neural stem cells mediated by activation of BDNF and the MAPK pathway. Eur Neuropsychopharmacol 2008; 18:128-40. [PMID: 17566715 DOI: 10.1016/j.euroneuro.2007.05.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 04/15/2007] [Accepted: 05/07/2007] [Indexed: 01/12/2023]
Abstract
Depression is accompanied by the activation of the inflammatory-response system, and increased production of proinflammatory cytokines may play a role in the pathophysiology of depressive disorders. Imipramine (IM), a tricyclic antidepressant drug, has recently been shown to promote neurogenesis and improve the survival rate of neurons in the hippocampus. However, whether IM elicits a neuroprotective or anti-inflammatory effect, or promotes the differentiation of neural stem cells (NSCs) remains to be elucidated. In this study, we cultured NSCs derived from the hippocampal tissues of adult rats as an in vitro model to evaluate the NSCs drug-modulation effects of IM. Our results showed that 3 microM IM treatment significantly increased the survival rate of NSCs, and up-regulated the mRNA and protein expression of brain-derived neurotrophic factor (BDNF) and Bcl-2 in Day-7 IM-treated NSCs. Similar to BDNF-treated effect, incubation of NSCs with 3 microM IM increased Bcl-2 protein levels and further prevented lipopolysaccharide (LPS)-induced apoptosis through the activation of the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) pathway. Inhibition of BDNF expression with small interfering RNA (siRNA), or blocking the MAPK pathway with U0126 further significantly decreased Bcl-2 protein levels and abrogated the neuroprotective effects of IM against LPS-induced apoptosis in NSCs. In addition, the percentages of serotonin and MAP-2-positive neuronal cells in the Day 7 culture of IM-treated NSCs were significantly increased. By using microdialysis with high performance liquid chromatography-electrochemical detection, the functional release of serotonin in the process of serotoninergic differentiation of IM-treated NSCs was concomitantly increasing and mediated by the activation of the BDNF/MAPK/ERK pathway/Bcl-2 cascades. In sum, the study results indicate that IM can increase the neuroprotective effects, suppress the LPS-induced inflammatory process, and promote serotoninergic differentiation in NSCs via the modulation of the BDNF/MAPK/ERK pathway/Bcl-2 cascades.
Collapse
Affiliation(s)
- Chi-Hsien Peng
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ostrowski RP, Graupner G, Titova E, Zhang J, Chiu J, Dach N, Corleone D, Tang J, Zhang JH. The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia. Neurobiol Dis 2007; 29:1-13. [PMID: 17822911 PMCID: PMC2190110 DOI: 10.1016/j.nbd.2007.07.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/25/2007] [Accepted: 07/17/2007] [Indexed: 01/14/2023] Open
Abstract
We hypothesized that the brain-protective effect of hyperbaric oxygen (HBO) preconditioning in a transient global cerebral ischemia rat model is mediated by the inhibition of early apoptosis. One hundred ten male Sprague-Dawley (SD) rats (300-350 g body weight) were allocated to the sham group and three other groups with 10 min of four-vessel occlusion, untreated or preconditioned with either 3 or 5 hyperbaric oxygenations. HBO preconditioning improved neurobehavioral scores and reduced mortality, decreased ischemic cell change, reduced the number of early apoptotic cells and hampered a conversion of early to late apoptotic alterations. HBO preconditioning reduced the immunoreactivity of phosphorylated p38 in vulnerable neurons and increased the expression of brain derived neurotrophic factor (BDNF) in early stage post-ischemia. However, preconditioning with 3 HBO treatments proved less beneficial than with 5 HBO treatments. We conclude that HBO preconditioning may be neuroprotective by reducing early apoptosis and inhibition of the conversion of early to late apoptosis, possibly through an increase in brain BDNF level and the suppression of p38 activation.
Collapse
Affiliation(s)
| | | | - Elena Titova
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Jennifer Zhang
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Jeffrey Chiu
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Neal Dach
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Dalia Corleone
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University, USA
- Department of Neurosurgery, Loma Linda University, USA
- Department of Anesthesiology, Loma Linda University, USA
| |
Collapse
|
31
|
Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M. Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 2007; 27:488-500. [PMID: 16820801 DOI: 10.1038/sj.jcbfm.9600362] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exogenous microglia pass through the blood-brain barrier and migrate to ischemic hippocampal lesions when injected into the circulation. We investigated the effect of exogenous microglia on ischemic CA1 pyramidal neurons. Microglia were isolated from neonatal mixed brain cultures, labeled with the fluorescent dye PKH26, and injected into the subclavian artery of Mongolian gerbils subjected to ischemia reperfusion neuronal injury. PKH26-labeled microglia migrated to the ischemic hippocampal lesion, resulting in increased numbers of surviving neurons compared with control animals, even when injected 24 h after ischemia. Interferon-gamma stimulation of isolated microglia enhanced the neuroprotective effect. Administration of exogenous microglia resulted in normal performance in a passive avoidance-learning task. Additionally, administration of exogenous microglia increased the expression of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in the ischemic hippocampus, and thus might have induced neurotrophin-dependent protective activity in damaged neurons. Peripherally injected microglia exhibited a specific affinity for ischemic brain lesions, and protected against ischemic neuronal injury in vivo. It is possible that administration of exogenous microglia can be developed as a potential candidate therapy for central nervous system repair after transitory global ischemia.
Collapse
Affiliation(s)
- Fumihiro Imai
- Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Micheli M, Bova R, Laurenzi M, Bazzucchi M, Grassi Zucconi G. Modulation of BDNF and TrkB expression in rat hippocampus in response to acute neurotoxicity by diethyldithiocarbamate. Neurosci Lett 2006; 410:66-70. [DOI: 10.1016/j.neulet.2006.09.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 12/29/2022]
|
33
|
Dolotov OV, Karpenko EA, Inozemtseva LS, Seredenina TS, Levitskaya NG, Rozyczka J, Dubynina EV, Novosadova EV, Andreeva LA, Alfeeva LY, Kamensky AA, Grivennikov IA, Myasoedov NF, Engele J. Semax, an analog of ACTH(4–10) with cognitive effects, regulates BDNF and trkB expression in the rat hippocampus. Brain Res 2006; 1117:54-60. [PMID: 16996037 DOI: 10.1016/j.brainres.2006.07.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 07/12/2006] [Accepted: 07/29/2006] [Indexed: 10/24/2022]
Abstract
The heptapeptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) is an analog of the adrenocorticotropin fragment (4-10) which after intranasal application has profound effects on learning and exerts marked neuroprotective activities. Here, we found that a single application of Semax (50 microg/kg body weight) results in a maximal 1.4-fold increase of BDNF protein levels accompanying with 1.6-fold increase of trkB tyrosine phosporylation levels, and a 3-fold and a 2-fold increase of exon III BDNF and trkB mRNA levels, respectively, in the rat hippocampus. Semax-treated animals showed a distinct increase in the number of conditioned avoidance reactions. We suggest that Semax affects cognitive brain functions by modulating the expression and the activation of the hippocampal BDNF/trkB system.
Collapse
MESH Headings
- Administration, Intranasal
- Adrenocorticotropic Hormone/analogs & derivatives
- Adrenocorticotropic Hormone/chemistry
- Adrenocorticotropic Hormone/pharmacology
- Animals
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Body Weight/drug effects
- Body Weight/physiology
- Brain-Derived Neurotrophic Factor/drug effects
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Cognition/drug effects
- Cognition/physiology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Dose-Response Relationship, Drug
- Exons/drug effects
- Exons/genetics
- Hippocampus/drug effects
- Hippocampus/metabolism
- Nootropic Agents/pharmacology
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptor, trkB/drug effects
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Oleg V Dolotov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yasutake C, Kuroda K, Yanagawa T, Okamura T, Yoneda H. Serum BDNF, TNF-alpha and IL-1beta levels in dementia patients: comparison between Alzheimer's disease and vascular dementia. Eur Arch Psychiatry Clin Neurosci 2006; 256:402-6. [PMID: 16783499 DOI: 10.1007/s00406-006-0652-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 02/01/2006] [Indexed: 01/04/2023]
Abstract
Neurotrophins such as the brain-derived neurotrophic factor (BDNF) are reportedly related to the pathogenesis of Alzheimer's disease (AD). Several studies have revealed an alteration in BDNF expression in the postmortem brains of AD patients. BDNF has great potential as a therapeutic agent because of its ability to cross the blood-brain barrier and due to its wide in vivo distribution. However, little is known about in vivo BDNF in dementia patients. Moreover, the immunological function of neurotrophins such as BDNF has received great interest. Therefore, we investigated the serum levels of BDNF and cytokines such as TNF-alpha and IL-1beta in dementia patients by the enzyme-linked immunosorbent assay (ELISA). The following subjects were included in this study: 60 AD patients, 60 vascular dementia (VaD) patients and 33 healthy controls. AD and VaD patients were matched for age, gender and severity of dementia. Serum BDNF levels in AD patients were significantly lower than those in VaD patients and controls. TNF-alpha and IL-1beta levels showed no significant difference among the three groups. In the dementia groups, neither the TNF-alpha nor the IL-1beta levels correlated with the BDNF levels. Our results suggest that BDNF may play a pathological role in some cases of AD.
Collapse
Affiliation(s)
- Chie Yasutake
- Department of Neuropsychiatry, Osaka Medical College, Daigakumachi 2-7, Takatsuki, Osaka, Japan.
| | | | | | | | | |
Collapse
|
35
|
Hayashi Y, Tomimatsu Y, Suzuki H, Yamada J, Wu Z, Yao H, Kagamiishi Y, Tateishi N, Sawada M, Nakanishi H. The intra-arterial injection of microglia protects hippocampal CA1 neurons against global ischemia-induced functional deficits in rats. Neuroscience 2006; 142:87-96. [PMID: 16844302 DOI: 10.1016/j.neuroscience.2006.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 05/18/2006] [Accepted: 06/02/2006] [Indexed: 02/02/2023]
Abstract
In the present study, we have attempted to elucidate the effects of the intra-arterial injection of microglia on the global ischemia-induced functional and morphological deficits of hippocampal CA1 neurons. When PKH26-labeled immortalized microglial cells, GMIR1, were injected into the subclavian artery, these exogenous microglia were found to accumulate in the hippocampus at 24 h after ischemia. In hippocampal slices prepared from medium-injected rats subjected to ischemia 48 h earlier, synaptic dysfunctions including a significant reduction of synaptic responses and a marked reduction of long-term potentiation (LTP) of the CA3-CA1 Schaffer collateral synapses were observed. At this stage, however, neither significant neuronal degeneration nor gliosis was observed in the hippocampus. At 96 h after ischemia, there was a total loss of the synaptic activity and a marked neuronal death in the CA1 subfield. In contrast, the basal synaptic transmission and LTP of the CA3-CA1 synapses were well preserved after ischemia in the slices prepared from the microglia-injected animals. We also found the microglial-conditioned medium (MCM) to significantly increase the frequency of the spontaneous postsynaptic currents of CA1 neurons without affecting the amplitude, thus indicating that MCM increased the provability of the neurotransmitter release. The protective effect of the intra-arterial injected microglia against the ischemia-induced neuronal degeneration in the hippocampus was substantiated by immunohistochemical and immunoblot analyses. Furthermore, the arterial-injected microglia prevented the ischemia-induced decline of the brain-derived neurotrophic factor (BDNF) levels in CA1 neurons. These observations strongly suggest that the arterial-injection of microglia protected CA1 neurons against the ischemia-induced neuronal degeneration. The restoration of the ischemia-induced synaptic deficits and the resultant reduction of the BDNF levels in CA1 neurons, possibly by the release of diffusible factor(s), might thus contribute to the protective effect of the arterial-injection of microglia against ischemia-induced neuronal degeneration.
Collapse
Affiliation(s)
- Y Hayashi
- Laboratory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang H, Ward N, Boswell M, Katz DM. Secretion of brain-derived neurotrophic factor from brain microvascular endothelial cells. Eur J Neurosci 2006; 23:1665-70. [PMID: 16553631 DOI: 10.1111/j.1460-9568.2006.04682.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cerebral microvasculature has recently been identified as a source of factors that can influence the generation and survival of neurons, including brain-derived neurotrophic factor (BDNF). However, relatively little is known about signals that regulate secretion of endothelial cell derived BDNF. To approach this issue the present study examined BDNF secretion from brain endothelial cells in response to reduced oxygen availability (hypoxia), using the mouse brain microvascular endothelial cell line, bEnd.3. We found that exposure of bEnd.3 cells to either sustained or intermittent hypoxia (IH) stimulates BDNF expression and release and that IH is the more potent stimulus. IH-induced BDNF release can be partially inhibited by either N-acetyl-L-cysteine, a scavenger of reactive oxygen species, or by the stable superoxide dismutase mimetic manganese(III)tetrakis1-methyl-4-pyridylporphyrin, indicating that oxyradical formation contributes to enhanced secretion of BDNF. In addition, we found that IH-induced BDNF release requires Ca2+ mobilization from internal stores through ryanodine- and inositol (1,4,5-triphosphate) IP3 receptors and is completely blocked by SKF 96365, a nonselective inhibitor of transient receptor potential (TRP) channels. These data demonstrate that bEnd.3 cells respond to oxidative stress by increasing BDNF secretion and, in addition, highlight TRP channels as potential therapeutic targets for enhancing BDNF availability from the cerebral microvasculature.
Collapse
Affiliation(s)
- Hong Wang
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
37
|
Ruan YW, Zou B, Fan Y, Li Y, Lin N, Zeng YS, Gao TM, Yao Z, Xu ZC. Dendritic plasticity of CA1 pyramidal neurons after transient global ischemia. Neuroscience 2006; 140:191-201. [PMID: 16529877 DOI: 10.1016/j.neuroscience.2006.01.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 01/10/2006] [Accepted: 01/26/2006] [Indexed: 12/24/2022]
Abstract
Dendrites and spines undergo dynamic changes in physiological conditions, such as learning and memory, and in pathological conditions, such as Alzheimer's disease and epilepsy. Long-term dendritic plasticity has also been reported after ischemia/hypoxia, which might be compensatory effects of surviving neurons for the functional recovery after the insults. However, the dendritic changes shortly after ischemia, which might be associated with the pathogenesis of ischemic cell death, remain largely unknown. To reveal the morphological changes of ischemia-vulnerable neurons after ischemia, the present study investigated the alteration of dendritic arborization of CA1 pyramidal neurons in rats after transient cerebral ischemia using intracellular staining technique in vivo. The general appearance of dendritic arborization of CA1 neurons within 48 h after ischemia was similar to that of control neurons. However, a dramatic increase of dendritic disorientation was observed after ischemia with many basal dendrites coursed into the territory of apical dendrites and apical dendrites branched into the region of basal dendrites. In addition, a significant increase of apical dendritic length was found 24 h after ischemia. The increase of dendritic length after ischemia was mainly due to the dendritic sprouting rather than the extension of individual dendrites, which mainly occurred in the middle segment of the apical dendrites. These results reveal a plasticity change in dendritic arborization of CA1 neurons shortly after cerebral ischemia.
Collapse
Affiliation(s)
- Y-W Ruan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 507, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Grãos MM, Carvalho RF, Carvalho AP, Duarte CB. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 2005; 12:1329-43. [PMID: 15905876 DOI: 10.1038/sj.cdd.4401662] [Citation(s) in RCA: 457] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neurotrophins protect neurons against glutamate excitotoxicity, but the signaling mechanisms have not been fully elucidated. We studied the role of the phosphatidylinositol 3-kinase (PI3-K) and Ras/mitogen-activated protein kinase (MAPK) pathways in the protection of cultured hippocampal neurons from glutamate induced apoptotic cell death, characterized by nuclear condensation and activation of caspase-3-like enzymes. Pre-incubation with the neurotrophin brain-derived neurotrophic factor (BDNF), for 24 h, reduced glutamate-evoked apoptotic morphology and caspase-3-like activity, and transiently increased the activity of the PI3-K and of the Ras/MAPK pathways. Inhibition of the PI3-K and of the Ras/MAPK signaling pathways abrogated the protective effect of BDNF against glutamate-induced neuronal death and similar effects were observed upon inhibition of protein synthesis. Moreover, incubation of hippocampal neurons with BDNF, for 24 h, increased Bcl-2 protein levels. The results indicate that the protective effect of BDNF in hippocampal neurons against glutamate toxicity is mediated by the PI3-K and the Ras/MAPK signaling pathways, and involves a long-term change in protein synthesis.
Collapse
Affiliation(s)
- R D Almeida
- Center for Neuroscience and Cell Biology and Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pizarro JM, Lumley LA, Medina W, Robison CL, Chang WE, Alagappan A, Bah MJ, Dawood MY, Shah JD, Mark B, Kendall N, Smith MA, Saviolakis GA, Meyerhoff JL. Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in mice. Brain Res 2005; 1025:10-20. [PMID: 15464739 DOI: 10.1016/j.brainres.2004.06.085] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2004] [Indexed: 01/17/2023]
Abstract
Acute social defeat in mice activates the hypothalamic-pituitary-adrenal axis (HPA) and induces long-term behavioral changes, including exaggerated fear responses and inhibition of territorial behavior. Stress-induced hormonal and neurotransmitter release may contribute to disruption of expression of genes important for cell survival, neuronal plasticity, and neuronal remodeling. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor associated with structural cellular changes that occur during nervous system development and contributes to neural plasticity in the adult brain. In rats, acute (1-2 h) restraint stress transiently reduces BDNF mRNA expression in the hippocampus, a region important in the memory and in HPA regulation; restraint stress also decreases BDNF expression in the basolateral amygdala (BLA), a region important for fear consolidation and emotional memory. We hypothesized that a brief (10 min) exposure to intense social stress, a more naturalistic stressor than restraint stress, would also reduce BDNF mRNA in the hippocampus and BLA of mice. In the present study, we examined the time course of expression of BDNF mRNA expression in the hippocampus and amygdala, as well as other subcortical and cortical brain regions, following acute social stress. In situ hybridization analysis for BDNF mRNA expression showed that there was a significant decrease in BDNF mRNA expression in all regions studied in mice 24 h after social defeat when compared to control (naive) mice (P<0.05). These findings support our hypothesis that BDNF mRNA levels are reduced by social stress, and may have implications for brain plasticity and behavioral changes following social stress.
Collapse
Affiliation(s)
- José M Pizarro
- Division of Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Peiris TS, Machaalani R, Waters KA. Brain-derived neurotrophic factor mRNA and protein in the piglet brainstem and effects of Intermittent Hypercapnic Hypoxia. Brain Res 2004; 1029:11-23. [PMID: 15533311 DOI: 10.1016/j.brainres.2004.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2004] [Indexed: 12/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for the development of normal respiratory rhythm and ventilatory control. Chronic exposure to Intermittent Hypercapnic Hypoxia (IHH) has been shown to alter ventilatory responses of piglets. This study investigated changes in BDNF distribution and expression in seven nuclei of the caudal medulla, from piglets exposed to IHH for 1, 2, 3, or 4 days before death, using non-radioactive in situ hybridisation (for mRNA) and immunohistochemistry (for protein). Compared to controls, BDNF mRNA was markedly increased across the entire medulla of the brainstem, after all durations of IHH (1-4 days). In contrast, BDNF protein expression increased after 1 day of exposure to IHH (p=0.003), but, thereafter, was not different to controls. Amongst individual nuclei, neurons of the dorsal motor nucleus of the vagus (DMNV) showed increased BDNF mRNA (p<0.01), but decreased protein expression (p=0.05) after all durations of IHH. In the ION, both mRNA and protein for BDNF were significantly increased after 1 day IHH (p<0.01 and p=0.001, respectively), but these increases were not sustained. This study is the first to investigate changes in BDNF expression in response to environmental challenges during postnatal development in the brainstem. Implications of the wide distribution of BDNF in the piglet caudal medulla and increased expression after IHH exposure are discussed, with particular reference to roles for BDNF-dependent neurons at this stage of development.
Collapse
Affiliation(s)
- Tanya Shyami Peiris
- Department of Pathology, Room 206, Blackburn Building, DO6, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
41
|
Yanamoto H, Xue JH, Miyamoto S, Nagata I, Nakano Y, Murao K, Kikuchi H. Spreading depression induces long-lasting brain protection against infarcted lesion development via BDNF gene-dependent mechanism. Brain Res 2004; 1019:178-88. [PMID: 15306252 DOI: 10.1016/j.brainres.2004.05.105] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2004] [Indexed: 11/17/2022]
Abstract
Preconditioning the rat brain with spreading depression for 48 h induces potent ischemic tolerance (infarct tolerance) after an interval of 12-15 days, consequently reducing the infarcted lesion size in the acute phase following focal cerebral ischemia. However, persistence of the morphological and functional neuroprotection has not yet been proven. We tested whether tolerance-derived neuroprotection against focal cerebral ischemia persists or merely delays the progress of cerebral infarction. Prolonged spreading depression was induced in mice by placing a depolarized focus with intracerebral microinfusion of KCl for 24 h; after intervals of 3, 6, 9 or 12 days, temporary focal ischemia was imposed. In the analysis of the infarcted lesion volume 24 h after ischemia, groups with 6 or 9 day interval demonstrated significantly smaller lesion volume compared to time-matched vehicle control group (P=0.002). Significant reduction in cerebral infarction was also observed at the chronic phase, namely 14 days after ischemia (33% reduction) (P=0.021) accompanied with less severe neurological deficits (38% reduction) (P=0.020). Using this technique, we also investigated if the mice with targeted disruption of a single BDNF allele (heterozygous BDNF-deficient mice) can gain the same potency of tolerance as the wild mice. In the result on infarcted lesion volumes following temporary focal ischemia, potent tolerance developed in the wild type (35% reduction) (P=0.007) but not in the heterozygous BDNF-deficient mice (<19% reduction) (P=0.155), indicating that BDNF expression level following spreading depression is contributing to infarct tolerance development.
Collapse
Affiliation(s)
- Hiroji Yanamoto
- Laboratory for Cerebrovascular Disorders, Research Institute of the National Cardio-Vascular Center, 5-7-1 Fujishirodai, Suita 565-8565, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Lee TH, Yang JT, Kato H, Wu JH, Chen ST. Expression of brain-derived neurotrophic factor immunoreactivity and mRNA in the hippocampal CA1 and cortical areas after chronic ischemia in rats. J Neurosci Res 2004; 76:705-12. [PMID: 15139029 DOI: 10.1002/jnr.20097] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We studied the expression of brain-derived neurotrophic factor (BDNF) immunoreactivity and mRNA in the ischemia-vulnerable cerebral hippocampal CA1 and cortical areas after permanent occlusion of bilateral internal carotid arteries. Four groups of rats were studied, including 1) young normotensive Wistar-Kyoto (WKY) rats, 2) aged normotensive WKY rats, 3) young spontaneous hypertensive rats (SHR), and 4) aged SHR. Each group contained rats from sham operation and 1 week, 4 weeks, and 8 weeks after cerebral ischemia (n = 3-5 at each time point). Hematoxylin and eosin staining and in situ apoptosis detection showed no neuronal damage from 1 week to 8 weeks in all the ischemic rats. Immunohistochemistry and Western blot showed that BDNF immunoreactivity increased only at 1 week in the CA1 area of young WKY rats (P < .001) and SHR (P = .002) and decreased only at 8 weeks in the cortical area of aged WKY rats (P = .02). In situ hybridization and TaqMan real-time RT-PCR showed that BDNF mRNA decreased consistently from 1 week to 8 weeks in both CA1 and cortical areas in young SHR (P < .05 and P < .01, respectively) and in aged WKY rats (P < .01 and P < .05, respectively) but was not changed in young WKY rats or aged SHR (P > .05) compared with the sham-operated rats. Our study demonstrates an expression disparity of BDNF immunoreactivity and mRNA in the hippocampal CA1 and cortical areas, especially in the young SHR and aged WKY rats after mild cerebral ischemia. Our study suggests that, under permanent occlusion of bilateral internal carotid arteries, aging and the level of blood pressure may have influence on the expression of BDNF.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Department of Neurology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.
| | | | | | | | | |
Collapse
|
43
|
Baker-Herman TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, Doperalski NJ, Johnson RA, Watters JJ, Mitchell GS. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 2003; 7:48-55. [PMID: 14699417 DOI: 10.1038/nn1166] [Citation(s) in RCA: 390] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 11/20/2003] [Indexed: 11/09/2022]
Abstract
Intermittent hypoxia causes a form of serotonin-dependent synaptic plasticity in the spinal cord known as phrenic long-term facilitation (pLTF). Here we show that increased synthesis of brain-derived neurotrophic factor (BDNF) in the spinal cord is necessary and sufficient for pLTF in adult rats. We found that intermittent hypoxia elicited serotonin-dependent increases in BDNF synthesis in ventral spinal segments containing the phrenic nucleus, and the magnitude of these BDNF increases correlated with pLTF magnitude. We used RNA interference (RNAi) to interfere with BDNF expression, and tyrosine kinase receptor inhibition to block BDNF signaling. These disruptions blocked pLTF, whereas intrathecal injection of BDNF elicited an effect similar to pLTF. Our findings demonstrate new roles and regulatory mechanisms for BDNF in the spinal cord and suggest new therapeutic strategies for treating breathing disorders such as respiratory insufficiency after spinal injury. These experiments also illustrate the potential use of RNAi to investigate functional consequences of gene expression in the mammalian nervous system in vivo.
Collapse
Affiliation(s)
- Tracy L Baker-Herman
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gustafsson E, Lindvall O, Kokaia Z. Intraventricular Infusion of TrkB-Fc Fusion Protein Promotes Ischemia-Induced Neurogenesis in Adult Rat Dentate Gyrus. Stroke 2003; 34:2710-5. [PMID: 14563966 DOI: 10.1161/01.str.0000096025.35225.36] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
We have previously shown that delivery of brain-derived neurotrophic factor (BDNF) through direct intrahippocampal gene transduction with a viral vector suppresses the formation of new dentate granule cells triggered by global forebrain ischemia. Here, we investigated whether inhibition of endogenous BDNF alters ischemia-induced neurogenesis in the dentate gyrus.
Methods—
Rats were subjected to 30 minutes of global forebrain ischemia and then received intraventricular infusion of either the BDNF scavenger, TrkB-Fc fusion protein, or control Hu-Fc for 2 weeks. In parallel, all animals were injected intraperitoneally with the mitosis marker 5-bromo-2′-deoxyuridine-5′-monophosphate (BrdU). Animals were killed at 2 or 6 weeks after the ischemic insult, and neurogenesis was then assessed immunocytochemically with epifluorescence or confocal microscopy.
Results—
Infusion of TrkB-Fc fusion protein gave rise to elevated numbers of ischemia-generated new neurons, double-labeled with BrdU and the early neuronal marker Hu or the mature neuronal marker NeuN, in the dentate subgranular zone and granule cell layer at 2 and 6 weeks after the insult.
Conclusions—
Our findings provide evidence that endogenous BDNF counteracts neuronal differentiation, but not cell proliferation or survival, in ischemia-induced dentate gyrus neurogenesis.
Collapse
Affiliation(s)
- Elin Gustafsson
- Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, Lund, Sweden
| | | | | |
Collapse
|
45
|
Gustafsson E, Andsberg G, Darsalia V, Mohapel P, Mandel RJ, Kirik D, Lindvall O, Kokaia Z. Anterograde delivery of brain-derived neurotrophic factor to striatum via nigral transduction of recombinant adeno-associated virus increases neuronal death but promotes neurogenic response following stroke. Eur J Neurosci 2003; 17:2667-78. [PMID: 12823474 DOI: 10.1046/j.1460-9568.2003.02713.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To explore the role of brain-derived neurotrophic factor for survival and generation of striatal neurons after stroke, recombinant adeno-associated viral vectors carrying brain-derived neurotrophic factor or green fluorescent protein genes were injected into right rat substantia nigra 4-5 weeks prior to 30 min ipsilateral of middle cerebral artery occlusion. The brain-derived neurotrophic factor-recombinant adeno-associated viral transduction markedly increased the production of brain-derived neurotrophic factor protein by nigral cells. Brain-derived neurotrophic factor was transported anterogradely to the striatum and released in biologically active form, as revealed by the hypertrophic response of striatal neuropeptide Y-positive interneurons. Animals transduced with brain-derived neurotrophic factor-recombinant adeno-associated virus also exhibited abnormalities in body posture and movements, including tilted body to the right, choreiform movements of left forelimb and head, and spontaneous, so-called 'barrel' rotation along their long axis. The continuous delivery of brain-derived neurotrophic factor had no effect on the survival of striatal projection neurons after stroke, but exaggerated the loss of cholinergic, and parvalbumin- and neuropeptide Y-positive, gamma-aminobutyric acid-ergic interneurons. The high brain-derived neurotrophic factor levels in the animals subjected to stroke also gave rise to an increased number of striatal cells expressing doublecortin, a marker for migrating neuroblasts, and cells double-labelled with the mitotic marker, 5-bromo-2'-deoxyuridine-5'monophosphate, and early neuronal (Hu) or striatal neuronal (Meis2) markers. Our findings indicate that long-term anterograde delivery of high levels of brain-derived neurotrophic factor increases the vulnerability of striatal interneurons to stroke-induced damage. Concomitantly, brain-derived neurotrophic factor potentiates the stroke-induced neurogenic response, at least at early stages.
Collapse
Affiliation(s)
- Elin Gustafsson
- Section of Restorative Neurology, Wallenberg Neuroscience Center, University of Lund, BMC A-11 SE-221 84 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Endres M, Fan G, Hirt L, Jaenisch R. Stroke damage in mice after knocking the neutrophin-4 gene into the brain-derived neurotrophic factor locus. J Cereb Blood Flow Metab 2003; 23:150-3. [PMID: 12571446 DOI: 10.1097/01.wcb.0000043949.67811.c6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neurotrophins play a protective role during cerebral ischemia, and mice lacking both alleles for neurotrophin 4 (Nt4-/- ) or deficient in a single allele for brain-derived neurotrophic factor (Bdnf+/-) have increased susceptibility to cerebral ischemia. This study directly compared the biologic activities of brain-derived neurotrophic factor (BDNF) and NT4 by replacing the coding sequence with the Nt4 sequence (Bdnf +/nt4-ki ). Mice expressing one allele in place of develop 61% bigger lesions after 1-hour middle cerebral artery occlusion compared with wild-type littermates. Physiologic parameters did not contribute to ischemia susceptibility. In conclusion, NT4 is less potent than BDNF in promoting brain survival after stroke.
Collapse
Affiliation(s)
- Matthias Endres
- Department of Neurology, Charité Hospital, Humboldt-University, Berlin, Germany.
| | | | | | | |
Collapse
|
47
|
He Q, Csiszar K, Li PA. Transient forebrain ischemia induced phosphorylation of cAMP-responsive element-binding protein is suppressed by hyperglycemia. Neurobiol Dis 2003; 12:25-34. [PMID: 12609486 DOI: 10.1016/s0969-9961(02)00006-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hyperglycemia enhances brain damage due to transient cerebral ischemic stroke. The hyperglycemia-mediated detrimental effect is probably due to mitochondrial dysfunction and the resulting promotion of cell death pathways. In this study, we determined whether hyperglycemia suppresses cell survival signals that involve the cAMP-responsive element-binding protein (CREB) and activating transcription factor (ATF-2). Total and phosphorylated CREB and ATF-2 were measured in the cingulate cortex and dentate gyrus, two structures that are ischemia-resistant under normoglycemic conditions but become ischemia-vulnerable under hyperglycemic conditions, using immunocytochemistry and Western blot analysis. Samples were collected from normo-operated and hyperglycemic rats subjected to 15 min of ischemia followed by reperfusion. Transient ischemia induced a persistent phosphorylation of CREB in normoglycemic animals. Hyperglycemia suppressed phosphorylation of CREB in hyperglycemia-recruited areas. Ischemia also induced a transient increase of phospho-ATF-2 in the cingulated cortex that was suppressed by hyperglycmia. We conclude that suppression of neuronal survival signals by hyperglycemia may contribute to the mechanism of converting ischemia-resistant structures into vulnerable ones.
Collapse
Affiliation(s)
- Qingping He
- Pacific Biomedical Research Center and John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
48
|
Butler TL, Kassed CA, Pennypacker KR. Signal transduction and neurosurvival in experimental models of brain injury. Brain Res Bull 2003; 59:339-51. [PMID: 12507684 DOI: 10.1016/s0361-9230(02)00926-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain injury and neurodegenerative disease are linked by their primary pathological consequence-death of neurons. Current approaches for the treatment of neurodegeneration are limited. In this review, we discuss animal models of human brain injury and molecular biological data that have been obtained from their analysis. In particular, signal transduction pathways that are associated with neurosurvival following injury to the brain are presented and discussed.
Collapse
Affiliation(s)
- T L Butler
- Department of Pharmacology and Therapeutics, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | |
Collapse
|
49
|
Lee TH, Kato H, Chen ST, Kogure K, Itoyama Y. Expression disparity of brain-derived neurotrophic factor immunoreactivity and mRNA in ischemic hippocampal neurons. Neuroreport 2002; 13:2271-5. [PMID: 12488809 DOI: 10.1097/00001756-200212030-00020] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied the spatial and temporal expression of BDNF immunoreactivity and mRNA in the hippocampal formation after transient forebrain ischemia in gerbils. Our study demonstrated that in the vulnerable CA1 neurons, there was a prolonged expression disparity between BDNF immunoreactivity and mRNA and the BDNF level was reduced, in contrast to the ischemia-resistant dentate gyrus neurons that showed transient expression disparity and maintained the BDNF level. This expression disparity of the neurotrophic factor may be related to delayed neuronal death. Double immunostaining showed that reactive astroglia and microglia could express BDNF, suggesting a possible involvement of these cells in the mechanism of neuronal survival after ischemia.
Collapse
Affiliation(s)
- T-H Lee
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai 980, Japan.
| | | | | | | | | |
Collapse
|
50
|
Hicks RR, Zhang L, Atkinson A, Stevenon M, Veneracion M, Seroogy KB. Environmental enrichment attenuates cognitive deficits, but does not alter neurotrophin gene expression in the hippocampus following lateral fluid percussion brain injury. Neuroscience 2002; 112:631-7. [PMID: 12074904 DOI: 10.1016/s0306-4522(02)00104-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Environmental enrichment attenuates neurological deficits associated with experimental brain injury. The molecular events that mediate these environmentally induced improvements in function after injury are largely unknown, but neurotrophins have been hypothesized to be a neural substrate because of their role in cell survival and neural plasticity. Furthermore, exposure to complex environments in normal animals increases neurotrophin gene expression. However, following an ischemic injury, environmental enrichment decreases neurotrophin mRNA levels. Whether these contrasting findings are attributable to differences between injured and uninjured animals or are dependent upon the specific type of brain injury has not been determined. We examined the effects of 14 days of environmental enrichment following a lateral fluid percussion brain injury on behavior and gene expression of brain-derived neurotrophic factor, its high-affinity receptor, TrkB, and neurotrophin-3 in the rat hippocampus. Environmental enrichment attenuated learning deficits in the injured animals, but neither the injury nor housing conditions influenced neurotrophin/receptor mRNA levels. From these data we suggest that following brain trauma, improvements in learning associated with environmental enrichment are not mediated by alterations in brain-derived neurotrophic factor, TrkB or neurotrophin-3 gene expression.
Collapse
Affiliation(s)
- R R Hicks
- Department of Rehabilitation Medicine, Box 356490, University of Washington, Seattle, WA 98195-6490, USA.
| | | | | | | | | | | |
Collapse
|