1
|
Pulsoni I, Lubda M, Aiello M, Fedi A, Marzagalli M, von Hagen J, Scaglione S. Comparison Between Franz Diffusion Cell and a novel Micro-physiological System for In Vitro Penetration Assay Using Different Skin Models. SLAS Technol 2022; 27:161-171. [PMID: 35058208 DOI: 10.1016/j.slast.2021.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In vitro diffusive models are an important tool to screen the penetration ability of active ingredients in various formulations. A reliable assessment of skin penetration enhancing properties, mechanism of action of carrier systems, and an estimation of a bioavailability are essential for transdermal delivery. Given the importance of testing the penetration kinetics of different compounds across the skin barrier, several in vitro models have been developedThe aim of this study was to compare the Franz Diffusion Cell (FDC) with a novel fluid-dynamic platform (MIVO) by evaluating penetration ability of caffeine, a widely used reference substance, and LIP1, a testing molecule having the same molecular weight but a different lipophilicity in the two diffusion chamber systems. A 0.7% caffeine or LIP1 formulation in either water or propylene glycol (PG) containing oleic acid (OA) was topically applied on the Strat-M® membrane or pig ear skin, according to the infinite-dose experimental condition (780 ul/cm2). The profile of the penetration kinetics was determined by quantify the amount of molecule absorbed at different time-points (1, 2, 4, 6, 8 hours), by means of HPLC analysis. Both diffusive systems show a similar trend for caffeine and LIP1 penetration kinetics. The Strat-M® skin model shows a lower barrier function than the pig skin biopsies, whereby the PGOA vehicle exhibits a higher penetration, enhancing the effect for both diffusive chambers and skin surrogates. Most interestingly, MIVO diffusive system better predicts the lipophilic molecules (i.e. LIP1) permeation through highly physiological fluid flows resembled below the skin models.
Collapse
Affiliation(s)
| | | | - Maurizio Aiello
- React4life Srl, Genoa, Italy; CNR -National Research Council of Italy, Genova, Italy
| | - Arianna Fedi
- CNR -National Research Council of Italy, Genova, Italy
| | | | | | - Silvia Scaglione
- React4life Srl, Genoa, Italy; CNR -National Research Council of Italy, Genova, Italy.
| |
Collapse
|
2
|
Čuříková-Kindlová BA, Vovesná A, Nováčková A, Zbytovská J. In Vitro Modeling of Skin Barrier Disruption and its Recovery by Ceramide-Based Formulations. AAPS PharmSciTech 2021; 23:21. [PMID: 34907505 DOI: 10.1208/s12249-021-02154-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
Disrupted skin barrier, one of the severe attributes of inflammatory skin diseases, is caused by lower content and pathological changes of lipids in the uppermost skin layer-stratum corneum (SC). Restoring skin barrier with native skin lipids, especially ceramides (Cers), appears to be a promising therapy with minimum side effects. For testing the efficiency of these formulations, suitable in vitro models of the skin with disrupted barriers are needed. For the similarity with the human tissue, our models were based on the pig ear skin. Three different ways of skin barrier disruption were tested and compared: tape stripping, lipid extraction with organic solvents, and barrier disruption by sodium lauryl sulfate. The level of barrier disruption was investigated by permeation studies, and parameters of each method were modified to reach significant changes between the non-disrupted skin and our model. Fourier transform infrared (FTIR) spectroscopy was employed to elucidate the changes of the skin permeability on the molecular scale. Further, the potential of the developed models to be restored by skin barrier repairing agents was evaluated by the same techniques. We observed a significant decrease in permeation characteristics through our in vitro models treated with the lipid mixtures compared to the untreated damaged skin, which implied that the skin barrier was substantially restored. Taken together, the results suggest that our in vitro models are suitable for the screening of potential barrier repairing agents.
Collapse
|
3
|
Amra K, Momin M, Desai N, Khan F. Therapeutic benefits of natural oils along with permeation enhancing activity. Int J Dermatol 2021; 61:484-507. [PMID: 34310695 DOI: 10.1111/ijd.15733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 01/07/2023]
Abstract
The skin is the largest organ of the integumentary system with a multifunctional purpose to protect the body from heat and microbes, regulate body temperature, and act as a sensory organ. A topical dosage form applied on the skin will have to cross the stratum corneum, which would then allow the dosage form to traverse the subsequent layers of the skin. The drug with poor solubility and short half-life would serve as an ideal candidate for its delivery via the transdermal route. This review reports the role of natural oils in enhancing the permeation of drugs through skin as they possess different features like natural origin, favorable penetration enhancement, and partitioning action in the skin. Chemical penetration enhancers have been used widely but are associated with toxicities. Thus, more research should be channelized in the area of extraction of oils from natural sources, along with their active constituents, which can serve as therapeutic alternatives to various disorders and diseases. Natural oils are obtained from leaves, fruits, flowers, seeds, bark, and roots, which have a therapeutic potential as well as penetration enhancing activity. The demerits of oral drug delivery include degradation of drugs in the gastrointestinal tract, addition of taste masking, and coating of tablets, which can be overcome by delivering the drug via the transdermal route. Natural oil contains lipids, flavonoids, and terpenes, which play a significant role in anti-inflammatory and penetration enhancing activity.
Collapse
Affiliation(s)
- Kesrin Amra
- Cipla Ltd, LBS Marg, Vikhroli West, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Neha Desai
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Fateh Khan
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
4
|
Pavlačková J, Egner P, Polašková J, Hojerová J, Pinďáková L, Mokrejš P, Varaďová V. Transdermal absorption of active substances from cosmetic vehicles. J Cosmet Dermatol 2019; 18:1410-1415. [PMID: 30701646 DOI: 10.1111/jocd.12873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cosmetic products mean any substance or mixture intended to be placed in contact with the external parts of the human body (eg, epidermis, lips) and should not pass to the lower parts and penetrate to the skin. As a part of evaluation of cosmetic safety, the transdermal absorption of substances should be investigated. MATERIALS AND METHODS In vitro absorption was investigated with Franz diffusion cells on untreated porcine skin and specimens of the same treated with 15%wt. SLS. The integrity of the skin was discerned by gauging transdermal electrical conductivity (TEC), the concentration of caffeine absorbed by the samples of skin membrane by liquid chromatography, which took place by applying an emulsion and/or a gel containing active hydration agents (urea, sodium hyaluronate, and sericin). RESULTS The greatest extent of caffeine penetration was seen for pretreatment with just SLS; similar results were in skin treated with the base gel with 10%wt. urea. In the skin treated with the base emulsion only, the amount of caffeine absorbed was twofold less; this increased after adding the active hydration substances. The values measured for TEC corresponded with the amount of caffeine absorbed. CONCLUSION The gel proved to be the more potent vehicle for the active ingredient, as it demonstrated greater transdermal caffeine penetration than the emulsions, correlating with the degree of damage to the skin as detected by TEC.
Collapse
Affiliation(s)
- Jana Pavlačková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republik
| | - Pavlína Egner
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republik
| | - Jana Polašková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republik
| | - Jarmila Hojerová
- Department of Food Technology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Lucie Pinďáková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republik
| | - Pavel Mokrejš
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republik
| | - Vendula Varaďová
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republik
| |
Collapse
|
5
|
Čuříková-Kindlová BA, Diat O, Štěpánek F, Vávrová K, Zbytovská J. Probing the interactions among sphingosine and phytosphingosine ceramides with non- and alpha-hydroxylated acyl chains in skin lipid model membranes. Int J Pharm 2019; 563:384-394. [PMID: 30959237 DOI: 10.1016/j.ijpharm.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/26/2022]
Abstract
Ceramides (Cers) are significant constituents of the stratum corneum (SC), the uppermost skin layer responsible for skin barrier properties. Cers are a heterogeneous group of lipids whose mutual interactions are still unclear. To better understand these interactions, we characterized model membranes containing stearic acid, cholesterol, cholesterol sulfate and one or more of the following ceramides: N-stearoyl-sphingosine (CerNS), N-stearoyl-phytosphingosine (CerNP) and N-(2-hydroxy)stearoyl-phytosphingosine (CerAP). Small angle X-ray scattering and FTIR spectroscopy were used to study lipid arrangement, phase separation and thermotropic behaviour. In the one-Cer systems, the membranes with CerNP showed strong hydrogen bonding and significant phase separation, even after phase transition, while the systems containing CerAP and CerNS had increased lipid miscibility. The multi-Cer systems exhibited different behaviour. In particular, the membrane containing all three Cers was a highly miscible system with narrow one-step phase transition, which, of all the studied samples, occurred at the lowest temperatures. Our results show that even a small variation in Cer structure results in substantially different phase behaviour, which is further affected by the presence of other Cer subclasses. Interestingly, the phase behaviour of the most complex three-Cer system was simpler than that of the others, highlighting the importance of lipid diversity in real SC.
Collapse
Affiliation(s)
- Barbora Amélie Čuříková-Kindlová
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Department of Organic Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Olivier Diat
- Institute de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Bagnols-sur-Cèze, France
| | - František Štěpánek
- University of Chemistry and Technology Prague, Faculty of Chemical Engineering, Department of Chemical Engineering, Technická 5, 166 28 Prague, Czech Republic
| | - Kateřina Vávrová
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jarmila Zbytovská
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Department of Organic Technology, Technická 5, 166 28 Prague, Czech Republic; Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
6
|
Yadav DK, Kumar S, Choi EH, Chaudhary S, Kim MH. Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species. Sci Rep 2019; 9:4496. [PMID: 30872693 PMCID: PMC6418262 DOI: 10.1038/s41598-019-40913-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/26/2019] [Indexed: 12/30/2022] Open
Abstract
Lipid peroxidation by reactive oxygen species (ROS) during oxidative stress is non-enzymatic damage that affects the integrity of biological membrane, and alters the fluidity and permeability. We conducted molecular dynamic simulation studies to evaluate the structural properties of the bilayer after lipid peroxidation and to measure the permeability of distinct ROS. The oxidized membrane contains free fatty acid, ceramide, cholesterol, and 5α-hydroperoxycholesterol (5α-CH). The result of unconstrained molecular dynamic simulations revealed that lipid peroxidation causes area-per-lipid of the bilayer to increase and bilayer thickness to decrease. The simulations also revealed that the oxidized group of 5α-CH (-OOH) moves towards the aqueous layer and its backbone tilts causing lateral expansion of the bilayer membrane. These changes are detrimental to structural and functional properties of the membrane. The measured free energy profile for different ROS (H2O2, HO2, HO, and O2) across the peroxidized lipid bilayer showed that the increase in lipid peroxidation resulted in breaching barrier decrease for all species, allowing easy traversal of the membrane. Thus, lipid peroxidation perturbs the membrane barrier and imposes oxidative stress resulting into apoptosis. The collective insights increase the understanding of oxidation stress at the atomic level.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, 406-799, South Korea.
| | - Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, 406-799, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Nowon-Gu, Seoul, 139-791, Korea
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, 406-799, South Korea.
| |
Collapse
|
7
|
Kumar S, Yadav DK, Choi EH, Kim MH. Insight from Molecular dynamic simulation of reactive oxygen species in oxidized skin membrane. Sci Rep 2018; 8:13271. [PMID: 30185881 PMCID: PMC6125594 DOI: 10.1038/s41598-018-31609-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/10/2018] [Indexed: 11/08/2022] Open
Abstract
Non-enzymatic lipid peroxidation of the skin-lipid bilayer causes perturbations that affect the biomembrane structure, function, and permeability of reactive oxygen species (ROS). In the present study, we employed molecular dynamics simulations to study the effect of lipid peroxidation on the bilayer structural properties and permeability of various ROS. The oxidized skin-lipid bilayer was composed of ceramide, cholesterol, free fatty acid, and 5α-hydroperoxycholesterol (5α-CH). The simulation showed that, upon oxidation, the oxidized group (-OOH) of 5α-CH migrates towards the aqueous phase and the backbone of 5α-CH tilts, which causes the membrane to expand laterally. Measurements of the permeability of all ROS along the oxidized skin-lipid bilayer revealed a decreased breaching barrier for all the species as the degree of peroxidation increased, with a resulting easy passage across the membrane. The insights from the simulations indicate that lipid peroxidation might perturb the membrane barrier, thereby inflicting oxidative stress that leads to apoptosis. This study helps to understand oxidative stress at the atomic level. To our knowledge, this is the first reported molecular dynamics simulation study on oxidized skin-lipid bilayer and permeability of ROS.
Collapse
Affiliation(s)
- Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191, Hambakmoeiro, Yeonsu-gu, Incheon, 406-799, Korea
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191, Hambakmoeiro, Yeonsu-gu, Incheon, 406-799, Korea.
| | - Eun-Ha Choi
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Nowon-Gu, Seoul, 139-791, Korea
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191, Hambakmoeiro, Yeonsu-gu, Incheon, 406-799, Korea.
| |
Collapse
|
8
|
Marto J, Ascenso A, Simoes S, Almeida AJ, Ribeiro HM. Pickering emulsions: challenges and opportunities in topical delivery. Expert Opin Drug Deliv 2016; 13:1093-107. [DOI: 10.1080/17425247.2016.1182489] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Simoes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Helena M. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Jung JY, Nam EH, Park SH, Han SH, Hwang CY. Clinical use of a ceramide-based moisturizer for treating dogs with atopic dermatitis. J Vet Sci 2013; 14:199-205. [PMID: 23814473 PMCID: PMC3694192 DOI: 10.4142/jvs.2013.14.2.199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/30/2012] [Accepted: 10/23/2012] [Indexed: 11/20/2022] Open
Abstract
In humans, skin barrier dysfunction is thought to be responsible for enhanced penetration of allergens. Similar to conditions seen in humans, canine atopic dermatitis (CAD) is characterized by derangement of corneocytes and disorganization of intercellular lipids in the stratum corenum (SC) with decreased ceramide levels. This study was designed to evaluate the effects of a moisturizer containing ceramide on dogs with CAD. Dogs (n = 20, 3~8 years old) with mild to moderate clinical signs were recruited and applied a moisturizer containing ceramide for 4 weeks. Transepidermal water loss (TEWL), skin hydration, pruritus index for canine atopic dermatitis (PICAD) scores, and canine atopic dermatitis extent and severity index (CADESI) scores of all dogs were evaluated. Skin samples from five dogs were also examined with transmission electron microscopy (TEM) using ruthenium tetroxide. TEWL, PICAD, and CADESI values decreased (p < 0.05) and skin hydration increased dramatically over time (p < 0.05). Electron micrographs showed that the skin barrier of all five dogs was partially restored (p < 0.05). In conclusion, these results demonstrated that moisturizer containing ceramide was effective for treating skin barrier dysfunction and CAD symptoms.
Collapse
Affiliation(s)
- Ji-young Jung
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Czaika V, Alborova A, Richter H, Sterry W, Vergou T, Antoniou C, Lademann J, Koch S. Comparison of Transepidermal Water Loss and Laser Scanning Microscopy Measurements to Assess Their Value in the Characterization of Cutaneous Barrier Defects. Skin Pharmacol Physiol 2012; 25:39-46. [DOI: 10.1159/000330486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 05/13/2011] [Indexed: 11/19/2022]
|
12
|
Rubio L, Alonso C, López O, Rodríguez G, Coderch L, Notario J, de la Maza A, Parra JL. Barrier function of intact and impaired skin: percutaneous penetration of caffeine and salicylic acid. Int J Dermatol 2011; 50:881-9. [DOI: 10.1111/j.1365-4632.2010.04819.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
14
|
Lademann J, Patzelt A, Richter H, Antoniou C, Sterry W, Knorr F. Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:021014. [PMID: 19405727 DOI: 10.1117/1.3078813] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An efficient penetration and long-term storage of topically applied substances is important for drug delivery in medical treatment and cosmetics. It has recently become apparent that the hair follicles represent an efficient and long-term reservoir for topically applied substances. It was found that particles sized 300-600 nm penetrate more efficiently into the hair follicles than smaller or larger particles. In the present paper, the hair surface structure of human and porcine hairs was analyzed by electron microscopy. It could be observed that the thickness of the cuticula corresponds to the optimal size of the nanoparticles for penetration into the hair follicles. Additionally, it could be demonstrated that the cuticula of human vellus and terminal hairs were of similar thickness (approx. 530 nm), while the thickness of the cuticula obtained from porcine ear bristles were slightly thinner (approx. 320 nm).
Collapse
Affiliation(s)
- Juergen Lademann
- Charite-Universitatsmedizin Berlin, Center of Applied Cutaneous Physiology, Department of Dermatology, Berlin, Berlin D-10117, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Pucheu-Haston CM, Jackson HA, Olivry T, Dunston SM, Hammerberg B. Epicutaneous sensitization with Dermatophagoides farinae induces generalized allergic dermatitis and elevated mite-specific immunoglobulin E levels in a canine model of atopic dermatitis. Clin Exp Allergy 2008; 38:667-79. [DOI: 10.1111/j.1365-2222.2008.02949.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Herkenne C, Alberti I, Naik A, Kalia YN, Mathy FX, Préat V, Guy RH. In vivo methods for the assessment of topical drug bioavailability. Pharm Res 2008; 25:87-103. [PMID: 17985216 PMCID: PMC2217624 DOI: 10.1007/s11095-007-9429-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/24/2007] [Indexed: 11/26/2022]
Abstract
This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described.
Collapse
Affiliation(s)
- Christophe Herkenne
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Debio Recherche Pharmaceutique S.A., Route du Levant 146, CH-1920 Martigny, Switzerland
| | - Ingo Alberti
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Antares Pharma AG, Gewerbestrasse 18, 4123 Allschwil, Switzerland
| | - Aarti Naik
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - François-Xavier Mathy
- Université catholique de Louvain, Unité de pharmacie galénique, industrielle et officinale, Avenue E. Mounier 73, 1200 Brussels, Belgium
- UCB SA, Chemin du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Unité de pharmacie galénique, industrielle et officinale, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Richard H. Guy
- School of Pharmaceutical Sciences, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY Allschwil, UK
| |
Collapse
|
17
|
Jacobi U, Engel K, Patzelt A, Worm M, Sterry W, Lademann J. Penetration of Pollen Proteins into the Skin. Skin Pharmacol Physiol 2007; 20:297-304. [PMID: 17851273 DOI: 10.1159/000108101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 06/15/2007] [Indexed: 11/19/2022]
Abstract
Atopic dermatitis is a chronic remittent skin disease. In the extrinsic form of atopic dermatitis, type IgE-mediated reactions play an important pathophysiological role. The aim of the present study was to examine whether type I allergens can penetrate into the skin. Therefore, pollen proteins were labeled with fluorescein isothiocyanate (FITC), and their penetration profile was studied qualitatively. Solutions of FITC-labeled pollen proteins were applied in vitro on porcine skin and in vivo on human skin. In vitro, the FITC-labeled proteins were observed within the complete stratum corneum (SC) and inside the hair follicles even 15 min after application. They were also distributed inside the dermis around the hair follicles. In vivo, a similar pattern of distribution within the SC and the hair follicles was observed. These results indicate penetration via the SC lipid layers and a faster penetration via the hair follicles. The FITC-labeled proteins entered the dermis via the follicular pathway. Therefore, the follicular penetration should be considered in the development of skin protection strategies. To evaluate such strategies, the developed method can be used, and further studies in atopic dermatitis patients are necessary to determine whether the penetration of type I allergens is increased.
Collapse
Affiliation(s)
- U Jacobi
- Department of Dermatology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Montenegro L, Paolino D, Drago R, Pignatello R, Fresta M, Puglisi G. Influence of liposome composition on in vitro permeation of diosmin through human stratum corneum and epidermis. J Drug Deliv Sci Technol 2006. [DOI: 10.1016/s1773-2247(06)50020-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 2004; 56:675-711. [PMID: 15019752 DOI: 10.1016/j.addr.2003.10.028] [Citation(s) in RCA: 389] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 10/13/2003] [Indexed: 11/17/2022]
Abstract
Colloids from an aqueous suspension can cross the skin barrier only through hydrophilic pathways. Various colloids have a different ability to do this by penetrating narrow pores of fixed size in the skin, or the relevant nano-pores in barriers modelling the skin. Such ability is governed by colloid adaptability, which must be high enough to allow penetrant deformation to the size of a pore in such barrier: for a 100 nm colloid trespassing the skin this means at least 5-fold deformation/elongation. (Lipid) Bilayer vesicles are normally more adaptable than the comparably large (lipid coated) fluid droplets. One of the reasons for this, and an essential condition for achieving a high bilayer adaptability and pore penetration, is a high bilayer membrane elasticity. The other reason is the relaxation of changing colloid's volume-to-surface constraint during pore penetration; it stands to reason that such relaxation requires a concurrent, but only transient and local, bilayer permeabilisation. Both these phenomena are reflected in bilayer composition sensitivity, which implies non-linear pressure dependency of the apparent barrier penetrability, for example. Amphipats that acceptably weaken a membrane (surfactants, (co)solvents, such as certain alcohols, etc.) consequently facilitate controlled, local bilayer destabilisation and increase lipid bilayer flexibility. When used in the right quantity, such additives thus lower the energetic expense for elastic bilayer deformation, associated with pore penetration. Another prerequisite for aggregate transport through the skin is the colloid-induced opening of the originally very narrow ( approximately 0.4 nm) gaps between cells in the barrier to pores with diameter above 30 nm. Colloids incapable of enforcing such widening-and simultaneously of self-adapting to the size of 20-30 nm without destruction-are confined to the skin surface. All relatively compact colloids seem to fall in this latter category. This includes mixed lipid micelles, solid (nano)particles, nano-droplets, biphasic vesicles, etc. Such colloids, therefore, merely enter the skin through the rare wide gaps between groups of skin cells near the organ surface. Transdermal drug delivery systems based on corresponding drug formulations, therefore, rely on simple drug diffusion through the skin; the colloid then, at best, can modulate drug transport through the barrier. In contrast, the adaptability-and stability-optimised mixed lipid vesicles (Transfersomes, a trademark of IDEA AG) can trespass much narrower pathways between most cells in the skin; such highly adaptable colloids thus mediate drug transport through the skin. Sufficiently stable ultra-adaptable carriers, therefore, can ensure targeted drug delivery deep below the application site. This has already been shown in numerous preclinical tests and several phase I and phase II clinical studies. Drug delivery by means of highly adaptable drug carriers, moreover, allows highly efficient and well-tolerated drug targeting into the skin proper. Sustained drug release through the skin into systemic blood circulation is another field of ultradeformable drug carrier application.
Collapse
Affiliation(s)
- Gregor Cevc
- IDEA AG, Frankfurter Ring 193a, 80807 Munich, Germany.
| |
Collapse
|
20
|
Abstract
Ceramides are the major lipid constituent of lamellar sheets present in the intercellular spaces of the stratum corneum. These lamellar sheets are thought to provide the barrier property of the epidermis. It is generally accepted that the intercellular lipid domain is composed of approximately equimolar concentrations of free fatty acids, cholesterol, and ceramides. Ceramides are a structurally heterogeneous and complex group of sphingolipids containing derivatives of sphingosine bases in amide linkage with a variety of fatty acids. Differences in chain length, type and extent of hydroxylation, saturation etc. are responsible for the heterogeneity of the epidermal sphingolipids. It is well known that ceramides play an essential role in structuring and maintaining the water permeability barrier function of the skin. In conjunction with the other stratum corneum lipids, they form ordered structures. An essential factor is the physical state of the lipid chains in the nonpolar regions of the bilayers. The stratum corneum intercellular lipid lamellae, the aliphatic chains in the ceramides and the fatty acids are mostly straight long-chain saturated compounds with a high melting point and a small polar head group. This means that at physiological temperatures, the lipid chains are mostly in a solid crystalline or gel state, which exhibits low lateral diffusional properties and is less permeable than the state of liquid crystalline membranes, which are present at higher temperatures. The link between skin disorders and changes in barrier lipid composition, especially in ceramides, is difficult to prove because of the many variables involved. However, most skin disorders that have a diminished barrier function present a decrease in total ceramide content with some differences in the ceramide pattern. Formulations containing lipids identical to those in skin and, in particular, some ceramide supplementation could improve disturbed skin conditions. Incomplete lipid mixtures yield abnormal lamellar body contents, and disorder intercellular lamellae, whereas complete lipid mixtures result in normal lamellar bodies and intercellular bilayers. The utilization of physiological lipids according to these parameters have potential as new forms of topical therapy for dermatoses. An alternative strategy to improving barrier function by topical application of the various mature lipid species is to enhance the natural lipid-synthetic capability of the epidermis through the topical delivery of lipid precursors.
Collapse
Affiliation(s)
- Luisa Coderch
- Instituto de Investigaciones Químicas y Ambientales de Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
21
|
Ventura CA, Fresta M, Paolino D, Pedotti S, Corsaro A, Puglisi G. Biomembrane model interaction and percutaneous absorption of papaverine through rat skin: effects of cyclodextrins as penetration enhancers. J Drug Target 2002; 9:379-93. [PMID: 11770707 DOI: 10.3109/10611860108998773] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of different concentrations of beta-cyclodextrin (beta-CyD), hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) and 2,6-di-O-methyl-beta-cyclodextrin (DM-beta-CyD) on percutaneous absorption of papaverine hydrochloride (PAP) were investigated. Abdominal rat skin mounted in Franz cells was used for in vitro experiments. To evaluate CyD interaction with a bilayer structure model, dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and DPPC-Chol (8:2 mole ratio) vesicles were used. CyD vesicle interaction was evaluated by differential scanning calorimetry. Permeation through rat skin and calorimetric experiments demonstrated that at low concentrations DM-beta-CyD shows higher enhancer activity as a possible result of a perturbing action on the skin by a complexation of its lipid components, but at higher concentrations HP-beta-CyD is the most effective. By considering that HP-beta-CyD presents a very moderate destabilizing action on the skin, we conclude that a 10% aqueous solution of this macrocycle appears to be the most suitable transdermal absorption enhancer for PAP.
Collapse
Affiliation(s)
- C A Ventura
- Dipartimento Farmaco-Chimico, Università di Messina, Italy
| | | | | | | | | | | |
Collapse
|
22
|
De Paepe K, Derde MP, Roseeuw D, Rogiers V. Incorporation of ceramide 3B in dermatocosmetic emulsions: effect on the transepidermal water loss of sodium lauryl sulphate-damaged skin. J Eur Acad Dermatol Venereol 2000; 14:272-9. [PMID: 11204515 DOI: 10.1046/j.1468-3083.2000.00103.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In previous work we reported on the efficacy of cosmetic body lotions enriched with skin-identical lipids to reduce the transepidermal water loss (TEWL) of ageing and sodium lauryl sulphate (SLS)-damaged skin. The observations made depended on the experimental design and clearly raised the question of the importance of the galenic formulation of skin ceramide-containing products. OBJECTIVES The aim of the present work was to study the different galenic forms in which ceramide 3B (0.2% w/v) can be incorporated into common o/w emulsions. In addition, we investigated whether supplementation of skin care products with ceramide 3B enriched with penetration enhancers and coemulsifiers could exert a beneficial effect on barrier function, done by measuring their effects on the TEWL of SLS-induced scaly skin. RESULTS We found that the technique of incorporating ceramide 3B into the o/w emulsions was important for their final stability. However, no additional positive effect on the TEWL values of SLS-damaged skin could be observed when the efficacy of the ceramide-containing emulsions was compared with that of proper controls. CONCLUSIONS Although suitable galenic formulas were developed, no positive effect on TEWL could be observed when ceramide 3B was added in a final concentration of 0.2% (w/v) to different o/w emulsions and applied to SLS-damaged skin.
Collapse
Affiliation(s)
- K De Paepe
- Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
23
|
Pouliot R, Germain L, Auger FA, Tremblay N, Juhasz J. Physical characterization of the stratum corneum of an in vitro human skin equivalent produced by tissue engineering and its comparison with normal human skin by ATR-FTIR spectroscopy and thermal analysis (DSC). BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:341-52. [PMID: 10446422 DOI: 10.1016/s1388-1981(99)00086-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An in vitro human skin equivalent may be obtained by culturing human keratinocytes on a collagen gel containing fibroblasts. The anchored skin equivalent cultured at the air-liquid interface closely resembles human skin and is acceptable for in vitro percutaneous absorption. However, it is still more permeable than human skin. Since intercellular lipids have been recognized to play an important role in skin permeability, infrared spectroscopy and differential scanning calorimetry were performed on the stratum corneum of bovine or human skin equivalents grown at different days of air-liquid culture. The symmetric and asymmetric CH(2) stretching vibrations suggested that for all days observed, the intercellular lipids were less organized than those in human skin, irrespective of whether bovine or human collagen was used. Different culture conditions were also tested and the medium without serum and no epidermal growth factor at the air-liquid culture showed results significantly more comparable to human skin. Actually, the thermal behavior of in vitro stratum corneum showed transitions at lower temperatures than human skin. The transition around 80 degrees C, in the form of a lipid-protein complex, was absent. These results showed that the structural arrangement of intercellular lipids and their thermodynamic properties hold a crucial role in the barrier function of the stratum corneum.
Collapse
Affiliation(s)
- R Pouliot
- Faculté de pharmacie, Pavillon Vandry, Université Laval, Sainte-Foy, Quebec G1K 7P4, Canada
| | | | | | | | | |
Collapse
|