1
|
Hashikawa-Hobara N, Fujiwara K, Hashikawa N. CGRP causes anxiety via HP1γ-KLF11-MAOB pathway and dopamine in the dorsal hippocampus. Commun Biol 2024; 7:322. [PMID: 38503899 PMCID: PMC10951359 DOI: 10.1038/s42003-024-05937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide that causes anxiety behavior; however, the underlying mechanisms remain unclear. We found that CGRP modulates anxiety behavior by epigenetically regulating the HP1γ-KLF-11-MAOB pathway and depleting dopamine in the dorsal hippocampus. Intracerebroventricular administration of CGRP (0.5 nmol) elicited anxiety-like behaviors in open field, hole-board, and plus-maze tests. Additionally, we observed an increase in monoamine oxidase B (MAOB) levels and a concurrent decrease in dopamine levels in the dorsal hippocampus of mice following CGRP administration. Moreover, CGRP increased abundance the transcriptional regulator of MAOB, Krüppel-like factor 11 (KLF11), and increased levels of phosphorylated heterochromatin protein (p-HP1γ), which is involved in gene silencing, by methylating histone H3 in the dorsal hippocampus. Chromatin immunoprecipitation assay showed that HP1γ was recruited to the Klf11 enhancer by CGRP. Furthermore, infusion of CGRP (1 nmol) into the dorsal hippocampus significantly increased MAOB expression as well as anxiety-like behaviors, which were suppressed by the pharmacological inhibition or knockdown of MAOB. Together, these findings suggest that CGRP reduces dopamine levels and induces anxiety-like behavior through epigenetic regulation in the dorsal hippocampus.
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Kyoshiro Fujiwara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| |
Collapse
|
2
|
Sgro M, Ray J, Foster E, Mychasiuk R. Making migraine easier to stomach: the role of the gut-brain-immune axis in headache disorders. Eur J Neurol 2023; 30:3605-3621. [PMID: 37329292 DOI: 10.1111/ene.15934] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND PURPOSE Headache disorders place a significant burden on the healthcare system, being the leading cause of disability in those under 50 years. Novel studies have interrogated the relationship between headache disorders and gastrointestinal dysfunction, suggesting a link between the gut-brain-immune (GBI) axis and headache pathogenesis. Although the exact mechanisms driving the complex relationship between the GBI axis and headache disorders remain unclear, there is a growing appreciation that a healthy and diverse microbiome is necessary for optimal brain health. METHODS A literature search was performed through multiple reputable databases in search of Q1 journals within the field of headache disorders and gut microbiome research and were critically and appropriately evaluated to investigate and explore the following; the role of the GBI axis in dietary triggers of headache disorders and the evidence indicating that diet can be used to alleviate headache severity and frequency. The relationship between the GBI axis and post-traumatic headache is then synthesized. Finally, the scarcity of literature regarding paediatric headache disorders and the role that the GBI axis plays in mediating the relationship between sex hormones and headache disorders are highlighted. CONCLUSIONS There is potential for novel therapeutic targets for headache disorders if understanding of the GBI axis in their aetiology, pathogenesis and recovery is increased.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jason Ray
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| | - Emma Foster
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Kuburas A, Russo AF. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J Headache Pain 2023; 24:34. [PMID: 37009867 PMCID: PMC10069045 DOI: 10.1186/s10194-023-01569-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have emerged as mediators of migraine pathogenesis. Both are vasodilatory peptides that can cause migraine-like attacks when infused into people and migraine-like symptoms when injected into rodents. In this narrative review, we compare the similarities and differences between the peptides in both their clinical and preclinical migraine actions. A notable clinical difference is that PACAP, but not CGRP, causes premonitory-like symptoms in patients. Both peptides are found in distinct, but overlapping areas relevant to migraine, most notably with the prevalence of CGRP in trigeminal ganglia and PACAP in sphenopalatine ganglia. In rodents, the two peptides share activities, including vasodilation, neurogenic inflammation, and nociception. Most strikingly, CGRP and PACAP cause similar migraine-like symptoms in rodents that are manifested as light aversion and tactile allodynia. Yet, the peptides appear to act by independent mechanisms possibly by distinct intracellular signaling pathways. The complexity of these signaling pathways is magnified by the existence of multiple CGRP and PACAP receptors that may contribute to migraine pathogenesis. Based on these differences, we suggest PACAP and its receptors provide a rich set of targets to complement and augment the current CGRP-based migraine therapeutics.
Collapse
Affiliation(s)
- Adisa Kuburas
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Medical Center, Iowa City, IA, 52246, USA.
| |
Collapse
|
4
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Hendrikse ER, Rees TA, Tasma Z, Le Foll C, Lutz TA, Siow A, Wookey PJ, Walker CS, Hay DL. Calcitonin receptor antibody validation and expression in the rodent brain. Cephalalgia 2022; 42:815-826. [PMID: 35410497 PMCID: PMC9441190 DOI: 10.1177/03331024221084029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIM Therapeutics that reduce calcitonin gene-related peptide activity are effective migraine treatments. However, gaps remain in our understanding of the molecular mechanisms that link calcitonin gene-related peptide to migraine. The amylin 1 receptor responds potently to calcitonin gene-related peptide, and to the related peptide amylin, but its role in relation to either peptide or to migraine is unclear. We sought to better understand the expression of the amylin 1 receptor protein subunit, the calcitonin receptor, in the rodent brain. METHODS We profiled three antibodies for immunodetection of calcitonin receptor, using immunocytochemistry, western blotting, and calcitonin receptor conditional knockout mouse tissue. Selected migraine-relevant rat brain regions were then examined for calcitonin receptor-like immunoreactivity. RESULTS All three antibodies detected calcitonin receptor protein but only one (188/10) produced robust immunostaining in rodent brain, under the conditions used. Calcitonin receptor-like immunoreactivity was apparent in the rat brainstem and midbrain including the locus coeruleus, periaqueductal grey and spinal trigeminal nucleus. CONCLUSIONS Anti-calcitonin receptor antibodies require comprehensive profiling to ensure confidence in the detection of calcitonin receptor. Using a validated antibody, calcitonin receptor-like immunoreactivity was detected in several brain regions relevant to migraine. Further research is needed to understand the functional consequences of calcitonin receptor expression for calcitonin gene-related peptide or amylin physiology and pathophysiology.
Collapse
Affiliation(s)
- Erica R Hendrikse
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Andrew Siow
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Peter J Wookey
- Department of Medicine-Austin, The University of Melbourne, Heidelberg, Australia
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, The University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Ray JC, Kapoor M, Stark RJ, Wang SJ, Bendtsen L, Matharu M, Hutton EJ. Calcitonin gene related peptide in migraine: current therapeutics, future implications and potential off-target effects. J Neurol Neurosurg Psychiatry 2021; 92:1325-1334. [PMID: 33495299 DOI: 10.1136/jnnp-2020-324674] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Migraine is the second largest cause of years lost to disability globally among all diseases, with a worldwide prevalence over 1 billion. Despite the global burden of migraine, few classes of therapeutics have been specifically developed to combat migraine. After 30 years of translational research, calcitonin gene-related peptide (CGRP) inhibitors have emerged as a promising new tool in the prevention of migraine. Like all new therapeutics; however, we have limited real-world experience and CGRP has several known systemic actions that warrant consideration. This article provides a narrative review of the evidence for CGRP antagonists and summarises the known and potential side effects that should be considered.
Collapse
Affiliation(s)
- Jason Charles Ray
- Neurology, Alfred Health, Melbourne, Victoria, Australia .,Department of Neuroscience, Monash University, Clayton, Victoria, Australia
| | - Mahima Kapoor
- Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Neuroscience, Monash University, Clayton, Victoria, Australia
| | - Richard J Stark
- Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Neuroscience, Monash University, Clayton, Victoria, Australia
| | - Shuu-Jiun Wang
- The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Lars Bendtsen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark.,University of Copenhagen, Kobenhavn, Denmark
| | - Manjit Matharu
- Headache Group, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Elspeth Jane Hutton
- Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Neuroscience, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Abstract
Cluster headache is a primary headache form occurring in paroxysmal excruciatingly severe unilateral head pain attacks usually grouped in periods lasting 1-2months, the cluster periods. A genetic component is suggested by the familial occurrence of the disease but a genetic linkage is yet to be identified. Contemporary activation of trigeminal and cranial parasympathetic systems-the so-called trigemino-parasympathetic reflex-during the headache attacks seem to cause the pain and accompanying oculo-facial autonomic phenomena respectively. At peripheral level, the increased calcitonin gene related peptide (CGRP) plasma levels suggests trigeminal system activation during cluster headache attacks. The temporal pattern of the disease both in terms of circadian rhythmicity and seasonal recurrence has suggested involvement of the hypothalamic biological clock in the pathophysiology of cluster headache. The posterior hypothalamus was investigate as the cluster generator leading to activation of the trigemino-parasympathetic reflex, but the accumulated experience after 20 years of hypothalamic electrical stimulation to treat the condition indicate that this brain region rather acts as pain modulator. Efficacy of monoclonal antibodies to treat episodic cluster headache points to a key role of CGRP in the pathophysiology of the condition.
Collapse
|
8
|
Hashikawa-Hobara N, Mishima S, Okujima C, Shitanishi Y, Hashikawa N. Npas4 impairs fear memory via phosphorylated HDAC5 induced by CGRP administration in mice. Sci Rep 2021; 11:7006. [PMID: 33772088 PMCID: PMC7997869 DOI: 10.1038/s41598-021-86556-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
The relationships among neuropeptide, calcitonin gene-related peptide (CGRP), and memory formation remain unclear. Here, we showed that the intracerebroventricular administration of CGRP impaired the traumatic fear memories, in a widely studied animal model of post-traumatic stress disorder. We found that CGRP administration suppressed fear memory by increasing neuronal PAS domain protein 4 (Npas4), phosphorylated histone deacetylase 5 (HDAC5), and protein kinase D (PKD). We also discovered that Npas4 knockdown inhibited CGRP-mediated fear memory. CGRP decreased the binding between HDAC5 and the Npas4 enhancer site and increased the binding between acetylated histone H3 and the Npas4 enhancer site. The pharmacological inhibition or knockdown of PKD attenuated the CGRP-mediated impairment of fear memory and the increased phosphorylation of HDAC5 and Npas4 expression. Our findings demonstrated that the CGRP-PKD pathway was associated with the histone H3 acetylation-Npas4 pathway. These results suggested a novel function for CGRP on fear memory, through epigenetic regulation.
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Shuta Mishima
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Chihiro Okujima
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Youdai Shitanishi
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| |
Collapse
|
9
|
Huang D, Grady FS, Peltekian L, Laing JJ, Geerling JC. Efferent projections of CGRP/Calca-expressing parabrachial neurons in mice. J Comp Neurol 2021; 529:2911-2957. [PMID: 33715169 DOI: 10.1002/cne.25136] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
The parabrachial nucleus (PB) is composed of glutamatergic neurons at the midbrain-hindbrain junction. These neurons form many subpopulations, one of which expresses Calca, which encodes the neuropeptide calcitonin gene-related peptide (CGRP). This Calca-expressing subpopulation has been implicated in a variety of homeostatic functions, but the overall distribution of Calca-expressing neurons in this region remains unclear. Also, while previous studies in rats and mice have identified output projections from CGRP-immunoreactive or Calca-expressing neurons, we lack a comprehensive understanding of their efferent projections. We began by identifying neurons with Calca mRNA and CGRP immunoreactivity in and around the PB, including populations in the locus coeruleus and motor trigeminal nucleus. Calca-expressing neurons in the PB prominently express the mu opioid receptor (Oprm1) and are distinct from neighboring neurons that express Foxp2 and Pdyn. Next, we used Cre-dependent anterograde tracing with synaptophysin-mCherry to map the efferent projections of these neurons. Calca-expressing PB neurons heavily target subregions of the amygdala, bed nucleus of the stria terminalis, basal forebrain, thalamic intralaminar and ventral posterior parvicellular nuclei, and hindbrain, in different patterns depending on the injection site location within the PB region. Retrograde axonal tracing revealed that the previously unreported hindbrain projections arise from a rostral-ventral subset of CGRP/Calca neurons. Finally, we show that these efferent projections of Calca-expressing neurons are distinct from those of neighboring PB neurons that express Pdyn. This information provides a detailed neuroanatomical framework for interpreting experimental work involving CGRP/Calca-expressing neurons and opioid action in the PB region.
Collapse
Affiliation(s)
- Dake Huang
- Department of Neurology, University of Iowa, Iowa, USA
| | | | | | | | | |
Collapse
|
10
|
Zhou Y, Hua T, Weng X, Ma D, Li X. Calcitonin gene-related peptide alleviates hypertrophic scar formation by inhibiting the inflammation. Arch Dermatol Res 2021; 314:53-60. [PMID: 33649909 DOI: 10.1007/s00403-020-02179-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 12/07/2020] [Indexed: 11/27/2022]
Abstract
The present study aims to explore the roles of calcitonin gene-related peptide (CGRP) in the hypertrophic scar and its underlying mechanism. The levels of CGRP were determined in human hypertrophic scar and mouse cutaneous scar using ELISA and Western blot. In in vivo studies, A cutaneous excision mouse model was established and treated with exogenous CGRP or CGRP antagonist. In in vitro studies, bone marrow-derived macrophages (BMDMs) were isolated and treated with exogenous CGRP in the presence of lipopolysaccharide (LPS). qRT-PCR and Western blot were applied to determine the mRNA and protein levels of scar formation and inflammation-related genes, respectively. Flow cytometry was operated to determine the populations of macrophages in the scar. Elevated levels of CGRP were observed in the hypertrophic scar. In the cutaneous excision mouse model, treatment of exogenous CGRP or CGRP antagonist-affected scar formation-related genes including Col1, Tgfb1, and α-SMA, inflammation-related genes including Il1b, Il6, Tnfa, and Ccl2, and CD45+F4/80+ macrophage. In LPS-induced BMDMs, treatment of exogenous CGRP also altered inflammation-related genes by regulating NF-κB and ERK signaling pathways. The ameliorated effects of CGRP on inflammation in hypertrophic scar formation are associated with its regulative effects on NF-κB and ERK signaling pathways.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230002, Anhui, China.,Department of Plastic Surgery, The First People's Hospital of Hefei, Hefei, 230002, Anhui, China
| | - Tianfeng Hua
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230002, Anhui, China.,Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230002, Anhui, China
| | - Xiaojuan Weng
- Department of Cosmetic Surgery, Yuyan Medical Cosmetology Clinic of Hefei, Hefei, 230002, Anhui, China
| | - Dameng Ma
- Department of Cosmetic Surgery, Yuyan Medical Cosmetology Clinic of Hefei, Hefei, 230002, Anhui, China
| | - Xiaojing Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230002, Anhui, China.
| |
Collapse
|
11
|
Invernizzi M, Brancher M, Sironi S, Capelli L, Piringer M, Schauberger G. Odour impact assessment by considering short-term ambient concentrations: A multi-model and two-site comparison. ENVIRONMENT INTERNATIONAL 2020; 144:105990. [PMID: 32795747 DOI: 10.1016/j.envint.2020.105990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/03/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Short-term events are one of the specific aspects that differentiate odour nuisance problems from conventional air quality pollutants. Atmospheric dispersion modelling has been considered the gold standard to realise odour impact assessments and to calculate separation distances. Most of these models provide predictions of concentrations of a pollutant in ambient air on an hourly basis. Even when the hourly mean odour concentration is lower than the perception threshold, concentration peaks above the threshold may occur during this period. The constant peak-to-mean factor is nowadays the most widespread method for evaluating short-term concentrations from the long-term ones. Different approaches have been proposed in the scientific literature to consider non-constant peak-to-mean factors. Two prominent approaches to do so are the i) variable peak-to-mean factor which considers the distance from the source and atmospheric stability and the ii) concentration-variance transport. In this sense, the aim of this work is to compare the results of three different freely available dispersion models (namely, CALPUFF, LAPMOD and GRAL), which implement three distinct ways to evaluate the short-term concentration values. Two sites, one in Austria and the other in Italy, were selected for the investigation. Dispersion model results were compared and discussed both in terms of long-term (hourly) concentrations and short-term. An important outcome of this work is that the dispersion models provided more equivalent results for hourly mean concentrations, in particular in the far-field. On the contrary, the method to evaluate short-term concentrations can deliver disparate results, thereby revealing a potential risk of poor assessment conclusions. The utilistion of a multiangle methodological approach (dispersion models, study site locations, algorithms to incorporate short-term concentrations) allowed providing useful information for future studies and policymaking in this field. Accordingly, our findings call for awareness on how the use of a particular dispersion model and its sub-hourly peak calculation method can affect odour impact assessment conclusions and compliance demonstrations.
Collapse
Affiliation(s)
- Marzio Invernizzi
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Marlon Brancher
- WG Environmental Health, Unit for Physiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Selena Sironi
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Laura Capelli
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Martin Piringer
- Department of Environmental Meteorology, Central Institute of Meteorology and Geodynamics, Hohe Warte 38, A-1190 Vienna, Austria
| | - Günther Schauberger
- WG Environmental Health, Unit for Physiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
12
|
Sowers LP, Wang M, Rea BJ, Taugher RJ, Kuburas A, Kim Y, Wemmie JA, Walker CS, Hay DL, Russo AF. Stimulation of Posterior Thalamic Nuclei Induces Photophobic Behavior in Mice. Headache 2020; 60:1961-1981. [PMID: 32750230 DOI: 10.1111/head.13917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE A hallmark of migraine is photophobia. In mice, photophobia-like behavior is induced by calcitonin gene-related peptide (CGRP), a neuropeptide known to be a key player in migraine. In this study, we sought to identify sites within the brain from which CGRP could induce photophobia. DESIGN We focused on the posterior thalamic region, which contains neurons responsive to both light and dural stimulation and has CGRP binding sites. We probed this area with both optogenetic stimulation and acute CGRP injections in wild-type mice. Since the light/dark assay has historically been used to investigate anxiety-like responses in animals, we measured anxiety in a light-independent open field assay and asked if stimulation of a brain region, the periaqueductal gray, that induces anxiety would yield similar results to posterior thalamic stimulation. The hippocampus was used as an anatomical control to ensure that light-aversive behaviors could not be induced by the stimulation of any brain region. RESULTS Optogenetic activation of neuronal cell bodies in the posterior thalamic nuclei elicited light aversion in both bright and dim light without an anxiety-like response in an open field assay. Injection of CGRP into the posterior thalamic region triggered similar light-aversive behavior without anxiety. In contrast to the posterior thalamic nuclei, optogenetic stimulation of dorsal periaqueductal gray cell bodies caused both light aversion and an anxiety-like response, while CGRP injection had no effect. In the dorsal hippocampus, neither optical stimulation nor CGRP injection affected light aversion or open field behaviors. CONCLUSION Stimulation of posterior thalamic nuclei is able to initiate light-aversive signals in mice that may be modulated by CGRP to cause photophobia in migraine.
Collapse
Affiliation(s)
- Levi P Sowers
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Mengya Wang
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Brandon J Rea
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Rebecca J Taugher
- Veterans Administration Health Center, Iowa City, IA, USA.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Adisa Kuburas
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Andrew F Russo
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020; 170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Neuropeptides play important modulatory roles throughout the nervous system, functioning as direct effectors or as interacting partners with other neuropeptide and neurotransmitter systems. Limbic brain areas involved in learning, memory and emotions are particularly rich in neuropeptides. This review will focus on the amygdala, a limbic region that plays a key role in emotional-affective behaviors and pain modulation. The amygdala is comprised of different nuclei; the basolateral (BLA) and central (CeA) nuclei and in between, the intercalated cells (ITC), have been linked to pain-related functions. A wide range of neuropeptides are found in the amygdala, particularly in the CeA, but this review will discuss those neuropeptides that have been explored for their role in pain modulation. Calcitonin gene-related peptide (CGRP) is a key peptide in the afferent nociceptive pathway from the parabrachial area and mediates excitatory drive of CeA neurons. CeA neurons containing corticotropin releasing factor (CRF) and/or somatostatin (SOM) are a source of long-range projections and serve major output functions, but CRF also acts locally to excite neurons in the CeA and BLA. Neuropeptide S (NPS) is associated with inhibitory ITC neurons that gate amygdala output. Oxytocin and vasopressin exert opposite (inhibitory and excitatory, respectively) effects on amygdala output. The opioid system of mu, delta and kappa receptors (MOR, DOR, KOR) and their peptide ligands (β-endorphin, enkephalin, dynorphin) have complex and partially opposing effects on amygdala function. Neuropeptides therefore serve as valuable targets to regulate amygdala function in pain conditions. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryce Cragg
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
14
|
Li X, Su S, Zhao H, Li Y, Xu X, Gao Y, Sun D, Yang Z, Jin W, Ke C. Virus Injection to the Pituitary via Transsphenoidal Approach and the Innervation of Anterior and Posterior Pituitary of Rat. Front Endocrinol (Lausanne) 2020; 11:546350. [PMID: 33343506 PMCID: PMC7746818 DOI: 10.3389/fendo.2020.546350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
The theory holds that the anterior pituitary in mammals receives humoral regulation. Previous studies have reported that the pars distalis of the anterior pituitary of several mammalian species contains substance P-, calcitonin gene-related peptide (CGRP)-, and galanin-like immunoreactive nerve fibers, but the origins of these nerve fibers are unclear. Removal of the pituitary gland, also called hypophysectomy, involves methods that access the pituitary gland via the transauricular or parapharyngeal pathways. However, these methods are not applicable for viral tracer injection to investigate the innervation of the anterior pituitary. The transauricular technique leads to inaccuracies in locating the pituitary gland, while the parapharyngeal approach causes high mortality in animals. Here, we introduce a protocol that accesses the pituitary gland in the rat via the transsphenoidal pathway. This method imitates surgical manipulations such as endotracheal intubation and sphenoid bone drilling, which involve the use of custom-made devices. Using the transsphenoidal pathway greatly improves the survival rate of rats because no additional dissection of blood vessels and nerves is required. Moreover, the pituitary gland can be viewed clearly and directly during the operation, making it possible to accurately inject pseudorabies virus (PRV) 152-expressing enhanced green fluorescent protein (EGFP) into the anterior or posterior pituitary, respectively. After injecting PRV 152 into the anterior pituitary, we found no evidence of direct innervation of the anterior pituitary in the rat brain. However, PRV 152 injection into the posterior pituitary revealed retrograde transneuronal cell bodies in many brain areas, including the CA1 field of the hippocampus, the basolateral amygdaloid nucleus, posterior part (BLP), the arcuate hypothalamic nucleus (Arc), the dorsal portion of the dorsomedial hypothalamic nucleus (DMD), the suprachiasmatic nucleus (SCh), and the subfornical organ (SFO). In the present study, we provide a description of a possible model of hypophysectomy or pituitary injection, and identify brain regions involved in regulating the rat pituitary gland using transneuronal retrograde cell body labeling with PRV.
Collapse
Affiliation(s)
- Xiaohui Li
- Institute of Anesthesiology and Pain (IAP), Department of Anesthesiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shanchun Su
- Institute of Anesthesiology and Pain (IAP), Department of Anesthesiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haiwen Zhao
- Institute of Anesthesiology and Pain (IAP), Department of Anesthesiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yang Li
- Institute of Anesthesiology and Pain (IAP), Department of Anesthesiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xueqin Xu
- Institute of Anesthesiology and Pain (IAP), Department of Anesthesiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Institute of Anesthesiology and Pain (IAP), Department of Anesthesiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dongsheng Sun
- Institute of Anesthesiology and Pain (IAP), Department of Anesthesiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai JiaoTong University, Shanghai, China
| | - Changbin Ke
- Institute of Anesthesiology and Pain (IAP), Department of Anesthesiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Changbin Ke,
| |
Collapse
|
15
|
Abstract
With the approval of calcitonin gene-related peptide (CGRP) and CGRP receptor monoclonal antibodies by the Federal Drug Administration, a new era in the treatment of migraine patients is beginning. However, there are still many unknowns in terms of CGRP mechanisms of action that need to be elucidated to allow new advances in migraine therapies. CGRP has been studied both clinically and preclinically since its discovery. Here we review some of the preclinical data regarding CGRP in animal models of migraine.
Collapse
Affiliation(s)
- Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, IA, USA
| | - Mengya Wang
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA. .,Center for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, IA, USA. .,Department of Pharmacology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Sabharwal R, Mason BN, Kuburas A, Abboud FM, Russo AF, Chapleau MW. Increased receptor activity-modifying protein 1 in the nervous system is sufficient to protect against autonomic dysregulation and hypertension. J Cereb Blood Flow Metab 2019; 39:690-703. [PMID: 29297736 PMCID: PMC6446426 DOI: 10.1177/0271678x17751352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Calcitonin gene-related peptide (CGRP) can cause migraines, yet it is also a potent vasodilator that protects against hypertension. Given the emerging role of CGRP-targeted antibodies for migraine prevention, an important question is whether the protective actions of CGRP are mediated by vascular or neural CGRP receptors. To address this, we have characterized the cardiovascular phenotype of transgenic nestin/hRAMP1 mice that have selective elevation of a CGRP receptor subunit in the nervous system, human receptor activity-modifying protein 1 (hRAMP1). Nestin/hRAMP1 mice had relatively little hRAMP1 RNA in blood vessels and intravenous injection of CGRP caused a similar blood pressure decrease in transgenic and control mice. At baseline, nestin/hRAMP1 mice exhibited similar mean arterial pressure, heart rate, baroreflex sensitivity, and sympathetic vasomotor tone as control mice. We previously reported that expression of hRAMP1 in all tissues favorably improved autonomic regulation and attenuated hypertension induced by angiotensin II (Ang II). Similarly, in nestin/hRAMP1 mice, hypertension caused by Ang II or phenylephrine was greatly attenuated, and associated autonomic dysregulation and increased sympathetic vasomotor tone were diminished or abolished. We conclude that increased expression of neuronal CGRP receptors is sufficient to induce a protective change in cardiovascular autonomic regulation with implications for migraine therapy.
Collapse
Affiliation(s)
- Rasna Sabharwal
- 1 Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Bianca N Mason
- 2 Molecular and Cell Biology Program, University of Iowa, Iowa City, IA, USA
| | - Adisa Kuburas
- 3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Francois M Abboud
- 1 Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Andrew F Russo
- 2 Molecular and Cell Biology Program, University of Iowa, Iowa City, IA, USA.,3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,4 Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,5 Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Mark W Chapleau
- 1 Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,3 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,5 Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
17
|
Favoni V, Giani L, Al-Hassany L, Asioli GM, Butera C, de Boer I, Guglielmetti M, Koniari C, Mavridis T, Vaikjärv M, Verhagen I, Verzina A, Zick B, Martelletti P, Sacco S. CGRP and migraine from a cardiovascular point of view: what do we expect from blocking CGRP? J Headache Pain 2019; 20:27. [PMID: 30866804 PMCID: PMC6734543 DOI: 10.1186/s10194-019-0979-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with a pivotal role in the pathophysiology of migraine. Blockade of CGRP is a new therapeutic target for patients with migraine. CGRP and its receptors are distributed not only in the central and peripheral nervous system but also in the cardiovascular system, both in blood vessels and in the heart. We reviewed the current evidence on the role of CGRP in the cardiovascular system in order to understand the possible short- and long-term effect of CGRP blockade with monoclonal antibodies in migraineurs.In physiological conditions, CGRP has important vasodilating effects and is thought to protect organs from ischemia. Despite the aforementioned cardiovascular implication, preventive treatment with CGRP antibodies has shown no relevant cardiovascular side effects. Results from long-term trials and from real life are now needed.
Collapse
Affiliation(s)
- Valentina Favoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 Pad. G, 40139 Bologna, Italy
| | - Luca Giani
- Ricovero Ferdinando Uboldi, Paderno Dugnano, Italy
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Gian Maria Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 Pad. G, 40139 Bologna, Italy
| | - Calogera Butera
- Dipartimento Neurologico e INSPE, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martina Guglielmetti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
- Regional Referral Headache Center, Sant’Andrea Hospital, Rome, Italy
- Department of Clinical Pathology, University of Sassari, Sassari, Italy
| | - Chrysoula Koniari
- 1st Neurology Department, Aeginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Mavridis
- 1st Neurology Department, Aeginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marge Vaikjärv
- Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Iris Verhagen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela Verzina
- Neurology Clinic, University of Perugia, Perugia, Italy
- S. Maria della Misericordia Hospital, Perugia, Italy
| | - Bart Zick
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
- Regional Referral Headache Center, Sant’Andrea Hospital, Rome, Italy
| | - Simona Sacco
- UOC Neurologia e Stroke Unit, Ospedale SS Filippo e Nicola, Avezzano, Italy
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, L’Aquila, Italy
| | - European Headache Federation School of Advanced Studies (EHF-SAS)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 Pad. G, 40139 Bologna, Italy
- Ricovero Ferdinando Uboldi, Paderno Dugnano, Italy
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Dipartimento Neurologico e INSPE, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
- Regional Referral Headache Center, Sant’Andrea Hospital, Rome, Italy
- Department of Clinical Pathology, University of Sassari, Sassari, Italy
- 1st Neurology Department, Aeginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Faculty of Medicine, University of Tartu, Tartu, Estonia
- Neurology Clinic, University of Perugia, Perugia, Italy
- S. Maria della Misericordia Hospital, Perugia, Italy
- UOC Neurologia e Stroke Unit, Ospedale SS Filippo e Nicola, Avezzano, Italy
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
18
|
|
19
|
Huang P, Kuo PH, Lee MT, Chiou LC, Fan PC. Age-Dependent Anti-migraine Effects of Valproic Acid and Topiramate in Rats. Front Pharmacol 2018; 9:1095. [PMID: 30319425 PMCID: PMC6167431 DOI: 10.3389/fphar.2018.01095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/07/2018] [Indexed: 01/18/2023] Open
Abstract
Background: Valproic acid (VPA) and topiramate (TPM), initially developed as antiepileptics, are approved for migraine prophylaxis in adults but not children. The differences in their antimigraine mechanism(s) by age remain unclear. Methods: A migraine model induced by intra-cisternal (i.c.) capsaicin instillation in pediatric (4–5 weeks) and adult (8–9 weeks) rats was pretreated with VPA (30, 100 mg/kg) or TPM (10, 30, 100 mg/kg). Noxious meningeal stimulation by the irritant capsaicin triggered trigeminovascular system (TGVS) activation mimicking migraine condition, which were assessed peripherally by the depletion of calcitonin gene-related peptide (CGRP) in sensory nerve fibers of the dura mater, the increased CGRP immunoreactivity at trigeminal ganglia (TG) and centrally by the number of c-Fos-immunoreactive (c-Fos-ir) neurons in the trigeminocervical complex (TCC). Peripherally, CGRP released from dural sensory nerve terminals of TG triggered pain signal transmission in the primary afferent of trigeminal nerve, which in turn caused central sensitization of the TGVS due to TCC activation and hence contributed to migraine. Results: In the VPA-treated group, the central responsiveness expressed by reducing the number of c-Fos-ir neurons, which had been increased by i.c. capsaicin, was significant in pediatric, but not adult, rats. Inversely, VPA was effective in peripheral inhibition of elevated CGRP immunoreactivity in the TG and CGRP depletion in the dura mater of adult, but not pediatric, rats. In TPM group, the central responsiveness was significant in both adult and pediatric groups. Peripherally, TPM significantly inhibited capsaicin-induced CGRP expression of TG in adult, but not pediatric, rats. Interestingly, the capsaicin-induced depletion of CGRP in dura was significantly rescued by TPM at high doses in adults, but at low dose in pediatric group. Conclusion: These results suggest VPA exerted peripheral inhibition in adult, but central suppression in pediatric migraine-rats. In contrast, TPM involves both central and peripheral inhibition of migraine with an optimal therapeutic window in both ages. These findings may clarify the age-dependent anti-migraine mechanism of VPA and TPM, which may guide the development of new pediatric anti-migraine drugs in the future.
Collapse
Affiliation(s)
- Pokai Huang
- Department of Pediatrics, E-da Dachang Hospital, Kaohsiung, Taiwan
| | - Ping-Hung Kuo
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming Tatt Lee
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Lih-Chu Chiou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Pi-Chuan Fan
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Mishima S, Otsuka A, Matsuuchi S, Hashikawa N, Inoue K, Hashikawa N. αCGRP Transgenic Mice Display Typical Physiologic Features. YAKUGAKU ZASSHI 2018; 138:1119-1126. [DOI: 10.1248/yakushi.18-00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shuta Mishima
- Department of Life Science, Graduate School of Science, Okayama University of Science
| | - Ami Otsuka
- Department of Life Science, Graduate School of Science, Okayama University of Science
| | - Shota Matsuuchi
- Department of Life Science, Graduate School of Science, Okayama University of Science
| | - Naoya Hashikawa
- Department of Life Science, Graduate School of Science, Okayama University of Science
| | - Kenichi Inoue
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies
| | - Narumi Hashikawa
- Department of Life Science, Graduate School of Science, Okayama University of Science
| |
Collapse
|
21
|
Del Fiacco M, Serra MP, Boi M, Poddighe L, Demontis R, Carai A, Quartu M. TRPV1-Like Immunoreactivity in the Human Locus K, a Distinct Subregion of the Cuneate Nucleus. Cells 2018; 7:cells7070072. [PMID: 29986526 PMCID: PMC6071077 DOI: 10.3390/cells7070072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 01/02/2023] Open
Abstract
The presence of transient receptor potential vanilloid type-1 receptor (TRPV1)-like immunoreactivity (LI), in the form of nerve fibres and terminals, is shown in a set of discrete gray matter subregions placed in the territory of the human cuneate nucleus. We showed previously that those subregions share neurochemical and structural features with the protopathic nuclei and, after the ancient name of our town, collectively call them Locus Karalis, and briefly Locus K. TRPV1-LI in the Locus K is codistributed, though not perfectly overlapped, with that of the neuropeptides calcitonin gene-related peptide and substance P, the topography of the elements immunoreactive to the three markers, in relation to each other, reflecting that previously described in the caudal spinal trigeminal nucleus. Myelin stainings show that myelinated fibres, abundant in the cuneate, gracile and trigeminal magnocellular nuclei, are scarce in the Locus K as in the trigeminal substantia gelatinosa. Morphometric analysis shows that cell size and density of Locus K neurons are consistent with those of the trigeminal substantia gelatinosa and significantly different from those of the magnocellular trigeminal, solitary and dorsal column nuclei. We propose that Locus K is a special component of the human dorsal column nuclei. Its functional role remains to be determined, but TRPV1 appears to play a part in it.
Collapse
Affiliation(s)
- Marina Del Fiacco
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Marianna Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Laura Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Roberto Demontis
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Antonio Carai
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| |
Collapse
|
22
|
Hendrikse ER, Bower RL, Hay DL, Walker CS. Molecular studies of CGRP and the CGRP family of peptides in the central nervous system. Cephalalgia 2018; 39:403-419. [PMID: 29566540 DOI: 10.1177/0333102418765787] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide is an important target for migraine and other painful neurovascular conditions. Understanding the normal biological functions of calcitonin gene-related peptide is critical to understand the mechanisms of calcitonin gene-related peptide-blocking therapies as well as engineering improvements to these medications. Calcitonin gene-related peptide is closely related to other peptides in the calcitonin gene-related peptide family of peptides, including amylin. Relatedness in peptide sequence and in receptor biology makes it difficult to tease apart the contributions that each peptide and receptor makes to physiological processes and to disorders. SUMMARY The focus of this review is the expression of calcitonin gene-related peptide, related peptides and their receptors in the central nervous system. Calcitonin gene-related peptide is expressed throughout the nervous system, whereas amylin and adrenomedullin have only limited expression at discrete sites in the brain. The components of two receptors that respond to calcitonin gene-related peptide, the calcitonin gene-related peptide receptor (calcitonin receptor-like receptor with receptor activity-modifying protein 1) and the AMY1 receptor (calcitonin receptor with receptor activity-modifying protein 1), are expressed throughout the nervous system. Understanding expression of the peptides and their receptors lays the foundation for more deeply understanding their physiology, pathophysiology and therapeutic use.
Collapse
Affiliation(s)
- Erica R Hendrikse
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Rebekah L Bower
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand.,2 Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
23
|
Yuan H, Lauritsen CG, Kaiser EA, Silberstein SD. CGRP Monoclonal Antibodies for Migraine: Rationale and Progress. BioDrugs 2017; 31:487-501. [DOI: 10.1007/s40259-017-0250-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S. Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors. Neuron 2017; 93:1464-1479.e5. [PMID: 28334609 DOI: 10.1016/j.neuron.2017.02.034] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/30/2017] [Accepted: 02/15/2017] [Indexed: 01/07/2023]
Abstract
Basolateral amygdala (BLA) principal cells are capable of driving and antagonizing behaviors of opposing valence. BLA neurons project to the central amygdala (CeA), which also participates in negative and positive behaviors. However, the CeA has primarily been studied as the site for negative behaviors, and the causal role for CeA circuits underlying appetitive behaviors is poorly understood. Here, we identify several genetically distinct populations of CeA neurons that mediate appetitive behaviors and dissect the BLA-to-CeA circuit for appetitive behaviors. Protein phosphatase 1 regulatory subunit 1B+ BLA pyramidal neurons to dopamine receptor 1+ CeA neurons define a pathway for promoting appetitive behaviors, while R-spondin 2+ BLA pyramidal neurons to dopamine receptor 2+ CeA neurons define a pathway for suppressing appetitive behaviors. These data reveal genetically defined neural circuits in the amygdala that promote and suppress appetitive behaviors analogous to the direct and indirect pathways of the basal ganglia. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Joshua Kim
- RIKEN-MIT Center for Neural Circuit Genetics at The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Xiangyu Zhang
- RIKEN-MIT Center for Neural Circuit Genetics at The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shruti Muralidhar
- RIKEN-MIT Center for Neural Circuit Genetics at The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah A LeBlanc
- RIKEN-MIT Center for Neural Circuit Genetics at The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susumu Tonegawa
- RIKEN-MIT Center for Neural Circuit Genetics at The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Brain Science Institute, RIKEN, Saitama 351-0198, Japan.
| |
Collapse
|
25
|
Levin BE, Lutz TA. Amylin and Leptin: Co-Regulators of Energy Homeostasis and Neuronal Development. Trends Endocrinol Metab 2017; 28:153-164. [PMID: 27938937 DOI: 10.1016/j.tem.2016.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022]
Abstract
While the regulation of energy homeostasis by amylin is already well-characterized, emerging data suggest that amylin is also crucial for the development of neural pathways in the hypothalamus and caudal hindbrain (area postrema, AP; nucleus tractus solitarius, NTS). Exciting new findings demonstrate crucial amylin-leptin interactions in altering the activity of specific hypothalamic and AP neurons, and a role for amylin as a novel class of 'leptin sensitizers' which enhance leptin signaling in both leptin-sensitive and -resistant individuals, in part by stimulating IL-6 production by hypothalamic microglia. This review summarizes these findings and provides a hypothetical framework for future studies to elucidate the mechanisms by which amylin and leptin act individually and as co-conspirators to alter energy homeostasis and neuronal development.
Collapse
Affiliation(s)
- Barry E Levin
- Department of Neurology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Hashikawa-Hobara N, Ogawa T, Sakamoto Y, Hashikawa N. [The relationship between calcitonin gene-related peptide and depression-like behavior]. Nihon Yakurigaku Zasshi 2016; 148:139-143. [PMID: 27581961 DOI: 10.1254/fpj.148.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
27
|
Vukojevic K, Filipovic N, Tica Sedlar I, Restovic I, Bocina I, Pintaric I, Saraga-Babic M. Neuronal differentiation in the developing human spinal ganglia. Anat Rec (Hoboken) 2016; 299:1060-72. [PMID: 27225905 DOI: 10.1002/ar.23376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/01/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022]
Abstract
The spatiotemporal developmental pattern of the neural crest cells differentiation toward the first appearance of the neuronal subtypes was investigated in developing human spinal ganglia (SG) between the fifth and tenth developmental week using immunohistochemistry and immunofluorescence methods. First neurofilament-200- (NF200, likely myelinated mechanoreceptors) and isolectin-B4-positive neurons (likely unmyelinated nociceptors) appeared already in the 5/6th developmental week and their number subsequently increased during the progression of development. Proportion of NF200-positive cells was higher in the ventral parts of the SG than in the dorsal parts, particularly during the 5/6th and 9/10th developmental weeks (Mann-Whitney, P = 0.040 and P = 0.003). NF200 and IB4 colocalized during the whole investigated period. calcitonin gene-related peptide (CGRP; nociceptive responses), vanilloid receptor-1 (VR1; polymodal nociceptors), and calretinin (calcium signaling) cell immunoreactivity first appeared in the sixth week and eighth week, respectively, especially in the dorsal parts of the SG. VR1 and CGRP colocalized with NF00 during the whole investigated period. Our results indicate the high potential of early differentiated neuronal cells, which slightly decreased with the progression of SG differentiation. On the contrary, the number of neuronal subtypes displayed increasing differentiation at later developmental stage. The great diversity of phenotypic expression found in the SG neurons is the result of a wide variety of influences, occurring at different stages of development in a large potential repertory of these neurons. Understanding the pathway of neural differentiation in the human, SG could be important for the studies dealing with the process of regeneration of damaged spinal nerves or during the repair of pathological changes within the affected ganglia. Anat Rec, 299:1060-1072, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katarina Vukojevic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Natalija Filipovic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Ivana Tica Sedlar
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia.,Department of Oncology, University Hospital Mostar, Bosnia and Herzegovina, Mostar, Bosnia and Herzegovina
| | - Ivana Restovic
- Educational Department, Faculty of Philosophy, University of Split, Split, Croatia
| | - Ivana Bocina
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Irena Pintaric
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Mirna Saraga-Babic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| |
Collapse
|
28
|
Dunn-Meynell AA, Le Foll C, Johnson MD, Lutz TA, Hayes MR, Levin BE. Endogenous VMH amylin signaling is required for full leptin signaling and protection from diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2016; 310:R355-65. [PMID: 26676252 PMCID: PMC4868368 DOI: 10.1152/ajpregu.00462.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/29/2022]
Abstract
Amylin enhances arcuate (ARC) and ventromedial (VMN) hypothalamic nuclei leptin signaling and synergistically reduces food intake and body weight in selectively bred diet-induced obese (DIO) rats. Since DIO (125)I-amylin dorsomedial nucleus-dorsomedial VMN binding was reduced, we postulated that this contributed to DIO ventromedial hypothalamus (VMH) leptin resistance, and that impairing VMH (ARC + VMN) calcitonin receptor (CTR)-mediated signaling by injecting adeno-associated virus (AAV) expressing a short hairpin portion of the CTR mRNA would predispose diet-resistant (DR) rats to obesity on high-fat (45%) diet (HFD). Depleting VMH CTR by 80-90% in 4-wk-old male DR rats reduced their ARC and VMN (125)I-labeled leptin binding by 57 and 51%, respectively, and VMN leptin-induced phospho-signal transducer and activator of transcription 3-positive neurons by 59% vs. AAV control rats. After 6 wk on chow, VMH CTR-depleted DR rats ate and gained the equivalent amount of food and weight but had 18% heavier fat pads (relative to carcass weight), 144% higher leptin levels, and were insulin resistant compared with control AAV DR rats. After 6 wk more on HFD, VMH CTR-depleted DR rats ate the same amount but gained 28% more weight, had 60% more carcass fat, 254% higher leptin levels, and 132% higher insulin areas under the curve during an oral glucose tolerance test than control DR rats. Therefore, impairing endogenous VMH CTR-mediated signaling reduced leptin signaling and caused DR rats to become more obese and insulin resistant, both on chow and HFD. These results suggest that endogenous VMH amylin signaling is required for full leptin signaling and protection from HFD-induced obesity.
Collapse
Affiliation(s)
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Miranda D Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Barry E Levin
- Neurology Service, Veterans Administration Medical Center, East Orange, New Jersey; Department of Neurology, Rutgers, New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
29
|
Long acting analogue of the calcitonin gene-related peptide induces positive metabolic effects and secretion of the glucagon-like peptide-1. Eur J Pharmacol 2016; 773:24-31. [PMID: 26808305 DOI: 10.1016/j.ejphar.2016.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/30/2015] [Accepted: 01/21/2016] [Indexed: 11/22/2022]
Abstract
The pharmacological potential of Calcitonin gene-related peptide (CGRP) beyond vasodilation is not completely understood and studies are limited by the potent vasodilatory effect and the short half-life of CGRP. In particular, the effects of CGRP on metabolic diseases are not clarified. A peptide analogue of the α form of CGRP (αAnalogue) with prolonged half-life (10.2 ± 0.9h) in rodents was synthesised and used to determine specific metabolic effects in 3 rodent models; normal rats, diet-induced obese rats and the Leptin deficient mouse model (ob/ob mice). The αAnalogue (100 nmol/kg) induced elevated energy expenditure and reduced food intake after single dosing in normal rats. In addition, the αAnalogue increased levels of circulating Glucagon-Like Peptide-1 (GLP-1) by >60% and a specific concentration dependent CGRP-induced GLP-1 secretion was verified in a murine L-cell line. Two weeks treatment of the type 2 diabetic ob/ob mice with the αAnalogue caused reduction in fasting insulin levels (199 ± 36 pM vs 332 ± 68 pM) and a tendency to reduce fasting blood glucose (11.2 ± 1.1mM vs 9.5 ± 0.5mM) and % glycosylated haemoglobin (HbA1c) (5.88 ± 0.17 vs 5.12 ± 0.24), demonstrating a potential anti-diabetic effect. Furthermore, two weeks treatment of diet-induced obese rats with the αAnalogue caused reduction in food intake and a significant decline in body weight (3.6 ± 1.9 gvs. -36 ± 1.1g). We have demonstrated that long-acting CGRP analogues may have a therapeutic potential for the treatment of type 2 diabetes through positive metabolic effects and effect on GLP-1 secretion.
Collapse
|
30
|
The Conservative Evolution of the Vertebrate Basal Ganglia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Wu X, Zhang JT, Liu J, Yang S, Chen T, Chen JG, Wang F. Calcitonin gene-related peptide erases the fear memory and facilitates long-term potentiation in the central nucleus of the amygdala in rats. J Neurochem 2015; 135:787-98. [PMID: 26179152 DOI: 10.1111/jnc.13246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/10/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37 amino acid neuropeptide, which plays a critical role in the central nervous system. CGRP binds to G protein-coupled receptors, including CGRP1, which couples positively to adenylyl cyclase (AC) and protein kinase A (PKA) activation. CGRP and CGRP1 receptors are enriched in central nucleus of the amygdala (CeA), the main part of the amygdala, which regulates conditioned fear memories. Here, we reported the importance of CGRP and CGRP1 receptor for synaptic plasticity in the CeA and the extinction of fear memory in rats. Our electrophysiological and behavioral in vitro and in vivo results showed exogenous application of CGRP induced an immediate and lasting long-term potentiation in the basolateral nucleus of amygdala-CeA pathway, but not in the lateral nucleus of amygdala-CeA pathway, while bilateral intra-CeA infusion CGRP (0, 5, 13 and 21 μM/side) dose dependently enhanced fear memory extinction. The effects were blocked by CGRP1 receptor antagonist (CGRP8-37 ), N-methyl-d-aspartate receptors antagonist MK801 and PKA inhibitor H89. These results demonstrate that CGRP can lead to long-term potentiation of basolateral nucleus of amygdala-CeA pathway through a PKA-dependent postsynaptic mechanism that involved N-methyl-d-aspartate receptors and enhance the extinction of fear memory in rats. Together, the results strongly support a pivotal role of CGRP in the synaptic plasticity of CeA and extinction of fear memory. Calcitonin gene-related peptide (CGRP) plays an essential role in synaptic plasticity in the amygdala and fear memory. We found that CGRP-induced chemical long-term potentiation (LTP) in a dose-dependent way in the BLA-CeA (basolateral and central nucleus of amygdala, respectively) pathway and enhanced fear memory extinction in rats through a protein kinase A (PKA)-dependent postsynaptic mechanism that involved NMDA receptors. These results support a pivotal role of CGRP in amygdala.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Ting Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Calcitonin gene-related peptide pre-administration acts as a novel antidepressant in stressed mice. Sci Rep 2015; 5:12559. [PMID: 26251188 PMCID: PMC4528222 DOI: 10.1038/srep12559] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/03/2015] [Indexed: 12/21/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide that has potent vasodilator properties and is involved in various behavioral disorders. The relationship between CGRP and depression-like behavior is unclear. In this study, we used chronically stressed mice to investigate whether CGRP is involved in depression-like behavior. Each mouse was exposed to restraint and water immersion stress for 15 days. After stress exposure, mice were assessed using behavioral tests: open field test, forced swim test and sucrose preference test. Serum corticosterone levels, hippocampal proliferation and mRNA expression of neurotrophins were measured. After stress exposure, mice exhibited depression-like behavior and decreased CGRP mRNA levels in the hippocampus. Although intracerebroventricular CGRP administration (0.5 nmol) did not alter depression-like behavior after 15-day stress exposure, a single CGRP administration into the brain, before the beginning of the 15-day stress exposure, normalized the behavioral dysfunctions and increased nerve growth factor (Ngf) mRNA levels in stressed mice. Furthermore, in the mouse E14 hippocampal cell line, CGRP treatment induced increased expression of Ngf mRNA. The NGF receptor inhibitor K252a inhibited CGRP's antidepressant-like effects in stressed mice. These results suggest that CGRP expression in the mouse hippocampus is associated with depression-like behavior and changes in Ngf mRNA levels.
Collapse
|
33
|
Eftekhari S, Gaspar RC, Roberts R, Chen TB, Zeng Z, Villarreal S, Edvinsson L, Salvatore CA. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: A detailed study using in situ hybridization, immunofluorescence, and autoradiography. J Comp Neurol 2015; 524:90-118. [PMID: 26105175 DOI: 10.1002/cne.23828] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/11/2015] [Accepted: 06/04/2015] [Indexed: 11/05/2022]
Abstract
Functional imaging studies have revealed that certain brainstem areas are activated during migraine attacks. The neuropeptide calcitonin gene-related peptide (CGRP) is associated with activation of the trigeminovascular system and transmission of nociceptive information and plays a key role in migraine pathophysiology. Therefore, to elucidate the role of CGRP, it is critical to identify the regions within the brainstem that process CGRP signaling. In situ hybridization and immunofluorescence were performed to detect mRNA expression and define cellular localization of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [(3)H]MK-3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary nucleus, median eminence, infundibular stem, periaqueductal gray, area postrema, pontine raphe nucleus, gracile nucleus, spinal trigeminal nucleus, and spinal cord. RAMP1 mRNA expression was also detected in the posterior hypothalamic area, trochlear nucleus, dorsal raphe nucleus, medial lemniscus, pontine nuclei, vagus nerve, inferior olive, abducens nucleus, and motor trigeminal nucleus; protein coexpression of CLR and RAMP1 was observed in these areas via immunofluorescence. [(3)H]MK-3207 showed high binding densities concordant with mRNA and protein expression. The present study suggests that several regions in the brainstem may be involved in CGRP signaling. Interestingly, we found receptor expression and antagonist binding in some areas that are not protected by the blood-brain barrier, which suggests that drugs inhibiting CGRP signaling may not be able to penetrate the central nervous system to antagonize receptors in these brain regions.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, SE-22184, Lund, Sweden
| | - Renee C Gaspar
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Rhonda Roberts
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Tsing-Bau Chen
- Department of Imaging, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Zhizhen Zeng
- Department of Imaging, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Stephanie Villarreal
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, SE-22184, Lund, Sweden
| | - Christopher A Salvatore
- Department of Pain and Migraine Research, Merck Research Laboratories, West Point, Pennsylvania, 19486
| |
Collapse
|
34
|
Yajima T, Sato T, Hosokawa H, Kondo T, Saito M, Shimauchi H, Ichikawa H. Distribution of transient receptor potential melastatin-8-containing nerve fibers in rat oral and craniofacial structures. Ann Anat 2015; 201:1-5. [PMID: 25978347 DOI: 10.1016/j.aanat.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Abstract
The transient receptor potential melastatin-8 (TRPM8) is a cold and menthol receptor located in the sensory ganglia. Immunohistochemistry for TRPM8 was performed on oral and craniofacial structures of the rat. TRPM8-immunoreactive (-IR) nerve fibers were detected in the oral mucous membrane. In the gingiva, TRPM8-IR nerve fibers were abundant beneath and within crestal and outer epithelia. Such nerve fibers were also common beneath and within taste buds in the incisive papilla. In addition, TRPM8-immunoreactivity was expressed by some taste bud cells in the papilla. Lips, periodontal ligaments and salivary glands as well as masticatory muscles and temporomandibular joints were mostly devoid of TRPM8-IR nerve fibers. A double immunofluorescence study indicated different distribution patterns of nerve fibers containing TRPM8 and calcitonin gene-related peptide in oral and craniofacial tissues. Retrograde tracing method also indicated that TRPM8-IR nerve fibers in the gingiva and incisive papilla originate from small sensory neurons in the trigeminal ganglion. TRPM8 may be associated with cool, cold nociceptive (<around 25°C) and chemoreceptive transmission in the oral mucosa.
Collapse
Affiliation(s)
- Takehiro Yajima
- Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Hiroshi Hosokawa
- Division of Biological Information, Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Teruyoshi Kondo
- Department of Clinical Engineering, Kyushu University of Health and Welfare School of Health Science, 1714-1 Yoshino-machi, Nobeoka 882-8508, Japan
| | - Masahiro Saito
- Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hidetoshi Shimauchi
- Division of Periodontology and Endodontology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
35
|
Shao B, Zhou YL, Wang H, Lin YS. The role of calcitonin gene-related peptide in post-stroke depression in chronic mild stress-treated ischemic rats. Physiol Behav 2015; 139:224-30. [DOI: 10.1016/j.physbeh.2014.11.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/15/2022]
|
36
|
Takanami K, Sakamoto H, Matsuda KI, Satoh K, Tanida T, Yamada S, Inoue K, Oti T, Sakamoto T, Kawata M. Distribution of gastrin-releasing peptide in the rat trigeminal and spinal somatosensory systems. J Comp Neurol 2014; 522:1858-73. [PMID: 24254931 DOI: 10.1002/cne.23506] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/30/2013] [Accepted: 11/15/2013] [Indexed: 12/12/2022]
Abstract
Gastrin-releasing peptide (GRP) has recently been identified as an itch-specific neuropeptide in the spinal sensory system in mice, but there are no reports of the expression and distribution of GRP in the trigeminal sensory system in mammals. We characterized and compared GRP-immunoreactive (ir) neurons in the trigeminal ganglion (TG) with those in the rat spinal dorsal root ganglion (DRG). GRP immunoreactivity was expressed in 12% of TG and 6% of DRG neurons and was restricted to the small- and medium-sized type cells. In both the TG and DRG, many GRP-ir neurons also expressed substance P and calcitonin gene-related peptide, but not isolectin B4 . The different proportions of GRP and transient receptor potential vanilloid 1 double-positive neurons in the TG and DRG imply that itch sensations via the TG and DRG pathways are transmitted through distinct mechanisms. The distribution of the axon terminals of GRP-ir primary afferents and their synaptic connectivity with the rat trigeminal sensory nuclei and spinal dorsal horn were investigated by using light and electron microscopic histochemistry. Although GRP-ir fibers were rarely observed in the trigeminal sensory nucleus principalis, oralis, and interpolaris, they were predominant in the superficial layers of the trigeminal sensory nucleus caudalis (Vc), similar to the spinal dorsal horn. Ultrastructural analysis revealed that GRP-ir terminals contained clear microvesicles and large dense-cored vesicles, and formed asymmetric synaptic contacts with a few dendrites in the Vc and spinal dorsal horn. These results suggest that GRP-dependent orofacial and spinal pruriceptive inputs are processed mainly in the superficial laminae of the Vc and spinal dorsal horn.
Collapse
Affiliation(s)
- Keiko Takanami
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Eftekhari S, Salvatore CA, Gaspar RC, Roberts R, O'Malley S, Zeng Z, Edvinsson L. Localization of CGRP receptor components, CGRP, and receptor binding sites in human and rhesus cerebellar cortex. THE CEREBELLUM 2014; 12:937-49. [PMID: 23917876 DOI: 10.1007/s12311-013-0509-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is classically considered to be mainly involved in motor processing, but studies have suggested several other functions, including pain processing. Calcitonin-gene-related peptide (CGRP) is a neuropeptide involved in migraine pathology, where there is elevated release of CGRP during migraine attacks and CGRP receptor antagonists have antimigraine efficacy. In the present study, we examined CGRP and CGRP receptor binding sites and protein expression in primate cerebellar cortex. Additionally, mRNA expression of the CGRP receptor components, calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1), was examined. In addition, expression of procalcitonin was studied. We observed high [(3)H]MK-3207 (CGRP receptor antagonist) binding densities in the molecular layer of rhesus cerebellar cortex; however, due to the limit of resolution of the autoradiographic image the exact cellular localization could not be determined. Similarly, [(125)I]CGRP binding was observed in the molecular layer and Purkinje cell layer of human cerebellum. CLR and RAMP1 mRNA was expressed within the Purkinje cell layer and some expression was found in the molecular layer. Immunofluorescence revealed expression of CGRP, CLR, and RAMP1 in the Purkinje cells and in cells in the molecular layer. Procalcitonin was found in the same localization. Recent research in the biology of cerebellum indicates that it may have a role in nociception. For the first time we have identified CGRP and CGRP receptor binding sites together with CGRP receptor expression through protein and mRNA localization in primate cerebellar cortex. These results point toward a functional role of CGRP in cerebellum. Further efforts are needed to evaluate this.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, BMC A13, Sölvegatan 17, 22184, Lund, Sweden,
| | | | | | | | | | | | | |
Collapse
|
38
|
Lisardo Sánchez M, Vecino E, Coveñas R. Distribution of CGRP in the minipig brainstem. Microsc Res Tech 2014; 77:374-84. [PMID: 24610802 DOI: 10.1002/jemt.22355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 11/09/2022]
Abstract
For the first time, an in-depth study has been made of the distribution of fibers and cell bodies containing calcitonin gene-related peptide (CGRP) in the minipig brainstem using an indirect immunoperoxidase technique. The animals studied were not treated with colchicine. Cell bodies containing CGRP were found in 20 nuclei/regions of the brainstem. These perikarya were located in somatomotor, brachiomotor and raphae nuclei, nucleus ambiguus, substantia nigra, nucleus reticularis tegmenti pontis, nucleus prepositus hypoglossi, nuclei olivaris inferior and superior, nuclei pontis, formatio reticularis, nucleus dorsalis tegmenti of Gudden, and in the nucleus reticularis lateralis. Fourteen of the 20 brainstem nuclei showed a high density of immunoreactive cell bodies. In comparison with other species, the minipig, together with the rat, show the most widespread distribution of cell bodies containing CGRP in the mammalian brainstem. Immunoreactive fibers were also observed in the brainstem. However, in the minipig brainstem the density of these fibers is low, as in many brainstem nuclei only single immunoreactive fibers were observed. A high density of immunoreactive fibers was only observed in the pars caudalis of the nucleus tractus spinalis nervi trigemini and in the nucleus ventralis tegmenti of Gudden. According to the observed anatomical distribution of the immunoreactive structures containing CGRP, the peptide could be involved in motor, somatosensory, gustative, and autonomic mechanisms.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), University of Salamanca, Salamanca, Spain
| | | | | |
Collapse
|
39
|
Shenton FC, Pyner S. Expression of transient receptor potential channels TRPC1 and TRPV4 in venoatrial endocardium of the rat heart. Neuroscience 2014; 267:195-204. [PMID: 24631674 DOI: 10.1016/j.neuroscience.2014.02.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/29/2022]
Abstract
The atrial volume receptor reflex arc serves to regulate plasma volume. Atrial volume receptors located in the endocardium of the atrial wall undergo mechanical deformation as blood is returned to the atria of the heart. The mechanosensitive channel(s) responsible for regulating plasma volume remain to be determined. Here we report that the TRP channel family members TRPC1 and TRPV4 were expressed in sensory nerve endings in the atrial endocardium. Furthermore, TRPC1 and TRPV4 were coincident with the nerve ending vesicle marker synaptophysin. Calcitonin gene-related peptide was exclusively confined to the myo- and epicardium of the atria. The small conductance Ca(2+)-activated K(+) channels (SK2 and SK4) were also present, however there was no relationship between SK and TRP channels. SK2 channels were expressed in nerves in the epicardium, while SK4 channels were in some regions of the endocardium but appeared to be present in epithelial cells rather than sensory endings. In conclusion, we have provided the first evidence for TRPC1 and TRPV4 channels as potential contributors to mechanosensation in the atrial volume receptors.
Collapse
Affiliation(s)
- F C Shenton
- School of Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - S Pyner
- School of Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
40
|
Del Fiacco M, Quartu M, Serra MP, Boi M, Demontis R, Poddighe L, Picci C, Melis T. The human cuneate nucleus contains discrete subregions whose neurochemical features match those of the relay nuclei for nociceptive information. Brain Struct Funct 2013; 219:2083-101. [PMID: 23975345 PMCID: PMC4223579 DOI: 10.1007/s00429-013-0625-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 08/04/2013] [Indexed: 12/21/2022]
Abstract
The present paper is aimed at defining distinctive subdivisions of the human cuneate nucleus (Cu), evident from prenatal to old life, whose occurrence has never been clearly formalized in the human brain, or described in other species so far. It extends our early observations on the presence of gray matter areas that host strong substance P (SP) immunoreactivity in the territory of the human Cu and adjacent cuneate fascicle. Here we provide a three-dimensional reconstruction of the Cu fields rich in SP and further identify those areas by means of their immunoreactivity to the neuropeptides SP, calcitonin gene-related peptide, methionine- and leucine-enkephalin, peptide histidine-isoleucine, somatostatin and galanin, to the trophins glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor, and to the neuroplasticity proteins polysialylated neural cell adhesion molecule and growth-associated protein-43. The presence, density and distribution of immunoreactivity for each of these molecules closely resemble those occurring in the superficial layers of the caudal spinal trigeminal nucleus (Sp5C). Myelin and Nissl stainings suggest that those Cu subregions and the Sp5C superficial layers share a similar histological aspect. This work establishes the existence of definite subregions, localized within the Cu territory, that bear the neurochemical and histological features of sensory nuclei committed to the neurotransmission of protopathic stimuli, including pain. These findings appear of particular interest when considering that functional, preclinical and clinical studies show that the dorsal column nuclei, classical relay station of fine somatic tactile and proprioceptive sensory stimuli, are also involved in pain neurotransmission.
Collapse
Affiliation(s)
- Marina Del Fiacco
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Furman JM, Marcus DA, Balaban CD. Vestibular migraine: clinical aspects and pathophysiology. Lancet Neurol 2013; 12:706-15. [DOI: 10.1016/s1474-4422(13)70107-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Blocking neurogenic inflammation for the treatment of acute disorders of the central nervous system. Int J Inflam 2013; 2013:578480. [PMID: 23819099 PMCID: PMC3681302 DOI: 10.1155/2013/578480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/08/2013] [Indexed: 01/11/2023] Open
Abstract
Classical inflammation is a well-characterized secondary response to many acute disorders of the central nervous system. However, in recent years, the role of neurogenic inflammation in the pathogenesis of neurological diseases has gained increasing attention, with a particular focus on its effects on modulation of the blood-brain barrier BBB. The neuropeptide substance P has been shown to increase blood-brain barrier permeability following acute injury to the brain and is associated with marked cerebral edema. Its release has also been shown to modulate classical inflammation. Accordingly, blocking substance P NK1 receptors may provide a novel alternative treatment to ameliorate the deleterious effects of neurogenic inflammation in the central nervous system. The purpose of this paper is to provide an overview of the role of substance P and neurogenic inflammation in acute injury to the central nervous system following traumatic brain injury, spinal cord injury, stroke, and meningitis.
Collapse
|
43
|
Abstract
The aim of the study was to extend the survival of adult spinal motor neurons in serum free culture. Anterior half of the spinal cord was removed from young adult mice and dissociated. Cultured cells attempted to extend neurites within hours of incubation at 37 °C and died within 24 h. To prevent this early regenerative activity, thus to decrease the metabolic requirements of the neurons, cultures were transferred to 4 °C immediately after they were set and kept there for 3 days. Preparations were then taken to 37 °C where they lived up to 8 days. Some neurons continued to extend neurites until the day they died. To understand whether the enhancement of survival involves new protein synthesis, transcription and translation were blocked during cold pre-incubation, which shortened the half life of neurons but not changed the maximum survival period. In conclusion this study has shown that, in the serum-free cultures, the survival of adult spinal motor neurons can be significantly enhanced by cold pre-incubation whose effect seems to depend largely on a reduction in the metabolic activity and less on new protein synthesis.
Collapse
Affiliation(s)
- Serap Bektaş
- Yüzüncü Yıl University, School of Medicine, Physiology Department, Van, Turkey
| | | |
Collapse
|
44
|
Mapping of CGRP in the alpaca diencephalon. J Chem Neuroanat 2012; 45:36-44. [DOI: 10.1016/j.jchemneu.2012.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 11/19/2022]
|
45
|
CGRP antagonists for the treatment of migraine: rationale and clinical data. ACTA ACUST UNITED AC 2012. [DOI: 10.4155/cli.11.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Eftekhari S, Edvinsson L. Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level. BMC Neurosci 2011; 12:112. [PMID: 22074408 PMCID: PMC3282678 DOI: 10.1186/1471-2202-12-112] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/10/2011] [Indexed: 01/17/2023] Open
Abstract
Background Calcitonin gene-related peptide (CGRP) has a key role in migraine pathophysiology and is associated with activation of the trigeminovascular system. The trigeminal ganglion, storing CGRP and its receptor components, projects peripheral to the intracranial vasculature and central to regions in the brainstem with Aδ- and C-fibers; this constitutes an essential part of the pain pathways activated in migraine attacks. Therefore it is of importance to identify the regions within the brainstem that processes nociceptive information from the trigeminovascular system, such as the spinal trigeminal nucleus (STN) and the C1-level of the spinal cord. Immunohistochemistry was used to study the distribution and relation between CGRP and its receptor components - calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) - in human and rat STN and at the C1-level, using a set of newly well characterized antibodies. In addition, double-stainings with CGRP and myelin basic protein (MBP, myelin), synaptophysin (synaptic vesicles) or IB4 (C-fibers in general) were performed. Results In the STN, the highest density of CGRP immunoreactive fibers were found in a network around fiber bundles in the superficial laminae. CLR and RAMP1 expression were predominately found in fibers in the spinal trigeminal tract region, with some fibers spanning into the superficial laminae. Co-localization between CGRP and its receptor components was not noted. In C1, CGRP was expressed in fibers of laminae I and II. The CGRP staining was similar in rat, except for CGRP positive neurons that were found close to the central canal. In C1, the receptor components were detected in laminae I and II, however these fibers were distinct from fibers expressing CGRP as verified by confocal microscopy. Conclusions This study demonstrates the detailed expression of CGRP and its receptor components within STN in the brainstem and in the spinal cord at C1-level, and shows the possibility of CGRP acting postjunctionally in these areas putatively involved in primary headaches.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | | |
Collapse
|
47
|
Prenatal expression of purinergic receptor P2X3 in human dorsal root ganglion. Purinergic Signal 2011; 8:245-54. [PMID: 22052556 DOI: 10.1007/s11302-011-9277-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/10/2011] [Indexed: 02/08/2023] Open
Abstract
The dorsal root ganglion (DRG) is consisted of neurons that relay multiple types of spinal sensory stimuli to the central nervous system. Several neuroactive molecules may be involved in sensory modulation especially pain processing at the DRG, including the purinergic receptor P2X3 and calcitonin-gene-related peptide (CGRP). P2X3 receptor has been considered a promising pharmaceutical target for the development of new pain medicine. Currently, litter is known about the expression of P2X3 in the human DRG. The present study characterized the localization of P2X3 in prenatal human DRG obtained from fetuses at 4-8 gestational months, by comparing to CGRP expression as well as binding pattern of isolectin-B4 (IB4), a marker of small DRG neurons presumably relevant to nociception. P2X3 immunoreactivity (IR) appeared in most neuron-like perikarya, with their numerical density reduced during the gestational period studied. P2X3 IR was co-labeled very commonly with IB4 binding and infrequently with CGRP IR and was not colocalized with IR for the gliocyte marker glutamine synthetase. Together, the data show an early and broad expression of P2X3 in prenatal human DRG neurons, pointing to a biological role of purinergic signaling during the development of spinal sensory system.
Collapse
|
48
|
Harigai Y, Natsume M, Li F, Ohtani A, Senzaki K, Shiga T. Differential roles of calcitonin family peptides in the dendrite formation and spinogenesis of the cerebral cortex in vitro. Neuropeptides 2011; 45:263-72. [PMID: 21549427 DOI: 10.1016/j.npep.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/26/2022]
Abstract
We examined roles of calcitonin family peptides in the initial stages of dendrite formation and the maturation of dendritic spines in the rat cerebral cortex in vitro. Embryonic day 18 cortical neurons were dissociated and cultured for 2-3days in the presence of calcitonin gene-related peptide (CGRP), calcitonin, amylin or adrenomedullin. The treatment of cortical neurons with CGRP promoted the formation of primary dendrites of non-GABAergic neurons. In contrast, the treatment with amylin and adrenomedullin for 3days inhibited the dendritic elongation of non-GABAergic neurons. Calcitonin had no effect on the initial dendrite formation. Next, we examined roles of the peptides in the spine formation. Embryonic day 16 cortical neurons were cultured for 14days and then treated acutely with CGRP, amylin or adrenomedullin for 24h. The density of filopodia, puncta/stubby spines and spines were increased by the CGRP treatment, whereas decreased by amylin. Therefore, CGRP and amylin showed opposite effects on the formation of dendritic filopodia, puncta and spines. Adrenomedullin had no effects on the spine formation. In conclusion, the present study showed that calcitonin family peptides have differential effects both in the dendrite formation during the initial stages and the spine formation of cortical neurons in vitro.
Collapse
Affiliation(s)
- Yuichi Harigai
- University of Tsukuba, Graduate School of Comprehensive Human Sciences, Doctoral Program in Kansei, Behavioral and Brain Sciences, Tennodai, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Defective neuromuscular junction organization and postnatal myogenesis in mice with severe spinal muscular atrophy. J Neuropathol Exp Neurol 2011; 70:444-61. [PMID: 21572339 DOI: 10.1097/nen.0b013e31821cbd8b] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A detailed pathologic analysis was performed on Smn(-/-);SMN2 mice as a mouse model for human type I spinal muscular atrophy (SMA). We provide new data concerning changes in the spinal cord, neuromuscular junctions and muscle cells, and in the organs of the immune system. The expression of 10 synaptic proteins was analyzed in 3-dimensionally reconstructed neuromuscular junctions by confocal microscopy. In addition to defects in postsynaptic occupancy, there was a marked reduction in calcitonin gene-related peptide and Rab3A in the presynaptic motor terminals of some, but not all, of the skeletal muscles analyzed. Defects in the organization of presynaptic nerve terminals were also detected by electron microscopy. Moreover, degenerative changes in muscle cells, defective postnatal muscle growth, and prominent muscle satellite cell apoptosis were also observed. All of these changes occurred in the absence of massive loss of spinal cord motoneurons. On the other hand, astroglia, but not microglia, increased in the ventral horn of newborn SMA mice. In skeletal muscles, the density of interstitial macrophages was significantly reduced, and monocyte chemotactic protein-1 was downregulated. These findings raise questions regarding the primary contribution of a muscle cell defect to the SMA phenotype.
Collapse
|
50
|
Eftekhari S, Edvinsson L. Possible sites of action of the new calcitonin gene-related peptide receptor antagonists. Ther Adv Neurol Disord 2011; 3:369-78. [PMID: 21179597 DOI: 10.1177/1756285610388343] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Migraine is considered a neurovascular disease affecting more than 10% of the general population. Currently available drugs for the acute treatment of migraine are vasoconstrictors, which have limitations in their therapeutic use. The calcitonin gene-related peptide (CGRP) has a key role in migraine, where levels of CGRP are increased during acute migraine attacks. CGRP is expressed throughout the central and peripheral nervous system, consistent with control of vasodilatation and transmission of nociceptive information. In migraine, CGRP is released from the trigeminal system. At peripheral synapses CGRP results in vasodilatation via receptors on the smooth muscle cells. At central synapses, CGRP acts postjunctionally on second-order neurons to transmit pain centrally via the brainstem and midbrain to higher cortical pain regions. The recently developed CGRP-receptor antagonists have demonstrated clinical efficacy in the treatment of acute migraine attacks. A remaining question is their site of action. The CGRP-receptor components (calcitonin receptor-like receptor, receptor activity modifying protein 1 and receptor component protein) are found to colocalize in the smooth muscle cells of intracranial arteries and in large-sized neurons in the trigeminal ganglion. The CGRP receptor has also been localized within parts of the brain and the brainstem. The aim of this paper is to review recent localization studies of CGRP and its receptor components within the nervous system and to discuss whether these sites could be possible targets for the CGRP-receptor antagonists.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Department of Clinical Sciences, Division of Experimental Vascular Research, BMC A13, Sölvegatan 17, SE-22184 Lund, Sweden
| | | |
Collapse
|