1
|
Lyu Z, Kinkade JA, Bivens NJ, Roberts RM, Joshi T, Rosenfeld CS. Effects of oxycodone on placental lineages: Evidence from the transcriptome profile of mouse trophoblast giant cells. Proc Natl Acad Sci U S A 2024; 121:e2412349121. [PMID: 39475633 PMCID: PMC11551428 DOI: 10.1073/pnas.2412349121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/28/2024] [Indexed: 11/13/2024] Open
Abstract
Pregnant women are often prescribed or abuse opioid drugs. The placenta is likely the key to understanding how opioids cause adverse pregnancy outcomes. Maternal oxycodone (OXY) exposure of pregnant mice leads to disturbances in the layer of invasive parietal trophoblast giant cells (pTGC) that forms the interface between the placenta and uterus. These cells are analogous to extravillous trophoblasts of the human placenta. They are crucial to coordinating the metabolic needs of the conceptus with those of the mother and are primary participants in the placenta-brain axis. Their large nuclear size, however, has precluded both single-cell (sc) and single-nucleus (sn) RNA-seq analyses beyond embryonic day (E) 8.5. Here, we compared the transcriptomes of placentas from pregnant mice exposed to OXY with unexposed controls at E12.5, with particular emphasis on the pTGC. The nonfluidic Parse snRNA-seq approach permitted characterization of the nuclear transcriptomes of all the major placental cell lineages and their presumed progenitors at E12.5. OXY exposure had a negligible effect on components of the placental labyrinth, including the two syncytial cell layers, but caused transcriptomic changes consistent with metabolic stress throughout the spongiotrophoblast. Most notably, there was loss of the majority of pTGC, whose normal gene expression is consistent with elevated energy demand relating to biosynthesis of multiple secretory products, especially hormones, and endoduplication of DNA. This unusual sensitivity of pTGC presumably puts the pregnancy and future health of the offspring at particular risk to OXY exposure.
Collapse
Affiliation(s)
- Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO65211
| | - Jessica A. Kinkade
- Department of Biomedical Sciences. University of Missouri, Columbia, MO65211
| | - Nathan J. Bivens
- Department of Genomics Technology Core Facility, University of Missouri, Columbia, MO65211
| | - R. Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
- Department of Biochemistry, University of Missouri, Columbia, MO65211
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO65211
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri, Columbia, MO65211
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211
| | - Cheryl S. Rosenfeld
- Department of Biomedical Sciences. University of Missouri, Columbia, MO65211
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO65211
- Department of Genetics Area Program, University of Missouri, Columbia, MO65211
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO65211
| |
Collapse
|
2
|
Rosenfeld CS. The placenta as a target of opioid drugs†. Biol Reprod 2022; 106:676-686. [PMID: 35024817 PMCID: PMC9040663 DOI: 10.1093/biolre/ioac003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 01/14/2023] Open
Abstract
Opioid drugs are analgesics increasingly being prescribed to control pain associated with a wide range of causes. Usage of pregnant women has dramatically increased in the past decades. Neonates born to these women are at risk for neonatal abstinence syndrome (also referred to as neonatal opioid withdrawal syndrome). Negative birth outcomes linked with maternal opioid use disorder include compromised fetal growth, premature birth, reduced birthweight, and congenital defects. Such infants require lengthier hospital stays necessitating rising health care costs, and they are at greater risk for neurobehavioral and other diseases. Thus, it is essential to understand the genesis of such disorders. As the primary communication organ between mother and conceptus, the placenta itself is susceptible to opioid effects but may be key to understanding how these drugs affect long-term offspring health and potential avenue to prevent later diseases. In this review, we will consider the evidence that placental responses are regulated through an endogenous opioid system. However, maternal consumption of opioid drugs can also bind and act through opioid receptors express by trophoblast cells of the placenta. Thus, we will also discuss the current human and rodent studies that have examined the effects of opioids on the placenta. These drugs might affect placental hormones associated with maternal recognition of pregnancy, including placental lactogens and human chorionic gonadotropin in rodents and humans, respectively. A further understanding of how such drugs affect the placenta may open up new avenues for early diagnostic and remediation approaches.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Rosenfeld CS. Transcriptomics and Other Omics Approaches to Investigate Effects of Xenobiotics on the Placenta. Front Cell Dev Biol 2021; 9:723656. [PMID: 34631709 PMCID: PMC8497882 DOI: 10.3389/fcell.2021.723656] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022] Open
Abstract
The conceptus is most vulnerable to developmental perturbation during its early stages when the events that create functional organ systems are being launched. As the placenta is in direct contact with maternal tissues, it readily encounters any xenobiotics in her bloodstream. Besides serving as a conduit for solutes and waste, the placenta possesses a tightly regulated endocrine system that is, of itself, vulnerable to pharmaceutical agents, endocrine disrupting chemicals (EDCs), and other environmental toxicants. To determine whether extrinsic factors affect placental function, transcriptomics and other omics approaches have become more widely used. In casting a wide net with such approaches, they have provided mechanistic insights into placental physiological and pathological responses and how placental responses may impact the fetus, especially the developing brain through the placenta-brain axis. This review will discuss how such omics technologies have been utilized to understand effects of EDCs, including the widely prevalent plasticizers bisphenol A (BPA), bisphenol S (BPS), and phthalates, other environmental toxicants, pharmaceutical agents, maternal smoking, and air pollution on placental gene expression, DNA methylation, and metabolomic profiles. It is also increasingly becoming clear that miRNA (miR) are important epigenetic regulators of placental function. Thus, the evidence to date that xenobiotics affect placental miR expression patterns will also be explored. Such omics approaches with mouse and human placenta will assuredly provide key biomarkers that may be used as barometers of exposure and can be targeted by early mitigation approaches to prevent later diseases, in particular neurobehavioral disorders, originating due to placental dysfunction.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, United States.,MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States.,Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Green MT, Martin RE, Kinkade JA, Schmidt RR, Bivens NJ, Tuteja G, Mao J, Rosenfeld CS. Maternal oxycodone treatment causes pathophysiological changes in the mouse placenta. Placenta 2020; 100:96-110. [PMID: 32891007 PMCID: PMC8112023 DOI: 10.1016/j.placenta.2020.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Pregnant women are increasingly being prescribed and abusing opioid drugs. As the primary communication organ between mother and conceptus, the placenta may be vulnerable to opioid effects but also holds the key to better understanding how these drugs affect long-term offspring health. We hypothesized that maternal treatment with oxycodone (OXY), the primary opioid at the center of the current crisis, deleteriously affects placental structure and gene expression patterns. METHODS Female mice were treated daily with 5 mg OXY/kg or saline solution (Control, CTL) for two weeks prior to breeding and until placenta were collected at embryonic age 12.5. A portion of the placenta was fixed for histology, and the remainder was frozen for RNA isolation followed by RNAseq. RESULTS Maternal OXY treatment reduced parietal trophoblast giant cell (pTGC) area and decreased the maternal blood vessel area within the labyrinth region. OXY exposure affected placental gene expression profiles in a sex dependent manner with female placenta showing up-regulation of many placental enriched genes, including Ceacam11, Ceacam14, Ceacam12, Ceacam13, Prl7b1, Prl2b1, Ctsq, and Tpbpa. In contrast, placenta of OXY exposed males had alteration of many ribosomal proteins. Weighted correlation network analysis revealed that in OXY female vs. CTL female comparison, select modules correlated with OXY-induced placental histological changes. Such associations were lacking in the male OXY vs. CTL male comparison. DISCUSSION Results suggest OXY exposure alters placental histology. In response to OXY exposure, female placenta responds by upregulating placental enriched transcripts that are either unchanged or downregulated in male placenta. Such changes may shield female offspring from developmental origins of health and disease-based diseases.
Collapse
Affiliation(s)
- Madison T Green
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Rachel E Martin
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jessica A Kinkade
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Robert R Schmidt
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Geetu Tuteja
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jiude Mao
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Cheryl S Rosenfeld
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA; Informatics Institute, University of Missouri, Columbia, MO, 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65211, USA; Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Gallego MJ, Porayette P, Kaltcheva MM, Meethal SV, Atwood CS. Opioid and progesterone signaling is obligatory for early human embryogenesis. Stem Cells Dev 2009; 18:737-40. [PMID: 18803462 DOI: 10.1089/scd.2008.0190] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growth factors that drive the division and differentiation of stem cells during early human embryogenesis are unknown. The secretion of endorphins, progesterone (P(4)), human chorionic gonadotropin, 17beta-estradiol, and gonadotropin-releasing hormone by trophoblasts that lie adjacent to the embryoblast in the blastocyst suggests that these pregnancy-associated factors may directly signal the growth and development of the embryoblast. To test this hypothesis, we treated embryoblast-derived human embryonic stem cells (hESCs) with ICI 174,864, a delta-opioid receptor antagonist, and RU-486 (mifepristone), a P(4) receptor competitive antagonist. Both antagonists potently inhibited the differentiation of hESC into embryoid bodies, an in vitro structure akin to the blastocyst containing all three germ layers. Furthermore, these agents prevented the differentiation of hESC aggregates into columnar neuroectodermal cells and their organization into neural tube-like rosettes as determined morphologically. Immunoblot analyses confirmed the obligatory role of these hormones; both antagonists inhibited nestin expression, an early marker of neural precursor cells normally detected during rosette formation. Conversely, addition of P(4) to hESC aggregates induced nestin expression and the formation of neuroectodermal rosettes. These results demonstrate that trophoblast-associated hormones induce blastulation and neurulation during early human embryogenesis.
Collapse
Affiliation(s)
- Miguel J Gallego
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
The article provides a broad assessment of the occurrence of hormetic-like biphasic dose-response relationships by over 30 peptides representing many major peptide classes. These peptide-induced biphasic dose responses were observed to occur in a extensive range of tissues, affecting an diverse range of biological endpoints. Despite diversity of peptides, models and endpoints, the quantitative features of the biphasic dose responses are remarkably similar with respect to the amplitude and width of the stimulatory response. These findings strongly suggest that hormetic-like biphasic dose responses represent a broadly generalizable biological phenomenon.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
7
|
Nanovskaya T, Deshmukh S, Brooks M, Ahmed MS. Transplacental transfer and metabolism of buprenorphine. J Pharmacol Exp Ther 2002; 300:26-33. [PMID: 11752093 DOI: 10.1124/jpet.300.1.26] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Information on the direct and indirect effects of buprenorphine (BUP) on the fetus is essential for determining its potential for treatment of the pregnant opiate addict. The goal of this investigation is to determine the transplacental transfer of BUP to the fetal circulation, its metabolism, and effects on the tissue. The technique of dual perfusion of placental lobule is used. The range of BUP concentrations investigated included its peak plasma levels (10 ng/ml) in patients under treatment. A biphasic decline in concentration of the drug in the maternal circulation was observed, initially rapid then slow. During the initial (60 min), the tissue sequestered most of BUP resulting in a low (<10%) transplacental transfer of the drug to the fetal circulation. The concentration ratios of the drug in tissue/maternal and tissue/fetal were 13 +/- 6.5 and 27.4 +/- 0.4. The drug sequestered did not have any adverse effects on placental tissue viability and functional parameters. Less than 5% of the perfused BUP was metabolized to norbuprenorphine during the 4 h of perfusion and the metabolite was distributed between the tissue, maternal, and fetal circulations. Taken together, these data suggest that the therapeutic levels of BUP in the maternal circulation may have no indirect effects (via the placenta) on the fetus. The observed low transplacental transfer of BUP to the fetal circuit may explain the moderate/absence of neonatal withdrawal in the limited number of reports on mothers treated with the drug during pregnancy.
Collapse
Affiliation(s)
- Tatiana Nanovskaya
- Division of Pharmacology, School of Medicine, University of Missouri, Kansas City, Missouri 64108-2792, USA
| | | | | | | |
Collapse
|
8
|
Abstract
It was shown that biphasic responses are commonly reported for opiates with respect to a broad range of animal models and endpoints. These endpoints include such diverse functions as blood pressure, muscle tension, breathing rates, hCG production, HIV production, neutrophil migration, ACTH production, protein binding, and neuronal functioning. Quantitative features of the dose-response relationships indicated that the maximum stimulatory responses were < or = 3-fold greater than the controls with most being between 10 to 70% greater than the controls. In contrast to the striking similarity in the maximum stimulatory response, there was marked variation with respect to the dose range of the stimulatory responses that varied from 10(1) to 10(10). Mechanistic assessments were conducted for most biphasic dose-response relationships and are addressed in detail.
Collapse
Affiliation(s)
- E J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst 01003, USA.
| |
Collapse
|
9
|
Cemerikic B, Zamah R, Ahmed MS. Identification of L-type calcium channels associated with kappa opioid receptors in human placenta. J Mol Neurosci 1998; 10:261-72. [PMID: 9770647 DOI: 10.1007/bf02761779] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Transduction pathways of kappa receptor activation are not fully understood. Human placenta at term expresses only this type of opioid receptors and therefore offers a unique advantage for such investigations. It has previously been postulated that kappa receptors-mediated modulation of acetylcholine and placental lactogen release from human placentas require the influx of extracellular calcium and into the cells, possibly via voltage-dependent channels. We report here that another opioid-regulated placental function, the release of human chorionic gonadotropin (hCG), depends on extracellular calcium and the modality of its influx via L-type channels. Data presented demonstrated that the stimulation of hCG secretion by the kappa-selective agonist U69,593 was abolished in presence of either EGTA or the calcium channel blocker nifedipine. Results obtained on the combined effect of opioids and dihydropyridines indicated that placental kappa opioid receptors could be directly coupled to L-type calcium channels. The identification of the latter in villus membrane preparations, reported here for the first time, further contributes to the hypothesis that, in human placenta, kappa receptors-linked transduction mechanisms involve calcium and its conductance across villus membranes.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Benzeneacetamides
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels/metabolism
- Calcium Signaling
- Cell Membrane/metabolism
- Chorionic Gonadotropin/metabolism
- Chorionic Villi/metabolism
- Culture Techniques
- Egtazic Acid/pharmacology
- Female
- Humans
- Isradipine/metabolism
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Nifedipine/pharmacology
- Placenta/metabolism
- Pyrrolidines/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Trophoblasts/metabolism
Collapse
Affiliation(s)
- B Cemerikic
- School of Medicine, University of Missouri, Kansas City 64108-2792, USA
| | | | | |
Collapse
|
10
|
Stratakis CA, Mitsiades NS, Chrousos GP, Margioris AN. Dopamine affects the in vitro basal secretion of rat placenta opioids in an opioid and dopamine receptor type-specific manner. Eur J Pharmacol 1996; 315:53-8. [PMID: 8960864 DOI: 10.1016/s0014-2999(96)00577-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Opioid peptides and their receptors are present in the placenta of many species. Dopamine plays an important role in the regulation of opioid release in the nervous system and it may play a similar role in placenta since dopamine receptors are also present in this tissue. The aim of the present work was to examine the effect of dopamine on the basal release of rat placental opioids. The effect of several dopamine receptor agonists and antagonists was tested on the release of immunoreactive beta-endorphin and immunoreactive dynorphin from perfused rat placenta fragments. We found that dopamine and apomorphine stimulated the secretion of immunoreactive beta-endorphin in a dose-dependent manner. The selective D1 dopamine receptor agonist (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride or SKF-38393 reproduced the effect of dopamine while the selective D1 dopamine receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl 1,2,3,4,5-tetrahydro-1 H-benzazepine hydrochloride or SCH-23390, prevented the dopamine- and SKF-38393-induced increase of immunoreactive beta-endorphin secretion. The selective and potent D2 dopamine receptor agonist (+/-)-2-(N-phenylethyl-N-propyl) amino-5-hydroxytetralin hydrochloride or PPHT had no effect on immunoreactive beta-endorphin. Finally, none of the agonists tested had any effect on the in vitro secretion of placental immunoreactive dynorphin. Our results suggest that dopamine affects the basal release of placental opioids in an opioid and dopamine receptor-specific manner, its effect being different from the effect it exerts on beta-endorphin in the rat neurointermediate pituitary lobe.
Collapse
Affiliation(s)
- C A Stratakis
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
11
|
Agbas A, Ahmed MS, Millington W, Cemerikic B, Desiderio DM, Tseng JL, Dass C. Dynorphin A(1-8) in human placenta: amino acid sequence determined by tandem mass spectrometry. Peptides 1995; 16:623-7. [PMID: 7479294 DOI: 10.1016/0196-9781(95)00013-a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Presence of the kappa receptor-preferring neuropeptide dynorphin A(1-8) in human placenta has been demonstrated by mass spectrometry to establish rigorously the appropriate molecular weight and amino acid sequence. Liquid secondary ionization mass spectrometry produced the protonated molecule ion, (M + H)+, at m/z 981 of the endogenous peptide, and tandem mass spectrometry collected the product ion spectrum that contained the appropriate amino acid sequence-determining fragment ions produced from the precursor ion (M + H)+. The amino acid sequence of the peptide is YGGFLRRI.
Collapse
Affiliation(s)
- A Agbas
- School of Biological Sciences, Division of Molecular Biology and Biochemistry, University of Missouri, Kansas City 64108-2792, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Cemerikic B, Zamah R, Ahmed MS. The effect of in vitro methadone administration on trophoblast tissue opioid receptors and mediated responses. Placenta 1994. [DOI: 10.1016/s0143-4004(05)80361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|