1
|
Skov J, Persson F, Frøkiær J, Christiansen JS. Tissue Renin-Angiotensin systems: a unifying hypothesis of metabolic disease. Front Endocrinol (Lausanne) 2014; 5:23. [PMID: 24592256 PMCID: PMC3938116 DOI: 10.3389/fendo.2014.00023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 01/11/2023] Open
Abstract
The actions of angiotensin peptides are diverse and locally acting tissue renin-angiotensin systems (RAS) are present in almost all tissues of the body. An activated RAS strongly correlates to metabolic disease (e.g., diabetes) and its complications and blockers of RAS have been demonstrated to prevent diabetes in humans. Hyperglycemia, obesity, hypertension, and cortisol are well-known risk factors of metabolic disease and all stimulate tissue RAS whereas glucagon-like peptide-1, vitamin D, and aerobic exercise are inhibitors of tissue RAS and to some extent can prevent metabolic disease. Furthermore, an activated tissue RAS deteriorates the same risk factors creating a system with several positive feedback pathways. The primary effector hormone of the RAS, angiotensin II, stimulates reactive oxygen species, induces tissue damage, and can be associated to most diabetic complications. Based on these observations, we hypothesize that an activated tissue RAS is the principle cause of metabolic syndrome and type 2 diabetes, and additionally is mediating the majority of the metabolic complications. The involvement of positive feedback pathways may create a self-reinforcing state and explain why metabolic disease initiate and progress. The hypothesis plausibly unifies the major predictors of metabolic disease and places tissue RAS regulation in the center of metabolic control.
Collapse
Affiliation(s)
- Jeppe Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Novo Nordisk A/S, Bagsvaerd, Denmark
- *Correspondence: Jeppe Skov, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Norrebrogade 44, Aarhus DK-8000, Denmark e-mail:
| | | | - Jørgen Frøkiær
- Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
2
|
Ali MA, Kazzam E, Amir N, Nyberg F, Adem A. Effects of dehydration and blockade of angiotensin II AT1 receptor on stress hormones and anti-oxidants in the one-humped camel. BMC Vet Res 2013; 9:232. [PMID: 24252635 PMCID: PMC4225509 DOI: 10.1186/1746-6148-9-232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/08/2013] [Indexed: 01/18/2023] Open
Abstract
Background The objective of this study was to provide for the first time data on plasma catecholamines, cortisol, glutathione and malondialdehyde after long term dehydration (20 days) in the presence and absence of angiotensin II (Ang II) AT1 receptor blocker (losartan) versus levels in time-matched, non-dehydrated control camels and to record the responses of glutathione and malondialdehyde activity in liver and kidney homogenates in control, dehydrated-losartan treated and dehydrated camels. Eighteen male camels were studied, six hydrated (control group), six dehydrated and treated with losartan (treated group) and six dehydrated not treated (dehydrated). Results Plasma levels of norepinephrine and dopamine were significantly increased (P < 0.01) in both treated and dehydrated groups compared to time matched control, whereas Plasma epinephrine level showed significant decrease (P < 0.05) in both treated and dehydrated groups compared to control. Plasma cortisol also showed significant increase (P < 0.01) in both treated and dehydrated groups compared to control. Glutathione levels in plasma, liver and kidney homogenates for both treated and dehydrated groups reveled significant increase (P < 0.05) Likewise, malondialdehyde levels in plasma, liver and kidney homogenates were substantially and significantly increased in both treated and dehydrated groups. Conclusion In conclusion, the results of this study demonstrated that dehydration substantially increased the circulating levels of norepinephrine, dopamine and cortisol but decreased plasma epinephrine. Similarly, losartan showed similar effects to that of dehydration. In addition, this investigation showed dehydration alone or in combination with losartan induced significant increments in glutathione and malondialdehyde activities in plasma, liver and kidney homogenates, presumably in order to counteract the potentially damaging effects of free radicals. Blockade of angiotensin II AT1 receptors did not alter significantly the response of dehydration in any of these indices.
Collapse
Affiliation(s)
- Mahmoud Alhaj Ali
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, United Arab Emirates University, P,O, Box 17666, Al Ain, United Arab Emirates.
| | | | | | | | | |
Collapse
|
3
|
Peters B, Podlich D, Ritter M, Müller A, Wanka H, Maser-Gluth C, Seitz C, de Boni L, Maier E, Gretz N, Peters J, Hoffmann SC. A new transgenic rat model overexpressing the angiotensin II type 2 receptor provides evidence for inhibition of cell proliferation in the outer adrenal cortex. Am J Physiol Endocrinol Metab 2012; 302:E1044-54. [PMID: 22318954 DOI: 10.1152/ajpendo.00080.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study aimed to elucidate the role of the AT(2) receptor (AT(2)R), which is expressed and upregulated in the adrenal zona glomerulosa (ZG) under conditions of increased aldosterone production. We developed a novel transgenic rat (TGR; TGRCXmAT(2)R) that overexpresses the AT(2)R in the adrenal gland, heart, kidney, brain, skeletal muscle, testes, lung, spleen, aorta, and vein. As a consequence the total angiotensin II (Ang II) binding sites increased 7.8-fold in the kidney, 25-fold in the heart, and twofold in the adrenals. The AT(2)R number amounted to 82-98% of total Ang II binding sites. In the ZG of TGRCXmAT(2)R, the AT(2)R density was elevated threefold relative to wild-type (WT) littermates, whereas AT(1)R density remained unchanged. TGRCXmAT(2)R rats were viable and exhibited normal reproduction, blood pressure, and kidney function. Notably, a slightly but significantly reduced body weight and a moderate increase in plasma urea were observed. With respect to adrenal function, 24-h urinary and plasma aldosterone concentrations were unaffected in TGRCXmAT(2)R at baseline. Three and 14 days of Ang II infusion (300 ng·min(-1)·kg(-1)) increased plasma aldosterone levels in WT and in TGR. These changes were completely abolished by the AT(1)R blocker losartan. Of note, glomerulosa cell proliferation, as indicated by the number of Ki-67-positive glomerulosa cells, was stimulated by Ang II in TGR and WT rats; however, this increase was significantly attenuated in TGR overexpressing the AT(2)R. In conclusion, AT(2)R in the adrenal ZG inhibits Ang II-induced cell proliferation but has no obvious lasting effect on the regulation of the aldosterone production at the investigated stages.
Collapse
Affiliation(s)
- Barbara Peters
- Institute of Physiology, University of Greifswald, Karlsburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Milsted A, Underwood AC, Dunmire J, DelPuerto HL, Martins AS, Ely DL, Turner ME. Regulation of multiple renin-angiotensin system genes by Sry. J Hypertens 2010; 28:59-64. [PMID: 19809364 PMCID: PMC2897148 DOI: 10.1097/hjh.0b013e328332b88d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE We demonstrated that the Sry gene complex on the spontaneously hypertensive rat (SHR) Y chromosome is a candidate locus for hypertension that accounts for the SHR Y chromosome blood pressure effect. All rat strains examined to date share six Sry loci, and a seventh Sry locus (Sry3) appears to be unique to SHR male rats. Previously, we showed that Sry1 increased activity of the tyrosine hydroxylase promoter in transfected PC12 cells, and Sry1 delivered to adrenal gland of Wistar-Kyoto (WKY) rats increased blood pressure and sympathetic nervous system activity. The objective of this study was to determine whether renin-angiotensin system genes participate in Sry-mediated effects. METHOD Sry expression vectors were co-transfected into CHO cells with luciferase reporter constructs containing promoters of angiotensinogen (Agt -1430/+22), renin (Ren -1050/-1), angiotensin-converting enzyme (ACE) (ACE -1677/+21) and ACE2 (ACE2 -1091/+83). RESULTS Sry1, Sry2 and Sry3 differentially upregulated activity of the promoters of angiotensinogen, renin and ACE genes and downregulated ACE2 promoter activity. The largest effect was seen with Sry3, which increased activity of angiotensinogen promoter by 1.7-fold, renin promoter by 1.3-fold, ACE promoter by 2.6-fold and decreased activity of ACE2 promoter by 0.5-fold. The effect of Sry1 on promoter activity was significantly less than that of Sry3. Sry2 activated promoters at a significantly lower level than Sry1 did. The result of either an additive effect of Sry regulation of multiple genes in the renin-angiotensin system or alterations in expression of a single gene could favor increased levels of Ang II and decreased levels of Ang-(1-7). CONCLUSION These actions of Sry could result in increased blood pressure in males and contribute to sex differences in blood pressure.
Collapse
Affiliation(s)
- Amy Milsted
- Department of Biology and Program in Integrated Bioscience, University of Akron, Akron, Ohio 44325-3908, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Vinson GP. Angiotensin II, corticosteroids, type II diabetes and the metabolic syndrome. Med Hypotheses 2006; 68:1200-7. [PMID: 17134848 DOI: 10.1016/j.mehy.2006.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/04/2006] [Indexed: 11/23/2022]
Abstract
Syndrome X, the Metabolic Syndrome, and type II diabetes are closely related diseases that share risk factors and symptoms, notably insulin resistance. Several factors have been proposed either to mediate the disease(s) or to be their causes, and most converge on the endocrine/paracrine functions of the adipocyte. A common feature of such systems is their relative autonomy from systemic negative feedback regulation, for example by the HPA axis. We draw particular attention to two such mechanisms, both of which are associated with, and can cause, insulin resistance: the extra-adrenal production of corticosteroids, and the tissue renin angiotensin system of the adipocyte. These show another feature: the inter-regulation of glucocorticoid action and the RAS by positive feedback. Cortisol enhances the expression of 11 beta-HSD 1, and also of angiotensinogen and angiotensin type 1 receptors. In turn, angiotensin can stimulate further corticosteroid production, from the adrenal and perhaps from extra-adrenal sources. The instability inherent in such positive loops could account for the progressive nature of the disease(s), suggesting ways to break the circle.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| |
Collapse
|
6
|
Takekoshi K, Ishii K, Kawakami Y, Isobe K, Nakai T. Activation of angiotensin II subtype 2 receptor induces catecholamine release in an extracellular Ca(2+)-dependent manner through a decrease of cyclic guanosine 3',5'-monophosphate production in cultured porcine adrenal medullary chromaffin Cells. Endocrinology 2001; 142:3075-86. [PMID: 11416030 DOI: 10.1210/endo.142.7.8263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated that CGP 42112 (AT(2) agonist > or =1 nM) markedly reduces catecholamine biosynthesis through AT(2), which is the major angiotensin II (AngII) receptor subtype in cultured porcine chromaffin cells. Also, we have shown that CGP 42112 (> or =1 nM) induces a reduction in cGMP production in these cells. The present study showed that AngII reduced cGMP production via AT(2) in a manner similar to that found with CGP 42112. AngII (1 nM) significantly increased catecholamine secretion from cultured porcine adrenal medullary chromaffin cells. The stimulation was significantly inhibited by PD 123319 (AT(2) antagonist). The stimulation was moderately, but significantly, attenuated by CV-11974 (AT(1) antagonist, > or =10 nM), suggesting an involvement of AT(1). Moreover, CGP 42112 (> or =10 nM) markedly increased catecholamine release from these cells. The stimulation by CGP 42112 was abolished by PD 123319, whereas CV-11974 had no effect, indicating that this response is also mediated by AT(2). We further examined whether extracellular Ca(2+) is involved in the stimulatory effect of AT(2) on catecholamine secretion. Removal of external Ca(2+) significantly suppressed either AngII plus CV-11974 (100 nM; which simulates specific AT(2) stimulation) or CGP 42112- induced catecholamine secretion. AngII plus CV-11974 or CGP 42112 caused a sustained increase in intracellular Ca(2+) ([Ca(2+)](i)), as determined in fura-2-loaded chromaffin cells in an extracellular Ca(2+)-dependent manner. In the presence of EGTA, the subsequent addition of AngII with CV-11974 and CGP 42112 did not cause any increase in [Ca(2+)](i) levels. Consistent with this finding, CGP 42112 (10 nM to 1 microM) did not alter inositol triphosphate (IP(3)) production, a messenger for mobilization of Ca(2+) from intracellular storage sites. In addition, the intracellular Ca(2+) chelator 1,2-bis(2-amino-phenoxy)ethane-N,N,N',N'- tetraacetic acid acetoxymethylester (BAPTA) did not affect CGP 42112-induced catecholamine release. We tested whether a decrease in cGMP was the cause of the stimulatory effect of AT(2) on catecholamine secretion. Pretreatment with 8-bromo-cGMP (1 mM) prevented the stimulatory effect of AngII plus CV-11974 and CGP 42112 on both catecholamine secretion and [Ca(2+)](i). When 8-bromo-cGMP was added after application of AngII plus CV-11974 or CGP 42112, [Ca(2+)](i) induced by these agents was gradually reduced toward the baseline values. Similarly, guanylin completely abolished the AngII- plus CV-11974-induced increase in both NE secretion and [Ca(2+)](i). The Ca(2+) channel blockers, nicardipine and omega-conotoxin G VIA, at 1 microM in both cases, were also effective in inhibiting AT(2) stimulation-induced secretion. On the other hand, neither T-type voltage-dependent Ca(2+) channel blockers, flunarizine, nor Ni(2+) affected catecholamine release caused by AT(2) stimulation. These findings demonstrate that AT(2) stimulation induces catecholamine secretion by mobilizing Ca(2+) through voltage-dependent Ca(2+) channels without affecting intracellular pools and that these effects could be mediated by a decrease in cGMP production.
Collapse
Affiliation(s)
- K Takekoshi
- Department of Clinical Pathology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | | | |
Collapse
|
7
|
Morrison SF, Cao WH. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am J Physiol Regul Integr Comp Physiol 2000; 279:R1763-75. [PMID: 11049860 DOI: 10.1152/ajpregu.2000.279.5.r1763] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain stimulation or activation of certain reflexes can result in differential activation of the two populations of adrenal medullary chromaffin cells: those secreting either epinephrine or norepinephrine, suggesting that they are controlled by different central sympathetic networks. In urethan-chloralose-anesthetized rats, we found that antidromically identified adrenal sympathetic preganglionic neurons (SPNs) were excited by stimulation of the rostral ventrolateral medulla (RVLM) with either a short (mean: 29 ms) or a long (mean: 129 ms) latency. The latter group of adrenal SPNs were remarkably insensitive to baroreceptor reflex activation but strongly activated by the glucopenic agent 2-deoxyglucose (2-DG), indicating their role in regulation of adrenal epinephrine release. In contrast, adrenal SPNs activated by RVLM stimulation at a short latency were completely inhibited by increases in arterial pressure or stimulation of the aortic depressor nerve, were unaffected by 2-DG administration, and are presumed to govern the discharge of adrenal norepinephrine-secreting chromaffin cells. These findings of a functionally distinct preganglionic innervation of epinephrine- and norepinephrine-releasing adrenal chromaffin cells provide a foundation for identifying the different sympathetic networks underlying the differential regulation of epinephrine and norepinephrine secretion from the adrenal medulla in response to physiological challenges and experimental stimuli.
Collapse
Affiliation(s)
- S F Morrison
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
8
|
Belloni AS, Andreis PG, Macchi V, Gottardo G, Malendowicz LK, Nussdorfer GG. Distribution and functional significance of angiotensin-II AT1- and AT2-receptor subtypes in the rat adrenal gland. Endocr Res 1998; 24:1-15. [PMID: 9553751 DOI: 10.3109/07435809809031865] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The distribution and the functional significance of angiotensin-II (ANG-II) receptor subtypes, AT1 and AT2, in the rat adrenal gland has been investigated in vitro. Autoradiographic assessment of the selective displacement of [125I]ANG-II binding by selective ligands of the two receptor subtypes indicated that zona glomerulosa (ZG) was provided with both AT1 and AT2, and adrenal medulla (AM) almost exclusively with AT2 receptors. ANG-II (10(-9) M) evoked a marked rise in the secretion of aldosterone by dispersed ZG cells and catecholamines by AM fragments. The selective AT1-receptor antagonist DuP753 blocked aldosterone response to ANG-II, while the selective AT2-receptor antagonist PD123319 was ineffective. Catecholamine response to ANG-II was inhibited by PD123319 and only moderately affected by high concentrations of DuP753. The selective AT2-receptor agonist CGP42112 did not change basal aldosterone release of ZG cells, but concentration-dependently enhanced basal catecholamine release by AM fragments. In light of these findings the conclusion is drawn that in the rat the aldosterone secretagogue effect of ANG-II is exclusively mediated by the AT1 receptors present in the ZG, while the catecholamine secretagogue action preminently involves the activation of AT2 receptor located on medullary chromaffin cells.
Collapse
Affiliation(s)
- A S Belloni
- Department of Anatomy, University of Padua, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Mazzocchi G, Gottardo G, Macchi V, Malendowicz LK, Nussdorfer GG. The AT2 receptor-mediated stimulation of adrenal catecholamine release may potentiate the AT1 receptor-mediated aldosterone secretagogue action of angiotensin-II in rats. Endocr Res 1998; 24:17-28. [PMID: 9553752 DOI: 10.3109/07435809809031866] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role played by AT1 and AT2 receptors in the mediation of angiotensin-II (ANG-II) aldosterone secretagogue action has been investigated in vitro using different types of rat adrenal preparations. ANG-II enhanced aldosterone secretion of dispersed zona glomerulosa (ZG) cells in a concentration-dependent manner (EC50, 3 x 10(-10) M), and its effect was annulled by the AT1-receptor antagonist DuP753 and unaffected by the AT2-receptor antagonist PD123319. ANG-II was significantly more effective in stimulating aldosterone secretion when capsule-ZG and adrenal slices containing medullary chromaffin cells were used (EC50, 1 x 10(-11) M and 7 x 10(-12) M, respectively); moreover, both DuP753 and PD123319 caused partial reversals (intense and moderate, respectively) of the responses to ANG-II, and when added together annulled them. The beta-adrenoceptor antagonist l-alprenolol did not affect aldosterone response to ANG-II of dispersed ZG cells, but exerted a PD123319-like effect on the responses of capsule-ZG and adrenal slices. In light of these findings we conclude that, when the integrity of adrenal tissue is preserved, ANG-II stimulates aldosterone secretion by activating both AT1 and AT2 receptors, the major role being played by AT1 receptors located on ZG cells. The activation of AT2 receptors probably elicits the local release of catecholamines, which in turn enhance aldosterone secretion in a paracrine manner acting through the beta-adrenoceptors with which ZG cells are provided.
Collapse
Affiliation(s)
- G Mazzocchi
- Department of Anatomy, University of Padua, Italy
| | | | | | | | | |
Collapse
|
10
|
Bornstein SR, Ehrhart-Bornstein M, Scherbaum WA. Morphological and functional studies of the paracrine interaction between cortex and medulla in the adrenal gland. Microsc Res Tech 1997; 36:520-33. [PMID: 9142698 DOI: 10.1002/(sici)1097-0029(19970315)36:6<520::aid-jemt9>3.0.co;2-l] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Within the last years it has become evident that besides the hypothalamo-pituitary-adrenal axis, extrapituitary mechanisms exist that regulate the activity of the adrenal cortex. In this context, intra-adrenal regulatory mechanisms play an important role. Several secretory products from adrenomedullary cells are able to influence adrenocortical steroidogenesis. Since the main blood flow within the adrenal is directed centripetally from the cortex to the medulla, chromatin cells should act on cortical cells in a paracrine manner. The morphological prerequisite for this regulatory pathway is seen in the close apposition of the two tissues. Within the mammalian adrenal, the two endocrine tissues are interwoven to an astonishing degree with cortical cells located within the medulla and vice versa. It is concluded from morphological and functional studies that paracrine interactions between cortex and medulla play an important role in the regulation of adrenocortical steroidogenesis.
Collapse
Affiliation(s)
- S R Bornstein
- Universität Leipzig, Medizinische Klinik und Poliklinik III, Leipzig, Germany
| | | | | |
Collapse
|
11
|
Worck RH, Ibsen H, Frandsen E, Dige-Petersen H. AT1 receptor blockade and the sympathoadrenal response to insulin-induced hypoglycemia in humans. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:E415-21. [PMID: 9124547 DOI: 10.1152/ajpendo.1997.272.3.e415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An important facilitating effect of angiotensin II on adrenal catecholamine release has been demonstrated in several species. To determine whether specific AT1 receptor blockade affects medullary epinephrine secretion and musculocutaneous norepinephrine release during insulin-induced hypoglycemia, 16 healthy volunteers received losartan vs. placebo followed by an intravenous insulin bolus and measurement of effect variables at short intervals for 150 min. AT1 receptor blockade was effective, as evidenced by substantially increased circulating renin and angiotensin II levels, a 60% inhibition of circulating aldosterone, and an 8.5% decrease of mean arterial pressure over time compared with placebo. Arterial glucose concentration fell to a nadir of 1.9 mM, arterial epinephrine concentration increased 23-fold, forearm musculocutaneous norepinephrine release increased 4-fold, heart rate increased 40%, and forearm blood flow increased 3-fold. All absolute values and the time course of these changes were independent of AT1 receptor blockade. It is concluded that a putative interaction between angiotensin II and the sympathoadrenal axis may not be mediated by AT1 receptors in humans.
Collapse
Affiliation(s)
- R H Worck
- Department of Medicine C, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|