1
|
McAllister SC, Schleiss MR. Prospects and perspectives for development of a vaccine against herpes simplex virus infections. Expert Rev Vaccines 2014; 13:1349-60. [PMID: 25077372 DOI: 10.1586/14760584.2014.932694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpes simplex viruses 1 and 2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future.
Collapse
Affiliation(s)
- Shane C McAllister
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, 3-216 McGuire Translational Research Facility, 2001 6th Street S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
2
|
Chung E, Sen J. The ongoing pursuit of a prophylactic HSV vaccine. Rev Med Virol 2012; 22:285-300. [PMID: 22396215 DOI: 10.1002/rmv.1709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 12/27/2022]
Abstract
HSV is among the most common human pathogens in the world. It is known to cause painful, persistent skin lesions, while also being the most common cause of fatal non-epidemic encephalitis as well as the leading cause of corneal blindness. The development of prophylactic vaccines could substantially reduce global health problems associated with HSV. So far, HSV vaccine strategies have shown noticeable efficacy in early development during preclinical phases but remained unsuccessful or unproven in human trials. New understanding of how the immune system mounts a defence against HSV offers practical strategies for vaccine development. A number of promising vaccine candidates are currently awaiting clinical development or already undergoing clinical testing. Therefore, this is a suitable time to assess the progress of HSV vaccine development and consider existing challenges and future improvements needed to achieve an effective prophylactic HSV vaccine.
Collapse
Affiliation(s)
- Erin Chung
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada.
| | | |
Collapse
|
3
|
Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone. J Virol 2011; 85:10472-86. [PMID: 21813597 DOI: 10.1128/jvi.00849-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attempts to develop a vaccine to prevent genital herpes simplex virus 2 (HSV-2) disease have been only marginally successful, suggesting that novel strategies are needed. Immunization with HSV-2 glycoprotein C (gC-2) and gD-2 was evaluated in mice and guinea pigs to determine whether adding gC-2 to a gD-2 subunit vaccine would improve protection by producing antibodies that block gC-2 immune evasion from complement. Antibodies produced by gC-2 immunization blocked the interaction between gC-2 and complement C3b, and passive transfer of gC-2 antibody protected complement-intact mice but not C3 knockout mice against HSV-2 challenge, indicating that gC-2 antibody is effective, at least in part, because it prevents HSV-2 evasion from complement. Immunization with gC-2 also produced neutralizing antibodies that were active in the absence of complement; however, the neutralizing titers were higher when complement was present, with the highest titers in animals immunized with both antigens. Animals immunized with the gC-2-plus-gD-2 combination had robust CD4+ T-cell responses to each immunogen. Multiple disease parameters were evaluated in mice and guinea pigs immunized with gC-2 alone, gD-2 alone, or both antigens. In general, gD-2 outperformed gC-2; however, the gC-2-plus-gD-2 combination outperformed gD-2 alone, particularly in protecting dorsal root ganglia in mice and reducing recurrent vaginal shedding of HSV-2 DNA in guinea pigs. Therefore, the gC-2 subunit antigen enhances a gD-2 subunit vaccine by stimulating a CD4+ T-cell response, by producing neutralizing antibodies that are effective in the absence and presence of complement, and by blocking immune evasion domains that inhibit complement activation.
Collapse
|
4
|
Awasthi S, Lubinski JM, Friedman HM. Immunization with HSV-1 glycoprotein C prevents immune evasion from complement and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine. Vaccine 2009; 27:6845-53. [PMID: 19761834 DOI: 10.1016/j.vaccine.2009.09.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 11/19/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC-1) binds complement component C3b and inhibits complement-mediated immunity. HSV-1 glycoprotein D (gD-1) is a potent immunogen and a candidate antigen for a subunit vaccine. We evaluated whether combined immunization with gD-1 and gC-1 provides better protection against challenge than gD-1 alone based on antibodies to gC-1 preventing HSV-1-mediated immune evasion. IgG purified from mice immunized with gC-1 blocked C3b binding to gC-1 and greatly increased neutralization by gD-1 IgG in the presence of complement. Passive transfer of gC-1 IgG protected complement intact mice against HSV-1 challenge but not C3 knockout mice, indicating that gC-1 antibody activity in vivo is complement-dependent. Immunizing mice with gD-1 and gC-1 provided better protection than gD-1 alone in preventing zosteriform disease and infection of dorsal root ganglia. Therefore, gC-1 immunization prevents HSV-1 evasion from complement and enhances the protection provided by gD-1 immunization.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, United States.
| | | | | |
Collapse
|
5
|
Conner K, Wuu A, Maldonado V, Bartlett BL, Tyring SK. Vaccines under study: non-HIV vaccines. Dermatol Ther 2009; 22:168-85. [PMID: 19335728 DOI: 10.1111/j.1529-8019.2009.01229.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of effective vaccines has been an amazing public health achievement and has resulted in countless lives being saved. Dermatologic therapy has recently been greatly advanced by the licensure of an effective human papillomavirus vaccine and herpes zoster vaccine. Despite these successes, many infectious diseases do not currently have a preventive vaccine. We review potential vaccines against selected infectious agents, including viruses, bacteria, fungi, and protozoa that have cutaneous and mucocutaneous manifestations. The road to licensure of a new vaccine begins with exhaustive preclinical and clinical studies, and many of these will fail before a successful vaccine candidate is approved. This article focuses on vaccines that have yet to be approved for licensure.
Collapse
Affiliation(s)
- Kelly Conner
- The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
6
|
Braun RP, Payne LG, Dong L. Characterization of the IFN-gamma T-cell responses to immediate early antigens in humans with genital herpes. Virol J 2006; 3:54. [PMID: 16822314 PMCID: PMC1534022 DOI: 10.1186/1743-422x-3-54] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 07/05/2006] [Indexed: 11/10/2022] Open
Abstract
Background The IFN-γ ELISPOT assay has been used to examine the T-cell repertoire for many disease states in humans but, as yet, not genital herpes. Using overlapping synthetic peptide libraries, an IFN-γ ELISPOT assay was established that could measure CD4 and CD8 T-cell responses to HSV-2 antigens in patients with genital herpes. Results In unexpanded T-cells isolated from peripheral blood, CD4 responses were readily measured against four immediate early antigens (ICP0, ICP4, ICP22 and ICP27), VP22 and gD. The CD4 responses were characterized by a low number of positive cells which produced large ELISPOTs. CD4 responses had a broad specificity and within individual patients several of the test antigens were recognized. In contrast, CD8 responses were found only in approximately 50% of patients and were typically specific to a single antigen. When disease status and immune responses were compared, an enhanced CD4 response to ICP4 in patients with a low recurrence rate was found. The ICP4 response was striking in three HSV-1 single positive genital herpes patients. Conclusion The survey of T-cell responses is an important step to understand the host cellular immune response in individuals with genital herpes. The assay described here has the capability of measuring CD4 and CD8 T-cell responses that may be used to correlate disease status with specific immune responses. In an evaluation of 18 subjects a trend of positive responses to an immediate early protein, ICP4, was found in individuals that had a low rate of disease recurrence.
Collapse
Affiliation(s)
- Ralph P Braun
- Wyeth Vaccine Research, 401 North Middletown Rd. Pearl River NY, 109654, USA
- PowderJect Vaccines Incorporated, 8551 Research Way Boulevard, Middleton, Wisconsin 53562, USA
| | - Lendon G Payne
- Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- PowderJect Vaccines Incorporated, 8551 Research Way Boulevard, Middleton, Wisconsin 53562, USA
| | - Lichun Dong
- University of Washington, Dept. of Medicine, 300 9th Ave, Seattle, WA 98104, USA
- PowderJect Vaccines Incorporated, 8551 Research Way Boulevard, Middleton, Wisconsin 53562, USA
| |
Collapse
|
7
|
Hoshino Y, Dalai SK, Wang K, Pesnicak L, Lau TY, Knipe DM, Cohen JI, Straus SE. Comparative efficacy and immunogenicity of replication-defective, recombinant glycoprotein, and DNA vaccines for herpes simplex virus 2 infections in mice and guinea pigs. J Virol 2005; 79:410-8. [PMID: 15596834 PMCID: PMC538700 DOI: 10.1128/jvi.79.1.410-418.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many candidate vaccines are effective in animal models of genital herpes simplex virus type 2 (HSV-2) infection. Among them, clinical trials showed moderate protection from genital disease with recombinant HSV-2 glycoprotein D (gD2) in alum-monophosphoryl lipid A adjuvant only in HSV women seronegative for both HSV-1 and HSV-2, encouraging development of additional vaccine options. Therefore, we undertook direct comparative studies of the prophylactic and therapeutic efficacies and immunogenicities of three different classes of candidate vaccines given in four regimens to two species of animals: recombinant gD2, a plasmid expressing gD2, and dl5-29, a replication-defective strain of HSV-2 with the essential genes UL5 and UL29 deleted. Both dl5-29 and gD2 were highly effective in attenuating acute and recurrent disease and reducing latent viral load, and both were superior to the plasmid vaccine alone or the plasmid vaccine followed by one dose of dl5-29. dl5-29 was also effective in treating established infections. Moreover, latent dl5-29 virus could not be detected by PCR in sacral ganglia from guinea pigs vaccinated intravaginally. Finally, dl5-29 was superior to gD2 in inducing higher neutralizing antibody titers and the more rapid accumulation of HSV-2-specific CD8+ T cells in trigeminal ganglia after challenge with wild-type virus. Given its efficacy, its defectiveness for latency, and its ability to induce rapid, virus-specific CD8(+)-T-cell responses, the dl5-29 vaccine may be a good candidate for early-phase human trials.
Collapse
Affiliation(s)
- Yo Hoshino
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Tristram DA. Maternal Genital Tract Infection and the Neonate. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Aurelian L. Herpes simplex virus type 2 vaccines: new ground for optimism? CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:437-45. [PMID: 15138167 PMCID: PMC404574 DOI: 10.1128/cdli.11.3.437-445.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of effective prophylactic and therapeutic vaccines against genital herpes has proven problematic. Difficulties are associated with the complexity of the virus life cycle (latency) and our relatively poor understanding of the mechanism of immune control of primary and recurrent disease. The types of effector cells and the mechanisms responsible for their activation and regulation are particularly important. Studies from my and other laboratories have shown that recurrent disease is prevented by virus-specific T helper 1 (Th1) cytokines (viz., gamma interferon) and activated innate immunity. Th2 cytokines (viz., interleukin-10 [IL-10]) and regulatory (suppressor) T cells downregulate this immune profile, thereby allowing unimpeded replication of reactivated virus and recurrent disease. Accordingly, an effective therapeutic vaccine must induce Th1 immunity and be defective in Th2 cytokine production, at least IL-10. These concepts are consistent with the findings of the most recent clinical trials, which indicate that (i) a herpes simplex virus type 2 (HSV-2) glycoprotein D (gD-2) vaccine formulated with a Th1-inducing adjuvant has prophylactic activity in HSV-2- and HSV-1-seronegative females, an activity attributed to the adjuvant function, and (ii) a growth-defective HSV-2 mutant (ICP10DeltaPK), which is deleted in the Th2-polarizing gene ICP10PK, induces Th1 immunity and has therapeutic activity in both genders. The ICP10DeltaPK vaccine prevents recurrent disease in 44% of treated subjects and reduces the frequency and severity of recurrences in the subjects that are not fully protected. Additional studies to evaluate these vaccines are warranted.
Collapse
Affiliation(s)
- L Aurelian
- Virology and Immunology Laboratories, Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
10
|
Lupi O. Imunoprofilaxia anti-herpética utilizando vírus geneticamente modificado: vacina DISC. An Bras Dermatol 2003. [DOI: 10.1590/s0365-05962003000300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As vacinas anti-herpéticas podem atuar de forma profilática ou terapêutica contra a infecção pelo herpes simples. Diversos tipos de vacinas foram avaliados no passado com resultados pouco efetivos, tais como aquelas que utilizaram vírus vivos, porém atenuados, e as que utilizaram subunidades glicoprotéicas. As novas vacinas do tipo DISC, com partículas infectivas incapacitadas para mais de um ciclo replicativo, são desenhadas para combinar a segurança e as vantagens das vacinas que utilizam vírus atenuados com a imunogenicidade das que usam vírus vivos. Nas vacinas DISC utiliza-se um vírus cujo gene para a glicoproteína H foi removido. Torna-se, assim, capaz de infectar células humanas, exatamente como o vírus natural, mas sua progênie não pode mais completar o ciclo replicativo. São partículas virais não patogênicas, capazes de induzir ampla resposta de linfócitos T citotóxicos e da imunidade humoral contra antígenos herpéticos.
Collapse
|
11
|
Abstract
Although there are only four adjuvants used in licensed vaccines for humans, a wealth of information on novel vaccine adjuvants has become available in both animal models and clinical studies over the past decade. Many vaccine candidates require immunopotentiation to achieve a satisfactory immune response, which is driving the search for new and safer approaches. In this review, we take a brief look at what is known of the mechanisms of action, consider some of the elements of product development, then survey several of the classes of adjuvants within the context of human trials.
Collapse
Affiliation(s)
- Richard T Kenney
- Clinical Development, Iomai Corporation, Gaithersburg, Maryland 20878, USA.
| | | |
Collapse
|
12
|
Gyotoku T, Ono F, Aurelian L. Development of HSV-specific CD4+ Th1 responses and CD8+ cytotoxic T lymphocytes with antiviral activity by vaccination with the HSV-2 mutant ICP10DeltaPK. Vaccine 2002; 20:2796-807. [PMID: 12034107 DOI: 10.1016/s0264-410x(02)00199-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A growth compromised herpes simplex virus type 2 (HSV-2) mutant which is deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP10DeltaPK) protects from HSV-2 challenge in the mouse and guinea pig cutaneous and vaginal models and reduces the incidence and frequency of recurrent disease (Vaccine (17) (1999) 1951; Vaccine (19) (2001) 1879). The present studies were designed to identify the immune responses induced by ICP10DeltaPK and define the component responsible for protective activity. We found that ICP10DeltaPK elicits a predominant HSV-specific T helper type 1 (Th1) response, as evidenced by: (1) higher levels of HSV-specific IgG2a (Th1) than IgG1 (Th2) isotypes and (2) higher numbers of CD4+ IFN-gamma than IL-10 secreting T cells in popliteal lymph nodes. This Th1 response pattern was associated with a significant increase in the levels of IL-12 produced by dendritic cells from ICP10DeltaPK than HSV-2 immunized animals. Lymph node cells (LNCs) from ICP10DeltaPK immunized mice had significantly higher levels of HSV-2 specific cytolytic activity than LNCs from mice immunized with HSV-2 and it was mediated by CD8+ T cells. CD8+ CTL were not seen in LNCs from HSV-2 immunized mice. In adoptive transfer experiments, CD8+ T cells and, to a lower extent, CD4+ T cells from ICP10DeltaPK immunized mice inhibited HSV-2 replication, suggesting that they are involved in the protective immunity induced by ICP10DeltaPK vaccination.
Collapse
Affiliation(s)
- T Gyotoku
- Virology/Immunology Laboratories, Departments of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 10 S. Pine Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
13
|
Abstract
The availability of hundreds of different adjuvants has prompted a need for identifying rational standards for selection of adjuvant formulations based on safety and sound immunological principles for human vaccines. Although many of the mechanisms of adjuvants have been elucidated, meaningful comparisons between different adjuvants derived from in vitro studies, or from studies using adjuvants in rodents or other animals, are often not predictive for safety, adjuvant effects, or vaccine efficacy in humans. A highly efficient and cost-effective method for comparison of adjuvants with a new antigen is to conduct multiple small-scale, phase 1, comparative studies in humans with a new antigen, using adjuvants previously found to be safe with other antigens in human trials. Studies in which highly immunogenic and safe adjuvant formulations have been evaluated in comparative adjuvant trials in humans using a single candidate vaccine antigen against malaria, HIV, and prostate cancer with multiple adjuvants are reviewed.
Collapse
Affiliation(s)
- Carl R Alving
- Department of Membrane Biochemistry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA.
| |
Collapse
|
14
|
Da Costa XJ, Morrison LA, Knipe DM. Comparison of different forms of herpes simplex replication-defective mutant viruses as vaccines in a mouse model of HSV-2 genital infection. Virology 2001; 288:256-63. [PMID: 11601897 DOI: 10.1006/viro.2001.1094] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some subunit vaccines composed of herpes simplex virus (HSV) glycoproteins have been shown to protect guinea pigs against primary and recurrent genital infection by HSV-2. However, these vaccines were ineffective or only marginally effective in clinical trials. To attempt to define an animal model that would better discriminate the protective capacity of different vaccine formulations, we have examined the requirements for vaccine-induced protection against HSV-2 infection and disease in a mouse genital model. Unlike the guinea pig model where inactivated viral vaccines can protect nearly as well as live viral vaccines, inactivated viral vaccine afforded little protection in this mouse model. Using replication-defective mutant viruses as a form of live viral vaccine, we found that the extent of protection conferred by live vaccine was proportional to the amount of replication-defective mutant virus inoculated, over doses from 10(4) to 10(6) PFU. Furthermore, the mouse genital model showed quantitative differences in the degree of protection induced by various viral vaccine constructs. An HSV-2 replication-defective mutant virus protected better than an HSV-1 replication-defective mutant that expressed HSV-2 glycoprotein D, which in turn protected better than an HSV-2 replication-defective mutant virus. We conclude that this mouse genital model can rank different vaccine constructs for their capacity to induce protective immunity. Thus, genital infection of the mouse with HSV-2 may provide a stringent animal model that can predict the relative capacity of viral vaccines to stimulate protective immunity against HSV-2.
Collapse
MESH Headings
- Animals
- Chlorocebus aethiops
- Disease Models, Animal
- Female
- Herpes Genitalis/prevention & control
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/immunology
- Herpesvirus 2, Human/physiology
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mutagenesis
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vero Cells
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virus Replication
Collapse
Affiliation(s)
- X J Da Costa
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Lin WR, Jennings R, Smith TL, Wozniak MA, Itzhaki RF. Vaccination prevents latent HSV1 infection of mouse brain. Neurobiol Aging 2001; 22:699-703. [PMID: 11705626 DOI: 10.1016/s0197-4580(01)00239-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Herpes simplex encephalitis (HSE) is a rare but very serious disorder caused by herpes simplex type 1 virus (HSV-1). Treatment with acyclovir decreases mortality but many patients still suffer cognitive impairment subsequently. A vaccine against HSV1 would therefore be of great value. HSV-1 has been implicated also in Alzheimer's disease (AD): we established that HSV1 resides in the brain of about two thirds of AD patients and aged normal people, and that in carriers of the type 4 allele of the apolipoprotein E gene, it is a strong risk factor for AD. Thus a vaccine against HSV-1 might prevent development of AD in some cases. To find whether a vaccine of mixed HSV-1 glycoproteins (ISCOMs), which protects mice from latent HSV-1 infection of sensory ganglia, prevents HSV1 latency in the CNS, ISCOM-vaccinated or unvaccinated animals were infected with HSV-1. Using polymerase chain reaction (PCR) we detected HSV-1 in brain from 16 of 39 unvaccinated mice (41%), but only 3 of 41 vaccinated mice (7%) (P < 0.001). Thus, ISCOMs protect the CNS also, suggesting their possible future usage in humans.
Collapse
Affiliation(s)
- W R Lin
- University of Manchester Institute of Science & Technology, Molecular Neurobiology Laboratory, Department of Optometry & Neuroscience, M60 1QD, Manchester, UK
| | | | | | | | | |
Collapse
|
16
|
Wachsman M, Kulka M, Smith CC, Aurelian L. A growth and latency compromised herpes simplex virus type 2 mutant (ICP10DeltaPK) has prophylactic and therapeutic protective activity in guinea pigs. Vaccine 2001; 19:1879-90. [PMID: 11228357 DOI: 10.1016/s0264-410x(00)00446-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A growth compromised herpes simplex virus type 2 (HSV-2) mutant which is deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP10DeltaPK) protects from fatal HSV-2 challenge in the mouse model (Aurelian L, Kokuba H, Smith CC. Vaccine potential of a Herpes Simplex Virus type 2 mutant deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP10). Vaccine 1999;17:1951-1963). Here we report the results of our studies with ICP10DeltaPK in the guinea pig model of recurrent HSV-2 disease. ICP10DeltaPK was also compromised for growth and disease causation in this model. It was not isolated from latently infected ganglia by explant co-cultivation. The proportions of latently infected ganglia were significantly lower for ICP10DeltaPK than HSV-2 [3/25 (12%) and 7/10 (70%), respectively]. Similar results were obtained for the levels of viral DNA (8 x 10(3) and 2 x 10(5) molecules/ganglion for ICP10DeltaPK and HSV-2, respectively]. ICP10DeltaPK immunization caused a significant (P< or = 0.001) decrease in the proportion of animals with primary [1/14 (6%) and 16/16 (100%) for ICP10DeltaPK and PBS, respectively) and recurrent [1/14 (6%) and 11/14 (79%) for ICP10DeltaPK and PBS, respectively) HSV-2 skin lesions. It also protected from genital HSV-2 disease [1/10 and 10/10 for ICP10DeltaPK and PBS, respectively] and decreased the severity of the lesions in both models. Quantitative PCR (Q-PCR) with primers that distinguish between HSV-2 and ICP10DeltaPK indicated that immunization reduced the proportion of ganglia positive for HSV-2 DNA [8/25 (32%) and 7/10 (70%) for ICP10DeltaPK and PBS, respectively) and its levels [3 x 10(3) and 2 x 10(5) molecules/ganglion for ICP10DeltaPK and PBS, respectively]. The proportion of HSV-2 infected animals with recurrent disease was also significantly (P < or = 0.001) decreased by immunization with ICP10DeltaPK [1/15 (7%) and 11/14 (79%) with recurrent disease for ICP10DeltaPK and PBS, respectively], suggesting that ICP10DeltaPK has prophylactic and therapeutic activity in the guinea pig.
Collapse
|
17
|
Abstract
New vaccines are presently under development and in testing for the control of infectious diseases, including human immunodeficiency virus (HIV) and tuberculosis. Several of these vaccines are composed of synthetic, recombinant, or highly purified subunit antigens. Subunit vaccines are designed to include only the antigens required for protective immunization and to be safer than whole-inactivated or live-attenuated vaccines. However, the purity of the subunit antigens and the absence of the self-adjuvanting immunomodulatory components associated with attenuated or killed vaccines often result in weaker immunogenicity. Immunologic adjuvants are agents that enhance specific immune responses to vaccines. Formulation of vaccines with potent adjuvants is an attractive approach for improving the performance of vaccines composed of subunit antigens. Adjuvants have diverse mechanisms of action and should be selected for use on the basis of the route of administration and the type of immune response (antibody, cell-mediated, or mucosal immunity) that is desired for a particular vaccine.
Collapse
Affiliation(s)
- F R Vogel
- Vaccine and Prevention Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
18
|
|
19
|
Abstract
Microfluidized squalene or squalane emulsions are efficient adjuvants, eliciting both humoral and cellular immune responses. Microfluidization stabilizes the emulsions and allows sterilization by terminal filtration. The emulsions are stable for years at ambient temperature and can be frozen. Antigens are added after emulsification so that conformational epitopes are not lost by denaturation and to facilitate manufacture. A Pluronic block copolymer can be added to the squalane or squalene emulsion. Soluble antigens administered in such emulsions generate cytotoxic T lymphocytes able to lyse target cells expressing the antigen in a genetically restricted fashion. Optionally a relatively nontoxic analog of muramyl dipeptide (MDP) or another immunomodulator can be added; however, the dose of MDP must be restricted to avoid systemic side effects in humans. Squalene or squalane emulsions without copolymers or MDP have very little toxicity and elicit potent antibody responses to several antigens in nonhuman primates. They could be used to improve a wide range of vaccines. Squalene or squalane emulsions have been administered in human cancer vaccines, with mild side effects and evidence of efficacy, in terms of both immune responses and antitumor activity.
Collapse
Affiliation(s)
- A C Allison
- SurroMed Corporation, 1060 East Meadow Circle, Palo Alto, California 94303, USA.
| |
Collapse
|
20
|
Gallichan WS, Rosenthal KL. Specific secretory immune responses in the female genital tract following intranasal immunization with a recombinant adenovirus expressing glycoprotein B of herpes simplex virus. Vaccine 1995; 13:1589-95. [PMID: 8578847 DOI: 10.1016/0264-410x(95)00100-f] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously, we demonstrated that intranasal (i.n.) but not intraperitoneal (i.p.) immunization with a recombinant adenovirus vector expressing glycoprotein B (gB) of herpes simplex virus type 1 (HSV-1) induced mucosal immune responses and conveyed long-term protection to mice against an i.n. challenge with heterologous HSV-2. We now show that i.n. immunization of female mice with this same vector, AdgB8, provides secretory and serum-derived humoral immune responses in the genital tract. Intranasal immunization induced anti-HSVgB IgA and IgG in vaginal washes of mice, whereas i.p. immunization only induced IgG, which appeared to be serum-derived. Interestingly, intravaginal (ivag) immunization with AdgB8 resulted in little or no anti-HSVgB IgA and only low levels of specific IgG in vaginal washes. All three routes of inoculation induced gB-specific serum IgG and IgA; however, i.n. immunized mice demonstrated the highest level of serum anti-HSVgB IgA. Additionally, ivag boosting with AdgB8 did not significantly alter the serum or vaginal wash antibody responses in i.n. or i.p. immunized mice. The IgG to IgA ratios of gB-specific and total antibody titres in the serum and vaginal washes of i.n. immunized mice indicated that the IgA in the vaginal washes was likely to be secretory. Furthermore, the titres of anti-HSVgB IgA relative to total IgA were higher in vaginal washes than sera, suggesting that the gB-specific vaginal wash IgA present in i.n. immunized mice was locally produced.
Collapse
Affiliation(s)
- W S Gallichan
- Department of Pathology, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | |
Collapse
|
21
|
|
22
|
Lidgate DM, Byars NE. Development of an emulsion-based muramyl dipeptide adjuvant formulation for vaccines. PHARMACEUTICAL BIOTECHNOLOGY 1995; 6:313-24. [PMID: 7551223 DOI: 10.1007/978-1-4615-1823-5_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- D M Lidgate
- Syntex Research, Palo Alto, California 94304, USA
| | | |
Collapse
|
23
|
Allison AC. Adjuvants for New and Improved Vaccines. Vaccines (Basel) 1995. [DOI: 10.1007/978-1-4613-0357-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|