1
|
Jung JW, Park PG, Lee WK, Shin JH, Jang MH, Seo EH, An T, Kim YB, Moon MH, Choi SK, Yun JS, Hong KJ, Kim SR. Production of Plant-Derived Japanese Encephalitis Virus Multi-Epitope Peptide in Nicotiana benthamiana and Immunological Response in Mice. Int J Mol Sci 2023; 24:11643. [PMID: 37511402 PMCID: PMC10380836 DOI: 10.3390/ijms241411643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The current production of the Japanese encephalitis virus (JEV) vaccine is based on animal cells, where various risk factors for human health should be resolved. This study used a transient expression system to express the chimeric protein composed of antigenic epitopes from the JEV envelope (E) protein in Nicotiana benthamiana. JEV multi-epitope peptide (MEP) sequences fused with FLAG-tag or 6× His-tag at the C- or N-terminus for the purification were introduced into plant expression vectors and used for transient expression. Among the constructs, vector pSK480, which expresses MEP fused with a FLAG-tag at the C-terminus, showed the highest level of expression and yield in purification. Optimization of transient expression procedures further improved the target protein yield. The purified MEP protein was applied to an ICR mouse and successfully induced an antibody against JEV, which demonstrates the potential of the plant-produced JEV MEP as an alternative vaccine candidate.
Collapse
Affiliation(s)
- Jae-Wan Jung
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
- PhytoMab Co., Seoul 04107, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
| | - Won-Kyung Lee
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Jun-Hye Shin
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
- PhytoMab Co., Seoul 04107, Republic of Korea
| | - Mi-Hwa Jang
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
- PhytoMab Co., Seoul 04107, Republic of Korea
| | - Eun-Hye Seo
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
- BK21 Plus, Department of Cellular and Molecular Medicine, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Timothy An
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
| | - Young Beom Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Jee Sun Yun
- Eubiologics Co., Seoul 06026, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
- PhytoMab Co., Seoul 04107, Republic of Korea
| |
Collapse
|
2
|
Virulence and Cross-Protection Conferred by an Attenuated Genotype I-Based Chimeric Japanese Encephalitis Virus Strain Harboring the E Protein of Genotype V in Mice. Microbiol Spectr 2022; 10:e0199022. [PMID: 36301111 PMCID: PMC9769820 DOI: 10.1128/spectrum.01990-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Japanese encephalitis virus (JEV) genotype V (GV) emerged in China in 2009, then South Korea, and has since spread to other regions in Asia and beyond, raising concern about its pathogenicity and the cross-protection offered by JEV vaccines against different genotypes. In this study, we replaced the structural proteins (C-prM-E) of an attenuated genotype I (GI) SD12-F120 strain with those of a virulent GV XZ0934 strain to construct a recombinant chimeric GI-GV JEV (JEV-GI/V) strain to determine the role of the structural proteins in virulence and cross-protection. The recombinant chimeric virus was highly neurovirulent and neuroinvasive in mice. This demonstrated the determinant role of the structural proteins in the virulence of the GV strain. Intracerebral or intraperitoneal inoculation of mice with JEV-GI/V-E5 harboring a combination of substitutions (N47K, L107F, E138K, H123R, and I176R) in E protein, but not mutants containing single substitution of these residues, resulted in decreased or disappeared mortality, suggesting that these residues synergistically, but not individually, played a role in determining the neurovirulence and neuroinvasiveness of the GV strain. Immunization of mice with attenuated strain JEV-GI/V-E5 provided complete protection and induced high neutralizing antibody titers against parental strain JEV-GI/V, but partial cross-protection and low cross-neutralizing antibodies titers against the heterologous GI and GIII strains in mice, suggesting the reduced cross-protection of JEV vaccines among different genotypes. Overall, these findings suggested the essential role of the structural proteins in determination of the virulence of GV strain, and highlighted the need for a novel vaccine against this newly emerged strain. IMPORTANCE The GV JEV showed an increase in epidemic areas, which exhibited higher pathogenicity in mice than the prevalent GI and GIII strains. We replaced a recombinant chimeric GI-GV JEV (JEV-GI/V) strain to determine the role of the structural proteins in virulence and cross-protection. It was found that the essential role of the structural proteins is to determinethe virulence of the GV strain. It is also suggested that there is reduced cross-protection of JEV vaccines among different genotypes, which provides basic data for subsequent JEV prevention, control, and new vaccine development.
Collapse
|
3
|
Yang MH, Hu CC, Wong CH, Liang JJ, Ko HY, He MH, Lin YL, Lin NS, Hsu YH. Convenient Auto-Processing Vector Based on Bamboo Mosaic Virus for Presentation of Antigens Through Enzymatic Coupling. Front Immunol 2021; 12:739837. [PMID: 34721406 PMCID: PMC8551676 DOI: 10.3389/fimmu.2021.739837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
We have developed a new binary epitope-presenting CVP platform based on bamboo mosaic virus (BaMV) by using the sortase A (SrtA)-mediated ligation technology. The reconstructed BaMV genome harbors two modifications: 1) a coat protein (CP) with N-terminal extension of the tobacco etch virus (TEV) protease recognition site plus 4 extra glycine (G) residues as the SrtA acceptor; and 2) a TEV protease coding region replacing that of the triple-gene-block proteins. Inoculation of such construct, pKB5G, on Nicotiana benthamiana resulted in the efficient production of filamentous CVPs ready for SrtA-mediated ligation with desired proteins. The second part of the binary platform includes an expression vector for the bacterial production of donor proteins. We demonstrated the applicability of the platform by using the recombinant envelope protein domain III (rEDIII) of Japanese encephalitis virus (JEV) as the antigen. Up to 40% of the BaMV CP subunits in each CVP were loaded with rEDIII proteins in 1 min. The rEDIII-presenting BaMV CVPs (BJLPET5G) could be purified using affinity chromatography. Immunization assays confirmed that BJLPET5G could induce the production of neutralizing antibodies against JEV infections. The binary platform could be adapted as a useful alternative for the development and mass production of vaccine candidates.
Collapse
MESH Headings
- Aminoacyltransferases/genetics
- Aminoacyltransferases/metabolism
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Cell Line
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/metabolism
- Disease Models, Animal
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/blood
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Endopeptidases/genetics
- Endopeptidases/metabolism
- Escherichia coli/genetics
- Escherichia coli/immunology
- Escherichia coli/metabolism
- Female
- Genetic Vectors
- Immunogenicity, Vaccine
- Japanese Encephalitis Vaccines/administration & dosage
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/immunology
- Mice, Inbred BALB C
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Potexvirus/enzymology
- Potexvirus/genetics
- Potexvirus/immunology
- Nicotiana/genetics
- Nicotiana/immunology
- Nicotiana/metabolism
- Virion/enzymology
- Virion/genetics
- Virion/immunology
- Mice
Collapse
Affiliation(s)
- Ming-Hao Yang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Hzeng Wong
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Hsun He
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Roy U. Structural and molecular analyses of functional epitopes and escape mutants in Japanese encephalitis virus envelope protein domain III. Immunol Res 2021; 68:81-89. [PMID: 32445181 PMCID: PMC7243247 DOI: 10.1007/s12026-020-09130-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Japanese encephalitis virus (JEV) is one of the vector borne causes of encephalitis found in southeastern Asia. This positive single-stranded RNA virus is a member of the Flaviviridae family, which notably includes dengue, tick-borne, West Nile, Zika as well as yellow fever, and transmits to humans by infected mosquitos. The main site of interactions for antibodies against this virus is the envelope protein domain III (ED3). The present report investigates the time-dependent structural and conformational changes of JEV ED3 functional epitopes and escape mutants by computer simulations. The results indicate the presence of significant structural differences between the functional epitopes and the escape mutants. Mutation-induced structural/conformational instabilities of this type can decrease the antibody neutralization activity. Among the different escape mutants studied here, Ser40Lys/Asp41Arg appear to be most unstable, while Ser40Glu/Asp41Leu exhibit the lowest structural variations. The highest level of escape mutation observed in Ser40Lys is linked to the relatively higher values of root mean square deviation/fluctuation found in the molecular dynamics simulation of this protein. Secondary-structure deviations and depletion of H bonding are other contributing factors to the protein’s increased instability. Overall, the proteins with residue 41 mutations are found to be structurally more ordered than those with residue 40 mutations. The detailed time-based structural assessment of the mutant epitopes described here may contribute to the development of novel vaccines and antiviral drugs necessary to defend against future outbreaks of JEV escape mutants.
Collapse
Affiliation(s)
- Urmi Roy
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5820, USA.
| |
Collapse
|
5
|
Nath B, Vandna, Saini HM, Prasad M, Kumar S. Evaluation of Japanese encephalitis virus E and NS1 proteins immunogenicity using a recombinant Newcastle disease virus in mice. Vaccine 2020; 38:1860-1868. [PMID: 31955960 DOI: 10.1016/j.vaccine.2019.11.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 01/04/2023]
Abstract
Japanese encephalitis (JE) is the most important cause of acute encephalitis syndrome (AES). Japanese encephalitis virus (JEV), the prototype member of the JE serocomplex, belongs to the genus Flavivirus. The immunogenic proteins envelope (E) and non-structural protein 1 (NS1) of JEV are widely explored for the development of vaccines and diagnostics against JEV. However, there are underlying concerns such as the risk of reversion of live-attenuated vaccines to high virulence, the incomplete inactivation of pathogens in inactivated vaccines and partial vaccine coverage. Newcastle disease virus (NDV) is an efficient viral vaccine vector to express several human and animal immunogenic proteins. In the present study, we have developed a recombinant NDV (rNDV), individually expressing the E and NS1 proteins of JEV (rNDV-Ejev and rNDV-NS1jev). The recovered rNDV-Ejev and rNDV-NS1jev were characterized in 9-day-old SPF embryonated chicken eggs and in cell culture. The vaccination of rNDV-Ejev and rNDV-NS1jev showed effective immunity against JEV upon intranasal immunization in BALB/c mice. The rNDVs vaccination produced effective neutralization antibody titers against both NDV and JEV. The cytokine profiling of the vaccinated mice showed an effective Th1 and Th2 mediated immune response. The study also provided an insight that E, when used in combination with NS1 could reduce the efficacy of only E based immunization in mice. Our results suggested rNDV-Ejev to be a promising live viral vectored vaccine against JEV. This study implies an alternative and economical strategy for the development of a recombinant vaccine against JEV.
Collapse
Affiliation(s)
- Barnali Nath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Vandna
- Center for Medical Biotechnology, M.D. University, Rohtak 124001, Haryana, India
| | - Hari Mohan Saini
- Center for Medical Biotechnology, M.D. University, Rohtak 124001, Haryana, India
| | - Minakshi Prasad
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar 125004, Haryana, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
6
|
Japanese encephalitis virus: Associated immune response and recent progress in vaccine development. Microb Pathog 2019; 136:103678. [DOI: 10.1016/j.micpath.2019.103678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 11/17/2022]
|
7
|
Slon Campos JL, Poggianella M, Marchese S, Mossenta M, Rana J, Arnoldi F, Bestagno M, Burrone OR. DNA-immunisation with dengue virus E protein domains I/II, but not domain III, enhances Zika, West Nile and Yellow Fever virus infection. PLoS One 2017; 12:e0181734. [PMID: 28742857 PMCID: PMC5526558 DOI: 10.1371/journal.pone.0181734] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Dengue virus (DENV), the causative agent of dengue disease, is among the most important mosquito-borne pathogens worldwide. DENV is composed of four closely related serotypes and belongs to the Flaviviridae family alongside other important arthropod-borne viral pathogens such as Zika virus (ZIKV), West Nile virus (WNV) and Yellow Fever virus (YFV). After infection, the antibody response is mostly directed to the viral E glycoprotein which is composed of three structural domains named DI, DII and DIII that share variable degrees of homology among different viruses. Recent evidence supports a close serological interaction between ZIKV and DENV. The possibility of worse clinical outcomes as a consequence of antibody-dependent enhancement of infection (ADE) due to cross-reactive antibodies with poor neutralisation activity is a matter of concern. We tested polyclonal sera from groups of female Balb/C mice vaccinated with DNA constructs expressing DI/DII, DIII or the whole sE from different DENV serotypes and compared their activity in terms of cross-reactivity, neutralisation of virus infection and ADE. Our results indicate that the polyclonal antibody responses against the whole sE protein are highly cross-reactive with strong ADE and poor neutralisation activities due to DI/DII immunodominance. Conversely, anti-DIII polyclonal antibodies are type-specific, with no ADE towards ZIKV, WNV and YFV, and strong neutralisation activity restricted only to DENV.
Collapse
Affiliation(s)
- Jose L. Slon Campos
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Monica Poggianella
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Sara Marchese
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Monica Mossenta
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jyoti Rana
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Francesca Arnoldi
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Marco Bestagno
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Oscar R. Burrone
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- * E-mail:
| |
Collapse
|
8
|
Chen TH, Hu CC, Liao JT, Lee YL, Huang YW, Lin NS, Lin YL, Hsu YH. Production of Japanese Encephalitis Virus Antigens in Plants Using Bamboo Mosaic Virus-Based Vector. Front Microbiol 2017; 8:788. [PMID: 28515719 PMCID: PMC5413549 DOI: 10.3389/fmicb.2017.00788] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022] Open
Abstract
Japanese encephalitis virus (JEV) is among the major threats to public health in Asia. For disease control and prevention, the efficient production of safe and effective vaccines against JEV is in urgent need. In this study, we produced a plant-made JEV vaccine candidate using a chimeric virus particle (CVP) strategy based on bamboo mosaic virus (BaMV) for epitope presentation. The chimeric virus, designated BJ2A, was constructed by fusing JEV envelope protein domain III (EDIII) at the N-terminus of BaMV coat protein, with an insertion of the foot-and-mouth disease virus 2A peptide to facilitate the production of both unfused and epitope-presenting for efficient assembly of the CVP vaccine candidate. The strategy allowed stable maintenance of the fusion construct over long-term serial passages in plants. Immuno-electron microscopy examination and immunization assays revealed that BJ2A is able to present the EDIII epitope on the surface of the CVPs, which stimulated effective neutralizing antibodies against JEV infection in mice. This study demonstrates the efficient production of an effective CVP vaccine candidate against JEV in plants by the BaMV-based epitope presentation system.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Jia-Teh Liao
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Na-Sheng Lin
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan.,Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
9
|
Efficient production of Tymovirus like particles displaying immunodominant epitopes of Japanese Encephalitis Virus envelope protein. Protein Expr Purif 2015; 113:35-43. [PMID: 25959459 DOI: 10.1016/j.pep.2015.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 11/21/2022]
Abstract
Japanese Encephalitis (JE) is a mosquito borne arboviral infection caused by Japanese Encephalitis Virus (JEV). It is a major cause of viral encephalitis in Asian countries including India. In the present study, we have used a Tymovirus [i.e. Physalis Mottle Virus (PhMV) coat protein (CP)], which forms virus like particles (VLPs) as a template to display immunodominant epitopes of JEV envelope (E) protein. The immunodominant epitopes of JEV were inserted at the N-terminus of the wild type PhMV CP, and these constructs were cloned and expressed in Escherichia coli. The chimeric proteins were purified from the inclusion bodies and evaluated for VLP formation. The purified protein was identified by Western blotting and VLP formation was studied and confirmed by transmission electron microscopy and dynamic light scattering. Finally, the immunogenicity was studied in mice. Our results indicate that the chimeric protein with JEV epitopes assembled efficiently to form VLPs generating neutralizing antibodies. Hence, we report the purified chimeric VLP would be a potent vaccine candidate, which needs to be evaluated in a mouse challenge model.
Collapse
|
10
|
Abstract
Japanese encephalitis (JE) is the most common form of viral encephalitis that appears in the form of frequent epidemics of brain fever throughout Southeast Asia, China and India. The disease is caused by a Flavivirus named Japanese encephalitis virus that is spread to humans by mosquitoes. An internationally approved mouse brain-derived inactivated vaccine has been available that is relatively expensive, gives immunity of uncertain duration and is not completely safe. Cell culture-derived inactivated and attenuated JE vaccines are in use in China, but these are not produced as per the norms acceptable in most countries. Several new promising JE vaccine candidates have been developed, some of which are under different stages of clinical evaluation. These new candidate JE vaccines have the potential to generate long-lasting immunity at low cost.
Collapse
Affiliation(s)
- Kaushik Bharati
- Virology laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| | | |
Collapse
|
11
|
Fine mapping of a linear epitope on EDIII of Japanese encephalitis virus using a novel neutralizing monoclonal antibody. Virus Res 2013; 179:133-9. [PMID: 24184444 DOI: 10.1016/j.virusres.2013.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 01/12/2023]
Abstract
The domain III (EDIII) of the envelope protein of Japanese encephalitis virus (JEV) is proposed to play an essential role in JEV replication and infection; it is involved in binding to host receptors and contains specific epitopes that elicit neutralizing antibodies. However, most previous studies have not provided detailed molecular information about the functional epitopes on JEV EDIII protein. In this study, we described a monoclonal antibody (mAb 2B4) we produced and characterized by IFA, PRNT, ELISA and Western blot analyses. The results showed that mAb 2B4 was specific to JEV EDIII protein and possessed high neutralization activity against JEV in vitro. Furthermore, we found that the motif, (394)HHWH(397), was the minimal unit of the linear epitope recognized by mAb 2B4 through screening a phage-displayed random 12-mer peptide library. Using sequence alignment analysis it was found that this motif was highly conserved among JEV strains and was present in West Nile Virus (WNV). Indeed, ELISA data showed that this epitope could be recognized by both JEV-positive swine serum and WNV-positive swine serum. Notably, this linear epitope was highly hydrophilic and was located within the terminal end of a β-pleated sheet of EDIII. An analysis of the spatial conformation supported the possibility of inducing specific antibodies to this epitope. Taken together, we identified (394)HHWH(397) as an EDIII-specific linear epitope recognized by mAb 2B4, which would be beneficial for studying the pathogenic mechanism of JEV; and mAb 2B4 was also a potential diagnostic and therapeutic reagent.
Collapse
|
12
|
Yun SI, Lee YM. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother 2013; 10:263-79. [PMID: 24161909 PMCID: PMC4185882 DOI: 10.4161/hv.26902] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/14/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022] Open
Abstract
Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| |
Collapse
|
13
|
Wang F, Feng X, Zheng Q, Hou H, Cao R, Zhou B, Liu Q, Liu X, Pang R, Zhao J, Deng W, Chen P. Multiple linear epitopes (B-cell, CTL and Th) of JEV expressed in recombinant MVA as multiple epitope vaccine induces a protective immune response. Virol J 2012; 9:204. [PMID: 22985466 PMCID: PMC3511265 DOI: 10.1186/1743-422x-9-204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 07/06/2012] [Indexed: 11/10/2022] Open
Abstract
Epitope-based vaccination might play an important role in the protective immunity against Japanese encephalitis virus (JEV) infection. The purpose of the study is to evaluate the immune characteristics of recombinant MVA carrying multi-epitope gene of JEV (rMVA-mep). The synthetic gene containing critical epitopes (B-cell, CTL and Th) of JEV was cloned into the eukaryotic expression vector pGEM-K1L, and the rMVA-mep was prepared. BALB/c mice were immunized with different dosages of purified rMVA-mep and the immune responses were determined in the form of protective response against JEV, antibodies titers (IgG1 and IgG2a), spleen cell lymphocyte proliferation, and the levels of interferon-γ and interleukin-4 cytokines. The results showed that live rMVA-mep elicited strongly immune responses in dose-dependent manner, and the highest level of immune responses was observed from the groups immunized with 107 TCID50 rMVA-mep among the experimental three concentrations. There were almost no difference of cytokines and neutralizing antibody titers among 107 TCID50 rMVA-mep, recombinant ED3 and inactivated JEV vaccine. It was noteworthy that rMVA-mep vaccination potentiates the Th1 and Th2-type immune responses in dose-dependent manner, and was sufficient to protect the mice survival against lethal JEV challenge. These findings demonstrated that rMVA-mep can produce adequate humoral and cellular immune responses, and protection in mice, which suggested that rMVA-mep might be an attractive candidate vaccine for preventing JEV infection.
Collapse
Affiliation(s)
- Fengjuan Wang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tafuku S, Miyata T, Tadano M, Mitsumata R, Kawakami H, Harakuni T, Sewaki T, Arakawa T. Japanese encephalitis virus structural and nonstructural proteins expressed in Escherichia coli induce protective immunity in mice. Microbes Infect 2012; 14:169-76. [DOI: 10.1016/j.micinf.2011.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 09/22/2011] [Accepted: 09/25/2011] [Indexed: 02/09/2023]
|
15
|
Li SH, Li XF, Zhao H, Jiang T, Deng YQ, Yu XD, Zhu QY, Qin ED, Qin CF. Cross protection against lethal West Nile virus challenge in mice immunized with recombinant E protein domain III of Japanese encephalitis virus. Immunol Lett 2011; 138:156-60. [PMID: 21515306 DOI: 10.1016/j.imlet.2011.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/19/2011] [Accepted: 04/07/2011] [Indexed: 11/18/2022]
Abstract
Japanese encephalitis virus (JEV) and West Nile virus (WNV) are closely related mosquito-borne flaviviruses that cause severe encephalitic diseases with global impact. Cross protection among JEV and WNV has been previously described, and most cross reactive epitopes were identified within the domain II of E protein (EDII). In this study, the E protein domain III (EDIII) of JEV was successfully expressed in Escherichia coli, purified by a Ni-NTA column and characterized by Western blotting assay. Competitive inhibition assay showed that this recombinant JEV EDIII blocks the entry of JEV into BHK-21 cells. Mice immunized with the recombinant JEV EDIII developed high IgG and neutralizing antibodies titers against JEV. Most importantly, antibodies induced by JEV EDIII could neutralize WNV in vitro and partially protected mice against lethal WNV challenge. These results demonstrate that immunization with JEV EDIII induces cross-protective immunity against WNV infection, indicating a possible role of EDIII for the cross-protection among flavivirus.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing
- Antibodies, Viral
- Binding, Competitive
- Blotting, Western
- Cell Line
- Chromatography, Affinity
- Cloning, Molecular
- Cricetinae
- Cross Protection/immunology
- Cross Reactions
- Encephalitis Virus, Japanese/physiology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Escherichia coli
- Female
- Immunization
- Immunoglobulin E/chemistry
- Immunoglobulin E/genetics
- Immunoglobulin E/immunology
- Immunoglobulin E/metabolism
- Immunoglobulin E/pharmacology
- Mice
- Mice, Inbred BALB C
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Transfection
- Virus Internalization/drug effects
- West Nile Fever/immunology
- West Nile Fever/prevention & control
- West Nile Fever/virology
- West Nile virus/physiology
Collapse
Affiliation(s)
- Shi-Hua Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongda Street, Beijing 100071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals 2011; 38:613-8. [PMID: 20817489 DOI: 10.1016/j.biologicals.2010.07.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 07/08/2010] [Accepted: 07/16/2010] [Indexed: 11/22/2022] Open
Abstract
The Flavivirus genus of the Flaviviridae family includes 70 enveloped single-stranded-RNA positive-sense viruses transmitted by arthropods. Among these viruses, there are a relevant number of human pathogens including the mosquito-borne dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and West Nile virus (WNV), as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV), Langat virus (LGTV) and Omsk hemorrhagic fever (OHFV). The flavivirus envelope (E) protein is a dominant antigen inducing immunologic responses in infected hosts and eliciting virus-neutralizing antibodies. The domain III (DIII) of E protein contains a panel of important epitopes that are recognized by virus-neutralizing monoclonal antibodies. Peptides of the DIII have been used with promising results as antigens for flavivirus serologic diagnosis and as targets for immunization against these viruses. We review here some important aspects of the molecular structure of the DIII as well as its use as antigens for serologic diagnosis and immunization in animal models.
Collapse
|
17
|
Chen HL, Her SY, Huang KC, Cheng HT, Wu CW, Wu SC, Cheng JW. Identification of a heparin binding peptide from the Japanese encephalitis virus envelope protein. Biopolymers 2010; 94:331-8. [PMID: 20069543 DOI: 10.1002/bip.21371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The flavivirus envelope protein is the dominant antigen in eliciting neutralizing antibodies and plays an important role in inducing immunologic responses in the infected host. It has been shown that highly sulfated forms of heparin sulfate can bind to the envelope protein and are involved in flavivirus infection. Among the three structural domains, domain III is the major antigenic domain of the envelope protein. We have prepared an extended form of the JEV domain III protein with residues ranging from 261 to 402 and determined its heparin binding sites. Based on NMR, fluorescence spectroscopy, and site-directed mutagenesis studies, we have identified that only the N-terminal region (residues 279-293) and some spatially adjacent residues of JEV domain III are involved in heparin binding. Moreover, a synthetic peptide corresponding to this region also demonstrates strong affinity to heparin. Our results provide a basis for further understanding the interactions of flaviviruses and glycosaminoglycans on the host cell surfaces.
Collapse
Affiliation(s)
- Heng-Li Chen
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Wei JC, Huang YZ, Zhong DK, Kang L, Ishag H, Mao X, Cao RB, Zhou B, Chen PY. Design and evaluation of a multi-epitope peptide against Japanese encephalitis virus infection in BALB/c mice. Biochem Biophys Res Commun 2010; 396:787-92. [PMID: 20457131 DOI: 10.1016/j.bbrc.2010.04.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 04/26/2010] [Indexed: 11/17/2022]
Abstract
Epitope-based vaccination is a promising means to achieve protective immunity and to avoid immunopathology in Japanese encephalitis virus (JEV) infection. Several B-cell and T-cell epitopes have been mapped to the E protein of JEV, and they are responsible for the elicitation of the neutralizing antibodies and CTLs that impart protective immunity to the host. In the present study, we optimized a proposed multi-epitope peptide (MEP) using an epitope-based vaccine strategy, which combined six B-cell epitopes (amino acid residues 75-92, 149-163, 258-285, 356-362, 373-399 and 397-403) and two T-cell epitopes (amino acid residues 60-68 and 436-445) from the E protein of JEV. This recombinant protein was expressed in Escherichia coli, named rMEP, and its protective efficacy against JEV infection was assessed in BALB/c mice. The results showed that rMEP was highly immunogenic and could elicit high titer neutralizing antibodies and cell-mediated immune responses. It provided complete protection against lethal challenge with JEV in mice. Our findings indicate that the multi-epitope vaccine rMEP may be an attractive candidate vaccine for the prevention of JEV infection.
Collapse
Affiliation(s)
- Jian-chao Wei
- Key Laboratory of Animal Disease Diagnosis and Immunology, Ministry of Agriculture at Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shrestha B, Brien JD, Sukupolvi-Petty S, Austin SK, Edeling MA, Kim T, O'Brien KM, Nelson CA, Johnson S, Fremont DH, Diamond MS. The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog 2010; 6:e1000823. [PMID: 20369024 PMCID: PMC2848552 DOI: 10.1371/journal.ppat.1000823] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 02/12/2010] [Indexed: 12/03/2022] Open
Abstract
Antibody protection against flaviviruses is associated with the development of neutralizing antibodies against the viral envelope (E) protein. Prior studies with West Nile virus (WNV) identified therapeutic mouse and human monoclonal antibodies (MAbs) that recognized epitopes on domain III (DIII) of the E protein. To identify an analogous panel of neutralizing antibodies against DENV type-1 (DENV-1), we immunized mice with a genotype 2 strain of DENV-1 virus and generated 79 new MAbs, 16 of which strongly inhibited infection by the homologous virus and localized to DIII. Surprisingly, only two MAbs, DENV1-E105 and DENV1-E106, retained strong binding and neutralizing activity against all five DENV-1 genotypes. In an immunocompromised mouse model of infection, DENV1-E105 and DENV1-E106 exhibited therapeutic activity even when administered as a single dose four days after inoculation with a heterologous genotype 4 strain of DENV-1. Using epitope mapping and X-ray crystallographic analyses, we localized the neutralizing determinants for the strongly inhibitory MAbs to distinct regions on DIII. Interestingly, sequence variation in DIII alone failed to explain disparities in neutralizing potential of MAbs among different genotypes. Overall, our experiments define a complex structural epitope on DIII of DENV-1 that can be recognized by protective antibodies with therapeutic potential. Dengue virus (DENV) is a mosquito-transmitted virus that infects 25 to 100 million humans annually and can progress to a life-threatening hemorrhagic fever and shock syndrome. Currently, no vaccines or specific therapies are available. Prior studies identified a highly neutralizing monoclonal antibody (MAb) against West Nile virus, a related flavivirus, as a candidate therapy for humans. In this study, we generated 79 new MAbs against the DENV type 1 (DENV-1) serotype, 16 of which strongly inhibited infection in cell culture. Using structural and molecular approaches, the binding sites of these inhibitory MAbs were localized to distinct regions on domain III of the DENV-1 envelope protein. We tested the protective capacity of all of the neutralizing MAbs in mice against infection by a strain of DENV-1 from a distinct genotype. Only two of the MAbs, DENV1-E105 and DENV1-E106, showed efficacy in a post-exposure treatment model, and these antibodies efficiently neutralized all five DENV-1 genotypes. Collectively, our studies define a complex structural binding site on domain III of the envelope protein for MAbs with therapeutic potential against DENV-1.
Collapse
Affiliation(s)
- Bimmi Shrestha
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James D. Brien
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Soila Sukupolvi-Petty
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - S. Kyle Austin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Melissa A. Edeling
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Taekyung Kim
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Katie M. O'Brien
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christopher A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Syd Johnson
- MacroGenics, Inc., Rockville, Maryland, United States of America
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Verma SK, Kumar S, Gupta N, Vedi S, Bhattacharya SM, Lakshmana Rao P. Bacterially expressed recombinant envelope protein domain III of Japanese encephalitis virus (rJEV-DIII) elicits Th1 type of immune response in BALB/c mice. Vaccine 2009; 27:6905-9. [DOI: 10.1016/j.vaccine.2009.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/12/2009] [Accepted: 09/01/2009] [Indexed: 11/24/2022]
|
21
|
Upadhyaya B, Manjunath R. Baker's yeast expressing the Japanese encephalitis virus envelope protein on its cell surface: induction of an antigen-specific but non-neutralizing antibody response. Yeast 2009; 26:383-97. [DOI: 10.1002/yea.1676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Li P, Cao RB, Zheng QS, Liu JJ, Li Y, Wang EX, Li F, Chen PY. Enhancement of humoral and cellular immunity in mice against Japanese encephalitis virus using a DNA prime-protein boost vaccine strategy. Vet J 2008; 183:210-6. [PMID: 19008134 DOI: 10.1016/j.tvjl.2008.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 09/17/2008] [Accepted: 09/27/2008] [Indexed: 11/17/2022]
Abstract
A synthetic multi-epitope gene containing critical epitopes of the Japanese encephalitis virus (JEV) envelope gene was cloned into both prokaryotic and eukaryotic expression vectors. The recombinant plasmid and purified recombinant protein (heterologously expressed in Escherichia coli) were used as immunogens in a mouse model. The results indicate that both the recombinant protein and the DNA vaccine induce humoral and cellular immune responses. Neutralising antibody titres in mice in the pcDNA-TEP plus rEP group increased considerably relative to mice immunised using either pcDNA-TEP or rEP alone (P<0.05). Furthermore, the highest levels of interleukin (IL)-2, interferon-gamma and IL-4 were induced following priming with the DNA vaccine and boosting with the recombinant protein. Together these findings demonstrate that a DNA-recombinant protein prime-boost vaccination strategy can produce high levels of antibody and trigger significant T cell responses in mice, highlighting the potential value of such an approach in the prevention of JEV infection.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Animal Disease Diagnosis and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Preventive strategies for frequent outbreaks of Japanese encephalitis in Northern India. J Biosci 2008; 33:505-14. [DOI: 10.1007/s12038-008-0069-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Immune responses of recombinant adenoviruses expressing immunodominant epitopes against Japanese encephalitis virus. Vaccine 2008; 26:5802-7. [DOI: 10.1016/j.vaccine.2008.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/17/2008] [Accepted: 08/19/2008] [Indexed: 11/21/2022]
|
25
|
Fei-fei G, Jian W, Feng X, Li-ping S, Quan-yun S, Jin-ping Z, Pu-yan C, Pei-hong L. Japanese encephalitis protein vaccine candidates expressing neutralizing epitope and M.T hsp70 induce virus-specific memory B cells and long-lasting antibodies in swine. Vaccine 2008; 26:5590-4. [DOI: 10.1016/j.vaccine.2008.07.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 05/28/2008] [Accepted: 07/29/2008] [Indexed: 12/01/2022]
|
26
|
Sukupolvi-Petty S, Austin SK, Purtha WE, Oliphant T, Nybakken GE, Schlesinger JJ, Roehrig JT, Gromowski GD, Barrett AD, Fremont DH, Diamond MS. Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes. J Virol 2007; 81:12816-26. [PMID: 17881453 PMCID: PMC2169112 DOI: 10.1128/jvi.00432-07] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.
Collapse
Affiliation(s)
- Soila Sukupolvi-Petty
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bharati K, Malik YPS, Vrati S. Immunogenicity and protective efficacy of the E. coli-expressed domain III of Japanese encephalitis virus envelope protein in mice. Med Microbiol Immunol 2007; 196:227-31. [PMID: 17377815 DOI: 10.1007/s00430-007-0043-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Indexed: 11/26/2022]
Abstract
Domain III of Japanese encephalitis virus (JEV) envelope protein (E-DIII) was synthesized in E. coli as a fusion protein containing maltose-binding protein (MBP-E-DIII) or six contiguous histidine residues (His-E-DIII) at its N-terminus. MBP-E-DIII was found both in the soluble as well as the insoluble fraction of the bacterial lysate, while His-E-DIII was found exclusively in the inclusion bodies. These purified proteins were examined in mice for their immunogenicity in presence of an aluminium hydroxide based-adjuvant Alhydrogel and Freund's adjuvant. While both proteins generated anti-JEV antibodies that neutralized JEV activity in vitro, His-E-DIII generated higher antibody titers than MBP-E-DIII. Mice immunized with His-E-DIII in presence of Alhydrogel generated antibody titers similar to those induced by the commercial vaccine and protected mice against lethal JEV challenge.
Collapse
|
28
|
Chen SO, Chang TJ, Stone G, Chen CH, Liu JJ. Programmed cell death induced by Japanese encephalitis virus YL vaccine strain or its recombinant envelope protein in varied cultured cells. Intervirology 2006; 49:346-51. [PMID: 16926547 DOI: 10.1159/000095154] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 10/18/2005] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The Japanese encephalitis virus YL vaccine strain (JEV-YL) was investigated as regards its organ tropism and the role of recombinant envelope glycoprotein in the induction of apoptosis was explored. METHODS Threevaried cell lines (HepG2, Vero and C6) were infected with JEV-YL or transfected with eukaryotic expression plasmids (pcE, pcF1R2, pcF1R1 and pcF2R2) which contain different parts of the envelope gene and phenotypic properties were examined by flow cytometry and DNA fragmentation analysis. RESULTS After JEV-YL infection, smaller plaque was produced on HepG2 cells than on Vero cells, whereas no cytopathic effect was observed on C6 cells; moreover, by apoptosis and DNA fragmentation assays, the hallmark cytopathic effects were detected in HepG2 and Vero cells but not in C6 cells. Furthermore, cells used in our study transfected with recombinant core plasmid, pcE, which include full-length E gene but the deleted forms (pcF1R2, pcF1R1 and pcF2R2) did not have similar results as JEV-YLs. CONCLUSIONS The JEV-YL vaccine strain had changed cell tropism to liver cells different from other virulent strains which have neural tropism, and in this study we proved that the transient-expressed entire E protein of JEV-YL could induce apoptosis and the mutations of E protein may change the organ tropism of JEV-YL.
Collapse
Affiliation(s)
- S-O Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Ge FF, Qiu YF, Yang YW, Chen PY. An hsp70 fusion protein vaccine potentiates the immune response against Japanese encephalitis virus. Arch Virol 2006; 152:125-35. [PMID: 16862385 DOI: 10.1007/s00705-006-0822-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/15/2006] [Indexed: 10/24/2022]
Abstract
To evaluate the possibility of developing an effective subunit vaccine against Japanese encephalitis virus (JEV), mice were intraperitoneally immunized with either a neutralizing epitope (a 27-amino-acid region of the JEV E protein), or with a fusion protein between this region and a Mycobacterium tuberculosis hsp70. Both antigens were heterologously expressed in Escherichia coli as fusion proteins with thioredoxin. The fusion protein antigen elicited a higher titer of anti-thioredoxin-neutralizing epitope antibodies and a stronger proliferation of lymphocytes than did either the neutralizing epitope (irrespective of the presence of mineral oil as an adjuvant), or the conventional JEV SA14-14-2 vaccine. Assays of antibody isotype and IFN-gamma and IL-4 content in post-immunization serum showed that the fusion protein elicited a higher IgG2a titer and higher levels of IFN-gamma suggesting a potentiation of the Th1 immune response. The fusion protein antigen elicited a long-lived immune response, and the antibodies were able to neutralize JEV in vitro more strongly than did those elicited by the JEV SA14-14-2 vaccine. Immunization with the fusion protein generated both humoral and cellular immune responses to JEV, and the fusion protein appeared to be a more efficient protectant than the JEV SA14-14-2 vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Cytokines/biosynthesis
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Epitopes/administration & dosage
- Epitopes/genetics
- HSP70 Heat-Shock Proteins/administration & dosage
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/immunology
- Immunization, Secondary
- Immunoglobulin G/blood
- Injections, Intraperitoneal
- Japanese Encephalitis Vaccines/administration & dosage
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/immunology
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- F-F Ge
- Key Laboratory of Animal Disease Diagnosis and Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | | | | | | |
Collapse
|
30
|
Wu KP, Wu CW, Tsao YP, Kuo TW, Lou YC, Lin CW, Wu SC, Cheng JW. Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J Biol Chem 2003; 278:46007-13. [PMID: 12952958 DOI: 10.1074/jbc.m307776200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flavivirus envelope protein is the dominant antigen in eliciting neutralizing antibodies and plays an important role in inducing immunologic responses in the infected host. We have determined the solution structure of the major antigenic domain (domain III) of the Japanese encephalitis virus (JEV) envelope protein. The JEV domain III forms a beta-barrel type structure composed of six antiparallel beta-strands resembling the immunoglobulin constant domain. We have also identified epitopes of the JEV domain III to its neutralizing antibody by chemical shift perturbation measurements. Site-directed mutagenesis experiments are performed to confirm the NMR results. Our study provides a structural basis for understanding the mechanism of immunologic protection and for rational design of vaccines effective against flaviviruses.
Collapse
Affiliation(s)
- Kuen-Phon Wu
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu JJ, Tsai TH, Chang TJ, Wong ML. Cloning and sequencing of complete cDNA of Japanese encephalitis virus YL strain in Taiwan. Virus Genes 2003; 26:193-8. [PMID: 12803471 DOI: 10.1023/a:1023443631659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We determined the complete nucleotide sequence of the YL strain of Japanese encephalitis virus and its amino acid sequence was deduced. Our results displayed that the genome of YL strain contained a single open reading frame of 10,296 nucleotides (nts) which was flanked by untranslated region (UTR) containing 95 bases at the 5'-end and 586 bases at the 3'-end, respectively. Comparison of sequences showed that the overall amino acid sequence and 3' UTR of YL were similar to those of the virulent strain JaGAr0l. However, some significant amino acid differences of viral envelope (E) protein were observed between YL and JaGAr01; the amino acid sequence of E protein in YL strain possessed RGG(387-389) tripeptide instead of RGD(387-389) in JaGAr01 and in other strains; and another amino acid is K(138) in YL, not E(138) found in others. These differences suggested that the YL strain impairs in viral attachment to the cell surface and loses neuroinvasiveness, and therefore this strain was used as a live attenuated vaccine.
Collapse
Affiliation(s)
- J J Liu
- Department of Microbiology, China Medical College, Taichung 404, Taiwan.
| | | | | | | |
Collapse
|
32
|
Lin CW, Wu SC. A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites. J Virol 2003; 77:2600-6. [PMID: 12551998 PMCID: PMC141121 DOI: 10.1128/jvi.77.4.2600-2606.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The envelope (E) protein of Japanese encephalitis virus (JEV) is associated with viral binding to cellular receptors, membrane fusion, and the induction of protective neutralizing-antibody responses in hosts. Most previous studies have not provided detailed molecular information about the spatial configuration of the functional epitopes on domain III of the E protein. Here site-directed mutagenesis was performed to demonstrate that the functional epitope determinants at Ser331 and Asp332 on domain III of the JEV E protein interacted with neutralizing monoclonal antibody (MAb) E3.3. Bacterial expression of the recombinant Fab E3.3 confirmed the molecular interactions of Arg94 in complementary determining region H3 with Ser331 and Asp332 on domain III. This study elucidates the detailed molecular structures of the neutralizing epitope determinants on JEV domain III, which can provide useful information for designing new vaccines.
Collapse
Affiliation(s)
- Cheng-Wen Lin
- Institute of Biotechnology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | | |
Collapse
|
33
|
Wu SC, Lin CW. Neutralizing peptide ligands selected from phage-displayed libraries mimic the conformational epitope on domain III of the Japanese encephalitis virus envelope protein. Virus Res 2001; 76:59-69. [PMID: 11376846 DOI: 10.1016/s0168-1702(01)00246-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The envelope (E) protein of Japanese encephalitis virus (JEV) contains 500 amino acids with six "conserved" disulfide bonds to maintain its conformational structure. Neutralizing epitopes located on the E protein are mostly conformational dependent. In this study, we used phage-displayed 12-residue combinatorial peptide libraries to select high-affinity peptide ligands bound to monoclonal antibody E3.3. The specific peptide ligands presented on ten high-affinity phage clones displayed six different amino acid sequences, all showing a novel cis-proline turn structure. After being superimposed onto the best fit of the three-dimensional structure of JEV E protein, these peptide structures were mapped to a conformational region constituted by three continuous polypeptide segments (E307-E309, E327-E333, E386-E390) in domain III. Synthetic peptide ligands based on one peptide sequence (E18) were further investigated using alanine scanning within the cis-proline turn structure to demonstrate its unique molecular characteristics. Our results showed that three residues forming the novel cis-proline turn structure were all important in eliciting JEV-specific neutralizing antibodies in mice.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Chlorocebus aethiops
- Encephalitis Virus, Japanese/chemistry
- Encephalitis Virus, Japanese/immunology
- Enzyme-Linked Immunosorbent Assay
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/immunology
- Immunization
- Ligands
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Molecular Mimicry
- Neutralization Tests
- Peptide Library
- Peptides/chemistry
- Peptides/immunology
- Protein Structure, Tertiary
- Vero Cells
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/immunology
- Viral Plaque Assay
Collapse
Affiliation(s)
- S C Wu
- Department of Life Science, National Tsing Hua University, 30013, Taiwan, Hsinchu, PR China
| | | |
Collapse
|
34
|
Ashok MS, Rangarajan PN. Immunization with plasmid DNA encoding the envelope glycoprotein of Japanese Encephalitis virus confers significant protection against intracerebral viral challenge without inducing detectable antiviral antibodies. Vaccine 1999; 18:68-75. [PMID: 10501236 DOI: 10.1016/s0264-410x(99)00180-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A plasmid DNA construct, pCMXENV encoding the envelope (E) glycoprotein of Japanese Encephalitis virus (JEV), was constructed. This plasmid expresses the E protein intracellularly, when transfected into Vero cells in culture. The ability of pCMXENV to protect mice from lethal JEV infection was evaluated using an intracerebral (i.c.) JEV challenge model. Several independent immunization and JEV challenge experiments were carried out and the results indicate that 51 and 59% of the mice are protected from lethal i.c. JEV challenge, when immunized with pCMXENV via intramuscular (i.m.) and intranasal (i.n.) routes respectively. None of the mice immunized with the vector DNA (pCMX) survived in any of these experiments. JEV-specific antibodies were not detected in pCMXENV-immunized mice either before or after challenge. JEV-specific T cells were observed in mice immunized with pCMXENV which increased significantly after JEV challenge indicating the presence of vaccination-induced memory T cells. Enhanced production of interferon-gamma (IFN-gamma) and complete absence of interleukin-4 (IL-4) in splenocytes of pCMXENV-immunized mice on restimulation with JEV antigens in vitro indicated that the protection is likely to be mediated by T helper (Th) lymphocytes of the Th1 sub-type. In conclusion, our results demonstrate that immunization with a plasmid DNA expressing an intracellular form of JEV E protein confers significant protection against i.c. JEV challenge even in the absence of detectable antiviral antibodies.
Collapse
Affiliation(s)
- M S Ashok
- Department of Biochemistry, Indian Institute of Science, Bangalore
| | | |
Collapse
|
35
|
Brinton MA, Kurane I, Mathew A, Zeng L, Shi PY, Rothman A, Ennis FA. Immune mediated and inherited defences against flaviviruses. CLINICAL AND DIAGNOSTIC VIROLOGY 1998; 10:129-39. [PMID: 9741638 DOI: 10.1016/s0928-0197(98)00039-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Flavivirus infection elicits an abundant immune response in the host which is directed against a number of the viral proteins. Resistance to flavivirus-induced disease can also be controlled via a non-immune mechanism involving the product of a naturally occurring murine gene, Flv. OBJECTIVES To review studies that have reported the mapping of epitopes on flavivirus proteins that elicit T- or B-cell immune responses in mice or humans and to discuss a possible mechanism for flavivirus-specific genetic resistance. STUDY DESIGN Purified viral proteins and synthetic peptides were used to map B-cell epitopes. Purified proteins, vaccinia-expressed viral protein fragments and synthetic peptides were used to map T-cell epitopes. Congenic-resistant, C3H/RV and congenic susceptible, C3H/He mice and cell cultures were used to study the mechanism of genetic resistance to flavivirus infection. RESULTS T- and B-cell epitopes have been mapped to the E, NS1 and NS3 proteins of several flaviviruses. Immune responses to the C, PreM, NS2a, NS4a, and NS5 proteins have also been documented. Data suggest that the Flv gene product acts intracellularly to suppress the synthesis of viral genomic RNA. CONCLUSIONS Although flavivirus infection elicits an abundant immune response, this response is not always rapid enough to protect the host from developing encephalitis. During secondary infections both the humoral and cellular flavivirus-specific responses can confer protection. Dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) appear to be caused by an overly vigorous immune response. In genetically resistant animals reduced production of virus results in a slower spread of the infection, which in turn allows time for the immune response to develop and to clear the infection before disease symptoms appear.
Collapse
Affiliation(s)
- M A Brinton
- Department of Biology, Georgia State University, Atlanta 30302-4010, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lin YL, Liao CL, Yeh CT, Chang CH, Huang YL, Huang YY, Jan JT, Chin C, Chen LK. A highly attenuated strain of Japanese encephalitis virus induces a protective immune response in mice. Virus Res 1996; 44:45-56. [PMID: 8873412 DOI: 10.1016/0168-1702(96)01343-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A pair of virulent (RP-9) and attenuated (RP-2ms) mutants of Japanese encephalitis virus (JEV) were generated from a Taiwanese isolate NT109. The mutants differed in several aspects in vitro and in vivo. RP-2ms exhibited smaller plaque than RP-9 on BHK-21 cells, and when intracerebrally injected, RP-2ms was much less neurovirulent than RP-9. As peripherally inoculated, RP-2ms lost neuroinvasiveness while RP-9 penetrated blood-brain barrier, replicated in mouse brain, and killed all the mice. Single RP-2ms immunization completely protected C3H and ICR mice from a lethal challenge with RP-9; the sera from such mice contained antibodies against JEV envelope and nonstructural 1 proteins, indicating RP-2ms had replicated in the mice Neutralizing activity against NT109 in such sera was further demonstrated by plaque reduction neutralization test. In addition, significant lymphoproliferation was detected in spleen cells from the RP-2ms-immunized mice, and cytotoxic activity in these cells specific for the MHC-matched, JEV-infected cells, but not mock cells, was also observed. Altogether, these results demonstrate that RP-2ms, a highly attenuated JEV strain, can induce a protective immunity in mice.
Collapse
Affiliation(s)
- Y L Lin
- Institute of Preventive Medicine, National Defense Medical Center, San-Hsia, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Seif SA, Morita K, Igarashi A. A 27 amino acid coding region of JE virus E protein expressed in E. coli as fusion protein with glutathione-S-transferase elicit neutralizing antibody in mice. Virus Res 1996; 43:91-6. [PMID: 8822638 DOI: 10.1016/0168-1702(96)01323-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have recently shown that neutralizing epitope(s) exist near the C-terminal of JE virus E-protein by expressing the coding gene cDNA fragments as fusion proteins with protein A. Among four cDNA fragments, the fragment (B3) carrying the coding sequence of amino acid number 373-399 of E protein elicited the highest neutralizing (N) antibody titer (1:75). To exclude the possible influence of protein A contained in the expressed gene products on the mouse immune response, we expressed (B3) using pGEX-3X expression vector as fusion with glutathione-S transferase (GST). The mice immunized with recombinant GST-B3 fusion protein induced an immune response (mean average ELISA: 3364; N: 1:75) almost similar to that by recombinant protein A-B3 fusion protein (mean average ELISA: 3476; N: 1:75). While hemagglutination-inhibition (HI) antibodies were not induced by this fusion protein. These results indicate that 27 amino acid sequence on the E protein (373-399) was sufficient to induce neutralizing antibodies without association with protein A moiety.
Collapse
Affiliation(s)
- S A Seif
- Department of Virology, Nagasaki University, Japan
| | | | | |
Collapse
|